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QUASI-FLATS AND RIGIDITY
IN HIGHER RANK SYMMETRIC SPACES

ALEX ESKIN AND BENSON FARB

1. INTRODUCTION

In this paper we use elementary geometrical and topological methods to study
some questions about the coarse geometry of symmetric spaces. Our results are
powerful enough to apply to noncocompact lattices in higher rank symmetric spaces,
such as SL(n,Z),n > 3 : Theorem 8.1 is a major step towards the proof of quasi-
isometric rigidity of such lattices ([E]). We also give a different, and effective,
proof of the theorem of Kleiner-Leeb on the quasi-isometric rigidity of higher rank
symmetric spaces ([KL]).

Symmetric spaces of noncompact type. A symmetric space of noncompact
type is a nonpositively curved symmetric space with no Euclidean (de Rham) fac-
tors, or, what is the same thing, the quotient G'//K of a semisimple! Lie group G by
a maximal compact subgroup K. These spaces are the most classical and important
examples of nonpositively curved spaces. The rank of a symmetric space X is the
dimension of a (maximal) flat in X, i.e. the maximal dimension of an isometrically
embedded Euclidean space in X. A flat in rank one is just a geodesic. Examples
of symmetric spaces of noncompact type include the hyperbolic spaces (rank 1),
the spaces SL(n,R)/SO(n,R) (rank n — 1, where a flat is given by the subgroup of
diagonal matrices), and their products (rank is additive).

Quasi-flats in symmetric spaces. A (coarse) quasi-isometry between metric
spaces is a map f : X — Y such that, for some constants x, C, C’ > 0:
(1) %dx(l‘l,l'g) —C <dy(f(z1), f(z2)) < kdx(z1,z2) + C for all 1,22 € X.
(2) The C’-neighborhood of f(X) is all of Y.

The map f is called a (k, C')-quasi-isometry. A map satisfying (1) but not nec-
essarily (2) is called a quasi-isometric embedding of X into Y. A basic example
of a quasi-isometry is the following: the fundamental group 71 (M) (endowed with
the word metric) of a compact Riemannian manifold M is quasi-isometric to the

universal cover M of M.
A central step in the proof of Mostow Rigidity ([Mo]) involves showing that,
under a [-equivariant quasi-isometry of a symmetric space X (I" a cocompact lattice
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654 ALEX ESKIN AND BENSON FARB

in X), a flat is taken to within a uniformly bounded neighborhood of a flat. In this
paper we consider the problem of determining the quasi-flats in X, i.e. the quasi-
isometric embeddings R™ — X, n = rank(X).

For the rank one symmetric spaces X of noncompact type, i.e. for the (real,
complex, quaternionic, Cayley) hyperbolic spaces, any quasi-isometric embedding
of R, i.e. any quasi-geodesic, is contained in a neighborhood of a single geodesic.
This fact is due to Mostow, and in fact goes back to a 1924 paper of Morse in
dimension two. One would hope that, as in the rank one case, any quasi-isometric
embedding of R™ into a rank n symmetric space X of noncompact type would lie
in a bounded neighborhood of a single flat in X. Unfortunately this is not true for
any X with rank(X) > 1, as we will see in §1.1.

The main goal of this paper is to prove the following:?

Theorem 1.1 (Quasi-flats are close to a finite union of flats). Let X be a sym-
metric space of noncompact type of rank n > 2, and let ¢ : R — X be a (k,C)-
quasi-isometric embedding. Then there are constants F = F(k), N = N(k,(C) < 0o
such that $(R™) lies in the N-neighborhood of a union of F flats in X.

A proof of Theorem 1.1 in the more familiar, easy to visualize special case of
X =H? x H? (i.e. the product of two hyperbolic planes) can be found in [EF].

Application of the proof. In proving Theorem 1.1, we actually consider maps
¢ : R™ — X that are weaker than quasi-isometries (see Conditions I and II on page
661): the additive coarseness constant is allowed to depend on the distance to the
origin. The point of this is to allow for maps ¢ that behave like quasi-isometries,
but may remain undefined on many “holes” H C R™ of diameter roughly d(H,0).
Such maps occur naturally when considering noncocompact lattices in higher rank,
such as SL(n,Z),n > 3. Theorem 1.1, or more precisely its extension to quasi-flats
with holes (Theorem 8.1), plays a major role in the proof of quasi-isometric rigidity
for such lattices (see [E]).

Quasi-isometries of higher rank symmetric spaces. For any metric space X,
one can form the group QI(X) of all self-quasi-isometries of X modulo those that
lie a bounded distance (in the sup norm) from the identity. Modding-out by this
equivalence relation makes QI(X) into a group.

When X has rank one, i.e. when X is a hyperbolic space, then QI(X) is the
group of (Carnot) quasi-conformal transformations of the sphere at infinity. In the
cases when X is H™ or CH" this group is infinite dimensional. Pansu ([Pa]) showed
that, when X is quaternionic hyperbolic space (in dimension > 2) or the Cayley
hyperbolic plane, then QI(X) is isomorphic to Isom(X). We use Theorem 1.1 to
prove that this strengthening of Mostow rigidity also holds for most higher rank
symmetric spaces. This result, first proved by B. Kleiner and B. Leeb ([KL]) using
different methods, was conjectured by G. Margulis nearly twenty years ago.

Theorem 1.2 (Kleiner-Leeb [KL]). Let X be a symmetric space of noncompact
type with no rank one (de Rham) factors. Then any quasi-isometry of X is a
bounded distance from an isometry of X. Hence the natural map

Isom(X) — QI(X)

is an isomorphism.

2 After completion of work on this manuscript, we learned that Kleiner-Leeb have also obtained
Theorem 1.1 (but not it’s extension Theorem 8.1) by different methods.
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Roughly, Theorem 1.2 can be derived from Theorem 1.1 as follows: apply The-
orem 1.1 to flats in X, then use the geometry of X (as in the proof of Mostow
rigidity in [Mo]) to show that any global quasi-isometry ¢ of X must actually take
a flat to a single flat. Hence ¢ induces an automorphism of the Tits building of X,
so by Tits’ theorem this boundary map is induced by an isometry, which one shows
is a bounded distance from ¢q. We give the details not present in [Mo] in §8.3.

An immediate corollary of Theorem 1.2 is the following:

Corollary 1.3 (Quasi-isometric iff isometric). Let X and Y be two symmetric
spaces of moncompact type with no rank one factors. Then X is quasi-isometric
to Y if and only if X is isometric to'Y (after multiplying the metrics on the direct
factors of Y by constants).

Theorem 1.2 can also be used to characterize cocompact lattices in Isom(X)
among all finitely generated groups. Recall that any finitely generated group I" with
chosen generating set may be endowed with the word metric, where the distance
d(g,h) is the minimal number of generators needed to represent gh~!. The word
metric on I' is unique up to quasi-isometry, so for example is independent of choice
of generating set.

