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We generalize the quasi-diabatic (QD) propagation scheme to simulate the non-adiabatic polariton dynamics
in molecule-cavity hybrid systems. The adiabatic-Fock states, which are the tensor product states of the
adiabatic electronic states of the molecule and photon Fock states, are used as the locally well-defined dia-
batic states for the dynamics propagation. These locally well-defined diabatic states allow using any diabatic
quantum dynamics methods for dynamics propagation, and the definition of these states will be updated at
every nuclear time step. We use several recently developed non-adiabatic mapping approaches as the diabatic
dynamics methods to simulate polariton quantum dynamics in a Shin-Metiu model coupled to an optical cav-
ity. The results obtained from the mapping approaches provide very accurate population dynamics compared
to the numerically exact method and outperform the widely used mixed quantum-classical approaches, such
as the Ehrenfest dynamics and the fewest switches surface hopping approach. We envision that the general-
ized QD scheme developed in this work will provide a powerful tool to perform the non-adiabatic polariton
simulations by allowing a direct interface between the diabatic dynamics methods and ab initio polariton
information.

I. INTRODUCTION

Coupling molecules to the quantized radiation field
inside an optical cavity creates a set of new photon-
matter hybrid states, which are commonly referred to as
polaritons,1–6 which have been shown to facilitate new
chemical reactivities.1,6–9 Theoretical investigations play
a crucial role in understanding the fundamental limit and
basic principles in this emerging field,5,6,10–13 as these
polariton chemical reactions often involve a rich dynami-
cal interplay among the electronic, nuclear, and photonic
degrees of freedom (DOFs). Accurately simulating po-
laritonic quantum dynamics remains a challenging task
and is beyond the scope of photochemistry or quantum
optics.2

The trajectory-based non-adiabatic dynamics
approaches14–16 play an important role in simulating the
non-adiabatic dynamics of the coupled electronic-nuclear
DOFs. Two of the most commonly used mixed quantum-
classical (MQC) methods are the Ehrenfest and fewest
switches surface hopping (FSSH) approaches.17,18 Both
approaches describe the electronic subsystem quantum
mechanically, and treat the nuclear DOFs classically.
It is thus a natural idea for the theoretical chemistry
community to extend these two approaches to investigate
polariton chemistry by treating the electronic-photonic
DOFs (or so-called polariton subsystem) quantum
mechanically and the nuclear DOFs classically. Incor-
porating the description of the photon field into the
MQC methods has become a basic strategy to simulate
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polariton chemistry.10–13,19–22 The key ingredient in the
MQC simulations of polariton dynamics is the expression
of the nuclear gradient. Recently, we derived a rigorous
expression of the nuclear gradient using the quantum
electrodynamics (QED) Hamiltonian without making
the usual approximations,23 such as the rotating wave
approximation. These gradient expressions, together
with the corresponding MQC approaches (Ehrenfest
and FSSH approaches), is valid for any any number
of electronic states or Fock states at any light-matter
coupling strength. However, the inherent semi-classical
approximation in these approaches can lead to the
break-down of detailed balance24 (incorrect long time
population) in Ehrenfest dynamics and the creation of
artificial electronic coherence25 or incorrect chemical
kinetics25 for the FSSH dynamics without invoking ad
hoc decoherence corrections.

In response to these theoretical challenges, a wide
range of non-adiabatic dynamics approaches have been
developed in the diabatic representation. Many of them
belong to the family of non-adiabatic mapping dynam-
ics which are based on the Meyer-Miller-Stock-Thoss
(MMST) mapping formalism.26–28 These methods in-
clude partial linearized density matrix29,30 (PLDM),
symmetrical quasi-classical31,32 (SQC), the quantum-
classical Liouville equation (QCLE) dynamics.33,34 In
particular, the recently developed γ-SQC has been
shown35 to provide impressively accurate non-adiabatic
photo-dissociation quantum dynamics with coupled
Morse potentials through the adjusted zero-point en-
ergy (ZPE) parameter of the mapping variables, thus
appearing to be a promising method to simulate on-
the-fly quantum dynamics of complex molecular systems.
In addition, the spin-mapping Linearized Semi-Classical
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approach (spin-LSC)36–38, which uses generalized spin
mapping representation37 for the electronic DOF as well
as the Linearization approximation39,40 for the nuclear
DOF, has also shown a significant improvement of the
population dynamics in the system-bath model problems
(such as in spin-boson systems36 and many-state exci-
ton Hamiltonians of light-harvesting complexes.37) The
γ-SQC approach has already demonstrated41 its ability
to outperform MQC approaches (Ehrenfest and FSSH)
in describing the electronic non-adiabatic dynamics for
ab initio on-the-fly simulations. These new mapping ap-
proaches should, in principle, also outperform the MQC
methods in simulating the polaritonic non-adiabatic dy-
namics that happens in the electron-photon subspace
coupling to the motion of the nuclei. Unfortunately,
to the best of our knowledge, there are only limited
studies of using mapping dynamics to investigate po-
lariton chemistry for model systems with strict diabatic
states.6,9,42

Recently, we have developed the quasi-diabatic (QD)
propagation scheme41,43–47 as a general framework to
seamlessly combine a diabatic quantum dynamics ap-
proach, such as the mapping based methods,35,37 with
the adiabatic outputs of an electronic structure method.
The QD propagation scheme uses the adiabatic states at
a reference nuclear geometry (the so-called “crude adia-
batic” states) as the locally well-defined diabatic states
during a short-time propagation and then dynamically
updates the QD basis at each consecutive nuclear propa-
gation step. In this propagation scheme, one does not
construct a global diabatic representation but instead,
uses a sequence of locally diabatic representations (one
for each short-time segment) to propagate the dynam-
ics. We have both analytically43 and numerically45,46

demonstrated that the QD scheme provides exactly the
same results compared to the direct diabatic quantum
dynamics at the single trajectory level.

In this work, we generalize the QD propagation
scheme to simulate polariton non-adiabatic dynamics in
a molecule-cavity hybrid system. In particular, we use
the adiabatic-Fock state at a reference nuclear geometry
as the locally well-defined diabatic basis to propagate the
polariton dynamics, and dynamically update the defini-
tion of these local diabatic states between two consecu-
tive propagation steps. These adiabatic-Fock states are
tensor products of the electronic adiabatic states for the
molecular system and the Fock states of the photon field
inside an optical cavity. We use the Shin-Metiu (SM)
model48,49 as the “ab initio” model molecular system to
investigate strong and ultra-strong light-matter interac-
tions between a molecule and an optical cavity. Through
numerical simulations, we demonstrate the accuracy of
using both γ-SQC35 and spin-LSC36,37 to obtain non-
adiabatic polariton dynamics, which outperforms widely
used MQC approaches.

II. THEORY AND METHODS

A. The Pauli-Fierz QED Hamiltonian

The Pauli-Fierz (PF) QED Hamiltonian for one
molecule coupled to quantized radiation field inside an
optical cavity can be written as

Ĥ = T̂n + Ĥen + Ĥp + Ĥenp + Ĥd, (1)

where T̂n represents the nuclear kinetic energy opera-
tor, Ĥen is the electronic Hamiltonian that describes
electron-nucleus interactions. Further, Ĥp, Ĥenp, and Ĥd

represent the photonic Hamiltonian, electronic-nuclear-
photonic interactions, and the dipole self-energy (DSE)
term, respectively. A full derivation of this Hamiltonian,
as well as its connection with the various atomic cavity
QED models can be found in the Appendix of Ref. 42.

The electronic-nuclear potential Ĥen, which describes
the common molecular Hamiltonian excluding the nu-
clear kinetic energy is described as follows

Ĥen = T̂e + V̂ee + V̂en + V̂nn. (2)

The above expression includes electronic kinetic energy,
electron-electron interaction, electron-nucleus interaction
and nucleus-nucleus interaction. The expressions of these
four terms can be found in previous work.50–52 Modern
electronic structure theory have been developed around
solving the eigenvalue problem of Ĥen, providing the fol-
lowing electronically adiabatic energy and its correspond-
ing state

Ĥen|φα(R)〉 = Eα(R)|φα(R)〉. (3)

Here, |φα(R)〉 represents the αth many-electron adiabatic
state for a given molecular system, with the adiabatic
energy Eα(R).

