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Abstract: We study a lattice field model which qualitatively reflects the phenomenon
of Anderson localization and delocalization for real symmetric band matrices. In this
statistical mechanics model, the field takes values in a supermanifold based on the hyper-
bolic plane. Correlations in this model may be described in terms of a random walk in
a highly correlated random environment. We prove that in three or more dimensions
the model has a ‘diffusive’ phase at low temperatures. Localization is expected at high
temperatures. Our analysis uses estimates on non-uniformly elliptic Green’s functions
and a family of Ward identities coming from internal supersymmetry.

1. Introduction

1.1. Some history and motivation. It has been known since the pioneering work of
Wegner [19,20] that information about the spectral and transport properties of random
band matrices and random Schrödinger operators can be inferred from the correlation
functions of statistical mechanical models of a certain kind. These models have a hyper-
bolic symmetry, typically a noncompact group such as O(p, q) or U(p, q), and were
originally studied in the limit of p = q = 0 replicas.

The connection between random Schrödinger operators and statistical mechanics
models was made more precise by Efetov [7], who introduced the so-called super-
symmetry method to avoid the use of replicas. In Efetov’s formulation one employs
both commuting (or bosonic) and anticommuting (or Grassmann) integration variables,
and these are related by a natural symmetry that makes the emerging statistical mechan-
ics system supersymmetric (SUSY). The simplest class of these models has a U(1, 1|2)
symmetry. This means that for the bosonic variables there exists a hyperbolic symmetry
U(1, 1) preserving an indefinite Hermitian form on C

2, and the Grassmann variables are
governed by a compact U(2) symmetry. Moreover, there exist odd symmetries mixing
Grassmann and bosonic variables.
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The fields Z
d � j �→ Q j of the supersymmetric models introduced by Efetov are

4 by 4 supermatrices built from bosonic as well as Grassmann entries. In the physics
literature one usually assumes the sigma model approximation, which is believed to
capture the essential features of the energy correlations and transport properties of the
underlying quantum system. The sigma model approximation constrains the matrix field
Q by Q2

j = Id for all j . This constraint is similar to the constraints appearing in the
Ising or Heisenberg models, where S j · S j = 1. We refer the reader to [3,9,11,14] for
an introduction to these ideas.

The models described above are difficult to analyse with mathematical rigor in more
than one dimension. In this paper we study a simpler SUSY model. Our exposition will
be essentially self-contained and the full supersymmetric formalism alluded to here will
serve primarily as a source of motivation.

1.2. Probabilistic representation of our model. In this paper we analyze a lattice field
model which may be thought of as a simplified version of one of Efetov’s nonlinear
sigma models. More precisely, it is related to the model that derives from real symmetric
matrices, see Sect. 3. In this statistical mechanics model the field at site j has four degrees
of freedom. Two of these, t j and s j , parametrize a hyperboloid and the other two, ψ̄ j
and ψ j , are Grassmann (i.e., anticommuting) variables. Technically speaking, the field
takes values in a target space denoted by H2|2, which is a supermanifold extension of the
hyperbolic plane H2; see Sect. 2. This model was introduced by one of us in [5,21], and
localization was established in one dimension (1D) in the sense that the conductance was
proven to decay exponentially in the system size [21]. The model is expected to reflect
the qualitative behavior of random band matrices – namely localization and diffusion
– in any dimension. This paper establishes the existence of a quasi-diffusive phase in
three dimensions at low temperature.1

Our supersymmetric hyperbolic nonlinear sigma model, called the H2|2 model for
short, will be formulated on a lattice cube� ⊂ Z

d of side L . We shall see (in Sect. 2.2)
that the action of the field variables is quadratic in ψ , ψ̄ , and s. This feature is special to
the horospherical coordinate system that we use. It enables us to reduce the H2|2 model
to the statistical mechanics of a single field t : �→ R, j �→ t j . Its free energy or effec-
tive action, F(t), is real, so the resulting statistical mechanical model has a probabilistic
interpretation.

In order to specify F(t), first consider the finite-difference elliptic operator Dβ,ε(t)
defined by the quadratic form

[v ; Dβ,ε(t) v]� = β
∑

(i j)

eti +t j (vi − v j )
2 + ε

∑

k∈�
etkv2

k . (1.1)

This operator plays a central role in our analysis. The first sum is over nearest neighbor
pairs in �, and [ ; ]� denotes the usual scalar product in �2(�). We see that D1,0(0) is
the finite-difference Laplacian. The regularization parameter ε > 0 will serve to make
the theory well-defined. One may interpret Dβ,ε(t) as the generator of a random walk in
an environment given by the fluctuating field t , with a death rate of ε et j at site j . Note
that the operator D is elliptic but not uniformly so, as t j ∈ R has unbounded range.

The free energy or effective action Fβ,ε(t) is now expressed by

Fβ,ε(t)=β
∑

(i j)

(cosh(ti − t j )− 1)− ln Det1/2 Dβ,ε(t) +
∑

k∈�
(tk − ε + ε cosh tk). (1.2)

1 Localization has recently been established at high temperature in any dimension.
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If dμ� denotes the product measure

dμ� =
∏

k∈�

dtk√
2π

(1.3)

on R
|�|, then the partition function is

Z�(β, ε) =
∫

R|�|
e−Fβ,ε dμ� = 1. (1.4)

The partition function is identically equal to unity independent of β, ε even when β
depends on the edge (i j) and ε depends on the lattice point k; see (5.1). This is a reflec-
tion of an internal supersymmetry which will be explained in later sections. There exist
many variants of this identity. One of them gives us easy control of nearest neighbor
fluctuations of the field t (cf. Sect. 6).

The expectation of an observable function t �→ f (t) is defined by

〈 f 〉�,β,ε =
∫

f e−Fβ,εdμ�. (1.5)

Let us make a few comments on these expository definitions.

1. The action or free energy Fβ,ε(t) is nonlocal due to the presence of the term
− ln Det1/2 D(t). This nonlocality arises from integrating out three massless free
fields, one (s) of bosonic and two (ψ̄, ψ) of Grassmann type.

2. Fβ,ε(t) is not convex as a function of t and therefore the Brascamp-Lieb estimates
used in earlier work on a related model [18] do not apply. The lack of convexity
is an important feature and opens the possibility for a localization-delocalization
transition to occur.

3. When ε = 0, Fβ,0(t) is invariant under shifts t j → t j + c by any constant c ∈ R. To
see this, note that for ε = 0 we have Dβ,0(t + c) = e2c Dβ,0(t) by (1.1). The result-
ing additional term −|�|c from − ln Det1/2 Dβ,0(t) in (1.2) is canceled by another
such term, which arises from shifting

∑
k∈� tk . This symmetry (which is a formal

one, since the integral is ill-defined for ε = 0) is associated with the presence of a
massless mode. The importance of the regularization ε, which was omitted from the
present argument, becomes evident from the saddle point discussed below.

4. The model at hand describes a disordered quantum system at zero temperature.
Nevertheless, adopting the familiar language of statistical mechanics and thermo-
dynamics, we refer to the field stiffness β as the inverse ‘temperature’. (β is actually
the dimensionless conductance for an Ohmic system of size L = 1 as measured in
lattice units.)

1.3. Main result. The main goal of this paper is to estimate the fluctuations of the field
t for large values of the parameter β and dimension d = 3. This will enable us to prove
that the random walk in the random environment drawn from F(t) is transient. More
precisely, we will prove the following. (Similar estimates hold for all dimensions d ≥ 3.)

Theorem 1. For d = 3, there is a β̄ ≥ 1 such that if β ≥ β̄, the fluctuations of the field
t are uniformly bounded in x, y, and �:

〈coshm(tx − ty)〉�,β, ε ≤ 2, (1.6)

provided that m ≤ β1/8.
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This theorem implies that for any x and y, |tx− ty | is very unlikely to be large. A stronger
version of (1.6) is given in (9.3). We will use this result to prove

Theorem 2. Under the hypothesis of Theorem 1 the average field is bounded:

〈coshp(tx )〉�,β, ε ≤ 5

2
, (1.7)

provided p ≤ 10 and |�|1−α/3 ε ≥ 1 with α ≥ 1/ ln β. Thus in the thermodynamic limit
|�| → ∞ we may send ε→ 0 while maintaining the bound on 〈coshp tx 〉.

To investigate the localized or extended nature of the energy eigenstates of a dis-
ordered quantum system with Hamiltonian H , one looks at the average square of the
quantum Green’s function, |(H − E + iε)−1(x, y)|2. The analog of this Green’s function
in the H2|2 model is the two-point correlation function

Cxy =
〈
etx sx ety sy

〉
, (1.8)

where the expectation is given by the full functional integral defined in Sects. 2.1, 2.2.
After integration over the fields ψ̄ , ψ , and s, we have

Cxy =
〈
etx +ty Dβ,ε(t)

−1(x, y)
〉

�,β,ε
≡
〈
D̃β,ε(t)

−1(x, y)
〉

�,β,ε
, (1.9)

where D̃ = e−t D ◦ e−t . Note that Cxy is positive both pointwise and as a quadratic
form. A simple calculation shows that

D̃β,ε(t) = −β	 + βV (t) + ε e−t , (1.10)

where V (t) is a diagonal matrix (or ‘potential’) given by

Vj j (t) =
∑

|i− j |=1

(eti−t j − 1)

(sum over nearest neighbors) and e−t is the diagonal matrix with (e−t ) j j = e−t j . In
Appendix B we establish the sum rule ε

∑
y∈� Cxy = 1, reflecting conservation of

probability for the quantum dynamics generated by a Hamiltonian H .
Note that if t were bounded, then D(t) (given by (1.1)) would be uniformly ellip-

tic and we could establish good diffusive bounds on the two-point function C (1.9).
However, Theorems 1 and 2 only say that large field values are unlikely. To get optimal
bounds on C we would need to prove uniform ellipticity on a percolating set. The set
on which |t j + t j ′ | < M , is presumably a percolating set but this does not readily follow
from our estimates.

Our next theorem states a quasi-diffusive estimate on C . More precisely let G0 =
(−β	 + ε)−1 be the Green’s function for the discrete Laplacian (with a regularization
term ε) and G̃0 = (−β	 + ε/2)−1. In 3 dimensions G0(x, y) ≤ β−1(1 + |x − y|)−1

(and the same is true for G̃0). Then we have

Theorem 3. Let f : �→ R be non-negative. Then assuming the hypotheses of Theo-
rems 1 and 2 we have

1

K ′
[ f̃ ;G0 f̃ ] ≤ [ f ;C f ] =

∑

i j

Ci j f (i) f ( j) ≤ K [ f ; G̃0 f ], (1.11)
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where f̃ ( j) = (1 + | j − x |α)−1 f ( j), x ∈ � is any fixed point, and K and K ′ are
constants independent of f . The parameter α ≈ 1/ ln (β) was introduced in Theorem 2
and is small for large β.

Remark. In this paper we always use periodic boundary conditions on � ⊂ Z
3. The

distance |x − y| between two points is always the distance on� with periodic boundary
conditions.

1.4. Saddle point. One may try to gain a crude understanding of the behavior of the H2|2
sigma model via a simple saddle-point analysis. Let t (0) be the configuration of t = {t j }
which minimizes the effective action Fβ,ε(t) defined in (1.2). In Appendix A we prove

that t (0) is unique and t (0)j = t∗ independent of j . For large β we find

1D: ε e−t∗ � β−1, 2D: ε e−t∗ � e−β, (1.12)

in one and two dimensions, respectively. Thus in 1D or 2D the saddle point depends sen-
sitively on the regularization parameter ε. The value of t∗ suggests a strong asymmetry
of the field favoring negative values of t . On the other hand, in 3D at low temperatures,
we find t∗ = 0 independent of ε. Our estimates (1.7) confirm this value by control-
ling fluctuations about the saddle. For β small, in 3D, the saddle t∗ is again strongly
ε-sensitive, suggesting localization.

The bias to negative values of the field t is expected to be closely related to locali-
zation. Note that since −	 + V (t) ≥ 0, the additional term ε e−t makes D̃β,ε strictly
positive at the saddle suggesting that Cxy decays roughly like e−m|x−y| with m2 =
ε e−t∗/β = β−2 and e−β in 1D and 2D respectively. There are important fluctuations
away from this saddle but we do not expect them to spoil the exponential decay. For the
1D chain this has been proved [21].

1.5. Edge reinforced random walk. A number of mathematicians (Kozma, Heydenreich,
Sznitmann) have noted that our random walk looks similar to a linearly edge reinforced
random walk (ERRW). ERRW is a history-dependent walk which prefers to visit edges
it has visited in the past. Let n(e) denote the number of times the walk has visited the
edge e. Then the probability that the walk at vertex v will visit a neighboring edge e
equals (a + n(e))/Sa(v), where S is the sum of a + n(e′) over all the edges e′ touching v.
The parameter a is analogous to our β. Coppersmith and Diaconis [2] proved that this
history-dependent walk can be expressed as a random walk in a random environment;
see also more recent work by Merkl and Rolles [13] in which recurrence of the walk is
established on a 2D lattice for small β. This is analogous to localization in our model.
The environment of ERRW is very similar to the environment in H2|2. In fact, both envi-
ronments have nonlocal actions arising from the square root of a determinant. Although
the two models do not seem to be identical, they may have similar properties.

1.6. Outline of the paper. The remainder of this paper is organized as follows. In the
next section we give a precise definition of the full H2|2 model and introduce the horo-
spherical coordinate system. The effective action defined in (1.2) is then derived by
integration of the field s and the Grassmann fields ψ̄ and ψ . Section 3 provides a phys-
ical motivation for the study of this model. In Sect. 4 we explain the symmetries of the
model and briefly discuss its perturbative renormalization group flow. The basic Ward
identities we shall need are given in Sect. 5 and are derived in Appendix C. Section 5
ends with a rough outline of our proof and a description of the remaining sections of
this paper.
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2. Definition of the Model

We now fill in the details of the definition the H2|2 model and derive the free energy
Fβ,ε(t) given above.

2.1. Full supersymmetric model. As in Sect. 1.2, let � ⊂ Z
d be a cube of size L . For

each lattice site j ∈ � we introduce a supervector u j ∈ R
3|2,

u j = (z j , x j , y j , ξ j , η j ), (2.1)

with 3 real components x j , y j , z j and 2 Grassmann variable components ξ j , η j . We
then define an inner product on R

3|2 by

(u, u′) = −zz′ + xx ′ + yy′ + ξη′ − ηξ ′, (2.2)

and constrain u j by the quadratic equation

∀ j ∈ � : (u j , u j ) = −1, (2.3)

which is solved by

z j = ±
√

1 + x2
j + y2

j + 2ξ jη j . (2.4)

Here z j is an even element in the Grassmann algebra (defined as a terminating power
series in ξ jη j ) and the sign± refers to the bosonic part (the ξη = 0 contribution). In the
following we take the positive square root for all j ∈ �. This singles out a choice of con-
nected subspace, H2|2, parametrized by two bosonic variables x j , y j and two fermionic
variables ξ j , η j .

On the product space (H2|2)|�| we introduce a ‘measure’ (more accurately, a Berezin
superintegration form)

Dμ� =
∏

k∈�
(2π)−1dxkdyk ∂ξk∂ηk ◦ (1 + x2

k + y2
k + 2ξkηk)

−1/2. (2.5)

We use the notation ∂ξ ≡ ∂/∂ξ for the partial derivative. The statistical measure then is
of the Gibbs form Dμ� e−Aβ,ε with action

Aβ,ε = β

2

∑

i, j

Ji j (ui − u j , ui − u j ) + ε
∑

k∈�
(zk − 1)

= β
∑

i, j

Ji j
(
zi z j − (1 + xi x j + yi y j + ξiη j − ηiξ j )

)
+ ε
∑

k∈�
(zk − 1). (2.6)

Here Ji j = 1 if i, j are nearest neighbors (NN) and Ji j = 0 otherwise. As will be dis-
cussed later, the action Aβ,0 is SO(1, 2)-invariant. The ε-term breaks this noncompact
symmetry and makes the integral

∫
Dμ� e−Aβ,ε converge.
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2.2. Horospherical coordinates. As with [18], it is very helpful to switch to horospheri-
cal coordinates — it is only in this coordinate system that we can obtain the probabilistic
interpretation of Sect. 1.2. We thus use the following parametrization of the supermani-
fold:

x = sinh t − et
(

1
2 s2 + ψ̄ψ

)
, y = et s, ξ = et ψ̄, η = etψ, (2.7)

where t and s range over the real numbers. Note that (t, s; ψ̄, ψ) are globally defined
coordinates and

(t, s; ψ̄, ψ) = (0, 0; 0, 0)⇔ (x, y; ξ, η) = (0, 0; 0, 0).

