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Abstract. Recently discovered quasi-exactly-solvable problems of quantum
mechanics are shown to be related to the existence of the finite-dimensional
representations of the group SL(2, β), where Q = R,C. It is proven that the
bilinear form h = axβJ

aJβ -\-bJa (Jα stand for the generators) allows one to
generate a set of quasi-exactly-solvable problems of different types, including
those that are already known. We get, in particular, problems in which the
spectral Riemannian surface containing an infinite number of sheets is split
off one or two finite-sheet pieces. In the general case the transition

h-*Ή= — --^ + V(x) is realized with the aim of the elliptic functions. All
ax

known exactly-solvable quantum problems with known spectrum and facto-
rized Riemannian surface can be obtained in this approach.

Let us consider the spectral problem for the Schrόdinger operator:

^ (1)

where x belongs either to the interval (— oo, GO) or to [0, oo).
Recently some number of cases was discovered where the first N eigenvalues

and corresponding eigenfunctions were found explicitly. These problems were
called quasi-exactly-solvable [1] (see also [2]). The list of the potentials which we
have in mind is presented in Table 1 (see below). The known energy eigenvalues
(and eigenfunctions) form a separated Riemannian surface consisting of a finite
number of sheets in the space of potential parameters. This surface is separate from
the rest of the Riemannian surface corresponding to unknown eigenvalues and
eigenfunctions and having infinitely many sheets. These problems are quasi-
exactly-solvable ones of the first type. There are quasi-exactly-solvable problems
of the second type for which a set of TV potentials differing by the values of
parameters and related by analytic continuation have the same eigenvalue of i-th
eigenstate in i-th potential (i = 1,2, ...,N)1.

1 These problems as well can be considered as a generalized Schrόdinger equation [see below,
Eq.(7)]
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In this work we will show that the quasi-exactly-solvable problems are
connected with some finite-dimensional representations of the group SL(2, Q\
where Q = R or C. In other words, each problem in Table 1 corresponds to a certain
quantum "top" of the spin j = (N—1)/2 in an external constant magnetic field2.
Moreover, such an arbitrary quantum "top" in a constant magnetic field generates
a family of quasi-exactly-solvable problems.

1. To begin with consider the Schrόdinger equation (1). Table 1 presents the
potentials V(x) for all known quasi-exactly-solvable problems, both one-
dimensional and spherically-symmetric.

We consider a finite-dimensional representation of the SL(2, Q) group with spin
j in a space of polynomials with the basis functions zj + m(j"^m^—j). The
generators of the group have the form [3]

and j(j+l) is the eigenvalue of the Casimir operator. Let us express the
hamiltonian of the quasi-exactly-solvable problem in terms of the generators (2).
For simplicity, we will consider, as an example, problem VI from the Table 1 where
the first N + \ even states are known. The wave function can be written in the
following form:

Γ Λ
α χ foχ

ψ(x) = φN(x2) exp I - — >. (3)

Now substitute (3) in (1). Then we get the following spectral problem:

hφN(x2) = EφN(x2), h = - ^ + 2x(ax2 + b)jχ~ (4iVαx2 - b). ( 4 )

Now let us make a change of variables, z = x 2; we get

hφN(z)= (-4z ^ +2(2az2 + 2bz-l) ~ -(4Naz-b)) φN(z). (5)

One can easily rewrite (5) in terms of the generators (2),

h=-4J°J~ +4aJ++4bJ°-2{2j+l)J-+4az(2j-N) + b(4j+\). (6)

If N = 2) the operator (6) is reduced to a combination of the generators of the
SX(2, Q) group acting in the above mentioned space of polynomials in z. Thus, we
reduce the problem to a description of the quantum "top" in a constant magnetic
field. One can handle all other quasi-exactly-solvable problems (see Table 1) in an
analogous way. Two important facts are worth emphasizing. First, the represent-
ation in terms of generators of SL(2,Q) is possible only for N = 2j3. Second, all
quantum "tops" emerging in this way are non-physical, although atj = N/2 they
have real spectra coinciding with those of the corresponding quasi-exactly-
solvable problems. Notice that for the problems of the second type in passing from