For clarity, we restrict our discussions to the cavity
with only one photonic mode, and all the formulas pre-
sented here can be easily generalized into a more realistic,
many-mode cavity. The photonic Hamiltonian is written
as

Ĥp =
1

2

(
p̂2

c + ω2
c q̂

2
c

)
= ~ωc

(
â†â+

1

2

)
, (4)

where q̂c =
√
~/2ωc(â† + â) and p̂c = i

√
~ωc/2(â† − â)

are photon field operators, â† and â are the photonic
creation and annihilation operators, respectively and ωc

is the photon frequency.
The light-matter coupling term (electronic-nuclear-

photonic interactions) under the dipole gauge is ex-
pressed as

Ĥenp = ωcq̂c(λ · µ̂) = gcε · µ̂(â† + â). (5)

where λ = λ · ε characterizes the cavity photon field
strength, ε is the direction of the field polarization. The
photon field strength is determined by the volume of the
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cavity as λ =
√

1/ε0V0, where ε0 is the permittivity in-
side the cavity and V0 is the effective quantization volume
inside the cavity. Another way to characterize the light-
matter coupling strength is using gc =

√
~ωc/2λ. Note

that the common notation used in the literature,6,53 the
definition of gc also includes λ · µ̂. Further, the total
dipole operator of both electrons and nuclei is defined as

µ̂ = −
∑
i

er̂i +
∑
j

ZjeR̂j , (6)

where −e is the charge of the electron and Zje is the
charge of the jth nucleus.

Finally, the DSE term is expressed as

Ĥd =
1

2
(λ · µ̂)2 =

g2
c

~ωc
(ε · µ̂)2. (7)

This is a necessary term in the PF Hamiltonian and en-
sures both gauge invariance of the Hamiltonian9,54 and a
bounded ground state.9,55,56 In this work, we do not con-
sider the cavity loss. The cavity loss can be effectively in-
corporated by using Lindblad dynamics approaches with
the MQC simulations.57

For the molecule-cavity hybrid system, a convenient
basis for quantum dynamics simulations could be the
photon-dressed electronic adiabatic states

|ψi(R)〉 = |φα(R)〉 ⊗ |n〉 ≡ |φα(R), n〉, (8)

where quantum number i ≡ {α, n} indicates both the adi-
abatic electronic state of the molecule and the Fock state.
Note that we have introduced a shorthand notation in
Eq. 8, which will be used throughout the rest of this pa-
per. This is one of the most straightforward choices of ba-
sis for the hybrid system because of the readily available
adiabatic electronic information (e.g., wavefunctions, en-
ergies, and the dipole matrix) from electronic structure
calculations that we need to construct the elements of
Hamiltonian.

In the MQC simulation, such as the Ehrenfest or
FSSH approach, or the recently developed mapping non-
adiabatic approaches, the total molecular Hamiltonian is
expressed as

Ĥ = T̂n + V̂ , (9)

where T̂n represents the nuclear kinetic energy operator,
and V̂ represents the rest of the Hamiltonian. For a bare
molecular system, V̂ = Ĥen expressed in Eq. 2. For a
molecule-cavity hybrid system,

V̂ = Ĥen + Ĥp + Ĥenp + Ĥd ≡ Ĥpl, (10)

which is commonly referred to as the polariton
Hamiltonian,3,58 also denoted as Ĥpl. In a similar way
that electronic adiabatic states are defined in Eq. 3, one
can further define the polaritonic state3,58 as the eigen-
state of V̂ = Ĥpl (see definition in Eq. 10) through the
following eigenequation

Ĥpl|EJ(R)〉 = EJ(R)|EJ(R)〉, (11)

where |EJ(R)〉 is the polariton state with polariton en-
ergy EJ(R). The polariton eigenstate can be expressed
as

|EJ(R)〉 =
∑
α,n

cJα,n(R)|φα(R), n〉, (12)

where cJα,n(R) = 〈φα(R), n|EJ(R)〉 and EJ(R) can be

obtained by diagonalizing the matrix of V̂ = Ĥpl (con-
structed from the adiabatic-Fock state basis in Eq. 8)
as

U†[V (R)]U = [E(R)], (13)

where

[V (R)]ij = 〈ψi(R)|V̂ |ψj(R)〉. (14)

Note that the R-dependence of |EJ(R)〉 is entirely coming
from the R-dependence of the adiabatic states |φα(R)〉,
and the Fock state |n〉 is completely R-independent.

Meanwhile, the |EJ(R)〉 is the eigenstate of V̂ , whereas

the adiabatic state |φα(R)〉 is only the eigenstate of Ĥen,

and not for V̂ .

B. Quasi-Diabatic Propagation Scheme for Molecular
Cavity QED

The QD propagation scheme explicitly addresses the
discrepancy between accurate quantum dynamics meth-
ods in the diabatic representation and the electronic
structure methods in the adiabatic representation. The
essential idea of the QD scheme is to use the electronic
adiabatic states associated with a reference geometry
as the local diabatic states during a short-time quan-
tum propagation and dynamically updates the defini-
tion of the QD states along the time-dependent nuclear
trajectory.41,43–47

In this work, we apply the QD propagation scheme to
the case of molecular cavity QED. This requires the use
of a convenient basis with a reference nuclear geometry
as the locally well-defined diabatic basis, in the sense that
its character is fixed (which is automatically guaranteed
because of the fixed reference geometry by construction)
as well as it is a complete basis (which is only true when
the geometry is close to this reference geometry). The
potential candidate for this basis is the adiabatic-Fock
state |ψi(R)〉 = |φα(R), n〉 (Eq. 8), which is not the same
as the polariton states |EJ(R)〉 (Eq. 12) except for the
zero-coupling limit. In this work, we use the adiabatic-
Fock state as the convenient choice due to its simplicity
in terms of the polariton coupling and nuclear gradient
expressions in the QD propagation framework.

Consider a short-time propagation of the nuclear DOFs
during t ∈ [t0, t1], where the nuclear positions evolve from
R(t0) to R(t1), and the corresponding adiabatic-Fock ba-
sis (defined in Eq. 8) are {|ψi(R(t0))〉} and {|ψjR(t1))〉}.
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We uses the basis {|ψi(R0)〉 ≡ |φα(R0), n〉} at the refer-
ence nuclear geometry R(t0) as the diabatic basis during
this short-time propagation, such that

|ψi(R0)〉 ≡ |ψi(R(t0))〉, for t ∈ [t0, t1]. (15)

With the above QD basis defined independently of R(t)
within each propagation segment, the electronic deriva-
tive couplings vanish while V̂ (R(t)) in the QD basis be-
comes off-diagonal. With this local diabatic basis, all of
the necessary diabatic quantities can be evaluated and
used to propagate quantum dynamics during t ∈ [t0, t1].

During this propagation step, the matrix element of V̂
in the QD basis is evaluated as

Vαβ,mn(R(t)) = 〈φα(R0),m|V̂ (R(t))|φβ(R0), n〉. (16)

For on-the-fly simulations, this quantity is obtained
from a linear interpolation59 between Vαβ,mn(R0) and
Vαβ,mn(R(t1)) as follows

Vαβ,mn(R(t)) = Vαβ,mn(R0) (17)

+
(t− t0)

(t1 − t0)

[
Vαβ,mn(R(t1))− Vαβ,mn(R0)

]
.

The above linear interpolation scheme can be further
improved in future work and one potential choice is
the recently developed norm-preserving interpolation
scheme.60,61

It is straightforward to evaluate Vαβ,mn(R0) and
Vαβ,mn(R(t1)) separately for the molecule-cavity hybrid
system, as discussed below. Using electronic ab initio
calculation, as well as the properties of â† and â for the
photonic DOF, we can explicitly evaluate each term of
Vαβ,mn(R0) (see Eq. 10) as follows

Hen
αβ,mn(R0) = 〈φα(R0),m|Ĥen(R0)|φβ(R0), n〉
= Eα(R0)δα,βδm,n (18a)

Hp
αβ,mn(R0) = 〈φα(R0),m|Ĥp|φβ(R0), n〉

= ~ωc(n+
1

2
)δα,βδm,n (18b)

Henp
αβ,mn(R0) = 〈φα(R0),m|Ĥenp(R0)|φβ(R0), n〉

= gcε · µαβ(R0)
(√
nδm,n−1 +

√
n+ 1δm,n+1

)
(18c)

Hd
αβ,mn(R0) = 〈φα(R0),m|Ĥd(R0)|φβ(R0), n〉

=
g2

c

~ωc

∑
γ

(ε · µαγ(R0))(ε · µγβ(R0))δm,n

≡ D2
αβ(R0)δm,n, (18d)

where Ĥp (see its definition in Eq. 4) is an R-independent

operator, the sum
∑
γ in the matrix element of Ĥd runs

over the diabatic states, and D2
αβ denotes the elements of

DSE. Further, the matrix element of the dipole operator
under the diabatic representation is expressed as

µαβ(R0) ≡ 〈φα(R0)|µ̂(R0)|φβ(R0)〉. (19)

Similarly, at time t1, the matrix element
Vαβ,mn(R(t1)) = 〈φα(R0),m|V̂ (R(t1))|φβ(R0), n〉
can also be written explicitly, with each term expressed
as follows

Hen
αβ,mn(R(t1)) = 〈φα(R0),m|Ĥen(R(t1))|φβ(R0), n〉
= Hen

αβ(R(t1))δm,n (20a)

Hp
αβ,mn(R(t1)) = 〈φα(R0),m|Ĥp|φβ(R0), n〉

= ~ωc(n+
1

2
)δα,βδm,n (20b)

Henp
αβ,mn(R(t1)) = 〈φα(R0),m|Ĥenp(R(t1))|φβ(R0), n〉

= gcε · µαβ(R(t1))
(√
nδm,n−1 +

√
n+ 1δm,n+1

)
(20c)

Hd
αβ,mn(R(t1)) = 〈φα(R0),m|Ĥd(R(t1))|φβ(R0), n〉

=
g2

c

~ω
∑
γ

(ε · µαγ(R(t1)))(ε · µγβ(R(t1)))δm,n

≡ D2
αβ(R(t1))δm,n, (20d)

where Hen
αβ(R(t1)) ≡ 〈φα(R0)|Ĥen(R(t1))|φβ(R0)〉, and

µαβ(R(t1)) ≡ 〈φα(R0)|µ̂(R(t1))|φβ(R0)〉.

