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Abstract. A necessary and sufficient condition for quasi-equivalence of quasi-free
factor states over the Weyl algebra is proved. The essential part of this paper is closely
related to the work of Powers and Stgrmer 6n the Clifford algebra.

1. Introduction

In this paper we study the quasi-equivalence of quasi-free states of
the canonical commutation relations. It is well known that all irreducible
representations of these relations for finite systems are unitarily equivalent
[1,2] and that this theorem fails in the case of an infinite system. The
algebraic approach to this problem was first given by Kastler [2]. We
follow the same method and study the problem of equivalence in terms
of states on the C*-algebra (Weyl algebra) associated with the canonical
commutation relations.

In particular we use the C*-algebra A(H, o), built on a symplectic
space (H, 0), as introduced by Manuceau [3].

Quasi-free states of the canonical commutation relations were
introduced by Robinson [4]. These states were intensively studied by
Manuceau and Verbeure [5] who introduced their C*-algebraic formu-
lation. In this work we study the quasi-equivalence of such quasi-free
states. Qur approach is very closely related to the work of Powers and
Stermer [6] on quasi-equivalence of gauge invariant quasi-free states
of the canonical anticommutation relations. Together with Verbeure
we proved a necessary and sufficient condition for two pure quasi-free
states on the Weyl algebra to be unitarily equivalent [7]. To find a
criterium in the case of more general quasi-free states, we used the idea
of Powers and Stgrmer and reduced the latter problem to the case of
pure states.
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In Section 2 we recall the definition of the C*-algebra 4(H, o) and
quasi-free states on this algebra. In Section 3 we extend every quasi-free
state w, on 4(H, 0) to a pure quasi-free state wy, on the larger algebra
A(H® H, 6 ® — o). The inequality relating the norm differences of two
quasi-free states and their extended pure states obtained by Powers and
Stermer [6] for the Clifford algebra is the main result of Section 4. In the
next section we prove some properties of operators on a symplectic
space, which are used in the last section to prove the main theorem on
quasi-equivalence.

We are indebted to Dr. A. Verbeure for many valuable discussions and especially for
the Lemma’s 3 and 5 below which are crucial in this work. We are also grateful to Prof.
E. Stgrmer for his kind hospitality at the University of Oslo, and for helpful discussions.

2. Quasi-Free States over the Weyl Algebra A(H, 6)

For completeness we recall the definition of the Weyl algebra 4(H, o).
Let (H, o) be a separable symplectic space, i.e. a real vector space H,
equipped with a regular, antisymmetric, real bilinear form. Hence H
is a locally convex topological space equipped with the topology defined
by the semi-norms,
0, W= lo(e, )

and we suppose that H is complete for this topology, we call H g-complete.
Let A(H, o) be the algebra generated by finite linear combinations
of the functionals 6 : w € H— 9, defined by

o, (@)=0 if o
=1 if wp=e¢
with the product law:
9,0,=e w5 .
The mapping 6,,— = J_,, is an involution and

Z aiéwl

i=1

=Y lg with geC
1 i=1

isanormon 4(H, o) such that A(H, ¢) turns out to be a normed *-algebra.
The set of representations n of A(H,o) such that the mapping
AeR—m(d,,) is strongly continuous, determines a unique C*-algebra
norm on A(H, o).
Its closure o/ =A(H, ) is a C*-algebra, which we call the Weyl
algebra. For more details see [3].
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A state on the Weyl algebra is a positive linear functional, normalized
to one.

We consider the set S of linear operators A defined every-where
on H, satisfying

1) s4(p, ©)=—0a(Ayp, @) 1s a real scalar product on H,

ii) A*A=1 with respect to s4.

It follows from condition i) that the adjoint A* of 4 with respect
to s, and the adjoint A" of 4 with respect to o satisfy A" = A4*= — 4.
From condition ii}) we can deduce that A4 is invertible. Clearly A is
injective because 4¥*4 =1 and A is surjective because for any we H
orthogonal to the range %(A) of A and for all ¢ € H we have s,(p, Ap)=0.
From A* =—A and the definition of s, it follows that o(4%y, ¢)=0
for all @ € H and by the regularity of ¢ that — A%y = A* 4y =0. So by
i)y =0and #(A)=H.

On the other hand Schwartz inequality implies

vwa (D € H : ISA(A-IUJ’ (P)IZ é SA(A—lwz A_llp) SA((Pa (P)
and so
o (p, O < 54, ¥) 5,4(9, @)

because
A¥Az1 and s ,=-—0-A.

It follows from this last inequality and the work of Manuceau and
Verbeure [5], that the linear functional on 4(H, o) defined by

w4(6,) =exp[— 5,41, )]

extends to a quasi-free state on A(H, g).