2 In general, these quantum "tops" have no physical meaning [see (8)]. Our "top" Hamiltonian
means the quadratic element of universal enveloping algebra 5/(2)
3 Thus, the spin j "top" solutions can be expressed in terms of the spin / representations of the
SL(2, Q) group
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H to h there appears a non-trivial factor ρ(x) :H-+ρ~1h. This is a manifestation of
the fact that the second type problems can be considered as generalized spectral
problems [1],

Hψ = λρ(x)ψ, (7)

where ρ(x) is a weight function.
2. Passing to the inverse problem, consider an arbitrary "top" in an external

constant magnetic field

hφ = εφ, h= - Σ V i J i + £ btJ\ (8)
j , r" - + , 0 , - j = + ? o , -

where J1 are the generators of the SL(2) group. We restrict ourselves to the case,
when typ bt are arbitrary real numbers. It is clear that the problem under
consideration has a polynomial in z solutions of the power n, provided

n = 2j. (9)

The eigenvalues ε in Eq. (8) are the real roots of a certain algebraic equation of the
n-th power. If the coefficient a+ + in (8) vanishes4, there are additional polynomial
solutions of the power

ri=j-k9 (10)

where k = b+/a + 0 is an integer or half-integer.
Clearly, if/ is an integer k must also be an integer and if j is a half-integer k must

be a half-integer (k^j). In the general case the equation hφ = εφ can be
transformed, by a change of variables and a change of function φ to the generalized
Schroedinger equation (7) with a certain Hamiltonian H.5 So, in the new variable
the spiny "top" polynomial (in initial variable) solutions are orthogonal in a certain
weight. To this end we first rewrite Eq. (8) in the differential form [substituting (2)
into (8)]:

+P3(z) J +(P2-c)φ = 0. (11)

Here Pr are the polynomials of the i-th power:

Equation (11) is of the Fuchs type. Now let us introduce a new variable x = x(z) and
a new function ψ = φQxp( — g). Taking

4 In this case the Lame equation in algebraic form emerges [see below (11), (12)]
5 It is worth noting that the interpretation of some sorts of Schrδdinger operators in terms of
SU(2) generators given in differential form was discussed earlier (see e.g. [6])
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Fig. 1. The different types of Riemannian surface pictures in spectral problems

and dividing by P 4 (x')2 both parts of the equation emerging in this way, we arrive
at the Schrόdinger-type equation

d2ψ

dx2
(14)

where the role of the weight function [see Eq. (7)] is played by ρ = 1/(P4 x'2). When
ρ = l, i.e.

x=±i-~=9 (15)

we get the standard Schrόdinger equation in which we know N = 2/ + 1 solutions in
the form of polynomials of the JV-th power in z multiplied by e~φ. These solutions
are orthogonal with respect to the weight function e~2φ. The eigenvalues plait
forming the Riemann surface of (JV +1) sheets with respect to every parameter of
the original problem (8) (see Fig. lb). Thus we get the quasi-exactly-solvable
problems of the first type. The second type problems emerge either when

x=±ί (16)

and the role of energy in the standard Schrόdinger equation is played by
A = 2/(/α + 0 + fe + ), or when

(17)
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and the role of energy is played by λ = 2/(2/ — \)a++. Here α, β, γ are parameters. In

the general case of arbitrary weight function ρ(z) we obtain the generalized

Schrδdinger equation (7) in x = ±J<iz/j/ρP4(z).
A special situation takes place when [cf. Eq. (10)]

α + + = 0 , b+=(j-ri)a + 0. (18)

At a fixed value of j there are two types of solutions of Eq. (8) of the polynomial
form: of the power n = 2/ and power ri. These solutions coincide at n = ri. \ϊn>ή
all solutions of the second type are actually a subset of the solutions of the first
type. The second type solutions form their own (ri + l)-sheet Riemann surface. The
first type solutions also form a separate Riemann surface with the (n — ri) sheets (see
Fig. lc). lϊn<ri, all first type solutions are a subset of the second type solutions.
The first type solutions form an (w + l)-sheet Riemann surface split out (ri + 1)-
sheet surface of all known solutions. Let us emphasize that in this case the solution
of the problem of a spin j quantum "top" contains contributions from represent-
ations with the spin/ = riβ. The essence of the phenomenon is in the fact that the
spin j "top" (8) can be rewritten in terms of the spinj "top" provided the condition
(18) is fulfilled.