To conveniently calculate Hen
αβ(R(t1)) and µαβ(R(t1)),

we use the following relations

Hen
αβ(R(t1)) =

∑
λν

SαλH̃
en
λν(R(t1))S†βν (21a)

µαβ(R(t1)) =
∑
λν

Sαλµ̃λν(R(t1))S†βν , (21b)

where the matrix elements at R(t1) are expressed as

H̃en
λν(R(t1)) = 〈φλ(R(t1))|Ĥen(R(t1))|φν(R(t1))〉 (22a)

= Eλ(R(t1))δλν

µ̃λν(R(t1)) = 〈φλ(R(t1))|µ̂(R(t1))|φν(R(t1))〉, (22b)

and the overlap matrix between two electronic adiabatic
states (with two different nuclear geometries) are

Sαλ = 〈φα(R0)|φλ(R(t1))〉 (23a)

S†βν = 〈φν(R(t1))|φβ(R0)〉. (23b)

Using the above information, as well as Eq. 17, we can
obtain each tern of Vαβ,mn(R(t)) for propagating the dy-
namics of the quantum subsystem that contains both
electronic and photonic DOFs.

Next, we need to evaluate the nuclear gradients
to propagate the dynamics of the classical subsystem,
which contains the nuclear DOFs. In particular, we
need to evaluate the nuclear gradients on each term of
∇Vαβ,mn(R(t1)). First, let us focus on the gradient term
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from the electron-nuclear coupling term47 as follows

∇Hen
αβ,mn(R(t1)) (24)

= ∇〈φα(R(t0)),m|Ĥen(R(t1))|φβ(R(t0)), n〉
= 〈φα(R(t0))|∇Ĥen(R(t1))|φβ(R(t0))〉 · 〈m|n〉

=
∑
λν

Sαλ〈φλ(R(t1))|∇Ĥen(R(t1))|φν(R(t1))〉S†βν · δmn.

Here, from the first to the second line, we have used
the fact that neither 〈φα(R0)| nor 〈m| are R-dependent,
which allows ∇ to bypass both and directly act on
V̂ (R(t1)). We have also used the fact that Ĥen does
not contain any photonic operators. The gradient term
〈φλ(R(t1))|∇Ĥen(R(t1))|φν(R(t1))〉 can be evaluated us-

ing the following well-known equality18

〈φλ(R)|∇Ĥen(R)|φν(R)〉 =

{
∇Eλ (λ = ν)

dλν (Eν − Eλ) (λ 6= ν),

(25)
where the non-adiabatic coupling (NAC) vector (or so-
called derivative coupling) is

dλν = 〈φλ(R)|∇|φν(R)〉. (26)

For the gradient on the matrix Hp
αβ,mn, because there

is no nuclear DOF in Ĥp, thus

∇Hp
αβ,mn(R(t1)) = ∇

[
~ωc(n+

1

2
)δα,βδm,n

]
= 0. (27)

For the gradient on the light-matter interaction term
Henp
αβ,mn, we have

∇Henp
αβ,mn(R(t1)) = ∇〈φα(R(t0)),m|Ĥenp(R(t1))|φβ(R(t0)), n〉 (28)

= 〈φα(R(t0))|∇µ̂(R(t1))|φβ(R(t0))〉 · ε · gc

(√
nδm,n−1 +

√
n+ 1δm,n+1

)
=
∑
λν

Sαλ〈φλ(R(t1))|∇µ̂(R(t1))|φν(R(t1))〉S†βν · ε · gc

(√
nδm,n−1 +

√
n+ 1δm,n+1

)
,

where Sαλ and S†βν are defined in Eq. 23a
and Eq. 23b, respectively. To evaluate the term

〈φλ(R)|∇µ̂(R)|φν(R)〉 that appears in Eq. 28, we use
a simple relation based on the chain rule as follows

〈φλ(R)|∇µ̂(R)|φν(R)〉 = ∇〈φλ(R)|µ̂(R)|φν(R)〉 − 〈∇φλ(R)|µ̂(R)|φν(R)〉 − 〈φλ(R)|µ̂(R)|∇φν(R)〉

= ∇µλν(R)−
∑
γ

〈∇φλ(R)|φγ(R)〉µγν(R)−
∑
γ

µλγ(R)〈φγ(R)|∇φν(R)〉

= ∇µλν(R) +
∑
γ

[
dλγ(R)µγν(R)− µλγ(R)dγν(R)

]
, (29)

where dλγ(R) = 〈φλ(R)|∇φγ(R)〉 = −〈∇φλ(R)|φγ(R)〉
and dγν(R) = 〈φγ(R)|∇φν(R)〉 = −〈∇φγ(R)|φν(R)〉
are the electronic derivative couplings (defined in Eq. 26).
Note that from the first line to the second line, we have
inserted P̂ =

∑
γ |φγ(R)〉〈φγ(R)|, which is the resolution

of identity in the electronic subspace. As one can clearly
see, this term requires the evaluation of derivative cou-

pling dλγ(R) and dγν(R), and the derivative on dipole
matrix element ∇µλν(R). For most of the electronic
structure methods, the derivatives on dipole matrix el-
ements ∇µλν(R) are not implemented. Nevertheless, re-
cent theoretical development has made these quantities
available.22

Finally, the gradient from the DSE term is expressed
as follows
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∇Hd
αβ,mn(R(t1)) = ∇〈φα(R0),m|Ĥd(R(t1))|φβ(R0), n〉 (30)

=∇
[∑

γ

(ε · 〈φα(R0)|µ̂(R(t1))|φγ(R0)〉)(ε · 〈φγ(R0)|µ̂(R(t1))|φβ(R0)〉)
] g2

c

~ω
δm,n

=
[∑

γ

(ε · 〈φα(R0)|∇µ̂(R(t1))|φγ(R0)〉)(ε · 〈φγ(R0)|µ̂(R(t1))|φβ(R0)〉)

+ (ε · 〈φα(R0)|µ̂(R(t1))|φγ(R0)〉)(ε · 〈φγ(R0)|∇µ̂(R(t1))|φβ(R0)〉)
] g2

c

~ω
δm,n,

where the term 〈φα(R(t0))|µ̂(R(t1))|φγ(R(t0))〉
can be evaluated using Eq. 21b, and the
〈φα(R0)|∇µ̂(R(t1))|φβ(R0)〉 type of derivative can
be computed in the same fashion as elaborated in
Eq. 28.

Using the matrix elements Vαβ,mn(R(t)) (Eq. 17)
and the nuclear gradient ∇Vαβ,mn(R) (as outlined in
Eqs. 24 - 30), one can in principle use any trajectory-
based approaches or wavepacket approaches with guid-
ing trajectories62–64 to propagate the quantum dynamics
in the time step of t ∈ [t0, t1]. During the next short-
time propagation segment t ∈ [t1, t2], the QD scheme
adopts a new reference geometry R′0 ≡ R(t1) and new
diabatic basis |ψj(R′0)〉 ≡ |ψj(R(t1))〉 = |φβ(R(t1)),m〉.
Between the t ∈ [t0, t1] propagation and the t ∈ [t1, t2]
propagation segments, all of the necessary quantities will
be transformed from {|ψi(R0)〉} to the {|ψj(R′0)〉} basis,
using the relation

|ψj(R(t1))〉 =
∑
i

〈ψi(R(t0))|ψj(R(t1))〉|ψi(R(t0))〉.