Corollary 1.4 (QI rigidity). Let X be a symmetric space of noncompact type with
no rank one (de Rham) factors. If T is any finitely generated group which is quasi-
isometric to X, then T is a finite extension of a cocompact lattice in Isom(X).

Reader’s guide. To roughly understand at a glance the main issues and ideas of
this paper, we suggest understanding the example in §1.1, followed by the method
of proof in §1.2.

For the reader who is not comfortable with the geometry of symmetric spaces,
many of the ideas of this paper can be gleaned from the special case when X =
H? x H2. This special case is worked out in detail in [EF].

In §2, we state the generalizations of the geometric facts about H? x H? used in
[EF]. Some of the proofs of these facts are relegated to the Appendix. The proof of
Theorem 1.1 beginning in §1.2 follows closely the proof of the H? x H? case, with the
exception of §6 where some extra ideas (an induction involving higher-dimensional
pinching) are needed.

1.1. Quasi-flats which are not close to flats. In this subsection we give an
example, suggested to us by Bruce Kleiner, of a quasi-isometric embedding of R? in
H?2 x H? which does not lie in a bounded neighborhood of a single flat in H? x H?2.
This type of example can be easily generalized to any symmetric space X with
rank(X) > 2.

Key Example. For each factor of H? x H?2, pick three distinct geodesic rays in
H?2, call them A, B,C and X,Y,Z. By taking metric products, each pair of rays
gives rise to an isometrically embedded copy of a Euclidean quadrant in H? x H?2.
We denote these quarter-flats by AX, X B, etc. Divide the Euclidean plane R? into
six congruent sectors meeting at the origin. Let ¢ be the map which maps each
sector, in clockwise order, to the quarter-flats AX, XB, BY,YC,CZ, ZA by the
quasi-isometry which maps a sector to a quadrant (see Figure 1).

Note that the image of any adjacent pair of sectors lies uniformly close to a half-
flat in H? x H? since triangles in H? are uniformly thin (see Figure 1). It follows that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



656 ALEX ESKIN AND BENSON FARB

HxH

/AN

(o} z

FIGURE 1. The map ¢ : R? — H? x H? maps each pair of adjacent
sectors close to a half-flat: for example, the image of the shaded
sectors under ¢ lies in a 4-neighborhood of the Euclidean half-flat
~vx X in H? x H?, where ~ is the geodesic connecting the endpoints
of the rays A and B. It follows that ¢ is a quasi-isometry.

the restriction of ¢ to any pair of adjacent sectors is a 4-quasi-isometry, hence that
¢ is a K-quasi-isometry for some K. While ¢(R?) lies in a bounded neighborhood
of a union of three flats, it clearly does not lie in a bounded neighborhood of a
single flat.

Remarks. 1. The above construction can be carried out using any number of geo-
desic rays instead of just three. In this case the constant K of the quasi-isometry
¢ will get larger as the number of geodesic rays used increases.

2. Note that we may precompose the map ¢ : R? — H? x H? with a self-quasi-
isometry of R?, such as a quasi-isometry taking rays based at 0 to logarithmic
spirals. The point is that the six sectors may be geometrically quite complicated.
For this reason we will not be able to use the geometry of R™ in the proof of
Theorem 1.1.

In what follows we always keep in mind the above examples.

1.2. Method of proof. In this section we give an outline of the proof of Theorem
1.1.

1.2.1. Nondegeneracy in X. In a symmetric space X there is a certain “degenerate
subset”; when X = H? x H? this is simply the set of z € X which project to the
origin in one of the factors. For a fixed, very small tolerance 6 > 0, we define
(page 661) the “nondegenerate subset” X° of X, where § is a lower bound to the
nondegeneracy. For example, when X = H? x H?, the set X° is the set of x € X
with d(m;(z),e) > éd(z,e) for i = 1,2, where 7; : X — H? is the natural projection
onto a factor and e € X is the origin.

1.2.2. Coarse topology and pinched subsets. 1t is a well-known fact that there is no
(k, C)-quasi-isometric embedding of a large, equilateral, Euclidean triangle® into
H?Z: if there were such a map, then the image would lie in a neighborhood of a
geodesic triangle in H? (since quasi-geodesics are close to geodesics), and triangles
in H? are uniformly thin (unlike equilateral triangles in R?).

3By triangle we mean the sides only, not the interior.
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Intuitively, any subset of R? which admits a (x, C)-quasi-isometric embedding
into H? should not contain any fat loops. We formalize this in Corollary 6.9, which
states roughly: If W is any subset of R™ which admits a (k,C)-quasi-isometric
embedding to a hyperbolic-like space, then for a certain metric neighborhood W of
W, the natural homomorphism H,(W) — HP(W),p > 1, induced by inclusion is
the zero map. The size of the neighborhood W of course depends on k.

The Main Lemma (Lemma 5.6) involves some variations on this, the most im-
portant being that the target hyperbolic space is replaced by the degenerate subset
of X. The flat directions of X make this statement true only for p = n — 1. We
apply the Main Lemma to subsets of ¢—1(X?%)c.

The coarse topology we use is in the spirit of [FS].

1.2.3. Outline of the pmof of Theorem 1.1. Associated to a symmetric space X is
its Furstenberg boundary X. Pairs of points in X parameterize the set of (maximal)
flats in X, just as pairs of points of the boundary at infinity of H" parameterize
the set of geodesics in H". We identify X with the “visual sphere” K /M at the
origin of X .4

We consider the set of points Sk in R™ lying in the annulus A(R, 2R) which map
into the nondegenerate subset X?, i.e. Sg = A(R,2R)N¢~1(X?). We also consider
the visual image of Sk, that is the set of points in the visual sphere K/M for which
the infinite ray in that direction hits ¢(Sg). In §4 we use basic geometry of X to
show that the size of the visual image of ¢(Sg) is small, in fact it can be covered
by a bounded number (independent of R) of balls in K/M of size roughly e~

Proving that the visual image of ¢ actually converges to a finite set of points in X
is a major step towards proving the theorem. Once this is known, we connect each
pair of these limit points a, 3 € X by a (unique) flat. A final geometric argument,
outlined in §7, proves that ¢(R™) lies close to this finite union of flats.

The main difficulty is that the visual images of the sets ¢(Sg) for different R
have no a priori relationship, for example the visual image of ¢(Sg;) may be a
different finite collection of points for each R; = 27. Hence there is no reason for
the visual images of the sets ¢(Sg) to converge to a fixed finite set of points in X.

