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QTJASI-DIFFERENTIABLE FUNCTIONS ON BANACH SPACES

VICTOR GOODMAN1

Abstract. Nonzero Fréchet differentiable functions with

bounded support do not exist on certain real separable Banach

spaces. As a result, the class of differentiable functions on such

spaces is too small to be useful. For example, the class of differen-

tiable functions on certain spaces does not separate disjoint

closed subsets of the space. It is shown that this separation prob-

lem does not arise if Fréchet differentiability is replaced by the

weaker condition of quasi-differentiability. Furthermore, it is

shown that any bounded uniformly continuous function on a real

separable Banach space is the uniform limit of quasi-differentiable

functions.

1. Introduction. Let B be a Banach space with norm ||-|| and

topological dual space B*. A real-valued function / on B is said

to be differentiable at x if there exists an element X in B* such that the

inequality |/(x+y) — f(x) — (X, y)\ ¿o(\\y\\) holds for y in a neighbor-

hood of the origin in B. A function is said to be differentiable on B if

the function is differentiable at each point in B. The works [l] and

[5] show that for certain Banach spaces the behavior of a differenti-

able function is quite restricted. In fact, Whitfield [8] has shown that

if B is a separable Banach space and B* is not a separable space in the

dual norm then there are no nonzero differentiable functions with

bounded support on B. An example of such a space is the Banach

space C[0, l] consisting of all real-valued continuous functions on

[0, l]. One may verify directly that C[0, l]* contains an isomorphic

image of ¿'"(O, 1). Hence, C[0, l]* is not separable.

A function / on a space B is said to be quasi-differentiable at x if

there is an element X in B* with the following property. For each con-

tinuous map «:( —1, 1)—>B such that a(0) =x and a is differentiable

at zero, the function f(a(t)) has a derivative at zero equal to (X, a'(0)).

This condition is equivalent to a definition given by Dieudonné in

[2, p. 151 ] if/ is assumed to be continuous. It is a consequence of the

chain rule that any differentiable function is quasi-differentiable.
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Also, it is shown in [2, p. 152] that the converse holds if the space is

finite dimensional.

We prove that a set of bounded quasi-differentiable functions on

any real separable Banach space is a dense subset of the bounded

uniformly continuous functions on the space. To establish this result

we use certain finite Borel measures which are carried by the Banach

space. These measures define smoothing operators which act on

bounded continuous functions. Our result is a consequence of the fact,

which is proved below, that any function satisfying a Lipschitz condi-

tion is smoothed to a quasi-differentiable function by these operators.

We indicate how the above measures arise. Let B be a real separable

Banach space with norm || • ||. Gross [3] has shown that there exists a

continuous linear embedding e of a real separable Hilbert space into B

such that the range of e is dense and such that the function ra(x)

= ||ex|| is a measurable norm on the Hilbert space. The concept of a

measurable norm is defined in [3, Definition 4, p. 34] and it is shown

there that the space B carries a family of Borel probability measures

{pt}, t>0, which are characterized by the following property: Any

element X of B* is a Gaussian random variable with mean zero rela-

tive to the measure pt. That is, for each real r there holds

pt({x E B:(X, x) < r}) = (27rto)-1'2 f   exp[-(2ta)~1s2]ds.
J -oo

Also, a= |e*X|2 where | • | is the norm on the dual of the Hilbert

space. The measure pt is said to be abstract Wiener measure on B with

variance parameter /. If g is a bounded continuous function on B, we

denote by ptg the function (ptg)(x) =Jb g(x+y)pt(dy). The notation

above will be fixed throughout the paper.

2. Approximation theorem. Let/be a quasi-differentiable function

on a space B. For a fixed x in B, the linear functional which appears in

the above definition of quasi-differentiability is unique, and we de-

note the linear functional by/'(x). This defines a map/':73—>B* which

is said to be the quasi-derivative of/.

Definition. A quasi-differentiable function/ on a Banach space B

is of class Q1 if/' is bounded in 73* norm and the map (x, y)—>(/'(x), y)

is continuous on B XB.

Theorem. Let Bbea real separable Banach space. The set of bounded

functions on B of class Q1 is dense in the space of bounded uniformly

continuous functions on B.

Proof. Let B be a real separable Banach space with norm || -||. A
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function g on B is said to be a Lipschitz function if there exists a con-

stant C> 0 such that the inequality

(1) \g(x)-g(y)\úC\\x-y\\

holds for all x and y in B. Now any bounded uniformly continuous

function on B is the uniform limit of Lipschitz functions. Let [pt],

/>0, be a family of abstract Wiener measures on B. By Proposition 6

of [4], a bounded Lipschitz function g is a uniform limit of the family

{ptg}, t[ 0. Thus, it suffices to show that for fixed positive t, the func-

tion f=ptg is of class Q1. We consider the embedding of a Hubert

space into B which is associated with the measures {pt}- By an

earlier remark the image of the Hubert space is dense in B. Let H de-

note this subspace of B. For fixed x in B and h in H the expression

(2) D(x)(h) = \^(f(x+sh))]
Lds J,_o

exists and defines a linear function on H by Proposition 9 of [4]. Now

it is a consequence of the definition of ptg that the function / satisfies

(1). Hence, from (2) we obtain the inequality

\D(x)(h)\   ÛC\\h\\

for any x in B and h in H. It follows that for fixed x, the function D(x)

defines an element of B* whose B* norm is not greater than C. We

shall denote this linear functional by (D(x), ■ ).

Using equation (8) of Proposition 9 in [4], we obtain the estimate

\(D(x),h)-(D(y),h)\

= ¿-1'21 * I { / fe(* + «) - g(y + ¿)]2PÁd¿)\

for h in H, where \h\ is the Hubert norm of the preimage of h. It

follows from this estimate that for fixed h the function x—*(Z)(x), h) is

continuous on B. Now since the linear functionals D(x) are uniformly

bounded, for any element y of B, the map x—>(Z>(x), y) is the uniform

limit of continuous functions. Hence, the map is continuous. It then

follows that the function (x, y)—*(D(x), y) is continuous on BXB.

From (2) and the argument above we obtain the identity

/(* + y) = /(*) + f  (D(x + sy),y ) ds
J 0

for y in H. But, each of the above expressions is a continuous function
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of y in the Banach space topology. Hence, the identity holds for

arbitrary y in 73. It follows that fis quasi-differentiable and that/'(x)

= D(x).

Corollary 1. A real separable Banach space admits partitions of

unity of class Q1.

Proof. For a given Banach space let 73r(x) denote an open ball of

radius r centered at x in the space. It is an immediate consequence of

the theorem that for any r'<r there exists a function on the space of

class Q1 which vanishes outside the set 73r(x) and which is equal to one

on the set 73r<(x). The existence of partitions of unity then follows

from a standard argument.

Corollary 2. If Ci and C2 are two nonempty disjoint closed subsets

of a real separable Banach space then there exists a continuous quasi-

differentiable function on the space which vanishes on Ci and which is

equal to one on C2.

Proof. The corollary follows from an argument in [6, Theorem 2,

p. 30].
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