The aim of this work is to study the quasi-equivalence of any two
such quasi-free states w, and wy with 4, Be S. We follow the method
of Powers and Stérmer in their study of quasi-free states on the Clifford
algebra, i.e. we construct with any quasi-free state w, on A(H, o) a pure
quasi-free state wy, on A(HO H,c® — o) and we prove that two states
o, and wy are quasi-equivalent iff the corresponding pure states wg,
and wg, are unitarily equivalent. In a previous paper [7], we found a
necessary and suffivient condition for two pure states to be unitarily
equivalent, yielding a condition in terms of E, and Eg. Finally we
rewrite this criterium in terms of 4 and B.

We start with the construction of the pure state wg,.

3. Construction of the Pure Quasi-Free State g, Associated with o,

The symplectic form ¢ on H induces a new symplectic form, denoted
by 6 @® —a, on H® H defined by

(0@ —0) (W DY, Y2 D@ =0y, wy) — o(Py, @,).

13*
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If o is regular, then so is o@® —o; if H is o-complete then H® H is
(0@ — g)-complete.

Any operator 4 in § is invertible and from 4* 4 = — A% > 1 it follows
that 14 A~ 2 is positive and hermitian (with respect to s,) and has a
unique square root ]/1+ A~ which is also positive and hermitian.
We then define the operator E, on H® H by

E - A A1+ 477
47 A1+ 472 —A '

This operator E , satisfies conditions i) and ii) of Section 2. To prove
i) we evaluate sg, (p; @ @1, P, D @,)

Sp, (W01 D@1, P, D @y) = —0(Ayy, y) — (A, @3)
—a(AV1+ A2, ;) —o(A )1+ A2 0y, p,)

=541, Y2) +54(01, 02) + SA(VI +A7? Y1, @a)+s4(J/1+ A7 ? O1,¥3).

Clearly s, is bilinear and symmetric since s, is a scalar product and
|/1+ A2 is hermitian. Moreover, as —A42>0 and so 1 + A7 *<1 we
find that

5@, 0)Z5,(1+ 472 @, 0)=s,(J/1+ A4 20, )/1+ 4% 9).
It follows that

e DO, pDO) Z 5, )+ 5,1+ A 29, [/1+ 477 ¢)

+ 54/ 1+ A2y, @)+ s4(p, Y1+ A7 p)
=s,(w+ 1+ Ao, p+ |1+ 472 9)

and that sg, is positive because s, is a scalar product. On the other
hand sz, (@@, y®@)=0 impliesy=—/1+ A 2 p=(1+A4"?)yp and
so that A%y = (4> +1) . It follows that y and hence ¢ and p@ ¢ is
Zero.

To prove ii) we just compute EXE, = —E2 and we find —E2=1.

Therefore wg, is not only a quasi-free state on A(HOH,c® —0)
but even a pure quasi-free state [5].

Note that the choice of 0 @ — ¢ as symplectic form on H@ H instead
of ¢ @ o is crucial because if the latter was chosen, it would be impossible
to find a E, such that wy, is pure.

The pure state wy, corresponds with the one of Powers and Stgrmer.
They prove that wp, and g, are uniterily equivalent iff w4 and wjp are
quasi-equivalent. The main difficulty lies in the proof of the inequality

%”CUEA_CUEB”2 Sllo,—wg| = ||COEA_COEB” .
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They use the fact that wy, can be obtained by a “purification map”
@ from the state w, in the case where the underlying Hilbert space is
finite dimensional. The infinite dimensional case is handled by continuity.
We proceed in the same manner and first prove the inequality in the
finite dimensional case.

4. Locally Normal States A(H, o)

It is easy to see that

0,€4(H,0)> 0,0 AHO®H,c® —0)

extends to a homomorfism and that A(H, ) can be imbedded as a
subalgebra in A(H® H, 0 @ — ). Moreover by the fact that E, restricted
to H® {0} coincides with A it follows that the restriction of wg, to the
subalgebra A(H, o) is equal to w,. Therefore

w4 — wp)l = {wp, — 0, -

The main part of this section is now devoted to the fact that wp, can
be obtained from w, by a purification map @ in the sense of [6].

We show this result gradually and we suppose first that H is 2-
dimensional. Let J be an operator in S which is unitary. Suppose that
@ € H is normalised such that s;(¢p, p)=1. With J there corresponds a
Fock representation n; of A(H, o) and the creation and annihilation
operators can be defined as follows

B* =1(B(¢)—iB(J ),
B~ =4(B(¢)+iB(J9)),

where B(y) satisfies 7,(5,) = 2% (see Ref. [5]).

Having defined these operators we can prove the following lemma’s,
the first two of them being trivial and therefore mentioned without
proof. We assume that H is two-dimensional.

o ok n)! — —~k—1

Lemma 1. If 0<y <1 then Y, y—k!n—!——(l—y) .

n=0
Lemma 2. If ze @ is such that w=Rez- ¢ +Imz - Jo then
TCJ(éqj) = g BW) = p22%/2 5iz*B~ eizB+

—zz*/2eizB“L iz¥B~ .

=e e

This is an immediate result of the Baker-Campdell-Hausdorff
formula and the fact that [B~, B*]_ =1.
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Lemma 3. A. Verbeure). Let A€ S, as H is two-dimensional, we can
denote its polar decomposition as A = Ja where a is a positive real number.
There exists a density matrix ¢ 4 in the Fock representation n; of 4(H, o)
in #; such that Vx € A(H, 0)= 4(x) =Tt 6 47;(x).