The expression for the action in them is

Aβ,ε = β
∑

(i j)

(Si j − 1) + ε
∑

k∈�
(zk − 1), (2.8)

where (i j) are NN pairs and

Si j = Bi j + (ψ̄i − ψ̄ j )(ψi − ψ j ) eti +t j , (2.9)

Bi j = cosh(ti − t j ) + 1
2 (si − s j )

2 eti +t j , (2.10)

zk = cosh tk +
(

1
2 s2

k + ψ̄kψk

)
etk . (2.11)

We also need the expression for the measure Dμ� in horospherical coordinates. By
applying Berezin’s transformation formula [1] for changing variables in a (super-)inte-
gral, one finds that

Dμ� =
∏

j∈�
(2π)−1e−t j dt j ds j ∂ψ̄ j

∂ψ j . (2.12)

For any function f of the lattice field variables {t j , s j , ψ̄ j , ψ j } j∈� we now define its
expectation as

〈 f 〉β,ε =
∫

Dμ� e−Aβ,ε f, (2.13)

whenever this integral exists.

2.3. Effective bosonic field theory. Since the action (2.8) is quadratic in the fields ψ̄ ,ψ ,
and s, each with covariance Dβ,ε(t)−1, we know from standard free-field calculus that
integration over s yields a factor of Det−1/2(Dβ,ε(t))while integration over ψ̄, ψ yields
Det Dβ,ε(t). By performing these integrations, we arrive at the nonlocal free energy
functional Fβ,ε(t) given by (1.2). Moreover, the basic two-point functions are

〈
s(v)2

〉
= +

〈
[v ; Dβ,ε(t)

−1v]
〉
,

〈
ψ̄(v)ψ(v)

〉 = −
〈
[v ; Dβ,ε(t)

−1v]
〉
,

(2.14)
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where

s(v) =
∑

j∈�
s j v( j), ψ(v) =

∑

j∈�
ψ j v( j),

and the expectations on the left-hand and right-hand side are defined by (2.13) and (1.5),
respectively. We will often use the formula (2.14) as well as its generalization

〈
e
∑n
λ=1 ψ̄(vλ)ψ(vλ)

〉
= 〈Det(1−A)〉, (2.15)

where A is the n × n matrix given by

Aλλ′(t) = [vλ ; Dβ,ε(t)
−1vλ′ ]. (2.16)

Remark 2.1. If the Grassmann fields ψ̄, ψ were absent, then Det1/2 in (1.2) would be
replaced by Det−1/2 (and

∏
k e−tk dtk by

∏
k etk dtk) and Z� would be the partition

function of the hyperbolic sigma model studied in [18].

Remark 2.2. If we integrate only over the fields ψ̄, ψ (but not over s) we produce a
positive integrand depending on t and s. The square root of the determinant is then
replaced by Det Dβ,ε(t) > 0.

Remark 2.3. The logarithm of Det Dβ,ε(t) is convex in t .

Proof (D. Brydges). By the matrix tree theorem we have

Det Dβ,ε(t) =
∑

F
β |�|−|R| ε|R|

∏

�∈F
e

t j�+t j ′
�

∏

k∈R

etk , (2.17)

where F denotes the spanning rooted forests, R the set of roots, |R| the cardinality of
this set, and � = ( j�, j ′�) denotes an edge in the forest. The proof is now immediate since
any positive sum of exponentials in t is log convex. ��

Note that the logarithm of Det Dβ,ε(t) competes with the other factor,

e−β
∑
(i j) cosh(ti−t j ), which is log concave.

3. Microscopic Origin of the Model

In this subsection we use the language and heuristic ideas of physics to sketch the origin
of our field theory model from a microscopic model of disorder. Consider real sym-
metric random band matrices, H , say with independent Gaussian distributed entries, of
band width W in d dimensions. (Such a band matrix model possesses a time-reversal
symmetry and belongs to symmetry class AI – traditionally referred to as the Wigner-
Dyson class of orthogonal symmetry – of the 10-way classification of disordered fermion
systems [10]).

Now suppose that we wish to compute the disorder average of

√
Det(E + iη − H)/Det(E + iε − H)×

∣∣∣(E + iε − H)−1(x, y)
∣∣∣
2

(3.1)

for real energy parameters E and ε, η > 0. The unconventional feature here is that the
square |(E + iε − H)−1(x, y)|2 of the Green’s function is weighted by the square root
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of a ratio of one determinant taken at energy E + iε and another one at energy E + iη.
Although one might think that the presence of these extra factors complicates the prob-
lem, quite the opposite is true; it will actually lead to simplifications when η is taken to
be large.

First of all, the combination

(E + iε − H)−1(x, y) Det−1/2(E + iε − H)

can be generated by Gaussian integration over a single real boson field, φ+
1 . Second, writ-

ing the complex conjugate (E + iε − H)−1(x, y) of the Green’s function as a Gaussian
integral requires two real boson fields φ−α and two anticommuting fields ψ−α (α = 1, 2).
Third, to express the square root of Det(E + iη − H) as a Gaussian integral, we need
another real boson φ+

2 and two more anticommuting fields ψ+
α . Altogether, we then have

four bosonic fields φσα and four fermionic fields ψσα (σ = ±, α = 1, 2).
Now assume for the moment that η = ε, in which case the two determinants in (3.1)

cancel each other. If the band width W is large enough, then the standard steps of disor-
der averaging followed by Hubbard-Stratonovich transformation and elimination of the
massive modes, take us to Efetov’s nonlinear sigma model for systems with orthogonal
symmetry (class AI).

Physically speaking, the order parameter fields of retarded (+) and advanced (−) type
acquire different expectation values:

〈φσα φσβ 〉 = δαβ〈Gσ 〉, 〈ψσα ψσβ 〉 = εαβ〈Gσ 〉 (σ = ±; α, β = 1, 2),

where we are using the abbreviations 〈φ+
α(x)φ

+
β(x)〉 = 〈φ+

αφ
+
β〉,

G+ = (E + iε − H)−1(x, x), G− = G+,

and εαβ = −εβα is the antisymmetric tensor for two degrees of freedom. In the region of
nonzero average density of states, where 〈G+〉 �= 〈G−〉, these expectation values break
a continuous symmetry of the Gaussian integrand at ε = 0. The components of Efetov’s
sigma model field have the physical meaning of being the Goldstone modes associated
with this broken symmetry. There are 4 bosonic Goldstone modes due to the symmetry
breaking 〈φ+

αφ
+
α〉 �= 〈φ−β φ−β 〉 and four more such modes due to 〈ψ+

1ψ
+
2 〉 = −〈ψ+

2ψ
+
1 〉

not being equal to 〈ψ−1 ψ−2 〉 = −〈ψ−2 ψ−1 〉. There also exist 8 fermionic Goldstone
modes due to the breaking of the odd symmetries connecting the boson-boson sector
〈φσ1 φσ1 〉 = 〈φσ2 φσ2 〉 with the fermion-fermion sector 〈ψτ1ψτ2 〉 = −〈ψτ2ψτ1 〉 of opposite
type τ = −σ . All these modes organize into a supermanifold with tangent space R

8|8
over a symmetric space (H2 × H2)× S4.

Now letη � ε > 0, so that the two determinants in the expression (3.1) no longer can-
cel. The differenceη−ε ≈ η then acts as a mass term for the Goldstone modes connecting
the advanced sector (−)with the η retarded sector 〈φ+

2φ
+
2 〉 = 〈ψ+

1ψ
+
2 〉 = −〈ψ+

2ψ
+
1 〉. By a

Thouless-type argument, these massive Goldstone modes do not affect the renormalized
physics at length scales much greater than the length L ′ determined by the equation

η = 2π�D/L ′2,

where D ∝ W 2 is the bare diffusion constant of the system.
Thus at large length scales L � L ′ we may simply drop the massive Goldstone

modes from the theory or, in a more careful treatment, integrate them out perturbatively.
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What we are left with, then, are the 2 + 2 = 4 massless bosonic and fermionic Goldstone
modes connecting the retarded component 〈φ+

1φ
+
1 〉 of the order parameter with its four

components 〈φ−1 φ−1 〉 = 〈φ−2 φ−2 〉 = 〈ψ−1 ψ−2 〉 = −〈ψ−2 ψ−1 〉 in the advanced sector.
These four residual Goldstone modes organize into a supermanifold with tangent space
R

2|2 and base manifold H2 — we thus arrive at the field space H2|2 of the model we are
going to study.

4. Symmetries and Their Consequences

As an effective theory derived by reduction from an underlying sigma model, the sta-
tistical mechanics problem posed by (1.1)–(1.5) enjoys a number of symmetries. First
among these is a hidden supersymmetry which ensures that the partition function is
always equal to unity,

Z�(β, ε) = 1,

independent of the inverse temperature β and regularization parameter ε. Thus the
reduced statistical measure e−Fβ,εdμ� can be regarded as a probability measure, and
the physical observables of the model are given as expectations

〈 f 〉 =
∫

f e−Fβ,εdμ�.

In the following subsection we provide some background to the normalization property
Z�(β, ε) = 1.

4.1. Q-symmetry. We start by observing that, for any ε, the full action Aβ,ε defined in
(2.6) is invariant under transformations that preserve the short inner product

xi x j + yi y j + ξiη j − ηiξ j (4.1)

for all i, j ∈ �. Such transformations are given, at the infinitesimal level, by even
and odd derivations (i.e., first-order differential operators) with the property that they
annihilate the expression (4.1) for all i, j and their coefficients are linear functions
of the coordinates xk, yk, ξk, ηk . These differential operators form a representation of
the orthosymplectic Lie superalgebra osp2|2. An important example of an odd operator
Q ∈ osp2|2 is

Q =
∑

j∈�

(
x j∂η j − y j∂ξ j + ξ j∂x j + η j∂y j

)
. (4.2)

Since
∏

j dx j dy j ∂ξ j ∂η j is the Berezin superintegration form given by the inner product
(4.1), it is immediate that Dμ� is osp2|2-invariant, which implies that

∫
Dμ� Q f = 0

whenever the function f is differentiable and Q f is integrable.
For present use, let us record here the explicit expression for the osp2|2 generator

Q in horospherical coordinates: a straightforward computation starting from (4.2) gives
Q =∑ j∈� q j with single-site generator (index j omitted)

q = ψ̄∂t + (ψ − sψ̄)∂s − s∂ψ̄ + 1
2 (1− e−2t − s2 − 4ψ̄ψ)∂ψ . (4.3)
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Now consider any differentiable integrand f which is invariant by Q, i.e., Q f = 0.
This invariance property has strong consequences for the integral of f (if it exists): in
Appendix C, Proposition 2, we prove that the integral of such f equals f evaluated
on the zero-field configuration (i.e., on t j = s j = ψ̄ j = ψ j = 0 or equivalently,
x j = y j = ξ j = η j = 0, for all j ∈ �):

∫
Dμ� f = f (o). (4.4)

The idea of the proof is easy to state: one shows that the integral of f remains unchanged
by the replacement f → e−τh f with h =∑ j∈�(x2

j + y2
j + 2ξ jη j ) and τ ≥ 0, and then

deduces the result (4.4) by sending the deformation parameter τ → +∞ to localize the
integral at the zero-field configuration.

Using the explicit expression (4.3) it is easy to check that the action Aβ,ε is
Q-invariant. Since the differential operator Q is of first order, one directly infers the
relation Q e−Aβ,ε = 0. Therefore, as a particular consequence of (4.4) and Aβ,ε(o) = 0
it follows that the partition function equals unity,

Z�(β, ε) =
∫

Dμ� e−Aβ,ε = e−Aβ,ε(o) = 1, (4.5)

for all values of β ≥ 0 and ε > 0.
Further consequences of (4.4) will be elaborated below.

4.2. Hyperbolic symmetry. While Q is a symmetry of our action Aβ,ε for all values of ε,
further symmetries emerge in the limit of vanishing regularization ε→ 0+. Relegating
a more detailed discussion to Appendix B, we here gather the crucial facts.

The model (2.5), (2.6) for ε→ 0+ acquires a global symmetry by the Lorentz group
SO(1, 2) – the isometry group of the hyperbolic plane H2 viewed as a noncompact
symmetric space H2 � SO(1, 2)/SO(2). This global symmetry entails a number of
conserved currents and associated Ward identities. Of these let us mention here the most
important one,

∑

y∈�

〈
etx +ty Dβ, ε(t)

−1(x, y)
〉
= 1

ε
, (4.6)

which is the sigma model version of the quantum sum rule

∑

y∈�

〈∣∣∣(E − iε − H)−1(x, y)
∣∣∣
2
〉
= 1

ε

〈
Im (E − iε − H)−1(x, x)

〉
= π

ε
ρ(E),

where ρ(E) is the mean local density of states. In the sigma model approximation one
sets πρ(E) = 1. The above relation reflects the unitarity of the quantum theory. Its
classical interpretation is conservation of probability.

Notice that the right-hand side of (4.6) diverges in the limit of vanishing regularization
ε→ 0. For an infinite lattice� there exist two principal scenarios [12] by which to real-
ize this divergence. In the first one, the correlation function Cxy = 〈etx +ty D−1

β,ε(t)(x, y)〉,
while bounded in ε, becomes of long range and thus ceases to be summable in the limit
ε → 0. In this case the SO(1, 2) symmetry is spontaneously broken and the system
is in a phase of extended states. On the other hand, Cxy may already diverge for any
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fixed pair of lattice sites x, y, signaling strong field fluctuations and restoration of the
noncompact symmetry SO(1, 2) as ε → 0. Exponential decay of Cxy with distance
|x − y| then corresponds to exponential localization of the energy eigenstates. Thus the
question of extended versus localized states of the disordered quantum system translates
to the question of the Lorentzian symmetry SO(1, 2) of the statistical mechanical model
with free energy (1.1) being spontaneously broken or not.

At this stage, a remark is called for: Niedermaier and Seiler have recently shown
[15,16] for a large class of sigma models that if the symmetry group of the sigma model
is non-amenable – this includes in particular the case of the Lorentz group SO(1, 2) –
then spontaneous symmetry breaking occurs in all dimensions d ≥ 1 and for all β > 0.
It must therefore be emphasized that, although our sigma model does acquire the non-
amenable symmetry SO(1, 2) in the limit ε → 0, it does not belong to the class of
models where the arguments of [15,16] apply. The reason is that the SO(1, 2) symmetry
of the full action (2.6) is explicitly broken by the step of integrating over the Grassmann
variables. More precisely, it is the choice of splitting between even and odd variables
implied by the horospherical coordinate system (2.7) that fails to be SO(1, 2) invari-
ant. (There exist other choices of splitting which do preserve the SO(1, 2) symmetry.
However, these do not yield an effective bosonic field theory with a probabilistic inter-
pretation.) Thus SO(1, 2) is present as a symmetry at the level of correlation functions or
Ward identities such as (4.6), but there exists no group action of SO(1, 2) on the reduced
free energy (1.2).

More generally speaking, we do not expect the results of Niedermaier and Seiler ever
to apply to any of the noncompact nonlinear sigma models of Anderson localization.
Indeed, if they did there would be a contradiction with the field-theoretic interpretation
of Anderson localization as a phase of unbroken noncompact symmetry.

4.3. Perturbative renormalization group. We now sketch a perturbative result from
Wilsonian renormalization theory by which our model is expected to be in a symmetry-
unbroken phase also for d = 2 and all values of the inverse temperature β, and thus to
exhibit Anderson localization of all electronic states.

This result follows from Friedan’s work [8] on renormalization for the general class
of nonlinear sigma models. According to it, the RG flow of the temperature T = β−1

with increasing renormalization scale a is given by

a
dT

da
= (2− d)T + R T 2 + O(T 3), (4.7)

where R is the target space curvature – more precisely, the multiplicative constant R by
which the Ricci tensor of the target space differs from its metric tensor. For both the H2|2
model and Efetov’s sigma model of class AI a quick computation shows the curvature
R to be positive. In contrast, R = 0 and R < 0 for Efetov’s sigma models of class A
(broken time-reversal symmetry) and class AII (spin-orbit scattering), respectively.

According to (4.7), a positive value of R implies that a small initial value of the tem-
perature T increases under renormalization in dimension d = 2. By extrapolation, one
therefore expects the existence of a mass gap (or, equivalently, localization of all states)
in this case. For the localization length ξ = ξ(a, T (a)), which is a physical observable
and hence a renormalization group invariant, one obtains the formula

ξ ∝ a e1/(R T ) (d = 2)

by direct integration of the RG equation (4.7).
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In dimension d = 3, Eq. (4.7) predicts the localizing tendency of positive target space
curvature to become irrelevant at small enough temperatures and hence the RG flow to
be attracted to the fixed point T = 0 corresponding to extended states. As was remarked
above, the Lorentzian symmetry SO(1, 2) is spontaneously broken at this fixed point.