We rule out this phenomenon by showing that visual images persist (cf. Lemma
5.8 and Proposition 5.9): Suppose that, for some sufficiently large Ry, some point
r € Sk, maps into a “very nondegenerate subset” of X, i.e. ¢(x) € X°, b>> §, and
denote by 8 € K/M the visual position of ¢(x). Then for every R > R some point
of ¢(Sgr) is seen in a direction near §. This fact together with the fact about the
visual size of ¢(Sg) noted above implies that there are finitely many limit points.

Proving persistence. A simple geometric observation (Lemma 4.3) shows that
the visual size of any connected component of ¢~!(X?) is exponentially small, i.e.
the visual size of the intersection of $~1(X?) with the complement of an r-ball has
size O(e™"). Thus, to prove visual images persist, it is enough to prove (Lemma 5.8)
that every connected component of ¢~ (X?) which contains a “very nondegenerate
point” x as above is unbounded.

The proof is simple in outline. First off, since z maps into a very nondegenerate
direction, the connected component of ¢~1(X?) containing = contains some large
ball around z. If the lemma were not true then this component would be bounded,

4Actually K/M is a quotient space of the usual visual sphere, although for simplicity we blur
this distinction in this outline.
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so could be completely surrounded by a set 7 C R™, thought of as a sphere S"~1,
which maps completely into the degenerate directions of X. By the coarse topology
discussed above, this set T must be pinched, which contradicts the fact that it
surrounds a large, round ball.

2. THE METRIC GEOMETRY OF X

2.1. Polar coordinates and the metric. We collect here some basic facts about
symmetric spaces and set some notation. The proofs of the facts stated here without
reference may be found in [He] or [BGS]. Let X = G/K be a Riemannian symmetric
space, where G is a semisimple Lie group, and K a maximal compact subgroup.
The Killing form (-, -) is a nondegenerate quadratic form on the Lie algebra g of G
defined by (X,Y) = trad X adY. The Lie algebra g can be decomposed as € & p
where £ is the Lie algebra of K and p is the orthogonal complement relative to the
Killing form. We choose a maximal Abelian subalgebra a in p, and denote exp a by
A. The dimension of a is called the rank of the symmetric space X.

Simultaneous diagonalization of the linear transformations ad H where H varies
over a yields a decomposition of g into eigenspaces g%, where each root space g% is
associated with a linear functional « on a. These are defined by the equation

(1) [H, Xa] = a(H) X

for H € a and X, € g*. The linear functionals « are called the roots, and the g
are called root spaces. We denote the collection of roots by X.

The root system X always has a lot of extra structure: in particular ¥ has a
basis A, such that every root 8 € ¥ can be expressed as a linear combination
B =Y aena Cat, where the coefficients ¢, are either all nonnegative integers or all
nonpositive integers. A is called a simple system, and the elements of A simple
roots. The cardinality of A is equal to the dimension of a, i.e. the rank of the
symmetric space. We fix a simple system A. Let ¥ C X denote the roots which
are expressible as a linear combination of simple roots with nonnegative coefficients,
and ¥~ C X denote the roots which are expressible as a linear combination of simple
roots with nonpositive coefficients. Then ¥ = ¥T LU X~. Let a, denote the subset
{H€a : o(H)>0 for all @ € A}; the set ay is called the positive Weyl chamber.
Let Ay = expay C A, and let M denote the centralizer of A in K. We also call
A, the (canonical) Weyl chamber.

Proposition 2.1 (Polar coordinates on X). The map ® : K/M x A, — G/K
given by ®(kM,a) = kaK is onto. The map ® when restricted to K/M x Ay is
a diffeomorphism, and the image is an open dense subset of X, called the set of
nondegenerate elements.

Proof. See [He, Chapter IX, Theorem 1.1]. O
Remark. If G = SO(2,1), then the “polar coordinates” defined above coincide with
the polar coordinates on the hyperbolic plane H? = G/K.

Definition 2.2. Proposition 2.1 allows us to consider the roots 8 € ¥ as functions
on X, via the formula S(kaK) = B(loga). We define the set of nondegenerate
elements of X to be those x € X with G(x) > 0 for all § € A.

A good example to keep in mind is X = H? x H?, which has two roots oy, as.
In this case o;(z) = d(m;(x),e), where m; : X — H? is the natural projection onto
the ith factor.
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For a nondegenerate y € X, let ©(y) € K/M be the unique element such that
y € O(y)A+ K. For nondegenerate elements x,y of X, we can define the “angle”
Oc(z,y) as dx(0(x),0(y)), where di denotes the K-invariant metric on K /M.
We think of ©.(z,y) as the “angle” between x and y as viewed from e. This
interpretation is indeed correct when X has rank 1. In the higher rank case, O,
is not an angle at all; it is not always defined, and for example if z,y € A4 then
Oc(z,y) = 0. However ©, often behaves like an angle in hyperbolic space, see for
example Lemma 2.4 below. We use the O-angles extensively in our analysis. We
will also consider © with a different basepoint by defining for any p € X

Op(z,y) = Oclg™ a, g7 'y)

where g is any isometry taking e to p; the right hand side is independent of the
choice of g since d is left K-invariant. We think of ©,(x, y) as the “angle” between
z and y as viewed from p.

We now write out the metric on X in polar coordinates. Let ¢ C € denote the
complement in € of the Lie algebra m of M. We identify the tangent spaces of K /M
and A at kM and a, respectively, with ¥ and a via the differentials of the maps
¥>X - k(expX)M € K/Manda>Y —aexpY € A.

Proposition 2.3 (Symmetric space metric). For a certain orthonormal basis { X/}
of ¥, the metric on X at the point kaK is given by

ds* = da’ + Z sinh® a(a) (dX))?

aext

where da? is the standard Euclidean metric on a.

Proof. See the Appendix for the proof, and the definition of the basis {X/}. O

In analogy with the ball model of hyperbolic space, we think of the a directions
as radial and the X/ directions as transverse to radial, with movement in the X/,
directions having exponential cost (cf. Lemma 4.1).

2.2. The boundary. A Weyl chamber in X is a translate gA K of the canonical
Weyl chamber A, K. The boundary of the symmetric space X, denoted X , is
defined as the set of Weyl chambers in X under the equivalence relation that two
chambers are equivalent if the Hausdorff distance between them is finite. Each
equivalence class contains a unique Weyl chamber of the form kA, where k € K/M.
This identifies K /M with X. Note that the notion of boundary defined above differs
from the Tits boundary of X in that the geodesic rays belonging to the same Weyl
chamber are collapsed to one point. X is often called the Furstenberg boundary, or
the mazimal boundary of X.

The identification of X with K/M allows us to make sense of expressions like
O.(8,7) where 3,~ are elements of X U X.