Proof. The density matrix is defined by (n: 0 — 0)

—1\
oc=2X0,P, where an=%2— a
a+1\a+1

+ n
and P, the orthogonal projection on the vector f, = (l/‘) Q,, Q, the

cyclic vector of ;.
Since A*A =1, we have a=|4] =1 and so 0 <. Moreover

2 1\t
Tro=2%X0,= 1— a-1 =1
a+1 a+1

and ¢ is indeed a density matrix. It remains to show that w,(x)
=Y 0,(f,. 7;(x) f,) and it is sufficient to show this for x=4, with v

arbitrary.
As in Lemma 2 we introduce z € € such that y=Rez- ¢ +Imz- Jo,
then it follows immediately from the definition of w,,J and ¢ that

=exp (——g— zz*).

On the other hand by Lemma 2 and the definition and the orthonorma-
lity of the set { f,} we find

1
—5 s;(ayp, p)

w4(6,)=exp

* \k k !
(for m5(0 )f)—exp( )Z(—l" (Zk!Z) (ann!)r

and so
Tr#{’JO—ATE.I(aw) = z O-n(fm nl(éw) fn)

_ zz* L (2*2f 2 a—1\" (k+n)!
‘;eXp<2) U a+1;<a+1 k! n!

Using Lemma 1 we can evaluate the last sum and we find easily
. 1
e** ”exp(— zz*) :exp(—%zz*)

Tr,047(8,) =@,(5,). QE.D.

so that
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Lemma 4. Let w, be a quasi-free state on A(H, o), H two-dimensional.
The pure state wg , on AALH® H, 6 ® — o) can be obtained by a purification
map ¢ from w, (in the sense of [6]).

Proof. Powers and Stgrmer constructed this purification map from
a normal state o on a finite irreducible matrix algebra M to a pure
state @(w) on the algebra M @ M.

We consider the Fock representation =, of A(H,o) and we set
M =mn,(4(H, 0)). The state w, induces a normal state w(Q)=Tro,Q
on M by Lemma 3. If V is any anti-unitary operator on s#,, we can
extend w to a pure state @(w) on M ® M, defined by (see Ref. [6])

@) (POQ= 3. Vo )/ 0w o PLu) (V1 OV ).
We now define the state @(a)A) on the algebra A(H®H,oc@® —o) by
D(0,4) Oy, 04,) = (@) (m,0,,)@V7,(6-,,) V7).
We proceed by showing that @(w,) = wy . Clearly
@) Bu,00) = T Vo) n (700 i) (VS VA0-1) o)

and as V is anti-unitary and ;6. )= 7,;(5,)*

(@) Giropn) = 3 V00 VO (frs 0580 fu) (fons 15(8) )

so that @(w ) is independent of the choice of V.
We can define the complex numbers z and y so that

y;=Rez-@o+Imz-Jp, w,=Rey-o+Imy-Jo
and by Lemma 2 we find

¢(CUA (51“@(412 Z W /o e"zz*/Zeyy*/Z (f elzB*‘ iz*B~ fm)
* g +
. (fm» P ezyB fn .

Again by a straightforward calculation and application of the definition
of the vectors {f,} and [B~,B"]_ =1 we get

(@) Gpio0) =T /0, )/ 5 e

R G Al (27 M 22 Gl g i
orl s—m! (s—n)! (n—r)! (m—r)!

= |

— e—zz*/Zeyy*/Z Z___ _1 S—F
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1 1 1\
For sake of simplicity we introduce ¢ = a so that ¢, = " (1 — ——) .

c
Then by the use of the formula

s n 1 (1 _ c)r/z (Vm Z)n—r (l/g y)s~n
ZW —)! (s n)! =17 Ve o n—r!  (s—n!
1 (=0 (fe—Tz+4)cyy™
Ve o (s —r)!
and the substitutions t=s—r and x=]/c~1z +1/Ey we get
(xx*)’ (t+n)! 1y 1
=<

it ¢/ ottt

¢(wA) (511)1@'4)2) — e—zz*/Zeyy*/Z Z l)t
t

—_ e—zz*/Zeyy*/Ze—xx*

by Lemma 1.
On the other hand by the definition of E, we find

wEA(‘SwI@W) = eXp(%O'(A@UD ) +30(dy,, )+ oA/ 1+ A 2y, 1/)2)) .
Furthermore we have A =Ja and so
o(A)/1+A 2y, p,)= l/ a—1a(w,p,).

Introducing again the complex numbers z and y we find

|/a*—1

a a
g 0y, @ ,) =CXP (*7 zz* — “2')/)’* - ‘E‘—(J’Z* + zy*))

and with the definitions of ¢ and x it is easy to verify that wg,(0,,,)
=d0(w,) (0,,0,,) QE.D.

We next prove Lemma 3 and 4 in the case that H is of finite dimension
2k using the fact that the considered quasi-free states are product states.