With increasing temperature T (or decreasing field stiffness β) the model in d = 3
is expected to undergo an Anderson-type transition to the phase of unbroken symmetry.
This phase transition was studied numerically in [4], where the critical value of β was
found to be βc ≈ 0.04. The transition has also been investigated in detail using the
Migdal-Kadanoff renormalization scheme [5].

5. Ward Identities and Outline of Proof

In order to control fluctuations of the field t at low temperatures T = β−1 we rely on
a family of Ward identities due to the internal supersymmetries of the model. These
Ward identities are naturally expressed in terms of both the real variables t j , s j and the
Grassmann variables ψ̄ j ,ψ j . In order to obtain probabilistic information we integrate out
the Grassmann variables using (2.14) and (2.15), thereby producing a Green’s function.

As was already mentioned, our partition function always equals unity even when the
temperature varies in space. By using this fact, we show that gradients of the field t
between neighboring sites are strongly suppressed for small T . There also exist Ward
identities at larger scales, and information may be extracted from them by using infor-
mation on previous length scales.

In addition to Ward identities, there are two other crucial ingredients of our proof. The
first one is a basic estimate on Green’s functions which are non-uniformly elliptic. The
second one is the use of SUSY characteristic functions, which help to control large-scale
field fluctuations.

A more detailed outline of our proof is given below, where the notation and the
needed Ward identities are explained. Once the Ward identities are established, most of
our proof is very classical.

5.1. Ward identities due to Q-symmetry. We recall the formula (4.4) for the integral of
a Q-invariant function. It is easy to check that the functions Si j and zk given in (2.9)
and (2.11) satisfy the invariance conditions QSi j = 0 and Qzk = 0. Therefore, using
Si j (o) = 1 and zk(o) = 1 we have the identity

∫
Dμ� e−β

∑
x,y Jxy(Sxy−1)−∑x∈� εx (zx−1) = 1 (5.1)

for all values of β ≥ 0, Jxy ≥ 0, and εx > 0. Note that in order for this statement to
be true, Jxy does not have to be nearest neighbor. Moreover, for m ∈ R and any pair
x, y ∈ � we have

1 = 〈Sm
xy〉β,ε =

〈
Bm

xy + m Bm−1
xy (ψ̄x − ψ̄y)(ψx − ψy) etx +ty

〉

β,ε
, (5.2)

where the expectation 〈·〉β,ε was defined in (2.13), and we used the nilpotency
(ψx − ψy)

2 = (ψ̄x − ψ̄y)
2 = 0. By integrating over the Grassmann fields ψ̄ and

ψ as in (2.14) we obtain our basic identity,

1 = 〈Sm
xy〉β,ε = 〈Bm

xy

(
1− mGxy

)〉. (5.3)
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The last expectation is taken with respect to the effective action for the fields t and s,
and the Green’s function Gxy is

Gxy = etx +ty

Bxy

[
(δx − δy); Dβ,ε(t)

−1(δx − δy)
]

�
. (5.4)

More generally if (xi , yi ) are n pairs of points, then

1 =
〈∏n

i=1
Sm

xi yi

〉

β,ε
=
〈∏n

i=1
Bm

xi yi
Det (1− mG)

〉
, (5.5)

where G is an n × n matrix of Green’s functions

Gi j = [gi ; Dβ,ε(t)
−1g j ]� (5.6)

and

gi = B−1/2
xi yi e(txi +tyi )/2(δxi − δyi ). (5.7)

The matrix G is real symmetric and positive. It will be important later that we are choosing
gi to be orthogonal to the zero mode (i.e., the constant functions).

5.2. Outline of proof. Our proof of Theorem 1 relies on the Ward identity (5.3), (5.5)
and an induction on length scales. The basic idea is quite simple: suppose m > 0 and
we had a uniform bound |Gxy | ≤ C/β < 1/m on the Green’s function (5.4), for all
configurations of t . Then we could conclude from (5.3) that

〈coshm(tx − ty)〉 ≤ 〈Bm
xy〉 ≤ (1− mC/β)−1, (5.8)

and this would imply Theorem 1.
In Sect. 6 we prove that if |x − y| = 1 then indeed 0 ≤ Gxy ≤ 1/β, and we establish

an even stronger version of (5.8). This proves that nearest neighbor fluctuations of the
field t are very unlikely for large β (see Lemma 4).

For distances |x − y| > 1, however, there is no uniform bound on Gxy . In Sect. 7
we study the Green’s function (5.4) and establish sufficient conditions on the field t to
obtain the desired bound on Gxy . In 3D these conditions are roughly given as follows
(where | j − x | ≥ 1):

cosh(t j − tx ) ≤ B j x ≤ a | j − x |α, 0 < α < 1/2, (5.9)

and the same for cosh(t j − ty). The number a is a constant. It will turn out that these
estimates are needed only for the sites j in a 3D diamond-type region, Rxy , containing
x and y; see Fig. 1. Notice that since the exponent α is positive, we are allowing larger
fluctuations at larger scales. The probability that such a condition is violated will be
shown to be small by induction.

Section 8 uses the conditions described above to prove conditional estimates on the
fluctuations of the field t at all scales. These conditions are initially expressed in terms of
Q-invariant characteristic functions χ . Later we show that the nilpotent (or Grassmann)
part of χ is not important, so we may think of χ in the usual classical sense.

The remaining problem is to obtain unconditional estimates on the fluctuations and
thereby prove Theorem 1. This is first done for short scales in Sect. 10. For larger scales
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yx

Fig. 1. “Diamond” region: a double cone in 3 dimensions

we use induction. Our induction hypothesis is formulated in Sect. 11. Roughly speaking
it asserts that

〈
n∏

i=1

Bm
xi yi

〉
≤ 2n (5.10)

holds under the assumption that the diamond-type regions Rxi yi (Fig. 1) associated with
i = 1, . . . , n have disjoint interiors. The induction is in �, defined as the maximal sepa-
ration |xi − yi | in the product over i = 1, . . . , n. For � = 1 this hypothesis was verified
in Sect. 6.

Section 12 contains the technical core of our paper. There we prove unconditional
estimates on the fluctuations and thus obtain Theorem 1. The main idea is to consider a
site b in Rxy closest to x or y such that condition (5.9) is violated for j = b. We shall
then prove by induction that the probability for such an event to occur is small. The
inequality Bm

xy < 2m Bm
xc Bm

cy (see Lemma 2 below) is used for a point c near b. Since the
distances |x − c| and |c − y| are less than |x − y|, induction can be applied. The factor
2m is offset by the small probability of the event when β is large.

Theorem 2 is proved in Sect. 13. Here we must estimate the contribution of the zero
mode and at this stage ε > 0 plays a key role. Finally, Theorem 3 follows from the
estimates of Theorem 2; its proof is given in Sect. 14.

5.3. Two simple lemmas. We conclude this section with two simple lemmas which will
be frequently used below. The first lemma is useful for estimates on Green’s functions.
To state it, let V be a finite-dimensional Euclidean vector space with scalar product [; ]V .

Lemma 1. Let M : V → V be a positive real symmetric operator. Then for any set of
n vectors vi ∈ V we have

M −
n∑

i=1

vi [vi ; · ]V ≥ 0 (5.11)

if and only if the symmetric n × n matrix K with matrix elements

Ki j = [vi ;M−1v j ]V (5.12)

satisfies 0 ≤ K ≤ Id.
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Proof. Letting wi = M−1/2vi ∈ V we observe that Ki j = [wi ;w j ]V and (5.11) is
equivalent to

Id −
n∑

i=1

wi [wi ; · ]V ≥ 0.

By evaluating this quadratic form at w = ∑ λiwi for any real numbers λi (since any
function in the orthogonal complement of w satisfies (5.11) automatically) we see that
(5.11) is equivalent to

n∑

i, j=1

λiλ j (K − K 2)i j ≥ 0, (5.13)

or 0 ≤ K 2 ≤ K , from which our assertion follows. ��
The second lemma will be used in our induction process of Sect. 12.

Lemma 2. If Bi j is defined as in (2.10) then for all distinct x, y, c ∈ �,

Bxy < 2Bxc Bcy . (5.14)

The inequality (5.14) can be verified by direct computation (proof omitted).

Remark. The raison d’etre behind (5.14) is easy to state: Bxy has an interpretation as
the hyperbolic cosine of the geodesic distance on H2. Therefore, if x, y, c are three
points on H2, then since the geodesic distance dist(x, y) is the minimal length of any
curve connecting x and y, the triple of geodesic distances satisfy the triangle inequality
dist(x, y) ≤ dist(x, c) + dist(c, y). Given this, the inequality (5.14) follows by taking
the hyperbolic cosine of both sides and using that cosh(a +b) < 2 cosh(a) cosh(b) holds
for any two real numbers a, b.

6. Bounds on NN Fluctuations

As was already mentioned, for nearest neighbor (NN) pairs we can obtain a result stron-
ger than (5.8). Recall that we have now fixed Jxy = 1 for all xy that are NN pairs, and
Jxy = 0 otherwise. This fact is essential in the next lemma.

Lemma 3. Let x, y be an NN pair and suppose that 0 < γ < 1. Then
〈
eβγ (Bxy−1)

〉
≤ (1− γ )−1. (6.1)

More generally, if (x j , y j ), j = 1, . . . , n is a set of n different NN pairs, then
〈
eβγ

∑n
j=1(Bx j y j−1)

〉
≤ (1− γ )−n . (6.2)

This shows that NN fluctuations are strongly suppressed.

Remark. Since Jx j y j = 1 and γ < 1 the integrals in (6.1)–(6.2) are well defined. This
would not be true if x j , y j were not NN, or if γ > 1, or if two or more NN pairs were
allowed to be identical without further restrictions on the value of γ .
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Proof. For x, y an NN pair let

Fxy( j) = e(tx +ty)/2(δx ( j)− δy( j)), (6.3)

and introduce the Green’s function

G0
xy(t) = [Fxy ; D−1

β,ε(t) Fxy]. (6.4)

Since Sxy is Q-invariant, Proposition 2 of Appendix C implies

eβγ =
〈
eβγ Sxy

〉
=
〈
eβγ (Bxy+ψ̄(Fxy)ψ(Fxy))

〉

=
〈
eβγ Bxy (1 + βγ ψ̄(Fxy)ψ(Fxy))

〉

=
〈
eβγ Bxy (1− βγ G0

xy)
〉
, (6.5)

where we have used ψ2 = ψ̄2 = 0 and (2.14). Now from (1.1) we have

[v ; Dβ, ε(t) v] = β
∑

(i j)

[v ; Fi j ]2 + ε
∑

k

etkv2
k ≥ β [v ; Fxy]2. (6.6)

Therefore Lemma 1 implies that 0 ≤ β G0
xy(t) ≤ 1 for all t , and (6.1) follows.

Similarly, for n > 1 we have

enβγ =
〈
eβγ

∑n
j=1 Sx j y j

〉
=
〈
eβγ

∑n
j=1 Bx j y j eβγ

∑n
j=1 ψ̄(Fx j y j )ψ(Fx j y j )

〉

=
〈
eβγ

∑n
j=1 Bx j y j Det(1− γ K )

〉
, (6.7)

where K is the n × n matrix

Ki j = β [Fx j y j ; Dβ,ε(t)
−1 Fxi yi ] (6.8)

given by n different NN pairs xi , yi . From (6.6) and Lemma 1 it follows that ‖K‖ ≤ 1.
This implies |Det(1− γ K )| ≥ (1− γ )n and the lemma follows. ��

As a corollary, since 1 ≤ Bm
xy ≤ em(Bxy−1) for m ≥ 0, we have the bound

〈
n∏

j=1

Bm
x j y j

〉
≤ (1− m/β)−n ≤ 2n (6.9)

for any m in the range m ≤ β/2.
A first important consequence of Lemma 3 is the following statement.

Lemma 4. Let x j , y j be a set of n different nearest neighbor pairs. Then

Prob
(∀ j = 1, . . . , n : Bx j y j > 1 + δ

) ≤ (1− γ )−ne−n(βγ )δ (6.10)

for any 0 < γ < 1.
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Proof. Let n = 1. By the Chebyshev inequality,2

Prob
(
Bxy > 1 + δ

) = 〈χ(Bxy > 1 + δ)
〉 ≤ e−βγ (1+δ)

〈
eβγ Bxy

〉
, (6.11)

where χ(Bxy > 1 + δ) is the characteristic function for Bxy > 1 + δ to hold. The desired
inequality for n = 1 now follows directly from Lemma 3.

The proof for n pairs is no different. ��

7. Conditional Estimates on Green’s Functions

For general x, y (not NN) we do not have the option of considering 〈eβγ Sxy 〉, as the
underlying integral need not exist. Nevertheless, 〈Sm

xy〉 does exist and from (5.3) we
have

1 =
〈
Bm

xy

(
1− mGxy

)〉
, (7.1)

with Gxy defined by (5.4),

Gxy = etx +ty

Bxy

[
(δx − δy) ; Dβ,ε(t)

−1(δx − δy)
]
.

Now, as was explained in Sect. 5.2, if we knew that Gxy ≤ C/β for all configurations
of t , then we could conclude that

〈Bm
xy〉 ≤ (1− mC/β)−1. (7.2)

While we have seen that this estimate is true for |x − y| = 1 (with C = 1), it is false in
general, as there are rare configurations with large negative t surrounding x or y. None-
theless, in 3D we can get an upper bound on Gxy by estimating the local ‘conductance’
at an edge (i j) from below. This conductance is

Axy(i j) ≡ Bxy e−tx−ty eti +t j

≥ 1
2 max

(
eti +t j−2tx , eti +t j−2ty

)
, (7.3)

where we have used Bxy ≥ cosh(tx − ty). This ‘conductance’ appears as an explicit
factor in Gxy since

etx +ty

Bxy
Dβ,ε(t)

−1 = (D(xy)
β,ε (t))

−1,

where for each pair xy, D(xy)
β,ε (t) is the finite-difference elliptic operator defined by the

quadratic form

[v ; D(xy)
β,ε (t) v]� = β

∑

(i j)

Axy(i j) (vi − v j )
2 + ε

∑

k∈�
Bxyetk−tx−tyv2

k .

It will suffice to estimate the expression (7.3) for NN pairs (i j) in a region Rxy which is
like a 3D double cone with vertices at x and y. Note that Neumann boundary conditions
increase Gxy and δx − δy is orthogonal to the zero mode. We will have to require that
Rxy be essentially three-dimensional in the following sense:

2 Actually, the Chebyshev inequality states that for any random variable X with average X0 we have

Prob[(X − X0)
2 > a2] ≤ a−2

〈
(X − X0)

2
〉
. Here we are using the same principle.
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Fig. 2. a The region Rxy in the continuum limit. b On the lattice, the points x1 and x2 must be added to ensure
connectedness

Definition 1. A region Rxy ⊂ � containing x and y is called δ-admissible if it is con-
nected by nearest-neighbor bonds and the two one-parameter families of intersections
Rz(r) ≡ Rxy ∩ Br

z with the ball Br
z of radius r centered at z = x, y satisfy

vol{Rz(r)} ≥ r3δ for r ≤ |x − y|/√2 (z = x, y).

In addition we require that the following Poincaré inequality:
∑

j∈Rz(r)

f ( j)2 ≤ C0 r2
∑

j∈Rz(r)

(∇ f )2( j),

holds for all functions f : �→ R subject to the condition
∑

j∈Rz(r) f ( j) = 0. C0 is a
fixed constant.

We observe that by the choice of maximal radius r = |x − y|/√2 the scaling of volume
is monitored up to the full side length of a rectangular diamond Rxy (or a double cone
Rxy , see Fig. 1) with opposite corners placed at x and y.

In the continuum limit this definition is satisfied by a double cone obtained by rotat-
ing (around the line xy connecting x and y) a 2D diamond with vertices on x and y and
angle θ ≥ θ0(δ) ≥ π/10 (see Fig. 2a). Since we are on a lattice we may have to add
a few lattice points near x and y to ensure connectedness (see Fig. 2b). The Poincaré
inequality is straightforward to prove in such convex regions.