An analysis of Eq. (8) shows that the quasi-exactly-solvable problems with no
plaiting of the first N — 2j+\ eigenvalues and the explicit expression for these
eigenvalues emerge in two cases:

a+,=a + o = b+=0 (19)
or

ao_=a_=b_=0, (20)

In general, the spectrum (more exactly, the first ΛΓ4-1 levels) is described
by a polynomial of the second power in the number of a state

l k)~aoo(j~k)2 + bo(k-j), fc = 0,l, ...,2j, (21)

or, in more conventional terms [cf. (2)] k=j + m,

Ej,m=-a+^{j + m)(m-i--j)-a00m
2 + b0m, m= -j, ...,05 . . . J . (22)

If α o o = — α+_ and bo = 0, we obtain the standard answer for sphere top 6. The
potential corresponding to Eqs. (19) and (20) can be readily obtained in an explicit
form by substituting Eq. (13) in (14).

Since the condition (19) automatically implies Eq. (18), the spin; "top" (8) with
parameters (19) can be rewritten in terms of the arbitrary spin/ "top." Therefore,
obviously, one can find the whole spectrum and, hence, the "top" (8) with the
condition (19) generates the exactly-solvable problems. In this case all levels are
unplaited while spin j plays the role of a parameter.

The "top" (8) with the parameters (20) in the general case generates the quasi-
exactly-solvable problems in which the first N = 2j+1 states are unplaited while
the rest of the spectrum is plaited (see Figs. Id and e). If, along with Eq. (20) the
condition (18) takes place, we get the following situation. I f / < / nothing is
changed; (2/+1) first unplaited sheets are split from the Riemann surface with the
infinite number of sheets. If, however, / >j, then we know 2/ + 1 states. The first

6 In this case the term ra<2+_ vanishes, if we change in Eq.(8) the J + J by anticommutator
\{J + J~} instead of (14), we obtain the equation j(j+l)ψ = εψ
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2/4-1 sheets are unplaited. The next (2/ —2/) sheets of the Riemannian surface of
the states from 2/ 4- 2 to 2/ 4-1 are plaited.

3. Before the conclusion, let first make a remark. In our previous discussion we
did not take into account the condition that all wavefunctions which we get should
be normalizable. This requirement imposes some restrictions to the class of
potentials obtained. Also some potentials might have singularities. All these
questions will be discussed elsewhere.

Now let us note some interesting features of the approach presented:
(i) The quasi-exactly-solvable problems with the geometrical properties

described above emerge both, in the standard Schrodinger equation (1), and in the
generalized equation (7). (ii) The transition from the "top" to the Schrodinger
equation is realized, in general, with the aid of the elliptic functions, (iii) For
arbitrary P4)352 in Eq.(ll) the polynomial solutions exist only if the polynomials
P4 3 2, admit the representation (12), i.e. when Eq. (11) can be rewritten in the form
(8)'. '

In conclusion, I remark that a similar procedure for the search of multi-
dimensional quasi-exactly-solvable problems, perhaps, can be developed, if,
instead of the group SL(2) we will use the generators of higher groups having finite-
dimensional representations, e.g. SL(n, Q). Along this line about the possible non-
algebraic structure of the node surfaces in multi-dimensional quantal problems
[4-5] must be recalled, when the variables in the Schrodinger equation are not
separated. In general, the equation which appears can be naturally considered in a
curved space. Another interesting situation arises, if graded algebra generators are
exploited.

So, quantal quasi-exactly-solvable problems are generated by the quadratic
elements of an enveloping universal sl(2) algebra [see (8)]. There is an open
question: are there quasi-exactly-solvable problems which cannot be represented
in terms of sl(2) generators?
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Note added in proof. Recently [7], n-zone Lame equation was rewritten via sl(2) generators.
Eigenstates form (2?? + l)-sheet Riemannian surface separated into four parts (three of them
contain the same number of sheets).