Lemma 5. (A. Verbeure.) Let H be 2k-dimensional and denote by
A=J|A]| the polar decomposition of A€ S. There exists a density matrix
o 4 in the Fock representation n; of A(H, o) in 3, such that

Vxe A(H, 0)=>w4(x)=Try,0,4m,(x).
k
Proof. The operator |A| can be diagonalised as [A|= ) a,P. Since
i=1
J commutes with |A4|, we can find a symplectic basis {g,;, Jp,} with
o(o;, J(Pj) :51‘1‘, a(p;, q’j) =c(J o, Jq)j):O and |A|@;=a;0;, |A|J@;=a,J ¢;.
With every pair (¢;, J@;) we associate the creation operator

Bf =4(B(p) —iB(J9)
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and for every set of k non-negative integers (n) = {n, n, ... n,} we define

so= ({1 (7 o

ko1 1y a;+1
e B2 o

i=1\ G i

and

By a straightforward extension of the results of Lemma 3 one can prove
that o,=) 0(,P;,, is a density matrix and that
™

@4(0,)=Try 0,m,(0,) forevery weH.

Lemma 6. Let w, be a quasi-free state on A(H,o) with H finite-
dimensional. Given an arbitrary Fock representation ny of A(H, o) there
exists a density matrix o 4(K) such that

Vxe A(H, 6)= 0 4(X) = Tr,, 0 4(K) mgl(x).

Proof. This results immediately from the unitary equivalence of the

Fock representations of A(H, o) if H is finite-dimensional [1, 2].
The density matrix ¢ ,(K) is given by

o4(K)= Z G(H)Pgm
(n)

with g, = Ug; fy and Ug; the unitary operator of #;— #. In the
next lemma we prove an estimate for the norm differences ||wg, — wg,|
and (w4 — wgl in the finite dimensional case. Note that this inequality
is precisely the same as the one obtained by Powers and Stermer for
the Clifford algebra.

Lemma 7. If w, and o, are two quasi-free states on A(H, ¢) with H
finite-dimensional, gz, and g, the extended pure states on
AH®H,c@® —0) then

%”COEA - wEBHZ Sy~ Wl .
Proof. We consider an arbitrary Fock representation n; and we
define the normal states w, and w, on M ==y (4(H, 0)) by
0y =Try 064K). w;,=Tr, ou(K).
For the norm difference we find

fw; —w,ll = sup lo(P)—w,(P)|= sup o (mg(x))— o, (mx(x)).
s ein s,
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Since A(H, o) is dense in A(H, o) and ||ng(x)| = ||x| if xe A(H, ) [3]
we get
[y —w,l= sup |w,(x)—wg(x)|=w,—w.
x| =
S
Given an anti-unitary operator V we again construct the states &(w,)
and &(w,) by
() (P®Q)= Z VoV 0w Gms PIom) V Gy QVGimy) -
() Om)
Powers and Stormer [6] proved the inequality %|®(w,)— ®(w,)|?
< |lw; — w,| in the case of matrix algebras, but it is not hard to extend
the result to the case of normal states on irreducible operator algebras [§].
Next we define the states $(w,) and P(wz) on A(HO H, 6@ —0) by

D(w ) (5w1 @tpg) = d(w,) (nK(5w1)® V”K(‘S—W) Vﬂl) .

From the fact that my is a representation of 4(H, ¢) it can be shown
in a straightforward manner that

E=n,@Vrniy 1

is a representation of A(H@H,oc® —o) in M®M and it follows that
(xeA(H®H,o® —0))

[9(2,4) — P(wp)| = sup [D(w ) (x) — Plewg) (x)|

lixll =1

= ”THJIS)I [D(wy) (€(x)) — Plew,) (E(x))]

< sup  [D(wy) (E(x) — Plwr) EX)
el =1

since [|E(x) = [Ix].
The last expression is certainly smaller than | ®(w,) — $(w,)|| so that

IP(w ) — Plwp)]| = || P(wy) — Plw,)] -

It remains to show that ®(w,)=w,, and P(wg) =w;,. From the defi-
nition of ®(w,) we have

D(w ) (6, @p) = Z Voo 1/ O G TCK((Suu) g(m)) (g(m)’ 751((51;;2) g(n))

(n) (m)

and using the unitary equivalence of Fock representations

(0, Cp09)= 2 V0wV Tom (Fos T84 Fim) Fime Ts84) fim)

(n) (m)
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with the notations of Lemma 5. By a straightforward extension of the
results of Lemma 4, it is now possible to show that again

(D(CL)A) (51;)1@\])2) = wEA(éwl@u);) .

This completes the proof.

We now want to extend the result of Lemma 7 to the general case
with H infinite-dimensional. Powers and Stormer use therefore continuity
considerations. Here this is slightly more difficult as the operators in
S may be unbounded. Nevertheless it is possible to prove the following
lemma. From now on H may be infinite dimensional.