Definition 2. Given a δ-admissible region Rxy, we define the regions Rz
xy for z = x and

z = y by

Rz
xy = { j ∈ Rxy | 1 ≤ | j − z| ≤ |x − y|/√2}. (7.4)

For the case of a diamond, Rx
xy ∪ Ry

xy = Rxy\{x, y}.
Remark 7.1. The values of the field t outside the region Rxy are not important, as we can
use Neumann boundary conditions to eliminate the exterior of Rxy . Indeed, in the sub-
space orthogonal to the constant functions the Laplacian on Rxy with Neumann boundary
conditions is bounded (by the Poincaré inequality) from below by some number, say
c, times the inverse square of the linear size L of Rxy . By this token, since the vector
δx − δy used in the definition of Gxy lies in that subspace, we may utilize the bound on
the inverse of the Neumann Laplacian by c−1L2 and in this way eventually obtain an
upper bound on Gxy (see Lemma 5).
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Remark 7.2. From (7.3) we have

Axy(i j)−1 ≤ 8 cosh(ti − tz) cosh(t j − tz) (7.5)

for both z = x and z = y. The main result of this section is that we can get an upper
bound on Gxy even without imposing a uniform upper bound on Axy(i j)−1, as long as
some growth restriction on the fluctuations of t is met for a δ-admissible region Rxy :

Lemma 5. Fix two constants a > 1 and 1/2 > α > 0. If Rxy is a δ-admissible region
in the sense of Def. 1 and the statement

∀ j ∈ Rz
xy : cosh(t j − tz) ≤ a | j − z|α (7.6)

holds for both z = x and z = y, then we have

0 ≤ Gxy ≤ G N
xy ≤ C/β, (7.7)

where C(a, α, δ,C0) is some constant depending on the parameters a, α and the geom-
etry of the region Rxy (encoded in the parameters δ and C0). Gxy was introduced in
(5.4) and we defined

G N
xy =

etx +ty

Bxy

[
(δx − δy) ; DN

β,ε(t)
−1(δx − δy)

]
, (7.8)

where the notation DN means Neumann boundary conditions on ∂Rxy.

Proof. The following is a variation on an argument presented in [18]. For each k ∈ N

consider two cubes of side 2k centered at x and y. (For concreteness, imagine the edges
of the two cubes to be parallel to the vector x− y). Let Rk

x , Rk
y denote the corresponding

intersections with Rxy and let Ik , Ĩk be the indicator functions of Rk
x and Rk

y , respectively,
normalized so that for each k,

∑

j

Ik( j) = 1 =
∑

j

Ĩk( j). (7.9)

We observe that

∀k ≥ km : Rk
x = Rk

y = Rxy, (7.10)

where km is the smallest number k ∈ N such that 2k−1 ≥ |x − y|. Since Rxy is δ-admis-
sible, Rk

z has the same properties as Rz(r = 2k) in Def. 1 and we therefore have

vol Rk
x ≥ 2kdδ (k ≤ km − 1, d = 3) (7.11)

for all 2k > 10. For 2k ≤ 10 this is not true (see Def. 1) but the corresponding volume
is no less than unity, as Rxy is connected.

Now we express δx − δy as a telescopic sum:

δx − δy =
km∑

k=1

(ρk − ρ̃k) , (7.12)
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where ρk = Ik−1 − Ik , ρ̃k = Ĩk−1 − Ĩk , I0 = δx , and Ĩ0 = δy . This sum terminates at
km because by (7.10) we have Ik = Ĩk for k ≥ km . Note that ρk , ρ̃k are orthogonal to
the constant functions:

∑
j∈� ρk( j) = 0 =∑ j∈� ρ̃k( j).

Next we put the telescopic sum to use by the following computation:

[
δx − δy ; DN

β,ε(t)
−1(δx − δy)

]
=

km∑

k,l=1

[
ρk − ρ̃k ; DN

β,ε(t)
−1(ρl − ρ̃l)

]

≤
( km∑

k=1

([
ρk ; DN

β,ε(t)
−1ρk

]1/2
+
[
ρ̃k ; DN

β,ε(t)
−1ρ̃k

]1/2
))2

, (7.13)

where the Cauchy-Schwarz inequality was employed. Hence we need to estimate
[ρk ; Dβ,ε(t)−1ρk] and [ρ̃k ; Dβ,ε(t)−1ρ̃k]. This is done, say for the former, by the
inequality

[ρk ; DN
β,ε(t)

−1 ρk] ≤ ‖D−1
Rk

x
‖ ‖ρk‖2

2, (7.14)

where DR (for a region R) stands for the operator (1.3) with Neumann boundary condi-
tions on R. In view of

∑
ρk( j) = 0 the operator norm is to be taken on the orthogonal

complement of the constant functions.
The square of the L2-norm of ρk+1 is bounded by (vol Rk

x )
−1. Thus by (7.11)

‖ρk+1‖2
2 ≤ (vol Rk

x )
−1 ≤ 2−kdδ−1. (7.15)

The corresponding inequality also holds for ρ̃k+1.
We must still bound the operator norm ‖D−1

Rk
x
‖. For this we observe that the conditions

(7.5) ensure that

Axy( j j ′)−1 ≤ 23(a | j − x |α)2 ≤ 8a222kα

for all j, j ′ ∈ Rk
x and k ≤ km − 1, since in that case j j ′ ∈ Rx

xy and we apply (7.6) for
z = x . For k = km we are looking at pairs that belong to Ry

xy but not to Rx
xy . In that case

we apply (7.6) for z = y and still have Axy( j j ′)−1 ≤ 8a222kα . Therefore, since Rxy is
δ-admissible and by the Poicaré inequality (see Def. 1) the lowest nonzero eigenvalue
of the Neumann Laplacian on Rk

x is of the order of (2k)−2, we obtain

etx +ty B−1
xy ‖D−1

Rk
x
‖ ≤ c(δ) a2β−122k22kα (7.16)

for some c(δ) and all k ≤ km . For 2k ≤ 10 the connectedness of Rxy ensures that
‖D−1

Rk
x
‖ ≤ const. The same bounds apply for ‖D−1

Rk
y
‖.

Finally, by combining (7.13) with (7.14), (7.15), and (7.16), we arrive at

G N
xy =

etx +ty

Bxy

[
δx − δy ; DN

β,ε(t)
−1(δx − δy)

]
≤ c(δ)

a2

β

(
2

km∑

k=1

√
2

k(2α+2−d)
)2

.

For 2α < d − 2 = 1 the value of this sum is bounded uniformly in km . ��
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Remark. The bound (7.7) also applies when the definition of Rx
xy and Ry

xy is modified
in the following way (for z = x, y as before):

Rz
xy = { j ∈ Rxy : | j − z| ≤ |x − y| fz }, (7.17)

where fx , fy are a pair of positive numbers which add up to (at least) unity and neither
of which is too small. If these regions become too asymmetric or the angles too small
the Poincaré inequality and (7.11) may no longer hold. It is easy to see that the relevant
scales involved are the ones for k near km and we can get the same bound but with a
change of overall factor. This remark will become important in Sect. 12, Lemma 11,
where we will need this estimate with fy � 1/5.

8. Conditional Estimates on Fluctuations

In this section we establish bounds on the fluctuations of the field t by bounding 〈Bm
xy χ̄xy〉

where χ̄xy has the property that χ̄xy = 0 whenever the hypothesis (7.6) of Lemma 5
fails.

Definition 3 (Characteristic function). As before, fix two constants a > 1 and 1/2 >
α > 0, and let r j−k := (a | j − k|α)−1 for j , k ∈ �, j �= k. Let χ : R+ → R be the
characteristic function of the interval [0, 1], i.e., χ(t) = 1 for 0 ≤ t ≤ 1 and χ(t) = 0
for t > 1. Moreover, let Rxy be δ-admissible and choose the regions Rx

xy, Ry
xy as in

(7.4). In this setting we define

χ̄xy =
∏

j∈Rx
xy

χx j

∏

j∈Ry
xy

χy j , χz j = χ(r j−z Bzj ) (z = x, y). (8.1)

Here the constants a, α are taken to coincide with those in Lemma 5.
With these definitions we have

Lemma 6. Let Rxy be a δ-admissible region, and let C = C(a, α, δ) be the constant
that appears in Lemma 5. Then for 0 ≤ m < β/C we have

〈
Bm

xy χ̄xy

〉
≤ (1− mC/β)−1 . (8.2)

Proof. Our proof uses the identity 〈Sm
xy χ̄

S
xy〉 = 1, where χ̄ S

xy is a supersymmetric ver-
sion of χ̄xy defined above. After integrating out the Grassmann fields we shall show that
this identity implies

〈
Bm

xy χ̄xy (1− mGxy)
〉
≤ 1.

Lemma 5 and the presence of χ̄xy then yield (8.2).
More precisely, let χγ ∈ C∞(R+) with d

dt χγ (t) ≤ 0 and

χγ (t) =
{

1 t ≤ 1− γ,
0 t ≥ 1,

be a smooth regularization of χ = limγ→0 χγ . We fix a small value of γ > 0 and write
χ̃ ≡ χγ for short. Then, recalling the definition (6.3) of Fxy we introduce

χ S
x j = χ̃ (r j−x Sx j ) = χ̃x j + r j−x χ̃

′
x j ψ̄(Fx j )ψ(Fx j ), (8.3)



Quasi-Diffusion in a 3D Supersymmetric Hyperbolic Sigma Model 457

where χ̃x j = χ̃ (r j−x Bx j ). Since χ S
x j is Q-invariant and χ S

x j (0) = 1 we have

1 =
〈

Sm
xy

∏

j∈Rx
xy

χ S
x j

∏

j∈Ry
xy

χ S
y j

〉
≡
〈
Sm

xy χ̄
S
xy

〉
. (8.4)

Now, we express
〈
Sm

xy χ̄
S
xy

〉
=
〈
Sm

xy χ̂xy exp−[ψ̄ ; Aψ]
〉
, (8.5)

where

χ̂xy =
∏

j∈Rx
xy

χ̃x j

∏

j∈Ry
xy

χ̃y j , χ̄xy = lim
γ→0

χ̂xy ,

and the symmetric operator A is given by

[ f ; A f ] = −
∑

j∈Rx
xy

r j−x χ̃
′
x j

χ̃x j
[ f ; Fx j ]2 −

∑

j∈Ry
xy

r j−y χ̃
′
y j

χ̃y j
[ f ; Fyj ]2. (8.6)

Clearly A ≥ 0 as a quadratic form since χ̃ ′ ≤ 0. The total ψ̄ψ contribution to (8.5)
including the fermionic part of the action is

[ψ̄ ; (Dβ,ε(t) + A)ψ] − m B−1
xy ψ̄(Fxy) ψ(Fxy),

where the second summand stems from Sm
xy , see (5.2)-(5.3). Thus, integration over the

Grassmann fields ψ̄, ψ gives Det(Q + A), where

Q = Dβ,ε(t)− m B−1
xy Fxy [Fxy ; · ].

Since we are taking m to be less than β/C , the presence of the factor χ̂xy in (8.5)
ensures (by Lemma 5) that mGxy < 1. Now by Lemma 1 the inequality 1 ≥ mGxy =
m B−1

xy [Fxy; Dβ,ε(t)−1 Fxy] is equivalent to Q ≥ 0. Therefore the result Det(Q + A) of
integrating over ψ̄, ψ is bounded from below by

Det(Q + A) ≥ Det(Q) = Det(Dβ,ε(t)) (1− mGxy) ≥ 0,

and we obtain the estimate

1 =
〈
Bm

xy χ̂xy e−[ψ̄ ;(Q+A)ψ]〉 ≥
〈
Bm

xy χ̂xy (1− mGxy)
〉
.

We finally take the limit γ → 0. The smooth function χ̂xy then converges to the char-
acteristic function χ̄xy . Hence

1 ≥
〈
Bm

xy χ̄xy (1− mGxy)
〉
≥
〈
Bm

xy χ̄xy

〉
(1− mC/β),

which is the desired result. ��
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Lemma 7. If all of the regions Rx1 y1 , Rx2 y2 , . . . , Rxn yn are δ-admissible and disjoint
(meaning they have disjoint interiors), then we still have

〈
n∏

j=1

Bm
x j y j

χ̄x j y j

〉
≤ (1− mC/β)−n . (8.7)

Proof. As before we use the fact that the supersymmetrized observable, which here
results from replacing Bx j y j by Sx j y j , has expectation one.

Consider first the simpler problem of computing the expectation of the product∏
Sm

xi yi
χ̄xi yi . After integrating over ψ and ψ̄ we see that

〈
n∏

i=1

Sm
xi yi

χ̄xi yi

〉
=
〈

n∏

i=1

Bm
xi yi

χ̄xi yi Det(1− mG)
〉
, (8.8)

where G is an n × n matrix of Green’s functions

Gi j = β−1[gi ; Dβ,ε(t)
−1g j ], gi = B−1/2

xi yi e(txi +tyi )/2 (δxi − δyi ). (8.9)

The matrix G is positive as a quadratic form. In order to reduce the problem to the previ-
ous case (of just a single region) note that G ≤ GN , where the subscript denotes Neumann
boundary conditions on the boundaries of the disjoint regions Rxi yi . The presence of the
factors χ̄xi yi implies 1− GN > 0, so that

Det(1− mG) ≥ Det(1− mGN ) =
n∏

i=1

(1− mG N
xi yi
) ≥ (1− mC/β)n, (8.10)

where G N
xy was defined in (7.8). Note that since the regions Rxi yi have no common edge

(but they may have one common vertex), the presence of Neumann boundary conditions
implies that only the diagonal terms contribute in (8.10).

The proof of the lemma is completed by introducing the effects of χ̃ ′ as before. Since
there are no new aspects to this argument, we omit it.

Remark. From this lemma one obtains estimates for conditional probabilities only. Yet,
in order to bound Cxy in Theorem 3 we need probability estimates without any condi-
tions, which is why we now have to develop an inductive argument.

9. Unconditional Estimates on Fluctuations

We are now going to remove the constraints enforced by insertion of χ̄ . In order to do
so, we have to consider χc

x j = 1 − χx j for χx j defined by (8.1). Short scales (given

by 0 < | j − x | < β1/4) will be treated separately by monitoring, in Sect. 10, only
the size of nearest neighbor gradients inside the region Rxy . At the very large scales of
| j − x | ≥ β1/4, however, looking only at NN fluctuations is not enough. There, in order
to remove the χ̄ constraints we will show by induction on the distance | j − x | that the
corresponding contribution is small.

We will distinguish between two types of geometry: diamonds and deformed dia-
monds. For deformed diamonds we will quantify the bounds given by (7.7) and call such
regions C-admissible.
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(b)(a)

xyx

y

Fig. 3. a diamond region, b C-admissible region (deformed diamond)

Definition 4. Let Rxy ⊂ � be δ-admissible in the sense of Def. 1.

1. We call Rxy a diamond if it is the set of lattice points which is contained in a
3-dimensional double cone obtained in the following way: we take a 2-dimen-
sional rectangular diamond with opposite vertices placed on x and y and edges
of length |x − y|/√2 (see Fig. 3) and rotate it around the line xy. In order to
ensure connectedness we may have to add a few lattice points near x and y (see
Fig. 2 a, b).

2. We call Rxy a C-admissible region (or deformed diamond) if

0 ≤ G N
xy χ̄xy ≤ C/β for |x − y| > β1/4, (9.1)

0 ≤ G N
xy

∏

pq

′
χpq ≤ C/β for |x − y| ≤ β1/4, (9.2)

where χ̄xy is defined in (8.1), the superscript N stands for Neumann boundary con-
ditions on Rxy and

∏′ denotes the product over all nearest neighbor pairs in Rxy.

Note that for short scales, dealt with in (9.2), instead of using χ̄xy we impose constraints
on all NN pairs in the region Rxy .

With these definitions we can state the main result of this paper.

Theorem 4. Let m = β1/8, and let Rxi yi for i = 1, . . . , n1 be diamonds with disjoint
interiors and |xi − yi | > β1/4. Then we have

〈
n1∏

i=1

Bm
xi yi

〉
≤ 2n1 (9.3)

for all n1 ≥ 0. Moreover if p j , q j for j = 1, . . . , n2 are such that |p j − q j | > β1/4, the
regions Rp j q j are C-admissible, have disjoint interiors and do not overlap with any of
the regions Rxi yi , then there exists a constant ρ ≤ 1/2 such that

〈
n1∏

i=1

Bm
xi yi

n2∏

j=1

B3m
p j q j

χ̄p j q j

〉
≤ 2n1(1 + ρ)n2 (9.4)

for all n1 ≥ 0 and n2 ≥ 0. Finally, let rk, sk for k = 1, . . . , n3 be such that |rk − sk | ≤
β1/4, Rrk sk are C-admissible, have disjoint interiors and do not overlap with any of the
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regions Rxi yi or Rp j q j . Then for all n1 ≥ 0, n2 ≥ 0 and n3 ≥ 0 we have
〈

n1∏

i=1

Bm
xi yi

n2∏

j=1

B3m
p j q j

χ̄p j q j

n3∏

k=1

B3m
rk sk

〉
≤ 2n1(1 + ρ)n2 2n3 (9.5)

with ρ ≤ 1/2.

Let

� = max
j
|x j − y j |. (9.6)

The proof of the theorem is carried out in Sects. 10–12 and will use an inductive argu-
ment on �. We will need to distinguish between three situations, which we refer to as
classes.