We say that a canonical Weyl chamber A, is based at e, and that a Weyl chamber
gA, is based at the point ge € X. For any point p of X we can define the visual
map: Vis, : X — X sending z to the (equivalence class of) the unique Weyl
chamber based at p containing x. This map is only defined if z is nondegenerate
with respect to p, i.e. a(g71x) # 0 for all & € A, where g is any isometry taking e

5For simplicity of notation we will often identify gA4 C G with gAL K C X.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



660 ALEX ESKIN AND BENSON FARB

Visg(X)

FIGURE 2. Illustration of the statement of Lemma 2.4. The
marked angle is O, (x, Visc(z)).

to p. Note that under the identification of X with K /M, Vis.(z) is identified with
O(x).

G acts on X in a way that is compatible with all the the visual maps Vis,, p € X:
(2) Visgp(gz) = g Visp(z) for all g € G.

The definition ©,(z,y) extends naturally to X and

Oup(92, 9y) = Op(,y).
The following lemma illustrates why © can be thought of as “hyperbolic angle”.

Lemma 2.4. For sufficiently small v and sufficiently large r (depending on v), the
following holds: Suppose p,x € X, a(x) >r for all a € A, and d(p,e) <wvr. Then

O, (z, Vise(z)) < e A"
where X' depends on X only, i.e. is independent of v and r. See Figure 2.

Proof. See Appendix. O

3. PRELIMINARIES

3.1. Some definitions. Let 0 € R™ and e € X be basepoints. Let B(0,r) denote
the ball of radius r centered at 0, and let A(r1,r2) denote the annular region
(centered at 0 unless otherwise specified) with inner radius r; and outer radius rs.
Let p be a nonnegative real number, and let d,(x,0) = max(d(z,0), p). One should
think of d, as the usual distance on R", except inside the p-ball all distances equal
p-

For convenience we will assume that ¢ is continuous. It is possible to make this
assumption by using the standard “connect the dots” argument, which changes ¢
into a continuous map while moving any image point by only a bounded amount.
Connect-the-dots works roughly as follows: first triangulate the domain R™ by
simplices of a uniformly bounded size; then build a quasi-isometry defined induc-
tively on the skeleta of this triangulation, starting with the map being ¢ on the
0-skeleton, and extend to higher skeleta by connecting points (and then edges, etc.)
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by geodesics. This new quasi-isometry is continuous, and lies a bounded distance
(in the sup-norm) from ¢.

Let K,e > 0 be fixed. Unless otherwise stated, we will henceforth assume the
following two conditions on the map ¢, the point 0 € R™, and the point ¢ € X:

Condition I. ¢ is a “very coarse quasi-isometry” with additive coarseness constant
depending on the distance from 0:

(B) ) - edy(2,0) < d(6(2), ) < Kd(r,y) +edy (2. 0)

where for simplicity of notation we assume here and throughout that d,(x,0) >
dp(y,0).

Condition II. ¢ satisfies a radial condition:

(4) %dp(x, 0) < d(¢(x),e) <2Kd,(x,0).

Note that if ¢ is a (k, C)-quasi-isometry in the usual sense, then ¢ satisfies (3)
with p = C/e and K = k. The constant € can be made arbitrarily small by taking
p sufficiently large.

If $(0) = e and e is sufficiently small (depending on K), then (3) implies
(4) outside a ball of radius p. If ¢(0) # e, then d(¢(z),d(0)) — d(4(0),e) <
d(¢(z),#(0)) < d(é(x),(0)) + d(¢(0),e), and (4) holds outside of a ball of ra-
dius max(p, 4kd(4(0),e)). The point of separating out the two conditions is that
it will be necessary to consider the map ¢ with arbitrary points of R™ viewed as
basepoints. The more general form of (3) is needed in order to prove Theorem 8.1.

In all that follows we allow the conditions (3) and (4) to be violated inside some
fixed ball B centered at the origin, as long as all points and paths we are considering
are outside B. However, we never mention this point explicitly until §7.

For any set U C R™, we let U|c] be a neighborhood of U whose size is proportional
to the distance from the origin, namely:

Ulel ={zx € R* : Jue U with d(z,u) < cd,(z,0)}.

We use the same convention for subsets of X, with the origin replaced by the point
e; namely, if U C X, then

Ulel={x € X : JueU with d(z,u) < cd(z,e)}.
For any subset o of A (where A is defined in §2), let
Yo,=Kexp({H€a : a(H)=0 Vado})K CX.
The union of the Y, is the set of degenerate elements of X. For any 6 > 0, let
(5) X0 =X\ ( U YA_{a}w) .
a€cA

X? then consists of nondegenerate elements which are bounded away from the
degenerate elements (see Figure 3).
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Yaz

Y°‘1 Yal

Yqz

FIGURE 3. What the intersections of Y, and X? with a flat through
e € X look like in the case X = H2 x H2. In this case there are
two roots oy, as.

Notational convention. All constants will depend on the symmetric space X as
well as the quasi-isometry constant IC. Hence constants introduced in statements of
lemmas and theorems without further mention should be thought of as numerical
constants which could, in principal, be computed from X and basic constants de-
pending on X, such as the dimension and rank of X. We refrain from such explicit
computations of constants for clarity of presentation.

If a constant n further depends on constants a and b, we will simply write n =
n(a,b). Unless otherwise specified, we denote by n; “large” constants > 1, and by
vj and §; “small” constants > 0 and < 1. We use the notation O(b) to mean a
quantity bounded above by Ab for some implied constant A = A(KC, X). We also
write a < b to mean a < vb for some small implied constant v = v(K, X) < 1, and
a > b to mean a > nb for some large implied constant n = n(K, X) > 1. Finally
we use the notations a < b and a > b to mean the same as a < b and a > b
respectively, but without specifying the size of the implied constant.

We will always choose § so that ¢ is much smaller than 1 but much larger than
€, l.e. € € § < 1, where € is defined in (3).

Lemma 3.1. For any o € A, |a(z) — a(y)| < d(z,y).

Proof. This is clear if z and y lie in a common flat. The general case follows since

Proposition 2.3 implies that the map 74 : X — Ay given by ma(kaK) = a is

distance nonincreasing. O
It follows from the definitions that for all z € X® and all a € A,

(6) ax) = bd(x,e).

Indeed z € X?° if and only if d(z,y) > éd(x,e) for all degenerate y € X. For
x =kaK and a € A take y = yo = kao K s.t. d(x,y) = d(aK,a,K) < X la(z), so
that a(z) > Ad(x,e) for all @ € A.
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3.2. Approximations. In this section we prove a few simple technical statements
used throughout the paper.