(31)
For the model calculations in this work, these overlap

integrals are evaluated as

〈ψi(R(t0))|ψj(R(t1))〉 = 〈φα(R(t0))|φβ(R(t1))〉 · 〈n|m〉,
(32)

where the electronic adiabatic state overlaps
〈φα(R(t0))|φβ(R(t1))〉 are directly calculated using
the discrete variable representation (DVR) basis,
and the Fock states are orthonormal to each other
〈n|m〉 = δn,m. When performing the transformation
in Eq. 31 (as well as in Eq. 43 for the non-adiabatic
mapping methods), the eigenvectors maintain their
mutual orthogonality subject to a very small error when
they are expressed in terms of the previous basis due
to the incompleteness of the basis.65,66 Nevertheless,
the orthogonality remains to be well satisfied among
{|ψi(R(t0))〉} or {|ψj(R(t1))〉}. This small numerical
error generated from each step can, however, accu-
mulate over many steps and cause a significant error
at longer times, leading to non-unitary dynamics.65,66

This potential issue can be easily resolved by using
orthonormalization procedure among the vectors of
the overlap matrix composed by 〈ψi(R(t0))|ψj(R(t1))〉,
as been done in our previous work44 for simulating

photo-induced charge transfer dynamics. Here, we
perform the Löwdin orthogonalization procedure67 as
commonly used in the local diabatization approach65 to
ensure unitary propagation.

As the nuclear geometry closely follows the reference
geometry throughout the propagation, the QD basis
forms a convenient and compact basis. Note that, in
principle, one needs an infinite set of crude adiabatic
states {|ψi(R0)〉} to represent the time-dependent elec-
tronic wavefunction because the electronic wavefunction
could change rapidly with the motion of the nuclei, and
the crude adiabatic basis is only convenient when the ref-
erence geometry R0 is close to the nuclear geometry R.
By dynamically updating the basis in the QD scheme, the
time-dependent electronic wavefunction is expanded with
the “moving crude adiabatic basis”62 that explores the
most relevant and important parts of the Hilbert space,
thus requiring only a few states for quantum dynamics
propagation.

C. Non-adiabatic Mapping Dynamics Methods

The Meyer-Miller-Stock-Thoss (MMST)
formalism26–28 maps the discrete electronic DOFs
onto continuous phase space variables. In the strict
diabatic basis {|i〉} (in the sense that 〈i|∇|j〉 = 0 for all
|i〉 and |j〉), the total Hamiltonian in Eq. 9 is expressed
as

Ĥ =
P2

2M
+
∑
i

Vii(R̂)|i〉〈i|+
∑
i 6=j

Vij(R̂)|i〉〈j|, (33)

where Vij(R̂) = 〈i|V̂ (r̂, R̂)|j〉 are the matrix elements of
the electronic Hamiltonian. Note that here |i〉 is used to
represent the strict diabatic basis, and not to be confused
with the adiabatic-Fock state |ψi(R)〉 = |φα(R), n〉 intro-
duced in Eq. 8. Nevertheless, based on the QD scheme,
these adiabatic-Fock states with a reference geometry R0

will be used as the diabatic state in the neighborhood of
the reference geometries, as indicated in Eq. 15.

In the non-adiabatic mapping approach, the Hamilto-
nian operator in Eq. 33 is transformed into the following
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MMST Hamiltonian

Hm =
P2

2M
+

1

2

∑
ij

Vij(R) (pipj + qiqj − 2γjδij) , (34)

where 2γj is viewed as a parameter68 which specifies
the ZPE of the mapping oscillators.36,37,68,69 In princi-
ple, 2γj is state-specific and trajectory-specific.35 The
MMST mapping Hamiltonian has been historically justi-
fied by Stock and Thoss using harmonic oscillator’s rais-
ing and lowering operators as the mapping operator.27,28

Recently, it has been derived using the SU(N) Lie group
theory or so-called generalized spin mapping approach.37

Classical trajectories are generated based on Hamil-
ton’s equations of motion (EOM)

q̇j = ∂Hm/∂pj ; ṗi = −∂Hm/∂qi (35a)

Ṙ = ∂Hm/∂P; Ṗ = −∂Hm/∂R = F, (35b)

with the nuclear force expressed as

F = −1

2

∑
ij

∇Vij(R)
(
pipj + qiqj − 2γjδij

)
. (36)

Overall, the MMST mapping provides a consistent clas-
sical footing for both electronic and nuclear DOFs, and
the non-adiabatic transitions between electronic states
are captured through the classical motion of the ficti-
tious harmonic oscillators. The non-adiabatic dynamics
obtained from this formalism have shown good perfor-
mance in the ab initio on-the-fly dynamics.41,47,70

To sample the initial electronic condition and estimate
the population, it is also convenient to use the action-
angle variables, {εj , θj}, which are related to the canon-
ical mapping variables {pj , qj} through

εj =
1

2

(
p2
j + q2

j

)
; θj = − tan−1

(
pj
qj

)
, (37)

and the inverse relations

qj =
√

2εj cos(θj); pj = −
√

2εj sin(θj), (38)

where εj is a positive-definite action variable that is di-
rectly proportional to the mapping variables’ radius in
action-space.35

The SQC approach calculates the population of elec-
tronic state |j〉, which is to be evaluated as68

ρjj(t) = TrR

[
ρ̂(0)eiĤt/~|j〉〈j|e−iĤt/~

]
(39)

≈
∫
dτρW(P,R)Wi(ε(0))Wj(ε(t)),

where ρ̂(0) = ρ̂R ⊗ |i〉〈i| is the initial density operator,
ρW(P,R) is the Wigner transform of ρ̂R operator for
the nuclear DOFs, ε = {ε1, ε2, ..., εN } is the positive-
definite action variable vector for N electronic states,35

Wi(ε) = δ(εi − (1 + γi))
∏
i 6=j δ(εj − γj) is the Wigner

transformed action variables,71 and dτ ≡ dP ·dR ·dε ·dθ.

For practical reasons, the above delta functions in Wi(ε)
are broadened using a distribution function (so-called
window function) that can be used to bin the resulting
electronic action variables in action-space.68 Further, we
use the γ-SQC approach,35 which uses a state-specific
and trajectory-specific γj parameter in Eq. 34 to cor-
rect the initial force according to the initially populated
state. This method has been proven to provide very accu-
rate non-adiabatic dynamics in model photo-dissociation
problems (coupled Morse potential), as well as outper-
form FSSH (with decoherence correction) in ab initio on-
the-fly simulations.41,70 The details of γ-SQC are pro-
vided in Appendix A.

For the spin-LSC approach,36,37 one chooses a univer-
sal ZPE parameter 2γj = Γ for all states and trajectories.
The spin-LSC population dynamics is calculated as

ρjj(t) = TrR

[
ρ̂R ⊗ |i〉〈i|eiĤt/~|j〉〈j|e−iĤt/~

]
(40)

≈
∫
dτρW(P,R)[|i〉〈i|]s(0) · [|j〉〈j|]s̄(t),

where the population estimators are obtained from the
Stratonovich-Weyl transformed electronic projection op-
erators, with the expressions as follows37

[
|i〉〈i|

]
s

=
1

2
(q2
i + p2

i − Γ) (41a)

[
|j〉〈j|

]
s̄

=
N + 1

2(1 + NΓ
2 )2

· (q2
j + p2

j )−
1− Γ

2

1 + NΓ
2

. (41b)

The parameter Γ is related to the radius of the general-
ized Bloch sphere rs through Γ = 2

N (rs−1), where s and
s̄ are complementary indices in the Stratonovich-Weyl
transform. Among the vast parameter space, one of the
best performing choices36,37 is when rs = rs̄ =

√
N + 1,

which is referred to as s = W, leading to a ZPE parame-
ter

Γ =
2

N
(
√
N + 1− 1), (42)

as well as the identical expression of [|i〉〈i|]s and
[|j〉〈j|]s̄ in Eq. 41. We further use the focused initial
condition36,37 that replaces the sampling of the mapping
variables in the dτ integral of Eq. 40 with specific values
of the mapping variables, such that 1

2 (q2
i +p2

i −Γ) = 1 for

initially occupied state |i〉 and 1
2 (q2

j + p2
j −Γ) = 0 for the

initially unoccupied states |j〉. The angle variables {θj}
(Eq. 37) are randomly sampled37 in the range of [0, 2π).

Using the QD propagation scheme, one can directly
perform non-adiabatic using both γ-SQC and spin-LSC
in their original diabatic formalism, with the informa-
tion from the “ab initio” polaritonic calculations of the
molecule-cavity hybrid system. Using the schemes out-
lined in Sec. II B, one can obtain the polariton cou-
pling 〈ψi(R0)|V̂ (R)|ψj(R0)〉 (see Eq. 16 and Eq. 17) and

nuclear gradient ∇〈ψi(R0)|V̂ (R)|ψj(R0)〉 (see Eq. 24-
Eq. 30), which are the necessary ingredients to solve
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the MMST mapping EOMs in Eq. 35 and Eq. 36. Be-
tween two propagation steps, the QD basis is transformed
from {|ψi(R(t0))〉 ≡ |φα(R(t0)), n〉} to {|ψj(R(t1))〉 ≡
|φβ(R(t1)),m〉}. This leads to the corresponding trans-
form of mapping variables between the two consecutive
QD bases as follows43,47

∑
i

qi〈ψi(R(t0))|ψj(R(t1))〉 → qj (43a)∑
i

pi〈ψi(R(t0))|ψj(R(t1))〉 → pj , (43b)

where the overlaps between the two steps are evaluated
using Eq. 32 (see discussion under that equation). More
computational details for the γ-SQC and spin-LSC are
provided in section III B.