Class 1. |x − y| > β1/4 and the pair is not protected by a factor of χ̄xy . In this case we
need an inductive argument on scales to prove a bound on the expectation of Bm

xy . The
induction will be done on � (defined above) and is carried out in Sects. 11 and 12. We
will need to inductively select non-overlapping smaller diamonds inside the region Rxy
while making sure that these remain δ-admissible. To arrange for all geometrical details
to work out, we take Rxy to be a perfect diamond.

Class 2. |x − y| > β1/4 but the pair is protected by a factor of χ̄xy . In this case we can
apply the results of Sect. 8, thereby obviating the need for any induction. Rxy is then
allowed to be a deformed diamond and the bound we can get is stronger than in Class 1
(power 3m instead of m).

Class 3. |x − y| ≤ β1/4. This includes short scales and the NN case, which was already
treated in Sect. 6. We will show in Sect. 10 that these scales do not require any factor of
χ̄xy to ensure a good bound. No induction is needed, and we can therefore take Rxy to
be a deformed diamond.

Note that the larger exponent 3m appearing in (9.4) and (9.5) is important for the
inductive proof to go through. The enlarged exponent can be handled either because of
the presence of χ̄ or because the pair is of Class 3.

9.1. Fixing the different parameters. We have introduced a certain number of parame-
ters: m, a, ρ, δ, C0, C , α. Before going on, we briefly review why they appeared and
how to choose their values.

1. The parameter m is ubiquitous in this paper as the power of Bxy . Since the proba-
bility of large deviations will be bounded by K−m with K > 1, we want m to be
as large as possible. On the other hand, to apply the SUSY argument of Sect. 8 we
must have (1− 3mC/β)−1 < 1, where the factor 3m in this inequality comes from
the power of B in (9.4), (9.5). Therefore the magnitude of m is limited by β. To
arrange for all the conditions to be met, we fix m = β1/8. The factor m will be kept
fixed in the whole course of proof.

2. The constants C0 and δ appearing in the definition of the region Rxy (see Def. 1)
are not subject to any special requirements, but their values do constrain the other
parameters. They will be fixed throughout.
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3. To prove the induction hypothesis we need 0 ≤ ρ ≤ 1. More precisely (see
Eq. (12.6)) we need ρ + R(x, y) ≤ 1. Since we prove R(x, y) ≤ 1/2 we will
take ρ ≤ 1/2.

4. The constant a in Lemma 5 in Sect. 7 plays a key role in bounding the entropy for
small scales; see Sect. 12, Case 1, Eq. (12.16). It will become clear there that a > 10
is sufficient.

5. We need to take α > 0 in Lemma 5 in order to control entropy factors for large
deviations (see Sect. 12). On the other hand, the result of Theorem 2 would be opti-
mal for α = 0. Therefore we wish to make α as small as possible. We will see in
Sect. 12 (Case 2b, Eq. (12.21) and Case 2c, Eq. (12.23)) that α ≥ O(1/ ln β) is a
requirement for our analysis to go through.

10. Short-scale Fluctuations

We now prove Theorem 4 for � ≤ β1/4 (see (9.6)), i.e., for Class 3 pairs (this is equivalent
to take n1 = 0 in (9.5)). These estimates will follow from the bounds on NN fluctuations
established in Sect. 6.

Lemma 8. There is a constant β0 such that for β ≥ β0, |x − y| = � ≤ β1/4 and
m = β1/8, we have

〈
B3m

xy

〉
≤ 2. (10.1)

More generally let (x1, y1), . . . , (xn1 , yn1) be n1 pairs with |x j − y j | ≤ � for all j , and
let the interiors of the corresponding C-admissible regions Rx1 y1 , Rx2 y2 , . . . , Rxn1 yn1

be disjoint. Moreover if p j , q j for j = 1, . . . , n2 are such that |p j − q j | > β1/4, the
regions Rp j q j are C-admissible, have disjoint interiors and do not overlap with any of
the regions Rxi yi , then there exists a constant ρ ≤ 1/2 such that

〈
n1∏

i=1

B3m
xi yi

n2∏

j=1

B3m
p j q j

χ̄p j q j

〉
≤ 2n1(1 + ρ)n2 (10.2)

for all n1 ≥ 0 and n2 ≥ 0.

Proof. As in Def. 3, let χ be the characteristic function of the interval [0, 1] and let (with
a parameter δ to be defined shortly)

χpq = χ((1 + δ)−1 Bpq), |p − q| = 1, (10.3)

and χc
pq = 1−χpq . Note that this parameter δ appears only in this section and has noth-

ing to do with the one controlling the geometry of the region in Def. 1. Using χpq ≤ 1
we have 1 ≤∏(pq) χpq +

∑
(pq) χ

c
pq and

〈
B3m

xy

〉
≤
〈

B3m
xy

∏

(pq)

χpq

〉
+
∑

(pq)

〈
B3m

xy χ
c
pq

〉
, (10.4)

where the product and the sum are over all nearest neighbor pairs (pq) in Rxy .
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We estimate the first term on the right-hand side of (10.4) by applying the strategy
of the proof of Lemma 6 to show that

〈
B3m

xy

(
1− 3m Gxy

) ∏

(pq)

χpq

〉
≤ 1. (10.5)

To bound Gxy , note that on the support of χpq we have

0 ≤ 1
2 (tp − tq)

2 ≤ cosh(tp − tq)− 1 ≤ δ. (10.6)

Thus |tp − tq | ≤
√

2δ and |tz − t j | ≤ �
√

2δ for z = x, y and all j ∈ Rxy . Now let us
require

�
√

2δ = 1, or δ = 1
2β
−1/2, (10.7)

since � ≤ β1/4. Thus we have a uniform lower bound on the conductance (7.5). It then
follows that 0 ≤ Gxy ≤ C/β with C independent of β, and (10.5) gives

〈
B3m

xy

∏

(pq)

χpq

〉
≤ (1− 3m C/β)−1 ≤ 3/2 (10.8)

for β large.
For the second summand of (10.4) we use

χc
pq = 1− χ

(
(1 + δ)−1 Bpq

)
≤
(

Bpq

1 + δ

)β/2
. (10.9)

The factor B3m
xy is estimated by repeated application of (5.14):

2Bxy ≤
∏

j

2Bp j q j , (10.10)

where the product ranges over a set of NN pairs connecting x and y. By combining
(10.9) and (10.10) and then using the result (6.9) for NN pairs we have

〈
B3m

xy χ
c
pq

〉
≤ 23m(�−1)

(1 + δ)β/2

〈
Bβ/2pq

∏

j

B3m
p j q j

〉

≤ 23m(�−1)

(1 + δ)β/2
( 1

2 − 3m/β
)−1

(1− 3m/β)−�

≤ e3m�e−βδ/3. (10.11)

Since 3m� ≤ 3β1/8β1/4 by hypothesis, and δ = 1
2β
−1/2 by (10.7), we see that the

expression (10.11) is less than exp(β3/8 − β1/2/6).
Combining our estimates on the two terms on the r.h.s. of (10.4) we have

3/2 + 3�3eβ
3/8−β1/2/6 ≤ 2

for large enough β. The factor 3�3 ≤ 3β3/4 comes from the sum over all NN pairs in
Rxy .
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When several disjoint regions are present, the bounds over disjoint regions factor,
and we can get the same result using the same argument. Each term B3m

p j q j
is a Class 2

contribution and the corresponding bound (see Lemma 7) is

(1− mC/β)−1 = (1− Cβ1/8/β)−1 ≤ (1 + ρ),

for β > β0. This concludes the proof of Lemma 8. ��

11. Induction Hypothesis and Some Preliminary Estimates

The argument in the last section cannot be repeated for all values of �. In order to control
all scales we need an inductive argument.

Induction Hypothesis. Let xi , yi (i = 1, . . . , n1), p j , q j ( j = 1, . . . , n2), and rk, sk
(k = 1, . . . , n3) be pairs of Class 1, 2, resp. 3, in the sense of Theorem 3. Then the
bounds (9.3), (9.4), (9.5) hold when |xi − yi | ≤ � for all i ≤ n1. ��

The induction is on � = maxi |xi − yi |. The said bounds were already established
for � = 1 (NN case, Sect. 6) and � ≤ β1/4 (Sect. 10). Assuming that the Induction
Hypothesis holds up to scale �, we shall prove (in Sect. 12) that it holds up to scale
� + 1. This will complete the proof of Theorem 4 and, as an immediate consequence,
Theorem 1.

The idea of the proof is the same as in Sect. 10. If the pair xy is protected by a χ̄xy
factor (Class 2), then we apply Lemma 6 in Sect. 8.

To get the unconditional estimates we must study the situation when χ̄xy is violated.
This violation may happen at any scale from 1 up to �. To quantify this we introduce the
following definition.

Definition 5. A point x ∈ � is called n-good if

Bxy ≤ a |x − y|α (11.1)

for all y ∈ � with distance 1 ≤ |x − y| ≤ 4n from x.

Definition 6. For a cube Rn of side 4n we define χc
Rn

to be the indicator function of the
event that there exists no n-good point in Rn.

Our goal in the present section is to bound the expectation of the indicator function χc
Rn

.
In brief we will achieve this by estimating χc

Rn
by a sum of products of factors of Bxy

and then using (9.5). The details are as follows.
A 3D cube Rn of side 4n can be expressed as a union of 43 disjoint subcubes of side

4n−1. It is clear by inspection of Fig. 4 that we can select 23 = 8 of these subcubes,
say Ri

n−1 (i = 1, . . . , 8), so that dist(Ri
n−1, R j

n−1) > 4n−1 (i �= j). Our approach now
rests on the following simple observation: if there is no n-good point in Rn , then there is
either no (n − 1)-good point in any of the 8 subcubes Ri

n−1, or else there exists at least
one bad pair (x, y) ∈ Rn ×� at scale 4n−1 < |x − y| ≤ 4n . Thus, χc

Rn
is bounded by

the inequality

χc
Rn
≤ Sc

Rn
+

8∏

i=1

χc
Ri

n−1
, (11.2)
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4n

4n−1

R3 R2

R4 R1

4n−12

(a)

root

12

1

2

3

4

4

1’
1’

1’’

1’’2’’

2’’

3’ 4’
3’ 4’

6’
6’

3

(b)

Fig. 4. a In a 3D cube of side 4n we select 8 cubes of side 4n−1. b Here we see an example of a rooted tree
(on a 2D square) with coordination number 5 or 1 at each vertex, and the corresponding set of subsquares.
The root corresponds to the large square

where

Sc
Rn
=

∑

x∈Rn , y∈�
4n−1<|x−y|≤4n

χc
xy ≤

∑

x∈Rn , y∈�
4n−1<|x−y|≤4n

Bm
xy

am |x − y|αm
. (11.3)

In order to apply the induction hypothesis (9.3)-(9.5) we need to write χc
Rn

as sums

of products of Bxy factors. Therefore we iterate (11.2) inside each cube R j
n−1, thus

selecting 82 subcubes of side 4n−2, and we keep repeating this procedure until we reach
cubes of side 40 = 1 (i.e. points). We denote by R̃n−k (k = 0, . . . , n) the set of 8k

cubes of side 4n−k obtained in this way. R̃n = {Rn} is the starting cube. Moreover let
R̃ = ∪n

k=0 R̃n−k . In this way we bound χc
Rn

by a positive sum of products of χc
xy , which

in turn are bounded by Bm
xy/(a |x − y|α)m . The resulting expression can be organized as

a sum over rooted trees picturing the hierarchy of inclusion relations of the subcubes.
The following set of definitions serves to prepare the statement of Lemma 9 below.

Let V be an abstract set of vertices such that |V | = |R̃|. We associate by a fixed bijective
map each vertex v in V to a cube Rv ∈ R̃. We denote by kv the scale of the corresponding
cube: Rv ∈ R̃n−kv . The vertex associated with the largest cube Rn is denoted by r (root).
Finally let A(v) (ancestor of v) be the unique vertex in V such that Rv ⊂ RA(v) (see
vertex 1 and 1’ in Fig. 4b).

With these definitions we can introduce Tn the set of labelled rooted trees on some
subset of V with root r , such that the root has coordination number dr = 8 or dr = 0 (in
which case the tree is reduced to a single vertex) and the other vertices have coordination
number dv = 9 or dv = 1. Moreover if v belongs to the tree then there must be a tree
line connecting v to its ancestor A(v). The maximal distance of a vertex from the root
is n. Let LT denote the set of vertices in T with dv = 1 (the leaves) or dr = 0 (then LT
contains only the root). Let Vk be the set of vertices in T at distance k from the root.
With these definitions the tree is completely fixed by the leaves LT (or equivalently by
the choice of the coordination numbers for each vertex). See Fig. 4b for an example in
the case of dv = 5 instead of 9.
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Lemma 9. With the definitions above we have the inequality

χc
Rn
≤
∑

T∈Tn

∏

v∈LT

Sc
Rv , (11.4)

where Rv is a cube of side 4n−kv and Sc
Rv

is defined as in (11.3), with n replaced by
n − kv .

Proof. Our trees T ∈ Tn are constructed by iterating (11.2). In each iteration we get to
choose between the first and second term of the r.h.s. of (11.2).

The construction starts with the root of the tree. In the first step of the iterative scheme,
if we pick the first term of (11.2) then the construction ends and we have produced noth-
ing but the trivial tree (the root). If we pick the second term, we have a product of 8
different indicator functions χc

R , one for each subcube in R̃n−1. We represent them in
the tree by attaching 8 vertices to the root. Each vertex is then associated to a subcube
by lexicographical order (see Fig. 4b). Now we repeat this procedure at the end of each
branch and, continuing in this way, construct a tree. Whenever we pick the first term in
(11.2), the corresponding branch of the tree terminates and we produce a terminal vertex
or leaf. If we pick the second term, we generate a vertex of coordination number 9. The
iteration stops when we reach scale n. ��

We are now in a position to state and prove the main result of this section.

Proposition 1. Let d = 3 and let the parameters a,m, α be chosen such that mα ≥ 4d
and a ≥ 23α+(d+2)/m. Assume that the induction hypothesis (9.5) holds up to scale
� = 4n. Then

〈
χc

Rn

〉 ≤ 2−(n+1)αm, (11.5)

and if Rn(k), k = 1, . . . , N , denotes a family of cubes of side 4n(k) ≤ � such that

dist(Rn(k), Rn(k′)) ≥ max(4n(k), 4n(k′)) (11.6)

then
〈

N∏

k=1

χc
Rn(k)

〉
≤

N∏

k=1

2−(n(k)+1)αm . (11.7)

Proof. Applying (11.4) we have

〈χc
Rn
〉 ≤

∑

T∈Tn

〈
∏

v∈LT

Sc
Rv 〉 ≤

∑

T∈Tn

∑

xv∈Rv, yv∈�,v∈LT

4n−kv−1<|xv−yv |≤4n−kv

〈
∏

v∈LT

Bm
xv yv

am |xv − yv|αm
〉

≤
∑

T∈Tn

∏

v∈LT

[
(4nv )d(4nv2)d2

am4(nv−1)αm

]
≤
∑

T∈Tn

∏

v∈LT

[
1
2 2−(n−kv+1)αm

]
, (11.8)

where in the second line we applied (9.3) (holds by the induction hypothesis). Finally
nv = n− kv when n− kv ≥ 1 and nv = 1 when n− kv = 0. Note that when n− kv = 0
or 1 the bound is ensured by the factor am in the denominator only. To perform the
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remaining sum over trees note that each vertex appears either as a leaf (dv = 1) at scale
kv or as a branch (dv = 9) connecting to 8 vertices at scale kv + 1. Then

∑

T∈Tn

∏

v∈LT

[
1
2 2−(n−kv+1)αm

]
= C0 = C (0)

0 + (C1)
8 = C (0)

0 +
(

C (0)
1 + (C2)

8
)8 = · · ·,

where the contribution Ck of a vertex at scale 0 ≤ k ≤ n is the sum of C (0)
k (when the

vertex is a leaf) and (Ck+1)
8 (when it is connected to 8 vertices at scale k + 1). The value

of Ck is defined by induction:

Ck = C (0)
k + (Ck+1)

8 , k = 0, . . . , n − 1, Cn = C (0)
n ,

C (0)
k = 1

2 2−(n−k+1)αm k = 0, . . . , n.

With these definitions it is easy to see that

Ck ≤ 2−(n−k+1)αm ∀0 ≤ k < n.

Hence the result. To prove (11.7) we apply (11.4) to each term χc
Rn(k)

. Then we can
again apply (9.5) as long as the corresponding diamonds are disjoint – this is ensured
by the procedure for choosing subcubes and by the constraint dist(Rn(k), Rn(k′)) ≥
max(4n(k), 4n(k′)). This concludes the proof of Proposition 1. ��

12. Proof of the Induction Hypothesis

In this section we shall establish the induction hypothesis of Sect. 11 at scale � assuming
that it holds up to scale � − 1. Since our regions Rxi yi are disjoint by assumption, we
will be able to re-express each factor Bxi yi as a sum over non-overlapping regions where
our induction hypothesis applies. To simplify the notation let xi = x and yi = y. We
will assume that � = |x − y| is large, i.e., |�| ≥ β1/4. (The case of small � < β1/4 was
dealt with in Sect. 10.)