3.2.1. Pullbacks and neighborhoods.

Lemma 3.2. Let U C X be any subset. Then
(a) If e < &6 < 1, then ¢~ H(U)[8] C ¢~ H(U[4K36]).
(b) Ula][B] C Ul + B8+ af]. Hence if o, B < 1, then Ula][8] C Ula + 20].
(¢) Ifa and B, e € o, f K 1, then

¢~ (Ula]) [B] € ¢~ (Ul + 4K%B + 4K>Bal) .
In particular, for any o C A, if e K 6 < 1, then
¢ (Yo [8))[e] € o7 (Yo [20]).

Proof. Part (a) is an easy consequence of Condition I, Condition II, and the triangle
inequality. Part (b) follows immediately from the triangle inequality. Part (c)
follows immediately from combining parts (a) and (b). The last statement is the
case U =Y,. O

3.2.2. Approximating paths by edge-paths. It will be necessary for us to approximate
paths ¢(y) C X, v an arbitrary path in R™, by paths 4 which stay “close” to ¢(7),
and so that there is some control on the length of 4.

For any € > 0, we divide R™ into a grid G, that is, a cellular decomposition of
R™ into rectangular cells so that each point x € R™ is contained in a cell each of
whose edges has length between ed,(x,0)/2 and 2ed,(z,0). We emphasize that the
size of the cells are not uniform: the length of an edge of a cell C' is proportional
to d,(C,0).

Lemma 3.3 (Approximating paths by edge-paths). Let R > 0 be given, and let
R; =2IR for j=1,2,.... Let A; denote the annulus in X centered at e with inner
radius R; and outer radius R;y1. Then for any path 7 : [a,b] — R", there is a path
4 i [a,b] — X connecting (¢ o)(a) and (¢ ov)(b) such that:

(1) 4 C (¢ o)[Ae], for some constant A.

A 1
(2) L(ANA))) = == R; foreveryj=12,....
€

Proof. Let C denote the union of cells C' with C' N~ # (. Then C is a connected
subcomplex of the grid G. Let a’ be the closest grid vertex to y(a), b’ the closest
grid vertex to y(b). We define 7(9) to be the shortest edge-path in the 1-skeleton of
C connecting a’ to b, and let 4(¢) = y(a)a’ UA©) Ub/~(b), where v(a)a’ and b'~(b)
are segments in R™. Then 4 is the path in X connecting ¢ o y(a) and ¢ o y(b)
obtained by connecting the images under ¢ of the vertices of v(¢) by geodesics.

By definition of v[2¢], and since every point of 7(¢) lies in a cell intersecting ~
and every cell C has edges of length at most 2ed,(C,0), we have 7(9) C [2¢].

Now for any z € y(9), d(z,v(t)) < 2ed,(z,0) for some ¢. Hence

d(9(2),6(7(1))) < (2K + 1)ed,(2,0) < (4K* + 2K)ed(¢(2), ),

with the second inequality following from condition II. Hence qb(v(ﬁ)) -
#(7)[(4K? + 2K)e]. By construction of 4 we now know 4 C ¢(v(9)[(4K? 4 2K)e].
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Therefore, by Lemma 3.2 part (b), 4 C ¢(7)[Ae], with e.g. A = 12K? + 6K. Now
since v(9) is shortest, it traverses any edge in C at most once. Hence

((v'9 N A(R;_1, Rj)) < (# of edges in a cell) - (max. length of edge) - (# of cells)
(Rjq — Rj)

< 26Rj . (ERJ/Q)TL

< Rj.

6n—l
By Condition II, ¢~ 1 (Aj) is contained in a bounded number of annuli A(Ry_1, Rk).
Thus property (2) holds, by the definition of 4 and by Condition I. Note that ~(¢)
and 4 consist of geodesic segments, so that the inequality on the arc lengths follows
from Condition I. O

4. VISUAL ANGLES

4.1. Travel transverse to flats is expensive. Recall that for a nondegenerate
y € X, O(y) € K/M denotes the unique element such that y € ©(y)A+ K, and
for nondegenerate z,y € X, O.(x,y) = dx(©(z),O(y)) where dx denotes the K-
invariant metric on K/M.

Lemma 4.1 (Travel transverse to flats is expensive). For sufficiently large r and
for x,y satisfying a(x) > r, aly) > r for all a € A,
(1) If Oc(z,y) > e "7, then d(z,y) > Nr.
(i1) Any path 4 connecting x, y and staying in the set {x : a(x) > r for all a € A}
has length at least L (©(7))e'", where L denotes lengths in the K -invariant
metric on K/M.

Proof. Part (ii) of Lemma 4.1 follows immediately from Proposition 2.3. For a
proof of part (i) see the Appendix. |

4.2. Bounding the visual size of ¢(R™). The following lemma says that the
part of the ¢-image of big annular regions in R™ which map into nondegenerate
directions have small visual size when viewed from the origin in X.

Lemma 4.2 (Bounded number of visual angles). There ezists a constant vy =
v1(8) so that the set ©(p(A(R,2R)) N X?) € K/M can be covered by co = co(6)
balls of radius e~ as long as R is sufficiently large (depending on 6,p).

In the Key Example (§1.1), for any R > 0 the set ©(p(A(R,2R))NX?) consists of

six points on S! x S1, corresponding to the six quarter-flats AX, X B, BY,YC,CZ,
ZAin H? x H2.
Proof of Lemma 4.2. We use the shorthand Ap = A(R,2R). By (6), for all x €
ApN¢~1(X?%) and all @ € A, a(¢(x)) = 6d(p(z),e) = SR, where the last estimate
used Condition II. Hence Lemma 4.1 part (i) applies, giving a constant A; such
that the following holds: if 7,y € ApN¢~1(X?) and O.(p(x), d(y)) > e %8 then
d(¢(z),#(y)) = 6R. For R sufficiently large (depending on €, p), this combined
with Condition I implies d(x,y) > 6R, i.e d(x,y) > A20R for some constant As.

Decompose K/M into a disjoint union of cells |_|§:1 I,,, where each I, is a cell
with edge-lengths at most e~ *1%%/4 and at least e =%, Since K /M is finite dimen-
sional, we can organize the I, into O(1) families, each family consisting of pairwise
nonadjacent cells. Given any z,y € ¢~1(X?) N Ag, suppose that ©(¢(z)) € I, and
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O(o(y)) € 1;, where I, and I, are distinct and belong to the same family. Then
since I, and I, are nonadjacent, dg (I, I;) > e % hence d(z,y) > X20R.

From this it follows that the number of cells from within one family for which
I, N ©(X® N ¢(AR)) is nonempty is bounded by R™/(A26R)™ = O(1/6™). Since
the number of families is O(1), this shows that the number of cells I, for which
I, NO(X® N ¢(Ag)) is nonempty is O(1/6™). |

We emphasize that the size of the balls in Lemma 4.2 decreases exponentially
with R, while the number of balls is bounded independent of R. However, Lemma
4.2 gives no information about the relative positions of the balls at different radii
R.