Lemma 8. Given two quasi-free states w, and wgz on A(H,o), an
n

element y= Y 4;0, o, in A(HO®H,6®—0) and £¢>0, there exist
i=1

a regular finite subspace HyC H and two quasi-free states w4, and wg,
on A(H,, o), such that

i) ye A(Hy® Hy, 0@ —o0),

i) w,|A(Hy, 0)= w4, wp|4(Hy, 0)=wg,,

i) |, () — 0, 0N <& 10, () = 0y (] <,
where wp, , wg, are to be understood as states on 4(Ho® Hy, 0® —a)

Proof. Let J be an arbitrary unitary element in S (J*J = —J?=1),
define for every non-negative integer m the subspace H,, of H spanned by

{A %y, B *¢p;, JA *p,, JB *p;; with k:0—m,i:1-n}.

This subspace H, is finite for all finite m and is regular since, given
w=+0 in H,, then Jpe H, and a(yp, Jy)=s,(p,p)+=0 so that the re-

striction of ¢ to H,, remains regular.
n

For all m=0, y;, ;€ H, so that y= ) 4,0, ¢, is an element of

i=1
AH,® H,,,c ® —o0).

Let P, be the orthogonal projection on H,,. The operators A,,=P, AP,
and B,, = P, BP,, define quasi-free statesw,, and wy_on A(H,, o). Since
84, (0, @) =s4(w, @) for Yy, p e H,, 54, is a scalar product on H,,.

Moreover, for all y, ¢ e H,:|o(p, )* <s,, (v, v) s4,.(¢, ¢) and re-

placing ¢ by A4,,¢ we get

S, (@, @) S 84, (A0, A) 34,(0, @)

so that A% A4, =1 with respect to s .

So we may conclude that if H, = H,, for any non-negative integer m,
then H, is a finite regular subspace of H and w,, and wy_are quasi-
free states on A(H,, o) such that conditions i) and ii) of the lemma are
fulfilled. If we can prove that rlgrgo wg, (¥)=0wg, ), then the lemma
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will be proved since the problem is symmetric in 4 and B.

n
Now, as y= » 4, ¢, and

i=1
1 1 .
CUEAM(%[ @(pi) =eXp 5 Sa(wi, ;) — 5 Sa(@i, @) = s4([/ 1+ A ™ w5, )
it will be sufficient that for any y;, ¢,(i=1,n)
"111_1}30 S/ 1+ Az vy, 0)=s4(/1+ A" 2w, 0)

and by Schwartz inequality that
Lim () 1+ 4,7 =)/ 1+ A Yy, =0.

To show this we consider the power series of (1 —x)¥= ) ¢;x' con-
i=0
verging for 0 < x <1 (This follows straightforward by usual convergence

criteria), and we define
p

gp(Am)= Z ct(_A;tz)l

i=0

As 0<—4,%<1, g,(4,) converges in norm, and hence strongly to

|/1+ A,,*. Similarly g,(A4) converges strongly to |/1+ A~ 2.

Therefore for any & > 0 there is a p, such that

I/ 1+ 422 = VI+ A il S /T A% = g, (A il
F 1/ 1+ A72 =g, (D) Yills, + (G0 (A) = gpo(An)) wills
<e/2+8/2 + (9o (A) = Gpo(Am) Wil
It is easy to verify that

k—1
AN =A™= Y ATEH(A—A,) A
j=0
and (4—-A,) Ay, =4y, — P, AP, A7 yp,. If m=j+1 then
A9y, e H, and A 7y, e H, so that (A—A,) A"/ 1yp;=0. So if m=k
then (4, — A"y, =0 and if m22py:g,, (A Yi=9,,(A) p; so that
I(/1+ 4,7 = Y1+ A D w <e.

This completes the proof.

Lemma9. Let w, and wy be quasi-free states on A(H, o) with H
infinite dimensional, g, and g, the extended pure states on
A(H®H,oc® —o) then

%“a)EA - 0‘)15‘13”2 é ”wA - COB”
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Proof. Since A(H®H,c® —o0) is dense in A(HOH, 0P —o0), it

follows that for every &> 0 there exists an y of the form y= ) 4,0, o,

i=1

such that

Iyl and g, —0g,l —& <|wg,(y) — 00

By Lemma 8 there exists a subalgebra A(H,, o) on a finite subspace H,
and two quasi-free states w,, and wg, on this subalgebra such that

o, (¥) — wp, W S g, (V) — wg, (V)] +2¢

and w4|4(Hy, 6) = w4, and wgz|A(Hy, 0) = wp,.
So we have by Lemma 7

|(9EAO(J/) - CUEBO(Y)l = lwg,,— wEBOH 2wy, — o,
and 4, — 0, = (@4 — ©5)| Ay, 0)| < o, — wy]. The result is
lwg, — wg,| £2|lw, — wpl* + 3¢ and since this holds for every & we
proved the lemma.