For z = x, y we recall the meaning of the regions Rz
xy from Def. 2, Sect. 7. To ensure

that the new regions produced by the analysis below remain inside the original region
Rxy we need to introduce the following subsets.

Definition 7. Let Rxy be a diamond region as described in Def. 4. Then we define R̃z
xy

for z = x, y as

R̃z
xy = { j ∈ Rz

xy : ∠( j z, xy) ≤ π/8 for | j − z| > 10}, (12.1)

where ∠( j z, xy) is the angle between the lines j z and xy.

This definition roughly selects (at distances larger than 10) a double cone which is
obtained by rotating around xy a 2D diamond with vertices on x and y and opening
angle θ = π/8 (see Fig. 2a). The condition | j − k| > 10 ensures that R̃z

xy ∪ {z} is
connected.

We also define

uxy =
∏

j∈R̃x
xy

χx j

∏

j∈R̃ y
xy

χy j (12.2)
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for χx j , χy j as defined in (8.1). Note that R̃x
xy ∪ R̃ y

xy ∪ {x, y} is a δ-admissible region in
the sense of Def. 1 (Sect. 7), so Lemma 5 and Lemma 6 can be applied to give

〈Bm
xy uxy〉 ≤ (1− mC/β)−1. (12.3)

Now let χc
x j = 1 − χx j and χc

y j = 1 − χy j . The next lemma is nothing but a
combinatorial identity based on the following partitions of unity:

1 =
∏

j∈R̃x
xy

(χx j + χc
x j ), 1 =

∏

j∈R̃ y
xy

(χy j + χc
y j ), (12.4)

where R̃x
xy and R̃ y

xy are the regions defined above.

Lemma 10. The identity function can be written as

1 = uxy +
∑

b∈R̃x
xy

χc
xb

∏

j,| j−x |<|b−x |
χx j +

∑

b∈R̃ y
xy

χc
yb

∏

i∈R̃x
xy

χxi

∏

j,| j−y|<|b−y|
χy j . (12.5)

Proof. We start from (12.4) and expand the first product over j , beginning with small
| j − x |. For each factor χx j + χc

x j we have two possibilities: either we pick χx j , in
which case we proceed to the next factor and repeat, or else we pick χc

x j and then we
stop expanding and leave all the other factors (with larger | j − x |) in summed form
χx j + χc

x j = 1. In the resulting sum there is the term
∏

j∈R̃x
xy
χx j . This we multiply by

the other product (over j ∈ R̃ y
xy) in (12.4), which we expand in the same way.

In total, we have either picked a factor χ for all j ∈ R̃x
xy and j ∈ R̃ y

xy (this results
in the term uxy), or we have picked a term χc

x j or χc
y j somewhere during the course of

the expansion process (this gives all the other terms). The point where we stopped is
denoted by b (where b stands for ‘bad’) because χc

xb > 0 or χc
yb > 0 means that there

is a large deviation at that point. ��
Using the equality (12.5) of Lemma 10 we can rewrite Bm

xy as

Bm
xy = Bm

xy uxy + R(x, y), (12.6)

where R(x, y) is defined as

R(x, y) =
∑

b∈R̃x
xy

Bm
xy χ

c
xb

∏

j : | j−x |<|b−x |
χx j

+
∑

b∈R̃ y
xy

Bm
xy χ

c
yb

∏

i∈R̃x
xy

χxi

∏

j : | j−y|<|b−y|
χy j . (12.7)

We have 〈Bm
xy uxy〉 ≤ (1−mC/β)−1 by (12.3), without any need for an inductive argu-

ment. Thus if we can prove that 〈R(x, y)〉 ≤ 2− (1−mC/β)−1 our proof of (9.3) will
be complete. The desired statement is formulated in the next lemma.

Lemma 11. For large β the remainder (12.7) is bounded in average by

〈R(x, y)〉 ≤ 1/2. (12.8)

Moreover, R(x, y) can be written as a sum over products of Bx ′y′ with |x ′ − y′| ≤ �− 1
in such a way that the corresponding regions Rx ′y′ are disjoint.
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Now, using this lemma and arranging for (1−mC/β)−1 not to exceed 3/2, we have

〈Bm
xy〉 ≤ 3/2 + 1/2 = 2, (12.9)

thus completing the proof of the Induction Hypothesis for the case n1 = 1 and n2, n3 = 0.
The general case – (9.5) – is done in the same way.

Before starting the proof of Lemma 11 we provide some orientation and motivation.
To bound the expectation of Bm

xy χ
c
xb we could try to use (5.14):

Bm
xy ≤ 2m Bm

xb Bm
by, (12.10)

while χc
xb = 1− χxb can be bounded by

χc
xb ≤ B p

xb a−p|b − x |−αp, (12.11)

where we used Def. 3 of Sect. 8. Since both |b − x | and |b − y| are smaller than � it is
natural to try to apply the Induction Hypothesis. However we face at least two problems:
[A]. The Induction Hypothesis does not cover Bm+p

xb when p > 0. Indeed, a factor
χ̄xb = ∏

χx j
∏
χbj must be present in order for (9.4) to apply in such a case with

0 < p ≤ 2m. Notice, however, that while we have no immediate control without the
missing factors χbj , the factors χx j for j ∈ R̃x

xy and | j − x | < |b − x | are already in
place. To overcome the problem, we shall introduce the needed factors

∏
χbj by the

same partition of unity scheme that was used above.
Before embarking on that scheme, let us quickly evaluate the situation which emerges

after insertion of χ̄xb. We can then choose p = 2m, the induction (9.4) applies, and we
get a small contribution

〈Bm
xyχ

c
xbχ̄xb〉 ≤ 2ma−p|b − x |−αp〈Bm+p

xb χ̄xb Bm
by〉

≤ 4 · 2ma−2m |b − x |−2αm (12.12)

for |b − x | large. Here we used (9.4) since xb is of Class 2 and by is of Class 1. Note
that the expression (12.12) is summable in b for mα large. Moreover, the factor a−2m

ensures that also the contributions for |b − x | = O(1) are small.

[B]. The second problem is that, in order for (9.4) to apply we must make sure that we
can find inside Rxy two non-overlapping regions Rxb and Rby of which the former is
C-admissible and the latter is of diamond type. Moreover, since we have

∏
χx j only

for j ∈ R̃x
xy we must ensure that Rxb is inside the reduced region R̃x

xy ∪ R̃ y
xy ∪ {x, y} in

Rxy . Since this might have to be repeated many times at smaller and smaller scales, we
must be sure that all regions remain δ-admissible (or, put differently, we do not want δ
to be scale-dependent). We will see in the next lemma that this can be arranged.

Lemma 12. For a diamond Rxy consider the subsets Rx
xy and Ry

xy of (7.4).

[1] Let w be any point in R̃x
xy . Then we can always find a point a ∈ Rxy and regions

Rxw, Rwa, and Ray, such that Rwa and Ray are diamonds inside Rxy, Rxw lies
inside R̃x

xy ∪ {x} and is C-admissible, and the three regions have disjoint interiors
(see Fig. 5).
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x y
a

w
θ

θ1

2

Fig. 5. We need one intermediate point a. The two angles θ1 and θ2 are never smaller than π/8

a1 a2

w2

w1

w1

a1

a2
a3

a4

w2

(a) (b)

x yx y

Fig. 6. a If the pair w1w2 is right in the middle, then we need to add four intermediate points a1, . . . , a4 in
order to find a minimal connected path around w1w2 paved with disjoint diamonds. b Even if the pair w1w2
is located on the boundary of R̃x

xy , the region Rw1w2 still lies inside Rxy

[2] Let w be any point in R̃x
xy such that |w − x | > β1/4 (xw not of Class 3). Let

w1w2 be a pair in R̃x
xy ∪ R̃ y

xy ∪ {x, y} such that |w1 − w| ≤ |w − x |1/2 and

|w− x |1/2 ≤ |w1−w2| < |w− x |/5 (see (12.18)). Let Rw1w2 be the corresponding
diamond region. Then we can always find 4 points ai ∈ Rxy (i = 1, . . . , 4), such
that all of the regions Rxa1 , Ra j a j+1 ( j = 1, . . . , 3), and Ra4 y , are diamonds with
disjoint interiors and do not overlap with Rw1w2 (see Fig. 6). The same can be done
for x ∈ Ry

xy.

Proof. The most dangerous situations are shown in Figs. 5 and 6. It is a simple geo-
metrical argument to see that the region Rxw in Fig. 5 is C-admissible, as the angles
θ1 and θ2 are never smaller than π/8, see (12.1). In the cases shown in Figs. 6a and
6b one has to check that the diamonds do not transgress Rxy . This never happens since
|w1 − x | ≤ |x − y|/√2 and |w1 − w2| ≤ |w1 − x |/5. ��
Proof of Lemma 11. We split the sum over bad points b in (12.7) into several groups of
terms.

Case 1. The bad point b is located close to x , i.e., |b − x | ≤ β1/4. Then we can bound
Bm

xy by (5.14) and χc
xb by (12.11), which gives
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Bm
xyχ

c
xb ≤ 2ma−p|b − x |−αp Bm+p

xb Bm
by . (12.13)

To apply the Induction Hypothesis we need to select inside the diamond Rxy two regions
Rxb and Rby . The first one, Rxb , need only be C-admissible (since xb is of Class 3, see
Sect. 9), so it may be a deformed diamond (Fig. 3b). On the other hand, Rby has to be
diamond-shaped, since |b − y| > β1/4 (Class 1). To make the requirement of diamond
shape conform with our constrained geometry, we must add an intermediate point a as
in Fig. 5 with w = b, and use

Bm
by ≤ 2m Bm

ba Bm
ay . (12.14)

We have seen in Lemma 12 that we can always find such a point a, so the induction
(9.4) does apply. Note that since |b − x | < β1/4 there will be no additional induction
on Rxb. Therefore there is no risk that the region might get more and more deformed by
the induction steps and δ-admissibility might finally be lost. Thus we have

Bm
xyχ

c
xb ≤ 22ma−p|b − x |−αp Bm+p

xb Bm
ba Bm

ay . (12.15)

The situation for b near y is analogous. Summing the contributions from b near x or y
we obtain

∑

z=x,y

∑

|b−z|≤β1/4

〈
Bm

xy χ
c
zb

∏

j : | j−z|<|b−z|
χz j

〉

≤
∑

z=x,y

∑

|b−z|≤β1/4

4ma−2m |b − x |−2αm 22(1 + ρ)

≤ 23(1 + ρ)
4m

a2m
K1

β1/4∑

|b−x |=1

|b − x |2−2αm ≤ (4/a2)m K ′1 ≤
ρ

10
, (12.16)

where in the second line we used (9.4) and p = 2m. We can accommodate m + p =
3m > m without any protection factor χ̄ since bx is Class 3. In the third line, K1|b− x |2
is the entropy factor for the 3D sum over bad points at distance |b − x |, the factor K ′1
is a constant of order unity, and we used that 4/a2 < 1 and m > 4d/α is large. We
bounded the expression by ρ/10 for convenience; since both a and m are large, the factor
(4/a2)m K ′1 is in fact very small.

Case 2. The first bad point b is far from x (i.e., |b− x | > β1/4) and also far from y. Let
us consider the case b ∈ R̃x

xy for definiteness. (The other case, b ∈ R̃ y
xy , is treated in the

same way.) Again, we have to estimate
〈

Bm
xy χ

c
xb

∏

j : | j−x |<|b−x |
χx j

〉
. (12.17)

As was observed above, if we succeeded in promoting the last product in the average to
a complete factor χ̄xb, then we could apply the Induction Hypothesis as in (12.12). In
order to satisfy the hypothesis of Lemma 5, Eq. (7.6), we should have a constraint χ jb

for all | j − b| ≤ |b − x |/√2. Actually, from the remark after the proof of that lemma
we only require χ jb for | j − b| < |b − x |/5 since we know that all tx − t j fluctuations
are good up to | j − x | ≈ |b − x |.
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Guided by the idea of partition of unity (cf. (12.4)–(12.5)), we will first check whether
there is some large fluctuation χc > 0 at large scale near b. If no such event occurs, we
proceed to the step of checking fluctuations at intermediate distance scales. Then either
all intermediate distance fluctuations are good too (and we have the desired factor χ̄),
or there must be some bad event at intermediate scale. In this last case we will see that
many bad events must happen. We will now make this more precise.

Case 2a. The nearest bad point b is far from x (and y), |b−x | > β1/4, and there is a large
scale bad event near b. This means that B jk ≥ a | j − k|α for some pair j, k ∈ R̃x

xy ∪ R̃ y
xy

such that

| j − b| ≤ |b − x |1/2 and |b − x |1/2 ≤ | j − k| ≤ |b − x |/5. (12.18)

Now, using (5.14) and (12.11),

Bm
xyχ

c
jk ≤ 24m Bm

xa1

3∏

i=1

Bm
ai ai+1

Bm
a4 y Bm

jk | j − k|−αma−m . (12.19)

To apply the Induction Hypothesis the corresponding regions must all be diamonds
(all pairs are Class 1). By the assumptions made on the pair jk, Lemma 12 guarantees
that we can choose the four intermediate points ai ∈ Rxy (i = 1, . . . , 4) so that all of
the regions Rxa1 , Ra j a j+1 ( j = 1, . . . , 3), and Ra4 y , are diamonds with disjoint interiors
and do not overlap with R jk (see Fig. 6). Since the regions are non-overlapping and
� > | j − k| ≥ |b − x |1/2, our induction hypothesis yields

〈
Bm

xyχ
c
jk

〉
≤ 24m26|b − x |−αm/2a−m .

For large m the value of the sum over b is small.
To estimate the entropy factor, note that there are less than |b − x |d+d/2 pairs jk

satisfying (12.18). Altogether then, the present partial sum of contributions from r ≡
|b − x | ≥ β1/4 is bounded by

(4/a)m K2

∑

r>β1/4

r (d−1)+d+d/2−αm/2 = O
(
β−1/4

)
<
ρ

10
.

Note that there is nothing special or optimal about the exponent 1/4 of 1/β – it is just
convenient.

Case 2b. We now suppose that |b − x | ≥ β1/4 and there is no large deviation near b,
i.e., B jk ≤ a | j−k|α holds for all j, k subject to (12.18). This implies that at long scales
| j − k| ≥ |b − x |1/2 we have χ jk = 1. It remains to check whether χ jk holds also at
shorter scales | j − k| ≤ |b − x |1/2.

First we consider the case of there being a point g (g stands for good as in Def. 5
of Sect. 11) in Rxy with |g − b| ≤ |b − x |1/2 such that χgh = 1 holds for all h with
|g − h| ≤ |b − x |1/2. We then have in particular that χgb = 1, and so by Def. 3,

Bgb ≤ a |b − g|α ≤ a (|b − x |1/2)α = a |b − x |α/2.
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This inequality combined with the constraint χc
xb = 1 and (5.14) yields

2Bxg ≥ Bxb

Bgb
≥ a |b − x |α

a |b − x |α/2 = |b − x |α/2.

Thus we have

Bm
xy χ

c
xb χ̄xg ≤ 2m(Bm

xgχ̄xg)B
m
gy χ

c
xb ≤ 23m(B3m

xg χ̄xg)B
m
gy |b − x |−αm . (12.20)

Now we have to be somewhat careful about the choice of the regions Rxg and Rgy , as
they may not have the canonical diamond shape. For Rxg this is not a problem, because
of the presence of χ̄xg (xg is of Class 2). All we need is that Rxg be C-admissible.
On the other hand, Rgy is (as in Case 1) slightly more delicate. To be sure that we
deal with diamond-shaped regions, we add an intermediate point a as in Fig. 5 and use
Bm

gy ≤ 2m Bm
ga Bm

ay . We have seen in Lemma 12 that it is always possible to find such a
point a.

The regions Rga and Ray are of diamond type, so induction applies. Note that Rxg
comes with a χ̄xg factor (xg is of Class 2) so no additional induction is required for it.
Therefore, as in Case 1, there is no risk that the region might get more and more deformed
by the induction steps. It should be emphasized, however, that χ̄xg is not exactly the same
as in (8.1), but rather is given by

χ̄xg =
∏

R̃x
xy� j : | j−x |<|b−x |

χx j

∏

R̃x
xy� j : | j−g|≤|b−x |/5

χg j .