The following lemma says that the visual size of the image of any connected com-
ponent of ¢~1(X?) is small. In the lemma, and in the rest of the paper, connected
means path-connected.

Lemma 4.3 (No Shifting Lemma). For every §, ¢ < § < 1, there exists vo =
vo(8) so that if x,y are any two points in the same connected component of p~(X?)
N B(0,r)¢, then

66(¢($)’ ¢(y)) S e V2 max(r,p)
as long as max(r, p) is sufficiently large (depending on €, §).

In the Key Example (§1.1), a connected component of ¢~(X?) consists of a
Euclidean wedge S. The set ©(¢(S)) C K/M is a single point, so in this case
Lemma 4.3 is obviously true.

Proof of Lemma 4.3. Let R = max(r, p)/(2K). By Condition II, if d(z, 0), d(y,0) >
r, then d(é(x),e),d(¢(y),e) > R.

Let v C ¢~1(X?) be a path such that v(0) = = and (1) = y. Let A; denote the
annular region A(2/R,2t1R) in X, and let 4 be the path constructed from ¢ o
as in Lemma 3.3. Property (1) of Lemma 3.3 combined with part (¢) of Lemma 3.2
and (5) gives 4 C X%/2, as long as € < 6.

By property (2) of Lemma 3.3 we have

(7) (ANA;) < 2R/

If z € flj, then d(z,e) > 2/ R, thus if z € Aj N X%/2, then by (6), a(z) = 62/ R for
all & € A. Hence by part (ii) of Lemma 4.1 and (7),

(O NAy)) < U5 N Ay)e 2R < (21 Rjen—1)em 20k

where {x denotes length in the K-invariant metric on K/M. Summing over j we
get

(8) lk(O(7)) < (R/en_l)ZQje_X/2j5R.

3=0
For sufficiently large r (and hence R), (8) is bounded by e~*" for some A > 0,

hence we can let v = A\6. O

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



666 ALEX ESKIN AND BENSON FARB

5. LIMIT SETS

5.1. Definition and finiteness. Recall that, under the identification of the
boundary X with K/M, ©(x) € K/M is identified with Vis,(z) € X.

Basic to our study is the definition of limit set of ¢: the collection of points in
the boundary X on which ¢(R") limits in a strong sense.

Definition 5.1 (Limit point). A point 8 € X is called a 8-limit point of ¢ if there
exists a path in vy in ¢~!(X?) such that y(t) leaves every compact set and the limit
limy oo Vise(¢(7(t))) exists and equals 5. The collection of all §-limit points of ¢
is called the 6-limit set of ¢.

We will eventually see that, for ¢ sufficiently small, the limit set, denoted Ls(¢),
is independent of 6.

In the Key Example (§1.1), the limit set of ¢ consists of six pairs of points. For
example, the point (a,2) € X = S! x S!, where a (resp. x) corresponds to the
direction of the ray A (resp. X) in H?, is a limit point of ¢.

Proposition 5.2 (The limit set is finite). The cardinality of the §-limit set of ¢ is
at most ¢y (defined in Lemma 4.2).

Proof of Proposition 5.2. Suppose there exist co+1 limit points 51, . .., Bey+1. Since
the [3; are limit points there exist paths ~; : [0,00) — #~1(X?) which leave every
compact set and lim;_,o, ©(¢p(7y;(t))) = B;. (Here we have identified Vis, with ©.)
Choose r large so that Lemma 4.3 holds, so that the balls of radius 2¢™"1" 4 2e~"2"
centered at the limit points 1, ..., B¢ +1 are disjoint, and so that r > d(v;(0),0)
for all j. Here v; and v, are the same as in Lemma 4.2 and Lemma 4.3. For
each j let t; denote the greatest ¢ such that d(v;(¢;),0) = r, and let z; = ~;(¢;).
Then by Lemma 4.3, O.(¢(x;), 5;) < e”*>". Hence, by the triangle inequality, for
i # j, Oc(@(zs), p(x;)) > 2e " Since there are ¢y + 1 points x;, this contradicts
Lemma 4.2. O

5.2. Independence of basepoint. In this subsection we show that the -limit
set of ¢ is independent of various choices of parameters.

For any point ¢/ € X, we define X°(e’) to be the translate gX°® where g is any
isometry such that ge = ¢’.

Lemma 5.3. Suppose x € ¢~ (X?%(e)), d(x,0) > R, and d(e,e’) < r. Then x €
d~H(X2(e) if R>r/6.

Proof. This follows from part (c) of Lemma 3.2 and the fact that if + € X°(y),
then y € X%(x). |

Lemma 5.4 (Limit set is independent of basepoint). Suppose the map ¢ satisfies
Conditions I and II with e € X replaced by some other point ¢’ and 0 € R™ replaced
by 0. Then, the 6-limit set of ¢ defined at any €’ is contained the (6/2)-limit set
of ¢ defined at the origin e.

Proof. Let ¢/ = gK € X be any point, let 7o = d(¢’,e) and let L£;(¢) denote the
8-limit set defined using e’ as basepoint. By Lemma 5.3, if 5 € Ls(¢) and + is the
path in ¢~1(X?) so that

9) Jim Vis, (607(1)) = 5,
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then the part of v lying outside a sufficiently large ball centered at e is inside
X?%2(e"). By Lemma 2.4 with ro = vr,

(10) Jim ©c: (¢ 07(t), Vise(¢ 04(1))) = 0.
Combining (9) with (10) we get
Jim Vise (¢ 0 y(t)) = 5.
Hence (3 € L} (9. O

We also note the following, used in the proof of Theorem 8.1:

Lemma 5.5 (Invariance under linear growth perturbations). Suppose ¢ and ) are
two functions satisfying Conditions I and II, and d(¢(x), ¥ (x)) < ed,(x,0) for all
x € X. Then for e € § < 1, the 6-limit set of ¢ is contained in the (6/2)-limit set
of ¥ and vice versa.

Proof. From part (c) of Lemma 3.2 and (5), ¢~*(X?%) C » ' (X?%?). Also by
Lemma 4.1 part (i), O.(é(z),9(z)) — 0 as  — 0o in ¢~1(X?). Thus any é-limit
point of ¢ is also a (§/2)-limit point of . |

5.3. Existence of limit points. Our proof that limit points exist follows from
the main lemma of this paper, whose proof we will leave for a later section. The
idea is that the set of points of R™ which map into the degenerate subset of X,
that is, ¢_1(X5)C, must be pinched. As stated in the introduction, our notion of
W being pinched is the inclusion of W into some neighborhood inducing the zero
map on (n — 1)st homology. Here we take the neighborhood of W to be W{né], for
some constant 7. Since we wish to ignore effects inside a large (but fixed) ball, we
union the sets in question with such a ball.