5. Operators on a Symplectic Space

The estimate obtained in the previous lemma is going to be used
in the last section where we prove that two quasi-free factor states w,
and wp are quasi-equivalent iff the corresponding pure states w;, and
wg, are unitarily equivalent. On the other hand that is equivalent to
saying that (E, — Eg)* is of trace class with respect to the scalar product
sg, on H@®H [7]. This yields a necessary and sufficient condition for
the quasi-equivalence of w, and wy in terms of E, and Ej. In this section
we try to rewrite this condition in terms of A and B directly. The result
will be used to prove that if A — B is of finite rank, then wg, and wg,
are unitarily equivalent, a lemma which we need for the proof of the
theorem of the last section. That is precisely the reason why we start
for searching this equivalent conditions already in this section.

We define the operator

R=(E,—Ep)(E4—Ep)=—2-E Eg—EgE = ~2~E,Ep—(E Ep)".

We recall that — E E, was found to be hermitian and positive with
respect to s, because sg ,(—E Egp, @) = — (6@ —0) (Egy, ¢)=55,(p, ¢)
fy,pec HOH.

As —EyE,=(—E,E;)" the same statement is true for —EzE,.
And using the fact x +x~* —~2>0 if x is positive it follows that R is
hermitian and positive with respect to sg,.
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We next introduce the operator U on H® H
1 <1 1)
U= — .
2\t —1
1

.. . . 1 -1
The adjoint of U with respect to 6@ —c is Ut = Aﬁ(

)andit
-1 -1

is easily verified that U2=U**=1.
Define next the operators

Q.=A4+A4)Y1+47%, Qy=B+B)/1+B 2,
P,=A—A)/1+A4°%, P,=B—B)/1+B 2.

It is straightforward to verify that

Q4 0
UTE, U=
Y (0 - PA)
and it follows that the bilinear form
S=5o,Dsp,=—(0®—0)° ((?A _(;)A)

satisfies
S(wa (rD) = _(O-('B _O-) (U+ EA Uw: 90)
=—(6®—0)(E,Uyp, Up)=sg,(Uyp, Up)

and therefore is a scalar product on H® H.

Let {y;} be an orthonormal basis in H@® H with respect to sg,,
then {Uwp;} is an orthonormal basis with respect to s. As R is positive
and hermitian with respect to s, itisof trace classiffthesum ) s (w;, Ry;)

converges. On the other hand by the definition of s and U?=1
g (W, Rp)=s(Up, URU - Ug)

And it follows that URU is positive and hermitian with respect to s.
Moreover Z sg,(w;, Ry = Z s(Uy;, URU Uv;) so that R is of trace
class with respect to sy, if and only if URU is of trace class with respect
to s.

In what follows we denote by 7c(s) and oc(s) resp. the trace class
and Hilbert Schmidt class of operators with respect to the scalar product
s. So we showed already that R e t¢(sg )< URU € tc(s).
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The last operator is found to be
URU=U(E,—Ep) U™ U+(EA—EB) U

(PA—PB 0 )(QA—QB 0 )
0 —Q4+0;/\0 —P,+ Py

and as URU is positive and hermitian with respect to s=sy,®sp,,
the condition is equivalent with:

R, =(P,— Py) (QA—QB)GTC(SQA)

and
R, =(Q4— Qp) (Py— Ppletc(sp,).

We proceed by showing that the last two statements are equivalent.
Indeed

RIZPAQA+PBQB_PAQB_PBQA
:_I—I“PAQB_(PAQB)_I

and as sy, (—P,Qpw, @)= sp,(p, @) it follows that —P,Qp, and hence
R, is positive and hermitian with respect to sp,. Similarly R, = —2
~Q4P;—(Q4Pp)7" is positive and hermitian with respect to sp,. So
R, and R, are of trace class if the sum of its eigenvalues exists. Now, if
p is an eigenvector of say Q 4Py with eigenvalue 4 then

Rypy=(-2—4-4"Ny.

On the other hand then Pyyp will be eigenvector of P,Q, because

1
PAQBPBU)=“PA1P:PBQBPAUJ:7 BY

and
R Ppyp=(—2—A—A"YPy.

So the eigenvalues of R, and R, are the same and
Ry etc(sy )R etc(sp,)

Next we remark that if N is a positive hermitian operator then
(N+N!'-2)erceN-—1leogc.

To see this, if {n;} are the eigenvalues of N, note that for both con-
ditions it is necessary that n,— 1, and that

(n; — 1)2
—

t

m4+nt—-2=
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We finish this discussion by saying that if an operator N is positive
and hermitian with respect to s, , then

Netc(sg )eNetce(sy).

Consider the operator C =1+ |/1+ A~ 2

Clearly 1 £C <2 so that both C and C™! are bounded. As Q,=CA4
and s0 sy, (v, @)=s A(]ﬁ’tp, Wgo) it follows that the metrics induced by
5, and s, are equivalent.

We summarise the results in the following lemma.

Lemma 10. Let A, B€ S, and define the operators on H:

QA=A+AI/1+A_2

Pi=A—A)1+ A2
and the operator on HO H

EA=< A A]/ﬁA—‘Z)

—A)/1+ 42 —A4

and similarily for B.