III. COMPUTATIONAL DETAILS

A. The Model System

In this work, we use the asymmetrical Shin-Metiu
model48,49 as the “ab initio” model molecular system
to investigate strong light-matter interactions between
a molecule and an optical cavity. The model contains
a transferring proton (nucleus) and an electron, as well
as two fixed ions labeled as donor (D) and acceptor (A),
as shown in Fig. 1a. This model is usually used to de-
scribe the proton-coupled electron transfer (PCET) reac-
tion and has been studied recently using the exact factor-
ization approach to investigate how cavity can influence
chemical reactivities.49,72,73 The electron-nuclear inter-
action potential operator Ĥen (c.f. Eq. 2) is expressed
as

Ĥen =
∑
σ=±1

 1

|R+ σL
2 |
−

erf
(
|r+σL

2 |
aσ

)
|r + σL

2 |

− erf
(
|R−r|
af

)
|R− r|

,

(44)
where the first term represents the potential of the trans-
ferring proton, the second term represents the potential
of the transferring electron, and the third term represents
the electron-proton coupling. We choose the same pa-
rameters used in Ref. 49, which is L = 19 a.u., a+ = 3.1
a.u., a− = 4.0 a.u., af = 5.0 a.u. and the proton mass
is M = 1836 a.u. To calculate the electronic proper-
ties of the SM model, we use the Sinc discrete variable
representation (DVR) basis74 to represent the electronic
adiabatic states. These adiabatic states |φα(R)〉 are com-
puted on-the-fly for a given nuclear configuration R by
solving Eq. 3. The details are provided in Appendix B.

Fig. 1a also depicts the model potential in Eq. 44, with
the black curve depicting the proton potential (the first
term in Eq. 44) and the green curve depicting the electron
potential (the second term in Eq. 44). Fig. 1b presents
the two lowest adiabatic electronic states of the SM
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μge

μee

μgg
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-0.15
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(f)(e)
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R r
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-4 420-2-6 6
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-15 -10 -5 0 5 10 15

Figure 1. (a) The schematic illustration of the asymmetrical
SM model, where one proton and one electron can transfer
between two fixed ions (donor and acceptor). The distance
between the donor and acceptor is 19 a.u. Here Vp and Ve

are the potential of the transferring proton and electron, re-
spectively. (b) The first two adiabatic electronic states, (c)
NAC between these two electronic states and (d) their per-
manent and transition dipole moments of the SM model. The
PESs of the polaritonic states inside the cavity are obtained
with the light-matter coupling strength (e) gc = 0.001 and (f)
gc = 0.005. The color used in (e) and (f) is coded according
to 〈â†â〉, as shown in the upper position of panel (e).

model (red and blue curves). There is an avoided cross-
ing between the ground and the first excited state po-
tential energy surfaces (PESs) near R = 2.0 a.u.. Fig. 1c
presents the NAC between them (the green curve), which
shows a strong coupling near the avoided crossing region.
The matrix elements of the dipole operator under the
adiabatic representation (Eq. 19) of the SM model are
presented in Fig. 1d.

When coupling the SM molecular model with the cav-
ity, the photon frequency of the cavity mode is chosen as
~ωc = 2.721 eV (≈ 0.1 a.u.). Further, we assume that
the cavity field polarization direction ε is always aligned
with the direction of the dipole operator µ̂, such that
ε·µγν = µγν (for {ν, γ} = {e, g}) where µγν is the magni-
tude of µ̂. Explicitly considering the angle between ε and
µ̂ will generate a polariton induced conical intersection
(even for a diatomic molecule), which will induce geomet-
ric phase effects.75 We consider two different light-matter
coupling strengths gc = 0.001 a.u. and gc = 0.005 a.u. in
this work. The normalized coupling strength is often de-
fined as76 η ≡ gc · |ε ·µeg|/ωc where |ε ·µeg| is the typical
magnitude of the transition dipole projected along the
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field polarization direction. For the coupling strength
considered above (and taking ~ωc ≈ 2.721 eV for the
model calculation), the normalized coupling strength is
η = 0.06 (for gc = 0.001 a.u.) and η = 0.3 (for gc = 0.005
a.u.). When 0.1 < η < 1, the light and matter interac-
tion achieves the ultra-strong coupling regime,76,77 which
is difficult to achieve but still within the reach of the
current experimental setup.78,79 Thus, besides the pure
theoretical value to derive the exact nuclear gradient ex-
pression, our computational results are also within the
reach of the near future experimental setup.

The polaritonic PESs EJ(R) associated with polariton
states |EJ(R)〉 (see their definition in Eq. 11) are pre-
sented in Fig. 1e with the light-matter coupling strength
gc = 0.001 a.u. and in Fig. 1f with the light-matter cou-
pling strength gc = 0.005. These polariton potentials are
color coded (as shown in the inset of panel (e)) based on
the expectation value of 〈â†â〉 indicated on top of this
panel. Note that this should not be viewed as a “pho-
ton number” operator under the dipole gauge used in the
PF Hamiltonian56,80 because the rigorous photon num-
ber operator should be obtained by applying the Power-
Zienau-Woolley (PZW) Gauge transformation54,81,82 on
the photon number operator â†â. Nevertheless, it can
be viewed as an approximate estimation of the photon
number when the light-matter couplings are not in the
ultra-strong coupling regime.83

The initial state (for t = 0) of the molecule-cavity hy-
brid system is

|Φ(t = 0)〉 = |e, 0〉 ⊗ |χ〉, (45)

which corresponds to a Franck-Condon excitation of the
hybrid system to the |e, 0〉 state, with |χ〉 as the initial
nuclear wavefunction. For the SM model in this work,
we use χ(R) = 〈R|χ〉 ∼ exp[−Mω0(R−R0)2/2~], where
M is the mass of the proton (nucleus in the SM model),
R0 is the position with a minimum potential energy of
the ground electronic state. Here, χ(R) is the vibra-
tional ground state wavefunction on the ground electronic
states, centered at R0 under the harmonic approxima-
tion, with the harmonic oscillation frequency being ω0.
We use the parameters in the original reference49 for
R0 = −4 and ω0 = 0.000382 a.u. To solve the exact
quantum dynamics, we use the DVR basis for the nuclear
DOF and the adiabatic-Fock state for the electronic-
photonic subsystem. The details of the exact quantum
dynamics are provided in Appendix B.

B. Details of γ-SQC and spin-LSC Dynamics

To perform the γ-SQC dynamics, we need to sample
the initial condition for the quantum subsystem. In this
work, we first sample the action-angle variables {εj , θj}
then transform them to the mapping variables{pj , qj} us-
ing Eq. 38. Among them, the action variables {εj} are
sampled according to the window function in Eq. A1,
and the angle variables {θj} are randomly sampled from

[0, 2π). The triangle window is used in this work, al-
though the square window generates similar results.

For the spin-LSC dynamics, we use the focused ini-
tial conditions37 as described in section II C, where the
action variable εi is set to be 1 + Γ/2 for the initially oc-
cupied state and Γ/2 for the initially unoccupied state,
with Γ expressed in Eq. 42. The angle variables {θj}
are randomly generated between [0, 2π) as in the γ-SQC
method. The canonical mapping variables are obtained
from Eq. 38.

The initial nuclear distribution of all trajectory-based
simulations (Ehrenfest, FSSH, γ-SQC and spin-LSC) are
generated by sampling the Wigner density

[〈R|χ〉]w =
1

~π
e−M(P 2+ω2(R−R0)2)/ω~, (46)

which is the Wigner transformation of the nuclear wave-
function χ(R) = 〈R|χ〉 in the initial state (see Eq. 45).
Here, R and P are the nuclear coordinate and momen-
tum, respectively. The initial state for the electronic-
photonic subsystem is set to |e0〉. The nuclear time step
used in the QD-γ-SQC and QD-spin-LSC is dt = 0.1
fs, with 100 equally spaced electronic time steps for the
mapping variables’ integration during each nuclear time
step. The equation of motion in Eq. 35-Eq. 36 are in-
tegrated using a second-order symplectic integrator for
the MMST variables84,85 for a given nuclear time step,
and these mapping variables are transformed based on
Eq. 43 between two adjacent nuclear time steps due to
the change of the QD basis. The population dynamics
using all MQC and mapping methods were averaged over
5000 trajectories, although 3000 trajectories were enough
to produce the basic trend of the polariton dynamics, see
Fig. S3 in the Supplementary Material. The light-matter
coupling strength gc was chosen to be 0.001 and 0.005,
according to our previous work.23