Lemma 5.6 (Main Lemma). Suppose € < § < 1 and max(r, p) is sufficiently large
(depending on €,68). Then for any subset W of ¢~1(X?)¢, the homomorphism i, :
H,_1(WUB(,r)) — H,_1(W[né) U B(0,7)) induced by the inclusion is the zero
map, for some n > 1 independent of 6.

In the rest of this subsection we present consequences of the main lemma.

Lemma 5.7 (Nondegenerate points exist). If ¢ < § < 1, and if R is sufficiently
large (depending on €,6), then the sphere of radius R around 0 contains a point in

¢~H(X?).

Proof. Suppose r is so large that Lemma 5.6 holds. Let B = B(0,r) and let W
denote the sphere of radius R. If R > r, the sets W and B do not intersect. Also
Wné) € A(1+n8)~ LR, (1—n8)~LR). Thus if R > r, the sets W[nd] and B do not
intersect. If the lemma is false, then W C ¢~!(X?)¢. By Lemma 5.6, the inclusion
induced homomorphism H,,_1(W U B) — H,,_1(W[né]U B) is the zero map. Since
W(né] N B = (, this implies that H,_1(W) — H,_1(W[né]) is the zero map, and
so Hy—1 (W) — Hy—1(A((1 +n8)~ 1R, (1 —n6)~1R)) is also the zero map. This is
clearly a contradiction since the inclusion W — A((1+78)"'R, (1—nd8)~LR) is that
of a sphere into a surrounding annular region. O

The following lemma says that you can see forever after you see a deep point.
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Lemma 5.8 (Connected components of ¢~ (X?) are unbounded). Suppose ¢ <
b < 1, and z is a point of ¢~1(X®) with d,(z,0) sufficiently large (depending on
b,e). Then the connected component of ¢~ (X)) N B(0,d(z,0))¢ containing z is
unbounded, for some m > 1 independent of b.

Proof. All homologies and cohomologies in this proof are reduced with real coeffi-
cients. We choose 11 > 7, where 7 is from Lemma 5.6. Let § = b/n;. We may
assume € < 6 < 1; then by Lemma 5.7, ¢~!(X?) is unbounded. Let B denote
the open ball B(0,d(z,0)). Suppose the lemma is false, so that the component of
¢~ 1(X?) N B¢ containing z is bounded. Choose R so big that B(0, R — 1) con-
tains this bounded component. Let W5 = ¢~ !(interior(X®)) N B(0, R 4+ 1) and
let Wy, = ¢~ !(interior(X?)) N B(0, R). Since W}, C Ws, W, N B¢ has at least two
connected components (one containing z and at least one intersecting the sphere of
radius R—1). Without loss of generality one can assume that z € ¢! (interior(X?)),
otherwise take any b’ < b and then z € ¢~ (interior(X")). Hence Hy(W,NB) # 0.
Furthermore the image of the map j. : Ho(W), N B¢) — Hy(Ws N B¢) induced by
the inclusion is not zero. Note that W§ = J,cp @Y a—{a3[6]) U B(0, R + 1)°.
Therefore, by part (a) of Lemma 3.2, W¢né] C W¢, since 6 = b/m and m > 1.

The universal coefficient theorem then implies that the corresponding map on
cohomology j* : H*(Ws N B¢) — H°(W, N B°) is not zero. Since Ws and W, are
open, and W§ U B and W U B are orientable, we have the following commutative
diagram:

I?[n_l(VV(sC UB) E— n_l(WchB)

| y

H(WsN B¢) ——— H(W, N B°)
The vertical maps are Alexander duality isomorphisms. Hence the top horizontal

map is nonzero. But by Lemma 5.6 the top horizontal map is zero. This is a
contradiction. O

Proposition 5.9 (Limit points exist). Suppose ¢ < b < 1, and z is a point of
¢~ H(XP) with d,(z,0) sufficiently large (depending on b,e). Then there exists a
(b/m)-limit point B in X such that

O (B, d(2)) < ez (2:0),

The constant 11 is the same as in Lemma 5.8 and depends only on K; the constant
vy depends on K and 6.

Proof. Let s = d(2,0). By Lemma 5.8, there exists a path v : [0, 00) — ¢~1(X?/m)
C R™ such that v(0) = z, d(y(¢),0) > s for all ¢ and such « leaves every ball
centered at 0. Let = max(p, s), and for a nonnegative integer j let ¢; denote the
greatest value of ¢ for which d,(v(¢;),0) = 2/r. Then by Lemma 4.3, for all ¢ > ¢;,
Oc(pory(t),por(t;)) < e 22", This implies that the limit as ¢ — oo of ©(po(t))
exists: call it 8. The above estimate for ;7 = 0 shows that O.(¢(2),5) <e *". O

6. PROOF OF THE MAIN LEMMA (LEMMA 5.6)

6.1. The Expanding Annulus Lemma. Let v denote a unit vector in oy (typi-
cally v will be taken on the walls of @;. We define a subset Y, = K exp(R*v)K of
X. We think of the subset Y,, as playing the role of a hyperbolic space in X. The
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v-direction is the “radial direction” of Y, with the K-movement (rotation) trans-
verse to this radial direction and having exponential cost, just as in the hyperbolic
plane. The first of the two geometric facts we use in the the proof of the Main
Lemma is the following.

Lemma 6.1 (Expanding Annulus Lemma in Y,). Let ¢; < 1 and c2 > 0 be given.
Let ag, by be two points in Y, N A(r,(1 + ¢1/4)r). Suppose ¥ is a path in'Y, from
ag to by for which

o d(u(t),e) >r for allt.
o (YN A2, 20 r)) < o277,
Then d(ao,bo) < c1r if v is sufficiently large (depending on ¢1 and cz).

Proof. See the Appendix. O

Note on uniformity. From the proof, we see that minimal radius r¢ for which
the lemma holds, depends on v only via the the quantity aumin(v) = min a(v) where
the minimum is taken over the o € A for which «(v) # 0.

6.2. Coarse topology and pinched subsets of R”. The following definition is
motivated by Lemma 6.1.

Definition 6.2 (Pinching function). Let W be a subset of R™. A nonnegative,
proper, continuous function f : W — R is a pinching function on W, with pinching
constants (ro,m, 3) if for all s > rg and all x,y € W satisfying s < f(x) < f(y) < ns
the following holds: if there exists a path v : [0,1] — W connecting x and y with
f(y(t)) > s for all ¢, then d(z,y) < Bs.

Note. If f is a pinching function for W, then f is a pinching function for any subset
of W, with the same pinching constants.

The goal of this subsection is to show that subsets W C R™ with pinching
functions are pinched, by which we mean the homology H,(W),q > 1, vanishes
under the inclusion map into some neighborhood of W.