Since |b−g| ≤ |b−x |1/2 and |b−x | > β1/4 we have |g−x | � |b−x | up to a correction
factor of order O(|b − x |−1/2) ≤ O(β−1/8)  1. Therefore χ̄xg is equivalent to the
following constraints:

∀ j ∈ Rxg, | j − x | ≤ |g − x | f1 : Bx j ≤ a | j − x |α,
and ∀ j ∈ Rxg, | j − g| ≤ |g − x | f2 : Bgj ≤ a | j − g|α,

with f2 = 1/5 and f1 = 1− O(β−1/8). From Remark 7.3 we know that Lemma 5 and
hence Lemma 6 still hold, so we can apply the induction and

〈
Bm

xyχ
c
xbχ̄xg

〉
≤ 23m(1 + ρ) 22 |b − x |−αm .

There are O(|b − x |d/2) choices for g, so the sum over these contributions is bounded
by

23m K3

∑

r>β1/4

rd−1+d/2−αm = O(β−1/4) <
ρ

10
. (12.21)
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Case 2c. The last case to consider is the situation where no such point g exists. In that
case we can always find a cube Rn ⊂ R̃x

xy ∪ R̃ y
xy which contains the point b and has side

4n = |b− x |1/2 such that Rn is at least at distance β1/4 ≤ 4n  � from the boundary of
Rxy and contains no n-good point (see Def. 5 in Sect. 11). Then by (11.4) and (12.11)
with p = m, we have

χc
Rn
≤
∑

T∈Tn

∑

{ jvkv}v∈LT

∏

v∈LT

χc
jvkv ≤

∑

T∈Tn

∑

{ jvkv}v∈LT

∏

v∈LT

Bm
jvkv

am | jv − kv|αm
,

where according to (11.3) the sum over configurations of pairs ( jv, kv) ∈ Rv × � is
constrained by 4nv−1 < | jv − kv| ≤ 4nv , with nv the scale of the leaf v. Since all cubes
Rv are inside the small region Rn and all pairs jv, kv satisfy the conditions of Lemma 12
for the pair w1w2, we can proceed as in Case 2b and select 4 intermediate points a j ,
j = 1, . . . , 4 such that the corresponding regions are diamonds and do not overlap with
any R jvkv (see Fig. 6). Then by (5.14) we have

Bm
xyχ

c
Rn
≤ 24m Bm

xa1
· · · Bm

a4 y

∑

T∈Tn

∑

{ jvkv}v∈LT

∏

v∈LT

Bm
jvkv

am | jv − kv|αm
, (12.22)

and we can apply the Induction Hypothesis. By Proposition 1 in Sect. 11 we have

〈
Bm

xyχ
c
Rn

〉
≤ 24m2−nαm, n ≈ ln |b − x | ≥ ln(β1/4). (12.23)

Therefore we have enough decay to control the entropy factors:

24m K4

∑

r>β1/4

|b − x |−αm < O(β−1/4) <
ρ

10
.

This concludes the proof of (12.8). From Eqs. (12.15) and (12.19)–(12.22), we see that
R(x, y) can be written as a sum over products of such Bx ′y′ with |x ′ − y′| ≤ �− 1 that
the corresponding regions Rx ′y′ are disjoint. This concludes the proof of Lemma 11 and
the Induction Hypothesis. ��

13. Proof of Theorem 2

Now that we have estimated 〈Bm
xy〉 for all x, y we need to estimate 〈coshp(tx )〉 for mod-

erate values of p ≤ 10. If we suppose that the field t is pinned at some point j0, so that
t j0 = 0, then Theorem 2 follows directly from Theorem 1:

〈coshp tx 〉 = 〈coshp(tx − t j0)〉 ≤ 2,

for any x in the lattice (since Theorem 1 does not require bounds on ε). When the field is
not pinned, we need ε > 0 and some conditions on the volume. The rest of this section
is devoted to this case. As in the proof of Theorem 1 we will first prove bounds on
conditional expectations.
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Definition 8. A point x ∈ � is called ‘good at all scales’ if

∀ j ∈ �\{x} : Bx j ≤ a | j − x |α

(see also Def. 5 in Sect. 11). The corresponding characteristic function is

χ̄x :=
∏

j∈�\{x}
χx j , (13.1)

where the factors χx j are those of Def. 3 (Sect. 8).

Lemma 13. Let x be good at all scales, and let

Bx = cosh tx + 1
2 etx s2

x . (13.2)

If β � 1 and ε ≥ 8pa L−d+α , then for any 0 < p ≤ O(β) we have

〈B p
x χ̄x 〉 ≤ 2. (13.3)

Proof. The proof uses a combination of ideas already present in the proofs of Lemma 5
(Sect. 7) and Lemma 6 (Sect. 8). By supersymmetry (Proposition 2, Appendix C) we
have

1 =
〈

z p
x

∏

j∈�\{x}
χ S

x j

〉
, (13.4)

where zx is defined in (2.11) and χ S
x j in (8.3). Following exactly the same steps as in the

proof of Lemma 6, we obtain the inequality

1 ≥ 〈B p
x χ̄x (1− p Gx )

〉
, Gx = etx

Bx
[δx ; Dβ,ε(t)

−1δx ], (13.5)

if p Gx < 1. We must now bound the Green’s function Gx using the constraint χ̄x

(as we did in Lemma 5). For this purpose define D̃ = e−tx Bx Dβ,ε(t) by

[v ; D̃v] = etx Bxβ
∑

(i j)

eti +t j−2tx (vi − v j )
2 + εBx

∑

k

etk−tx v2
k ,

and note that Bx j ≤ a | j − x |α implies the bound

et j−tx ≥ (2a | j − x |α)−1.

We then follow the proof of Lemma 5 and introduce a telescopic sum

δx = (δx − I1) + (I1 − I2) + · · · + (IN−1 − IN ) + IN =
N∑

n=0

ρn, (13.6)

where In is the (normalized) indicator function of a cube of center x and side 2n , and
ρn = In− In+1. There is no need to introduce Ĩ as we did in the proof Lemma 5, as we are
now working not on Rxy but on the whole volume. The sum terminates on reaching the
system size 2N . Note that for n < N we have

∑
j ρn( j) = 0 and ‖ρn‖2

2 ≤ 2−nd = 2−3n .

The function ρn for n = N is constant: ρN ( j) = IN ( j) = |�|−1 for all j ∈ �.
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Now, by the Cauchy-Schwarz inequality,

[δx ; D̃−1δx ] ≤
(

N∑

n=0

[ρn ; D̃−1ρn]1/2
)2

. (13.7)

For n < N we use the bound [ρn ; D̃−1ρn] ≤ ‖(D̃−1)ρn‖ ‖ρn‖2
2, where ‖(D̃−1)ρn‖ ≤

22n+2nαc1. Then for the sum of terms with n < N we have

N−1∑

n=0

[ρn ; D̃−1ρn]1/2 ≤ c1√
β

N−1∑

n=0

√
2
−n(d−2−2α)

<
γ1√
β

(13.8)

uniformly in N since d = 3 and 2α  1. For n = N , on the other hand, we no
longer have orthogonality to the constant functions (‘zero mode’) and therefore must
take recourse to the ε-term in D̃:

[ρN ; D̃−1ρN ] ≤
(
ε|�|min

j∈� et j−tx

)−1

≤ 2a
Lα

εLd
≤ 1

4p
. (13.9)

Hence Gx ≤ (γ1/
√
β + 1/

√
4p )2 < 1/(2p) for β � 1. So,

1
2 〈B p

x χ̄x 〉 ≤ 〈B p
x χ̄x (1− p Gx )〉 ≤ 1 (13.10)

by (13.5), and the lemma is proved. ��
With this lemma we can finally complete the proof of Theorem 2, i.e. the bound on

the unconditional expectation of coshp tx .

Proof of Theorem 2. We recall from Def. 5 (Sect. 11) that a point x is said to be n-good
if Bx j ≤ a | j − x |α for all j ∈ � subject to 1 ≤ | j − x | ≤ 4n . A point x is good at all
scales if Bx j ≤ a | j − x |α for all j ∈ �\{x}; we then say that x is N -good.

We proceed as in Lemma 11 (Sect. 12):

〈coshp tx 〉 = 〈χ̄x coshp tx 〉 + 〈χ̄c
x coshp tx 〉, (13.11)

where χ̄x ensures that the point x is N -good. Then by Lemma 13 we have

〈χ̄x coshp tx 〉 ≤ 2. (13.12)

It remains to estimate the second term, 〈χ̄c
x coshp tx 〉. We prove in Lemma 14 below

that this term is bounded by a constant. Once this has been accomplished, the proof of
Theorem 2 will be finished. ��
Lemma 14. Let χ̄c

x = 1 − χ̄x , with χ̄x defined by (13.1). Let β � 1 and ε ≥ 8 · 4 ·
10 a Lα−d . Then for any 0 ≤ p ≤ 10 we have

〈χ̄c
x coshp tx 〉 ≤ 1/2. (13.13)
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Proof. While χ̄c
x means that x is not N -good, it is still possible for other points in � to

be N -good. If g �= x is the nearest such point (as seen from x), then none of the points
inside the ball K x|g−x | of radius |g − x | and center x is N -good. Denoting the indicator
function for the latter event by χc

K x|g−x |
we have the identity

χ̄c
x =

∑

��g �=x

χ̄g χ
c
K x|g−x |

+
∏

j∈�
χ̄c

j , (13.14)

where the last term accounts for the possibility that there is no N -good point in� at all.
Thus we obtain the decomposition

〈χ̄c
x coshp tx 〉 =

∑

g �=x

〈
χ̄g χ

c
K x|g−x |

coshp tx
〉

+

〈
∏

j

χ̄c
j coshp tx

〉
. (13.15)

We will prove that both of these two terms are bounded by 1/4.

1. We consider the first sum. Using cosh tx ≤ 2 cosh(tx − tg) cosh tg and applying the
Cauchy-Schwarz inequality twice, we obtain
〈
χc

K x|g−x |
χ̄g coshp tx

〉
≤
〈
χc

K x|g−x |
χ̄g

〉1/2 〈
χ̄g cosh2p tx

〉1/2

≤
〈
χc

K x|g−x |
χ̄g

〉1/2
2p
〈
χ̄g cosh2p(tx − tg) cosh2p tg

〉1/2

≤ 2p
〈
χc

K x|g−x |
χ̄g

〉1/2 〈
χ̄g cosh4p tg

〉1/4 〈
cosh4p(tx − tg)

〉1/4

≤ 2p cp

〈
χc

K x|g−x |
χ̄g

〉1/2
,

where in the last step we used Lemma 13 and Theorem 1, and we introduced c0 = 1
and cp = 21/2 for p ≥ 1. It remains to bound

2pcp

∑

g

〈
χc

K x|g−x |
χ̄g

〉1/2 = 2pcp

∑

n≥0

∑

4n≤|g−x |<4n+1

〈
χc

K x|g−x |
χ̄g

〉1/2
. (13.16)

Let Rx
n be the cube centered at x of side 4n . Now fixing a point g with 4n ≤ |g−x | < 4n+1

we have Rx
n ⊆ K x|g−x |, and we distinguish between two cases:

1a. The interior of K x|g−x | is void not only of N -good points but also of n-good points.
Let χc

n denote the corresponding indicator function. Then for n ≥ 1, using Proposition 1
we have

〈
χc

K x|g−x |
χ̄g χ

c
n

〉
≤
〈
χc

Rx
n

〉
≤ 2−(n+1)αm, (13.17)

where χc
Rx

n
is given in Def. 6, Sect. 11. For n = 0 the cube Rx

0 contains only the point x ,
so

〈
χc

Rx
0

〉
≤

∑

|z−x |=1

〈χxz〉 ≤
∑

|z−x |=1

〈
Bm

xz

〉

am
≤ 2

2d

am
< 2−αm .
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1b. There is at least one n-good point y inside K x|g−x |. Let χn(y) be the corresponding
indicator function. Because the point y cannot be N -good, there must be a first scale
q > n so that y is q-bad. Thus there exists a first point b at distance |b − y| > 4n with
Byb > a |b − y|α . It follows that

∑

y∈K x|g−x |

〈
χ̄gχ

c
K x|g−x |

χn(y)
〉
≤

∑

y∈K x|g−x |

∑

b: |b−y|>4n

〈Bm
yb〉

am |b − y|αm

≤ 4ndk1

am

∑

r>4n

2 rd−1k2

rαm
≤ 2−nαma−m ≤ 2−(n+1)αm,

where the factor 4ndk1 comes from the sum over y and rd−1k2 comes from the sum over b.
Inserting these results into (13.16) we obtain

2pcp

∑

n≥0

∑

4n≤|g−x |≤4n+1

〈
χc

K x|g−x |
χ̄g

〉1/2 ≤ 2pcp

∑

n≥0

4(n+1)dk3

(
2 · 2−(n+1)αm

)1/2
,

where 4(n+1)dk3 comes from the sum over g. This will be no greater than 1/4 provided
that αm is large enough.

2. To complete the proof, we have to estimate the last term 〈∏ j χ̄
c
j coshp tx 〉 in (13.15).

By Proposition 1 the probability for no N -good point to be found in a cube � of side
L = 4N is bounded by 2−Nαm = L−αm/2. Hence

〈
∏

j

χ̄c
j coshp tx

〉
≤
〈
cosh2p tx

〉1/2
〈
∏

j

χ̄c
j

〉1/2

≤
〈
cosh2p tx

〉1/2
L−αm/4.

To get a bound on the expected value of cosh2p tx we once again use supersymmetry
(Proposition 2), as follows:

eγ ε = 〈eγ εzx 〉 = 〈eγ εBx (1− γ εG ′x )〉,
where we choose 0 < γ < 1/2, and G ′x = etx [δx ; Dβ,ε(t)−1δx ]. Since the operator
Dβ,ε(t)− ε etx δx [δx ; ·] is non-negative, by Lemma 1 we have εG ′x ≤ 1, so

〈eγ ε(Bx−1)〉 ≤ (1− γ )−1.

Also, cosh2p tx ≤ (2p)! (γ ε)−2p eγ εBx by an elementary computation, and hence

〈cosh2p tx 〉 ≤ (2p)! (γ ε)−2p〈eγ εBx 〉 ≤ O(ε−2p).

We thus finally obtain
〈
∏

j

χ̄c
j coshp tx

〉
≤ 〈 cosh2p tx 〉1/2 L−αm/4 ≤ O(ε−p)L−αm/4 < 1/4, (13.18)

since αm is large and ε ≥ Lα−d . This concludes the proof of Lemma 14. ��
Remark. In the proof of Theorem 2 the ε term (zero mode) appears only in two places:
(13.9) of Lemma 13 (the last term in the telescopic sum) and (13.18) (when no N good
point is present). The inequality (13.9) is the reason why we cannot take ε = O(L−d)

but must take ε = O(Lα−d).
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14. Proof of Theorem 3

Finally we can prove the bound on the Green’s function Cxy of (1.9). Let f be such that
f ( j) ≥ 0 for all j ∈ �. We need to estimate

[ f ;C f ] =
〈
[et f ; Dβ,ε(t)

−1et f ]
〉
= 〈[W ;Gt W ]〉 , (14.1)

where Dβ,ε(t)−1 = Gt was defined in (1.1), and W ( j) = et j f ( j).

14.1. Upper bound. Let L0 = −β	 + ε and G0 = L−1
0 (as defined in the statement of

the theorem). Now

[W ;Gt W ] = [L0G0W ;Gt W ] = β [∇(G0W ); ∇(Gt W )] + ε [G0W ;Gt W ]
= β

∑

( j j ′)
∇ j j ′(G0W )∇ j j ′(Gt W ) + ε

∑

j

(G0W )( j)(Gt W )( j)

= β
∑

( j j ′)

∇ j j ′(G0W )

e(t j +t j ′ )/2
∇ j j ′(Gt W )

e−(t j +t j ′ )/2
+ ε
∑

j

(
(G0W )( j)

e+t j /2

)(
(Gt W )( j)

e−t j /2

)
.

Since |a · b + c · d| ≤ (a · a + c · c)1/2(b · b + d · d)1/2 we have

[W ;Gt W ] ≤
⎛

⎝β
∑

( j j ′)

|∇ j j ′(G0W )|2
et j +t j ′ + ε

∑

j

|(G0W )( j)|2
et j

⎞

⎠
1/2

[W ;Gt W ]1/2.

Therefore3

[W ;Gt W ] ≤ β
∑

( j j ′)

|∇ j j ′(G0W )|2
et j +t j ′ + ε

∑

j

|(G0W )( j)|2
et j

. (14.2)

Now

|∇ j j ′(G0W )| ≤
∑

k

|(G0( j, k)− G0( j ′, k))|W (k) ≤ const
∑

k

Hjk W (k), (14.3)

where we defined Hjk = β−1(| j − k|2 + 1)−1e−ε̃| j−k|, ε̃ = (ε/2β)1/2, and we used

|(G0( j, k)− G0( j ′, k))| ≤ const Hjk .