We also benchmark the results of non-adiabatic map-
ping dynamics approaches with commonly used MQC
approaches, including the Ehrenfest dynamics and the
FSSH method. The details of these two MQC approaches
are provided in Appendix C. In particular, the Ehrenfest
dynamics is equivalent to choosing γ = 0 in the map-
ping theory (see Eq. 34) and an initial action-angle vari-
ables condition (see Eq. 37 and Eq. 38) of εj = δij (for
the initially occupied state |i〉) and θj = 0 (for all state
|j〉). One can thus use the same QD scheme and the
mapping equation to obtain the results of the Ehrenfest
dynamics.86

IV. RESULTS

Fig. 2 presents the population dynamics of the
adiabatic-Fock states simulated using the approximate
methods (open circles), including the MQC approaches
(Ehrenfest and FSSH) and the mapping dynamics meth-
ods (γ-SQC and spin-LSC), compared to the numerically
exact results (solid lines). The light-matter coupling



10

(a) (b)

(c) (d)

Ehrenfest FSSH

γ-SQC spin-LSC

Figure 2. The population dynamics of the adiabatic-Fock
states in Shin-Metiu-cavity model obtained from (a) Ehren-
fest dynamics, (b) FSSH approach, (c) γ-SQC method, and
(d) spin-LSC dynamics. The population dynamics are ob-
tained with the approximate methods (open circles) and ex-
act quantum propagation (solid lines). Two electronic states
and two Fock states are considered in the simulation, and the
light-matter coupling strength gc = 0.001 a.u.

strength is chosen to be gc = 0.001 a.u. The system
is initially prepared in the |e0〉 state and decays quickly
into the |g1〉 state during the first ∼ 12 fs due to the
large light-matter coupling strength from the large tran-
sition dipole moment (µeg) between adiabatic electronic
state |g〉 and |e〉 (as shown in Fig. 1d). Then, the system
starts to oscillate between |e0〉 and |g1〉 until about 20
fs. All of the MQC and mapping dynamics methods can
describe the above process reasonably well compared to
the exact results. After that, all the dynamics results
(including the exact one) show a fast population increase
of the |g0〉 state, which is due to the electronic NAC deg
that directly couples the |e0〉 state to |g0〉 state (gold
lines). All of the approximate methods can qualitatively
describe such a trend, but the MQC methods (panels
a-b) are less accurate compared to the mapping-based
methods (panels c-d), in terms of the rising of the |g0〉
population as well as its long time plateau. Moreover,
both Ehrenfest and FSSH dynamics predict a significant
population transfer from |g1〉 to |e1〉 state (panels a-b)
as an artifact that is not shown in the exact dynamics
results. In contrast, the γ-SQC and spin-LSC methods
perform much better, where the population transfer pro-
cess from |g1〉 to |e1〉 state is largely suppressed (pan-
els c-d). Overall, the mapping methods outperform the
MQC methods in this small light-matter coupling case.
It is worth mentioning that the population dynamics re-
sults obtained with the FSSH method can be significantly
improved if one uses the proper estimator.87 We have
provided details of this approach and numerical results
in Appendix C. Even so, the FSSH method is still fac-
ing many challenges from the improper treatment of the

quantum coherence and frustrated hop problems, which
have been widely discussed.25,27,88,89

(a) (b)

(c) (d)

Ehrenfest FSSH

γ-SQC spin-LSC

Figure 3. The population dynamics of the adiabatic-Fock
states in Shin-Metiu-cavity model obtained from (a) Ehren-
fest dynamics, (b) FSSH approach, (c) γ-SQC method, and
(d) spin-LSC dynamics. The population dynamics are ob-
tained with the approximate methods (open circles) and ex-
act quantum propagation (solid lines). Two electronic states
and two Fock states are considered in the simulation, and the
light-matter coupling strength gc = 0.005 a.u.

Fig. 3 presents the polariton population dynamics with
the coupling strength gc = 0.005 a.u. The oscillation be-
tween |e0〉 and |g1〉 state population appears much earlier
and faster compared to the gc = 0.001 results due to the
larger light-matter coupling between |e0〉 and |g1〉 states
(see Eq. 5). Further, the |g0〉 and |e1〉 states are also
getting populated at an earlier time, due to the perma-
nent dipole µgg and µee that couples |g1〉 state to |g0〉
state and |e0〉 state to |e1〉 state, respectively. Similar to
the gc = 0.001 case, all the MQC and mapping dynamics
provide a reasonable accuracy for the population dynam-
ics at a short time, while the mapping methods perform
much better than the MQC methods at a longer time.
In addition, the spin-LSC method outperforms γ-SQC
method in the description of |g0〉 and |e0〉 state popula-
tion after t = 20 fs, as shown in Fig. 3c-d.

Until now, all of our simulations are restricted in the
Hilbert subspace formed by two electronic states (|g〉 and
|e〉) and two photonic Fock states (|0〉 and |1〉). The
system could explore a larger Hilbert space due to the
increasing light-matter coupling strength. Thus, we sys-
tematically check the polariton dynamics using the exact
wavepacket dynamics method with a larger number of
electronic adiabatic states and Fock states, as shown in
Fig. S1 and S2 in the Supplementary Material. The
results show that, for the small light-matter coupling
strength case (gc = 0.001 a.u.), truncation to the Hilbert
subspace formed by two electronic states and two Fock
states is enough to give an accurate description of the
population dynamics for the SM model studied in this
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work. However, for the larger coupling strength case
(gc = 0.005 a.u.), the polariton dynamics will converge
when including four adiabatic electronic states (|g〉, |e〉,
|f〉, |h〉 with energies in ascending order) and four Fock
states (|0〉, |1〉, |2〉, |3〉 with photon number in ascending
order).

(a) (b)

(e) (f)

(c) (d)

(g) (h)

Ehrenfest

FSSH

γ-SQC

spin-LSC

Figure 4. The population dynamics of the adiabatic-Fock
states with (a,b) Ehrenfest dynamics, (c,d) FSSH approach,
(e,f) γ-SQC method, and (g,h) spin-LSC dynamics. The pop-
ulation dynamics are obtained with the approximate methods
(open circles) and exact quantum propagation (solid lines).
Four adiabatic electronic states (|g〉, |e〉, |f〉, |h〉 with ener-
gies in ascending order) and four Fock states (|0〉, |1〉, |2〉,
|3〉 with photon number in ascending order) are considered
in the simulations and the light-matter coupling strength is
gc = 0.005 a.u. Only the adiabatic-Fock states with observ-
able populations of more than 0.01 are plotted.

To further test the performance of the mapping meth-
ods (γ-SQC and spin-LSC) as well as the MQC methods
(Ehrenfest and FSSH) in such a large Hilbert subspace,
which includes sixteen states formed by the tensor prod-
uct of four electronic states (|g〉, |e〉, |f〉, |h〉) and four
Fock states (|0〉, |1〉, |2〉, |3〉). Fig. 4 presents the results of
using Ehrenfest dynamics (a-b), FSSH (c-d), γ-SQC (e-f)
and spin-LSC (g-h). Besides the adiabatic-Fock states al-
ready appear in the four-states subspace (|g0〉, |e0〉, |g1〉

and |e1〉), we can also see some other states (|h0〉, |f0〉,
|g2〉 and |f1〉) are populated due to the increasing light-
matter coupling strength. All of the MQC (Ehrenfest,
FSSH) and mapping (γ-SQC and spin-LSC) dynamics
results provide accurate agreement with the exact one in
the short time (< 20 fs). After that, all of the methods
start to generate less accurate results (especially for the
|g0〉 population). Note that both γ-SQC and spin-LSC
perform less accurately compared to the situation in a
smaller Hilbert subspace (Fig. 3). This is because both
γ-SQC and spin-LSC are sensitive to the number of states
of the system. For γ-SQC, more states means less tra-
jectory landed in the population action window.90 For
spin-LSC, the ZPE correction Γ (Eq. 42) explicitly de-
pends on the number of states N . This suggests a need
for the future development of more accurate dynamics
approaches. The current work, nevertheless, paves the
way for those future methods to be directly used for sim-
ulating on-the-fly polariton quantum dynamics.

V. CONCLUSIONS

In this work, we generalize the quasi-diabatic (QD)
propagation scheme44,45,47 to simulate the non-adiabatic
polariton dynamics in molecule-cavity hybrid systems.
The adiabatic-Fock states, which are the tensor product
states of the adiabatic electronic states of the molecule
and photon Fock states, are used as the locally well-
defined diabatic states for the dynamics propagation.45,47

These locally well-defined diabatic states allow using any
diabatic quantum dynamics methods for dynamics prop-
agation, and the definition of these states will be updated
at every nuclear time step. The benefit of using such
adiabatic-Fock states is that one can conveniently obtain
the electronic adiabatic states energies, the nuclear gradi-
ent, the dipole moments and NACs between these states,
which are necessary ingredients in molecular cavity QED
simulations.