Then the following statements are equivalent.
i) (Eq—Eg)er c(Sg )
ii) E,—Egeoc(sg,)

iii) (Py— Pp) (Q4— Qp)€ Tc(sg,)s

iv) (Q.—Qp)(Py— Pg) e TC(5p4),
V) (Py— Pp)(Q4— Qp)etc(sy),

vi) (Q41'Qp—1eac(sy),

vii) A7HQp— Q) e ac(sy).

Proof. We already investigated the equivalences
(i) < i) < iv)< V)
We also showed that
(Es—Epf’=—2—E,Ez—(E,Ep) " €tc(sg,)
<—1—EEy=E/(E,~ Epeoc(sg,)

and as E, is unitary with respect to sz, this is equivalent with
E,— Epetc(sg,) proving (i) < (ii).
To prove the equivalence of vi) with v) remark that

(PA—PB)(QA—QB):_2—PAQB_(PAQB)ﬁ1
and that
1+PAQB:1"Q21QB-
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To prove the equivalence of vi) and vii) remark that Q,=C A4 and
s0 A 1(Qp— 0,)=C(05' Q5 —1) and that both C and C ™! are bounded.

We next prove that if 4 — B is of finite rank, then condition vii) of
the previous lemma is fulfilled so that the following is true.

Lemma 11. If A, Be S and A — B is of finite rank, then
(E4—Eg)ietc(sy,).
Proof. 1f we denote by X=4—B, Y=A)/1+A *~B|/1+B7*

then Y=A(/1+A2—}/1+B2 +X\/1+Tsothat
THOs—Q)=)1+A472 —]/1+B 24 A X +X Y1+ B

and as X is finite rank, condition vii) will be fulfilled if

(/14 A 2= /T B Yeoc(s,).

Define P=1+A4"2and Q=1+B"2

It remains to show that ]/F— l/é eac(sy).

Remark that A> —B*>=A(A—B)+(A—B)B and that A" 2—B?

=B"%(A4*~B% A~ ? so that P—Q is finite rank. Furthermore ]/Fis
positive and hermitian with respect to s, and so is ]/é with respect to
sg. By su(4” 1B]f1p ®) —sB(l/vlp, @) it follows that A4~ 1B]/@ is
positive and hermitian with respect to s,.

By the same arguments as used in Lemma 4.1 of [6] it is true that
/P ~1/Q is compact and as A"'B}/Q~]/Q=—-A"1X}/Q is finite
rank ]/% A7'B)/Q is compact. If we define S=]/P—A"'B|/Q,
T=}/P+A'B)Q, §= f /0, T' = V_+f then S~ and
T — T are finite rank and 3(ST' +T'S)=P—Q.So +(S'T'+ T'S’) and
hence $(ST + TS) is trace class and by the same arguments of Lemma 4.1
of [6], S is Hilbert Schmidt and 8’ is Hilbert Schmidt. This completes
the proof.

6. Quasi-Equivalence of Quasi-Free States

In this section we prove the main theorem on quasi-equivalence.
Consider the set {H,},.; of all finite regular subspaces of H.
Then ¢ ={o, =A(H, 6)},.; is a net of Weyl-subalgebra’s of
o/ = A(H, o) satisfying

i) to all pairs <7, /€ ¢ there is a o/, € ¢ with o, U CA,
ii) the unit of &/ = 4(H, o) is contained in all o/, € #,
iii) the union (J <, is norm dense in ¢/,

ael

iv) every o/, € # is type L

14  Commun. math. Phys., Vol. 21
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The last statement follows from the theorem of Von Neumann [1]
saying that every representation of the Weyl algebra built on a finite
space is a multiple of the Schrodinger representation which is irreducible.
Hence every representation is type I. It then follows from a theorem of
Haag, Kastler and Kadison [9, prop 13] that two quasi-free factor
states w4 and wy are quasi-equivalent iff to each ¢> 0 there is a &/, € ¢
such that |{(w, — wg)| ;| <& where o7 is the commutant of &7, in /.
Note that quasi-free states are locally normal.

We now show that o/°=A(H,, o) =A(Hy, o) where Hy is the
orthogonal completement of H, in H with respect to a.

Lemma 12. If H, is a regular subspace and finite, then

4 (HO> O-)C = A (Hd_> G)

Proof. As A(H,, o) and A(Hy,o) are generated by resp. 4(H,, o)
and A(Hg, o) and as the last two algebra’s commute, it follows that

A(Hy,0)S A(Hy, o) .

Therefore it is sufficient to show that for any ¢>0 and x € 4(H,, o)
there exists a ye A(Hg, o) such that ||y — x| <&, since this means that
A(Hg, o) is dense in A(H,, 0)° and hence A(Hy, )2 A(H,, o).