By inserting (14.3) into (14.2) we get

[ f ;C f ] ≤ const β
∑

( j, j ′),k,l
H jk Hjl f (k) f (l)

〈
e(tk +tl−t j−t j ′ )

〉

+ ε
∑

j,k,l

G0( j, k)G0( j, l) f (k) f (l)
〈
etk +tl−t j

〉
. (14.4)

3 We thank S.R.S. Varadhan for explaining the inequality (14.2) to us.
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By Theorems 1 and 2 the expectation over the field t is uniformly bounded. Now we can
sum over j:

∑

j

H jk Hjl ≤ const G̃0(k, l),
∑

j

G0( j, k)G0( j, l) = G2
0(k, l), (14.5)

where G̃0 = (−β	 + ε/2)−1. Note that G0 ≤ G̃0. We finally obtain

[ f ;C f ] ≤ const [ f ; G̃0 f ] + ε[ f ;G2
0 f ] ≤ 2 const [ f ; G̃0 f ]. (14.6)

This completes our proof of the upper bound. ��

14.2. Lower bound. Let χ̄x be the characteristic function ensuring that x ∈ � is good
at all scales (see (13.1)). Recall that if χ̄x > 0 then

et j−tx ≥ (2a(1 + | j − x |α))−1 (14.7)

for all j ∈ �. We have the inequality 1 = χ̄x + χ̄c
x ≥ χ̄x . Inserting it into (14.1) we

obtain

〈[W ;Gt W ]〉 ≥ 〈χ̄x [W ;Gt W ]〉 =
∑

jk

〈χ̄x W ( j)W (k)Gt ( j, k)〉 (14.8)

≥ 1

4a2

∑

jk

f̃ ( j) f̃ (k)
〈
χ̄x D̄−1

t ( j, k)
〉
= 1

4a2

〈
χ̄x [ f̃ ; D̄−1

t f̃ ]
〉
,

where f̃ ( j) = (1 + | j− x |α)−1 f ( j) and D̄−1
t = e2tx Gt = (e−2tx Dβ,ε(t))−1. In the first

line we used the fact that Gt is positive as a quadratic form for each configuration of t .
In the second line we used the fact that this is a sum of positive terms since W ( j) ≥ 0
and Gt is pointwise positive. Furthermore, we applied (14.7) to estimate W ( j). Now,

〈
χ̄x [ f̃ ; D̄−1

t f̃ ]
〉
= 〈χ̄x 〉E

(
[ f̃ ; D̄−1

t f̃ ]
)
≥ 〈χ̄x 〉 [ f̃ ;E(D̄t )

−1 f̃ ], (14.9)

where

E(·) = 〈χ̄x ·〉
〈χ̄x 〉

is a probability distribution and we used Jensen’s inequality.
In order to complete the proof we need to estimate 〈χ̄x 〉 and

〈
χ̄x D̄t

〉
. From Lemma 14

(in the previous section) with p = 0 we know that

〈χ̄x 〉 = 1− 〈χ̄c
x

〉 ≥ 1/2.

Moreover
〈
χ̄x D̄

〉 ≤ 〈D̄〉 as a quadratic form and for any function u we have

[u; 〈D̄〉 u] = β
∑

( jk)

(u( j)− u(k))2
〈
et j +tk−2tx

〉
+ ε
∑

j

u( j)2
〈
et j−2tx

〉

≤ βc
∑

( jk)

(u( j)− u(k))2 + εc′
∑

j

u( j)2 ≤ c1[u;G0u], (14.10)
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where we applied Theorems 1 and 2, and c1 = sup{c, c′}. Thus
〈
D̄
〉 ≤ c1G0. By applying

these relations we see that E(D̄t ) ≤ 2c1G0 and hence

[ f ;C f ] ≥ 1

4a2c1
[ f̃ ;G0 f̃ ]. (14.11)

This concludes the proof of Theorem 3. ��
Remark. If W did not depend on t we would have the quadratic form estimate

[W ;G0W ] 1

c1
≤ 〈[W ;Gt W ]〉 ≤ c2 [W ;G0W ]

with

c2 = sup
( j j ′),k

(〈
e−t j−t j ′

〉
,
〈
e−tk

〉)
, c1 = sup

( j j ′),k

(〈
et j +t j ′

〉
,
〈
etk
〉)
.

The upper bound follows directly from (14.2), the lower bound from Jensen’s inequality.
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Appendices

A. Minimum of the Effective Action

Let j �→ t j ≡ t̄ ∈ R (for all j ∈ �) be a constant field configuration. Evaluating the
statistical weight function on it we get

e−ε|�|(cosh t̄−1) Det1/2(−β	 + ε e−t̄ ). (A.1)

Let t∗ be the number that maximizes this statistical weight. The condition for the first
derivative to vanish at t∗ is

2 sinh t∗ = −e−t∗G0(x, x) (x ∈ �), (A.2)

where G0 ≡ (−β	 + ε e−t∗)−1 ≥ 0. Equivalently, 1− e2t∗ = G0(x, x), and since G0
is non-negative, it follows that t∗ ≤ 0. We thus infer that

0 ≤ 1− e2t∗ = G0(x, x) ≤ 1. (A.3)

Next, we show that the constant field t∗ maximizes the integrand over the full set of
all field configurations t = {t j }. For this, we recall the definition (1.2) of the effective
action or free energy Fβ,ε in combination with (1.10):

Fβ,ε(t) = β
∑

(i j)

(cosh(ti − t j )− 1) + ε
∑

k

(cosh tk − 1)

− ln Det1/2 (−β	 + βV (t) + ε e−t) .
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Now we introduce A := G1/2
0

(
βV (t) + ε (e−t − e−t∗Id)

)
G1/2

0 and write

Det
(−β	 + βV (t) + ε e−t) = Det(G−1

0 )Det(Id + A).

Using ln Det(Id + A) ≤ Tr A we then obtain

Fβ,ε(t) ≥ − ln Det(G−1/2
0 ) + ε|�| (cosh t∗ − 1)

+β
∑

(i j)

(cosh(ti − t j )− 1)− G0(x, x) 1
2

∑

k

βVkk

+ ε
∑

k

(
cosh tk − cosh t∗ − 1

2 (e
−tk − e−t∗)G0(x, x)

)
.

The second line of the r.h.s. is non-negative by 1
2

∑
j V j j = ∑(i j)(cosh(ti − t j ) − 1)

and G0(x, x) ≤ 1, and so is the third line by the identity G0(x, x) = 1 − e2t∗ and
a trivial computation. This proves that Fβ,ε(t) is bounded from below by Fβ,ε(t∗) =
− ln Det(G−1/2

0 ) + ε|�| (cosh t∗ − 1).

B. Hyperbolic Symmetry

In Sect. 4 we explained that the H2|2 nonlinear sigma model in the limit of vanishing
regularization ε→ 0+ acquires a global symmetry by the Lorentz group SO(1, 2). We
will now exhibit the Ward identities due to this Lorentzian symmetry SO(1, 2). (Con-
sequences due to the supersymmetries of model will be explored in Appendix C.) To
prepare the discussion, the reader is invited to recall the expressions (2.7) for the functions
x, y, ξ, η in horospherical coordinates. We also recall that z = cosh t + et ( 1

2 s2 + ψ̄ψ).
We now seek the first-order differential operator, L1, generating Lorentz boosts in

the zx-plane, i.e.,

L1 z = x, L1 x = z, L1 y = L1 ξ = L1η = 0.

It is easy to verify that the unique operator with these properties is

L1 = ∂t − ψ̄∂ψ̄ − ψ∂ψ − s∂s . (B.1)

Similarly, the generator L2 of Lorentz boosts in the zy-plane and the generator L0 of
Euclidean rotations in the xy-plane, are expressed by

L2 = s
(
∂t − ψ̄∂ψ̄ − ψ∂ψ

)
+ 1

2

(
1 + e−2t − s2 + 2ψ̄ψ

)
∂s,

L0 = s
(
−∂t + ψ̄∂ψ̄ + ψ∂ψ

)
+ 1

2

(
1− e−2t + s2 − 2ψ̄ψ

)
∂s .

Being the generators of the Lie algebra so1,2 of the Lorentz group, the operators L0, L1,

L2 satisfy the commutation relations:

[L0, L1] = −L2, [L0, L2] = L1, [L1, L2] = L0.

In particular, the generator L0 + L2 = [L1, L0 + L2] is the generator of translations of
the coordinate s.
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So far, we have been concerned with the case of a single site. To pass to a lattice �
with many sites, we take the sum

La =
∑

j∈�
La( j) (a = 0, 1, 2)

of differential operators over all sites.
By construction, the so1,2 operators La = ∑ La( j) are symmetries of the Berezin

measure Dμ�. Therefore, they give rise to Ward identities:

0 =
∫

Dμ� La

(
e−Aβ,ε F

)
= 〈La F − F La Aβ,ε

〉
(a = 0, 1, 2), (B.2)

which hold for any observable F as long as these expectations exist. By computing the
symmetry-breaking terms from the formula La Aβ,ε = ε∑ j La( j) z j one obtains these
Ward identities in the more explicit form

〈L1 F〉 = ε
∑

j

〈
(sinh t j − 1

2 et j s2
j − et j ψ̄ jψ j )F

〉
,

〈L2 F〉 = ε
∑

j

〈
et j s j F

〉
, 〈L0 F〉 = 0.

The sum rule (4.6) now follows from the identity for 〈L2 F〉 by taking F = eti si and
performing the Gaussian integrals over the fields ψ , ψ̄ , and s.

Another important consequence results from making the choice F = et j s j . Since
L0 F = − sinh t j + et j ( 1

2 s2
j + ψ̄ jψ j ), it follows from 〈L0 F〉 = 0 that

〈et j 〉 = 〈cosh t j + sinh t j 〉 = 〈cosh t j + et j ( 1
2 s2

j + ψ̄ jψ j )〉 = 〈z j 〉 = 1. (B.3)

The last step, 〈z j 〉 = 1, is by Proposition 2 of Appendix C.

C. SUSY Ward Identities

The action function of our H2|2 model has a global symmetry w.r.t. the Lie superalgebra
g := osp2|2 (for any ε ≥ 0). As a result, there exist supersymmetric Ward identities for
suitable (osp2|2 invariant) observables. Although such identities are standard material
from the theory of localization of supersymmetric integrals [17], we nonetheless give
their derivation for completeness here, as the said identities play a central role in our
analysis. The essence of the argument can already be understood at the very special
example of a lattice � consisting of just a single site. For pedagogical reasons we first
handle this simple situation and then, in a second step, give the generalization to arbitrary
lattices.

The treatment will be most transparent if we do all calculations using the coordinates
x, y, ξ, η described at the beginning of Sect. 2. As stated there, for our purposes we may
view osp2|2 as the space of first-order differential operators D with coefficients that are
linear in the variables x, y, ξ, η and the property

DH = 0
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of annihilating the quadratic polynomial

H = x2 + y2 + 2ξη.

Let Q be the distinguished first-order differential operator defined by

Q = x∂η − y∂ξ + ξ∂x + η∂y . (C.1)

Clearly Q is odd, converting even coordinate generators x, y into odd generators ξ, η
and vice versa. Q is also seen to annihilate H , and thus represents an element of osp2|2.
Notice that Q squares to

Q2 = x∂y − y∂x + ξ∂η − η∂ξ ,
which is a generator from the Lie algebra part o2 ⊕ sp2 of osp2|2.

Now recall from Sect. 2 that our Berezin superintegration form is

Dμ = (2π)−1dxdy ∂ξ ∂η ◦ (1 + H)−1/2.

Lemma 15. The Berezin superintegration form Dμ is Q-invariant, i.e.,
∫

R2
Dμ Q f = 0

for any bounded smooth superfunction f = f (x, y, ξ, η).

Proof. Since Q is a first-order differential operator, we have from Q H = 0 that
Q(1 + H)−1/2 = 0. Therefore, Dμ Q f = Dμ (1 + H)1/2 Q(1 + H)−1/2 f and
∫

R2
Dμ Q f = (2π)−1

∫

R2
dxdy ∂ξ ∂η

(
x∂η − y∂ξ + ξ∂x + η∂y

)
(1 + H)−1/2 f.

The desired result now follows because ∂2
ξ = ∂2

η = 0 and the integral over R
2 of the

total derivatives ∂x (1 + H2)−1/2 f and ∂y(1 + H2)−1/2 f vanishes. ��
An important property of the differential operator Q is that the joint zero locus of its

coefficients is the origin x = y = 0 and ξ = η = 0. Denoting the origin by o we write
f (x = 0, y = 0, ξ = 0, η = 0) ≡ f (o).

Lemma 16. Let f = f (x, y, ξ, η) be a smooth superfunction which satisfies the invari-
ance condition Q f = 0 and decreases sufficiently fast at infinity in order for the integral∫
R2 Dμ f to exist. Then

∫

R2
Dμ f = f (o).

Proof. The idea is to ‘deform’ the integrand f (without changing the integral) by a
factor that localizes the integral at o. We will do this deformation by multiplication with
e−τH for some positive real parameter τ . Thus we are going to show that

∫
Dμ f =

∫
Dμ e−τH f, (C.2)

independent of τ ≥ 0. The desired result will then follow by taking τ → +∞.
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We begin by observing that the localizing function H is Q-exact: it can be written as
H = Qλ with

λ := x η − y ξ

an odd superfunction. Next, using the relation Q H = Q2λ = 0 we do the following
calculation:

e−τH = 1 +
(

e−τ(Qλ) − 1
)
= 1 + Q

(
λ

e−τ(Qλ) − 1

Qλ

)
.

Here the term in parentheses stands for

e−τ(Qλ) − 1

Qλ
:=

∞∑

n=0

(−τ)n+1

(n + 1)! (Qλ)
n .

Inserting this decomposition into the integral we obtain

∫
Dμ e−τH f =

∫
Dμ f +

∫
Dμ f Q

(
λ

e−τ(Qλ) − 1

Qλ

)
.

Since our integrand f is Q-invariant by assumption (Q f = 0), the second integral can
also be written as

∫
Dμ f Q

(
λ

e−τ(Qλ) − 1

Qλ

)
=
∫

Dμ Q

(
f λ

e−τ(Qλ) − 1

Qλ

)
= 0,

which vanishes by Lemma 15. This already proves (C.2).
To complete the proof, we consider the effect of a scale transformation φ∗τ : x �→

x/
√
τ , y �→ y/

√
τ , ξ �→ ξ/

√
τ , η �→ η/

√
τ . Note that φ∗τ H = H/τ and the Berezin

superintegration form dxdy ∂ξ ∂η = Dμ ◦ (1 + H)1/2 is invariant by φ∗τ . The statement
of the lemma now results from taking the limit

∫

R2
Dμ f = lim

τ→∞

∫
Dμ e−τH f = lim

τ→∞

∫
φ∗τ
(

Dμ e−τH f
)

= lim
τ→∞

∫
Dμ (1 + H)1/2(1 + H/τ)−1/2e−Hφ∗τ f = f (o),

where the last step is done by verifying the normalization integral
∫

R2
Dμ (1 + H)1/2e−H = (2π)−1

∫

R2
dxdy ∂ξ ∂η e−x2−y2−2ξη = 1,

and observing that limτ→∞ φ∗τ f is the constant function of value f (o). ��
We finally turn to the setting of an arbitrary lattice�. We have a first-order differential

operator Q j for every site j ∈ � and we now take the symmetry generator Q to be the
sum of all of these:
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Q =
∑

j∈�
Q j =

∑

j∈�

(
x j∂η j − y j∂ξ j + ξ j∂x j + η j∂y j

)
.

By the same argument as before, one sees that Dμ� is Q j -invariant for all j and hence
Q-invariant. There still exists H =∑ j∈�(x2

j +y2
j +2ξ jη j ) andλ =∑ j∈�(x j η j−y j ξ j )

with Qλ = H . Hence we can still localize the integral
∫

Dμ� F for any Q-invariant
function F by deforming with e−τH and sending τ → ∞. Thus we arrive at the fol-
lowing result which, though valid for any choice of coordinate system, will be stated in
terms of the horospherical coordinates t j , s j , ψ̄ j , ψ j used in the body of the paper.

Proposition 2. For any Q-invariant, smooth and integrable function F of the lattice
variables t j , s j , ψ̄ j , ψ j the integral of F localizes at the zero-field configuration t j =
s j = ψ̄ j = ψ j = 0 (for all j ∈ �):

∫

(R2)|�|
Dμ� F = F(o).

In particular, for the partition function (4.5) we have

Z(β, ε) =
∫

(R2)|�|
Dμ� e−Aβ,ε = 1.
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