We use the recently developed non-adiabatic mapping
dynamics approaches, γ-SQC35 and spin-LSC37 to inves-
tigate polariton dynamics of a Shin-Metiu model coupled
to an optical cavity.23,49 To benchmark the results of the
obtained polariton dynamics, we performed simulations
using the Ehrenfest dynamics and the FSSH approaches,
as well as the numerically exact polariton wavepacket
propagation. The results show that the mapping meth-
ods can accurately describe the population dynamics of
the molecule-cavity system both at a short time and a
longer time when compared to exact dynamics results.
In addition, the mapping methods outperform the Ehren-
fest and FSSH approaches at a long time dynamics. The
numerical results also demonstrate that the performance
of the mapping methods (γ-SQC and spin-LSC) becomes
less accurate with an increased number of states in the
simulation, indicating the need for future theoretical de-
velopment.

We envision that the theoretical development in this
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work will provide the emerging polariton chemistry field
with a general theoretical tool that enables direct ab ini-
tio on-the-fly simulations of polariton photochemical pro-
cesses. We also anticipate that the theoretical develop-
ments in this work will enable many recently developed
diabatic quantum dynamics approaches to directly sim-
ulate polariton quantum dynamics.
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Appendix A: Details of the γ-SQC Approach

For practical reasons, the delta functions in Eq. 39 are
broadened using well-explored window functions, which
can be used to bin the electronic action variables in
action-space. The triangle window35,71 is expressed as

Wj(ε) = w1(εj)

N∏
j′ 6=j

w0(εj , εj′), (A1)

where the window functions are defined as

w1(ε) =

{
(2− ε)2−N , 1 < ε < 2

0, else
(A2)

and

w0(ε, ε′) =

{
1, ε′ < 2− ε
0, else,

(A3)

and trajectories are assigned to state j at time t if εj ≥ 1
and εj′ < 1 for all j′ 6= j. The ZPE parameter in the
standard SQC method with triangle windowing is γ =
1/3.

The time-dependent population of the state |j〉 is com-
puted with Eq. 39. Using the window function estimator,
the total population is no longer properly normalized due
to the fraction of trajectories that are outside of any win-
dow region at any given time.31 Thus, the total popula-
tion must be normalized31 with the following procedure

ρjj(t)/

N∑
i=1

ρii(t)→ ρjj(t). (A4)

In the γ-SQC approach,35 it was proposed that the
mapping ZPE should be chosen in such a way as to con-
strain the initial force to be composed purely from the
initially occupied state.35 This new scheme has shown to
provide a significant improvement for photo-dissociation
problems with coupled Morse potentials35 and has been
combined with the kinematic momentum approach91 to
carry out on-the-fly simulations of the methaniminium
cation.70 The basic logic of γ-SQC is to choose an γj for
each state |j〉 in every given individual trajectory, such
that the initial population is forced to respect the initial
electronic excitation focused onto a single excited state.
If the initial electronic state is |i〉, then

γj = εj − δji, (A5)

or equivalently,

δji = εj − γj , (A6)

where the {εj} are uniformly sampled inside the window
function (Eq. A1), and then the γj are chosen to satisfy
Eq. A6.

These γj will be explicitly used in the EOMs in Eqs. 35-
36, and in particular, the nuclear forces are now

F = −1

2

∑
ij

∇Vij(R)
(
pipj + qiqj − 2γjδji

)
, (A7)

ensuring the initial forces (at t = 0) are simply F =
−∇Vii(R). Previously, without any adjustments to γj ,
the chosen values for γj were only dependent on the win-
dowing function itself, i.e., γj = 0.366 for the square
Windows and γj = 1/3 for the triangle windows. With
the above γ-correction method,35 each individual trajec-
tory will have its own state-specific γj for state |j〉 that is
completely independent of the choice of window function.
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Appendix B: Details of the Adiabatic Electronic Calculation
and the Exact Quantum Dynamics Simulations

To calculate the electronic properties of the SM model,
we use the Sinc DVR basis74 to represent the electronic
adiabatic wavefunction and solve Eq. 3. The grid of DVR
is uniform with spacing ∆x = 0.147 in the range [−22, 22]
a.u. To test the convergence of grid points, we doubled
the number of grid points and the results were identical.
The matrix elements of the electronic Hamiltonian Ĥel

in this grid basis {|ri〉} are given by

〈ri|Ĥel|rj〉 = 〈ri|T̂r + V̂eN(r̂, R) + V̂NN(R)|rj〉 (B1)

= 〈ri|T̂r|rj〉+ [V̂eN(rj , R) + V̂NN(R)]δij ,

where the 〈ri|T̂r|rj〉 is given analytically74 as follows

〈ri|T̂r|rj〉 =
~2

2m
· π2

3(∆r)2

(
1 +

2

N2

)
δij (B2)

+
~2

2m
· 2(−1)j−iπ2

(∆rN sin(π(j−i)
N ))2

(1− δij).

Directly diagonalizing the matrix of Ĥel (in Eq. B1)
at a given nuclear (proton) position R in this grid basis
gives the accurate adiabatic electronic states

|φα(R)〉 =
∑
i

cαi (R)|ri〉, (B3)

where cαi (R) is the expansion coefficient, which is purely
real for the adiabatic electronic states considered here.

A key ingredient for the QD propagation scheme is
the overlap integral in Eq. 23a, Eq. 23b, and Eq. 32,
which involve the overlaps between two adiabatic states
associated with two different reference geometries. These
integrals are conveniently calculated because all of the
adiabatic states are represented with the common DVR
grids basis as follows

〈φα(R0)|φβ(R1)〉 =
∑
i,j

cαi (R0) · cβj (R1)〈ri|rj〉. (B4)

Using these bases, the matrix elements for the dipole
moment operator (Eq. 19) are calculated as

µγν(R) =
∑
ij

cγi (R) · cνj (R)〈ri|(R− r̂)|rj〉 (B5)

=
∑
ij

cγi (R) · cνj (R) · (R− ri)δij .

Using |φα(R)〉 and |φβ(R)〉 in the grid basis, we

can directly evaluate the nuclear gradient 〈φλ|∇Ĥen|φν〉
(Eq. 25) as follows

〈φλ(R)|∇Ĥen(R)|φν(R)〉 =
∑
ij

cλi (R)·cνj (R)〈ri|∇Ĥen(R)|rj〉,

(B6)

where the ∇Ĥen(R) is evaluated analytically using the

expression of Ĥen(R) in Eq. 44. This gives the adiabatic
gradient ∇Eλ (for λ = ν) and derivative coupling (for

λ 6= ν) as dλν = 〈φλ|∇Ĥen|φν〉/(Eν − Eλ), as indicated

in Eq. 44. The nuclear gradient 〈φλ|∇Ĥen|φν〉 is also one
of the key ingredient in the QD propagation.

Further, the nuclear gradient expression in Eq. 29) for
a polariton system requires the derivative on the dipole
matrix (Eq. B5). This requires the evaluation of the
derivative of the expansion coefficients∇cγi (R) in Eq. B5.
Instead of evaluating these derivatives, as been com-
monly done in electronic structure calculations,22 here,
we evaluate this derivative on dipole numerically as fol-
lows

∇µγν(R) ≈ µγν(R+ ∆R)− µγν(R−∆R)

2∆R
. (B7)

To solve the exact quantum dynamics, we represent
the total wavefunction of the Hybrid system as |Ψξ〉 =∑
i,k c

ξ
ik|ψi(Rk)〉 ⊗ |Rk〉, where {|Rk〉} is the DVR grid

basis for the nucleus, and the |ψi(Rk)〉 = |φα(Rk)〉 ⊗ |n〉
is the adiabatic-Fock basis (Eq. 8), where the electronic
adiabatic basis |φα(Rk)〉 is obtained by solving the elec-
tronic eigenequation (Eq. 3) using the DVR basis for the
electronic DOF at the nuclear configuration Rk. The co-

efficients for the total wavefunction cξik and the eigen-

value of the total Hamiltonian Ĥ (Eq. 1) will be ob-
tained by solving the time-independent Schödinger equa-
tion Ĥ|Ψξ〉 = Eξ|Ψξ〉. We use the Sinc DVR basis74 for
the nuclear DOF and solve the above eigenvalue prob-
lem to obtain all the eigenvalues and eigenstates. We
use finer grid points for nucleus ∆x = 0.016 in the range
[−8, 8]. To test the convergence of grid points, we dou-
bled the number of grid points and the results were identi-
cal. The time evolution dynamics is obtained by unitary
evolution |Φ(t)〉 =

∑
ξ Cξ exp

(
− i

~Eξt
)
|Ψξ〉, where Cξ is

the projection of initial total wavefunction onto the |Ψξ〉
as Cξ = 〈Ψξ|Φ(0)〉, with the initial wavefunction |Φ(0)〉
expressed in Eq. 45. The details of the exact polari-
ton dynamics calculation can also be found in our recent
work.23

Appendix C: Details of the Ehrenfest and Surface Hopping
Simulations

Besides the mapping dynamics methods (γ-SQC and
spin-LSC), we also apply the commonly used Ehrenfest
and Tully’s FSSH17,18 algorithms to run polariton dy-
namics. Details can be found in our previous work that
develops new gradient expressions for QED simulation
with the MQC methods.23 Here, we briefly present these
approaches for the completeness of this work.