So we consider ¢>0 and xe A(H,, ¢)° and we construct such a y.
0 y

As A(H, o) is dense in A(H, ¢) there exists an element of the form
p
z= Y ad,,p;€H, suchthat [z—x|<g/2
i=1

z can be written as z = z* + z, where

zt=%ad,, ~with y,eHy

z,=%a;6,,0, with w/eHy and ¢,+0eH,.
Next for any integer n we define the map

ue A(H, o)—- ()=

1
" .[ eXP(_SJ(U’, w))énwué—nwdw

Ho

where 2n, is the dimension of Hy,J a complex structure leaving H,
invariant and dy the Lebesque measure on H, induced by the scalar

product s;.
Clearly if u e A(Hy, 0)° then
1
Tn(u)zu no j exp(_SJ(wa l;D)) d’l’ =u
T yeH

so that 7,(x) = x.
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Next compute t,(5,, ) with ¢; € H,.
By a straightforward application of the multiplication rules

1 R ,
Tn(éwi)z - j e SJ(w,w)e—Ztnd(w,¢;)5¢‘_dw
T yweHo
1 S0 v . ,
— =sg(y, @) ,— 2insy (w', @;) 4
=4, o § e e” 2y dy

y'eHp

as J is an isometry (with p’ = Jy).
By a straightforward extension of the formula

1 + w0
7— [ exp(—x*—2niyx)dx =exp(—n®y?)
T

we get
Tn(éqzi) = CXp(— 712 SJ(goia (Pl)) 5«)[ .

If we apply this to 7,(z;) we find
1,(21) =2 3,0, d,, exp(—n’s,(¢;, ¢)
and the norm |/7,(z,){ is smaller than

Z |ay| exp(—n2 s (@i @) ”5%* [l “5%” = X|ay eXP(_"2 s5(@: @)

which, for a fixed element z can be made smaller than &/2 for large n,
as ¢; +0.
We summarize the result by considering

lIx =z = zu(x) — 74(2) + Ta (20 -

So
Ix =z £ fr.(x — 2 + [7.z0)]

1 -8,
= Ffe TSy | X — 2l [0yl dp + /2

1
é Tje_sj(w’W) du) . 8/2+8/2,
T 0
=¢
This completes the proof.
As a result of Lemma 12 we find that two quasi-free factor states

o, and wg are quasi-equivalent if and only if there is a finite regular
subspace H, of H for every ¢ > 0 such that

(w,— wp)| A(H, o) <é.

14%
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We use this in the following theorem. Note that the quasi-free state
w4, A€ S is a factor state if and only if the norm continuous extension
of ¢ to the completion H*+ of H with respect to s, is non-degenerate [5].

Theorem. Two quasi-free factor states w, and wy with A,Be S are
quasi-equivalent if and only if (Q7'Qp—1)€ oc(sy).

Proof. The proof is completely the same as the one of Theorem 5.1
of [6].

Suppose first that (Q;'Qz—1)eoc(s,), then by Lemma 10
(E4— Eg)* € tc(sg,) and therefore wy, and wgy are unitarily equivalent
[7]. By the work of Haag, Kadison and Kastler, for any ¢ >0 there is
a finite regular subspace K of H@® H such that

H(WEA_Q’EB)M(Klsﬂ'@ —o)l <e.

To every finite subspace Kof H@ H there exists a finite regular subspace
H, of H such that K C H,® H, and therefore Hy ® Hy C K*. With the
same arguments as used in section 4 then

(04— wp)| A(H, 0)| < l(@p, — wg,) | 4(Hy © Hy, 0 ® —0)|

= H(CUEA—CUEB)M(KL’ oc@—o)l
< e,

So w, and wy are quasi-equivalent.
Conversely, suppose that w, and wy are quasi-equivalent. Then
there is a finite regular subspace H, of H for any &> 0 such that

I(w4 — wp) | 4(H, o)< e,

As in [6], let E be the orthogonal projection on H,.

Define A, =EAE+(1—E) A1 —E)and B, =EAE + (1 — E) B(1 — E).

In the proof of Lemma 8 we showed that if, 4, Be S and E is the
orthogonal projection on a subspace H,, then EAEeS. Similarly
(1—EYB(1—-E)e S and (1—E) A(1 — E}e S. Moreover it is possible to
conclude that also 4, € S and B, €S.

Clearly A — A; and B — B, have finite rank and hence by Lemma 11
E,—E,, and Ez— Ey are Hilbert Schmidt and so wp,~wg, and
wg, ~Wg, [7]. On the other hand, as A, coincides with 4 on Hy and
similarly for B we find that

(w4, — g )| A(Hy, o) Ce..

Moreover w4, and wg, are product states and coincide on 4(H,, 5) so

that |4, — wg, || <s.
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Then by Lemma 9
g, — 0, | S 2|04, — wp |F <26
and so wy, ~ g, [9]. Consequently wy, ~wp, and by [7]:
(E,—Epiertc(sg,).

Finally the use of Lemma 10 completes the proof.

Remark. Lemma 10 provides us a large number of equivalent
conditions. If the states w, and wy are pure states and so 4% =B*= —1
then Q,=P,=A and the conditions i), iii), iv) and v) are essentially
(4— B)*e1c(s,). On the other hand conditions ii), vi) and vii) state
A—Beac(sy).
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