In the Ehrenfest dynamics, the wavefunction of the
quantum subsystem (electronic-photonic DOFs) is writ-
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ten as

|Ψ(r;R(t))〉 =
∑
i

ci(t)|ψi(R(t))〉, (C1)

where |ψi(R(t))〉 = |φα(R(t))〉⊗|n〉 is the adiabatic-Fock
state basis (Eq. 8). The quantum subsystem is described
by the time-dependent Schödinger equation (TDSE):

i~
∂

∂t
|Ψ(r;R(t))〉 = V̂ |Ψ(r;R(t))〉. (C2)

The classical subsystem (nuclear DOF) is propagated us-
ing the Newton’s EOM, where the nuclear force is eval-
uated from the time-dependent average potential (mean
field)

F = −c†[∇V ]c, (C3)

where c† is the transpose of the coefficient column vector
c expressed as follows

c† = (c1(t), c2(t), . . . , cN (t)). (C4)

The nuclear gradient matrix is expressed as

[∇V ] ≡ ∇[V ]− [V ][d] + [d][V ], (C5)

where [V ] and [d] are the matrix of V̂ and derivative
coupling operator in the adiabatic-Fock state basis, re-
spectively. The full derivation of the gradient can be
found in our previous work.23

In the FSSH dynamics, we expand the time-dependent
wave function in the polaritonic basis |EI(R(t))〉 (see def-
inition in Eq. 11)

|Ψ(r;R(t))〉 =
∑
I

cI(t)|EI(R(t))〉, (C6)

where cI is the expansion coefficient, which will be used
to compute the fewest switching probability. Here, the
nuclear force comes from only one specific polariton state
|EI(R(t))〉 (eigenstate of V̂ , see Eq. 11) as follows

F = −∇EI , (C7)

where EI is the energy of the active adiabatic polariton
state, and I is the active state index, which will be de-
termined at every nuclear propagation step. The nuclear
gradient is

∇EI =
∑
jk

〈EI |ψj〉〈ψj |∇V |ψk〉〈ψk|EI〉, (C8)

where the matrix element of ∇V is expressed in Eq. C5.
The details of the nuclear gradient in the polariton basis
can be found in our previous work.23

According to the “fewest switches” algorithm,17 the
probability of switching (probability flux) from the ac-
tive polariton state |EI〉 to any other polariton state |EJ〉
during the time interval between t and t+ δt is

fIJ = −
2Re[(ρpl

JI)
∗ · Ṙ · dJI(R)] δt

ρpl
II

, (C9)

where ρpl
IJ(t) is the reduced density matrix element in the

polariton basis expressed as follows

ρpl
IJ(t) = cI(t)c

∗
J(t). (C10)

Since the probability should be positive definite, one
sets92 fIJ to 0 if fIJ < 0. The non-adiabatic transi-
tion, i.e. stochastic switch from the currently occupied
state |EI〉 to another state |EK〉, occurs if the following
condition is satisfied

K∑
J=1

fIJ < ζ <

K+1∑
J=1

fIJ , (C11)

where ζ is a uniform randomly generated number be-
tween 0 and 1 at each nuclear time step. If the transition
is accepted, the active state is set to the new adiabatic
state |EK〉, while the velocities of the nuclei are rescaled
along the direction of the NAC vector dIK(R) in order
to conserve the total energy.18 More details of performing
FSSH simulation of the polariton dynamics can be found
in our previous work.23

For the Ehrenfest dynamics and FSSH approach, we
use the fourth-order Runge-Kutta method to integrate
the TDSE and the velocity Verlet algorithm to integrate
Newton’s EOM. The time step for the nuclear motion
is 0.1 a.u. and the sub-step for solving the TDSE of
the electronic-photonic subsystem is 0.001 a.u.. We have
carefully checked that the total energy is well conserved
for all the trajectories. The initial condition is described
by Eq. 45, where the nuclear DOF is sampled from the
corresponding Wigner density described in Eq. 46. For
Ehrenfest dynamics, the initial coefficients ci(0) for the
state |ψi〉 = |e0〉 is set to be one, and the rest of the coef-
ficients are set to be zero. These {cj(0)} can be unitary
transformed into the coefficients {cI(0)} for each nuclear
initial configuration described in Eq. 46. For the FSSH
simulation, one needs to choose an initial active state,
and the initial state of the quantum subsystem |e(R), 0〉
is not one of the eigenstates |EI(R)〉. We thus follow the
previous work87,93 and use the Monte-Carlo scheme to
randomly choose the initial active state |EI(R)〉 for each
trajectory, based on the magnitude of |〈EI(R)|e(R), 0〉|2
for a given trajectory that has the nuclear configuration
at R sampled from the Wigner density (Eq. 46).

When computing the population dynamics in a repre-
sentation that is not the adiabatic states of V̂ , there is no
unique way to calculate them in the FSSH approach.87

In the main text, we present the populations of the
adiabatic-Fock states using the expansion coefficients
cI(t) in Eq. C6. There are, of course, alternative ways
to compute populations of these adiabatic-Fock states.87

Below, we explore the alternative ways to compute them.
For clarity, we denote the reduced density matrix in

the adiabatic-Fock basis as ρaf
ij (t), and ρpl

IJ(t) is the re-
duced density matrix in the polariton basis (expressed
in Eq. C10). To get the adiabatic-Fock state population
of the |ψi〉 state ρaf

ii from the FSSH simulation, the most
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straightforward way (as the results presented in the main
text) is through following unitary transformation

[ρaf(Rl(t))] = U[ρpl(Rl(t))]U
†, (C12)

where [ρplRl(t))] is the reduced density matrix in the
polariton basis along a given nuclear trajectory Rl(t),
with l as the label of the trajectory, and the elements as

ρpl
IJ(Rl(t)) = cI(t)c

∗
J(t). (C13)

Further, U(Rl(t)) is the matrix that diagonalize the ma-
trix [V (Rl(t))] as shown in Eq. 13, along the same trajec-
tory Rl(t). The adiabatic-Fock state population is then
obtained from trajectory average as follows

Pi(t) =
1

N

N∑
l

[
U[ρpl(Rl(t))]U

†]
ii
, (C14)

where N is the total number of the trajectories. This is
the estimator used in the FSSH calculation presented in
the main text.

For FSSH, there are two other commonly used
choices87 to calculate the populations that are not in an
adiabatic representation. These methods vary on how to
calculate the polaritonic state density matrix [ρpl(Rl(t))].
The first choice is based on the active state index and ig-
nores the polaritonic state coefficients {cI(t)} and the
density matrix elements are written as

ρpl
IJ(Rl(t)) =

{
δIK , I = J

0, I 6= J,
(C15)

where K is the active polaritonic state. This method
explicitly assumes that the off-diagonal elements of the
polaritonic state density matrix are zero, which is often
not a good one. The adiabatic-Fock state population is
then obtained from the same transformation described in
Eq. C12, and the ensemble average over all trajectories
is computed as described in Eq. C14.

The other choice87 (motivated by the mixed quantum-
classical Liouville approach) is to calculate the diagonal
elements of ρpl using the active state index, and calcu-
late the off-diagonal elements using the polaritonic state
expansion coefficients {cI(t)}

ρpl
IJ(Rl(t)) =

{
δIK , I = J

cIc
∗
J , I 6= J,

(C16)

where K is the active index. The adiabatic-Fock state
population is then obtained from the same transforma-
tion described in Eq. C12, and the ensemble average over
all trajectories as described in Eq. C14.

Following the same notation as used in Ref. 87, we re-
fer to the choice in Eq. C15 as Method 1, the choice in
Eq. C13 as Method 2 (same as the FSSH results presented
in the main text), and the choice in Eq. C16 as Method 3.
The FSSH dynamics results based on these three meth-
ods are presented in Fig. 5. We can see that Method
3 performs much better than Method 1 and Method 2,
consisting with the conclusion in Ref. 87.

(a) (b)

(c) (d)

Method 1

gc=0.001 gc=0.005

Method 2

(e) (f)

Method 3

Figure 5. Population dynamics of the adiabatic-Fock states
obtained from the FSSH method (open circles) and the ex-
act quantum dynamics propagation (solid lines), using dif-
ferent population estimators. (a,b) Method 1; (c,d) Method
2; (e,f) Method 3. The results obtained using method 2 are
presented in the main text of this work. The light-matter cou-
pling strength is set to be (a,c,e) gc = 0.001 a.u. and (b,d,f)
gc = 0.005 a.u.
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