We begin with a fact about R™.

Lemma 6.3 (Trivial R” fact). Ifr > 0 and if T C R" is a set of diameter at most
r, then for any function r(x) on T satisfying 2r < r(x) < 4r for all x € T, the set
Uzer B(x,r(x)) is contractible.

Proof. Let u be any point of T. Then T C B(u,r). Hence for each z € T, the
ball B(z,r(x)) contains u. Thus J,.p B(z,r(x)) is star-shaped with respect to u,
hence contractible. O

Lemma 6.4 (Pinching lemma). Suppose W C R", and _suppose f is a pinching
function on W withpinchz’ng constants (ro,n,3). Let F be any ball containing
FX([0,70]), and let W be the following neighborhood of W :

W =FU{zeR": 3we Wuith d(z,w) < 46f(w)}.

Then for any p > 1, the homomorphism i. : Hy(W) — H,(W) induced by the
inclusion 1 : W — W is the zero homomorphism.
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FIGURE 4. Applying the definition of pinching function shows that
each of the regions like the shaded regions must have small diam-
cter. Hence W = |JY_, W; must be pinched.

Proof. Let F = W N F, so F is a neighborhood of F and W is a neighborhood of
W. From the commutative diagram

Hy(F) —— Hpy(W) —— Hy(W, F)

& | I |
Hy(F) —— Hy(W) —— H,(W,F)

and the contractibility of F, it is enough to show that the right vertical homomor-
phism in (11) is the zero map.

In the proof of this lemma, for any subset Q of W, we denote by @ the union
of the set F with the set of points z € R” such that there exists w € Q with
d(z,w) < 48 f(w).

Clearly, without loss of generality we may assume that W is bounded. Pick a
decreasing sequence s, ..., sy so that sg = sup,,cw f(w), Sk—1/8K < 171/2 for all
k,and sy =rg. Let Wi, ={w e W : f(w) <sp}UF, so that Wy is a decreasing
family of sets with Wy = W, and Wy = F. The idea of the proof is illustrated in

Figure 4.
We claim that for each k, and any connected component @ of W' \ W1,
(*)k Ge t Hy(Q,Q N W) — H,(Q, Q/ﬁ\_VT/k) is the zero map

where j, is induced by the inclusion j : @ — Q. The point of considering the
connected components as opposed to all of W \ W}, at once is that this allows us
to get the additional property of connectedness, which will be crucial.

We prove (*); by induction on k. If k = 0, then H,(Q,W;) = 0 because
Q C W =W,y. Now suppose (x)g—1 is true. Consider the commutative diagram:

Hp(Qka—lanWk) E— Hp(QanWk) E— Hp(QanWk—l)

(12) | - |

—~—

Hy(QN Wiy, QN W) —— Hy(Q,QNWy) —2— Ho(Q,QN Wi_)
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/V Vs

FIGURE 5. A schematic of V5Jr sitting inside the Abelian Lie sub-
algebra a.

where the top row is the exact sequence of the triple QW C QNWji_1 C Q, the
bottom row is the exact sequence of the triple Q N Wi C Q N Wi_1 C Q, and the
vertical maps are induced by the inclusion Q — Q.

The fact that j, in (12) is zero does not formally follow from the inductive
hypothesis (x),_1 because @ is a connected component of W \ Wi, not W\ Wi.
However, we may argue as follows: since Wy C Wy_; for all &,

Hy(Q,Q N Wi_1) = Hy(Q\ Wi, (Q \ W) N Wi_1) = @D Hy(S;, Si N Wi_1)
iel

where the S; are the connected components of @ \ Wj. The inductive hypothesis
(%)k—1 is the statement that for each ¢, the homomorphism j, : H,(S;, SiNWy_1) —
Hp(g'i, S; N Wi_1) induced by the inclusion S; — S; is the zero map. Since for each
i the inclusion S; — Q factors through the inclusion S; — S, this implies that the
map j. in (12) is the zero map.

Denote (Q N Wi—1) \ (Q N Wy) by T. Now suppose x and y are any two points
in T. Then s < f(z) < sg—1, and sx < f(y) < sg—1. By the definition of T,
and since @ is connected, © and y can be connected by a path v : [0,1] — W such
that f(y(t)) > sg+1 for all t. Note that sx_1/sg+1 < 1. Since f is a pinching
function, this implies that d(z,y) < Osk+1. Now Lemma 6.3 implies that T is
contractible. Hence H,(Q N Wji_1,Q N W) = 0, so the map @, in (12) is injective.
This, together with the fact that j. = 0, implies that the map j. in (12) is the
zero map, which proves (). Since W = F, this proves that the right vertical
homomorphism in (11) is indeed zero. O

6.3. Constructing a pinching function on ¢~1(Y,[6]). This section contains
the second of the two geometric facts we use in the the proof of the Main Lemma.

6.3.1. A contraction. Let v be a unit vector in at. Let a € A be such that a(v) is
maximal. Then there are numbers 75 € [0, 1] for all simple roots 8 # a so that

(13) V=Rtv={Heay : B(H)=r1sa(H) forall 3eA—{a}}.
Let

Vii={Heay : mpa(H)<B(H) < (r5+6)a(H) forall e A—{a}}
and let Yy + = K exp Vit K C X (see Figure 5).
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We will need to construct a contraction of YVJ to Y,. We begin by defining a

map 7y : Vit — V as follows: if V is given in the form (13), then my (H) is the
unique point in V such that a(my (H)) = a(H). Then there exists a constant A
such that for z,y € V;r,

(14) d(my (), 7v (y)) < Ad(z,y).

Now define 7y on exp Vit by 7y (a) := expmy (loga), and extend 7y to all of Yy

by my(kaK) = kny(a)K.

Lemma 6.5 (A contraction). The map my : YVJ — Y, 1s a contraction:
d(my (), v (y)) < Ad(z,y)

forall z,y € YVJ'

Proof. Note that by construction, 8(my (z)) < f(zx) for all z € Yy+ and all § € ¥

It is enough to show that for any tangent vector T, |73, (T)| < X ||T||, where || - ||
denotes the length in the Riemannian metric. But this follows immediately from
(14), Proposition 2.3, and the observation that 3(my (z)) < B(z) forall g € X*. O

6.3.2. More approximations.

Lemma 6.6. For any vector v and any 6 > 0 there exists a one-dimensional linear
subspace U so that Y, [6] C Yys -
1

Proof. Assume V is given in the form (13). Then there exists A; so that
Vislnax c{H eax : (13— Md)a(H) <B(H) < (18 +Md)a(H),
for all 8 € A — {a}}.
Let 74 = max(73 — A\16,0), and let
U={Heca; : B(H)=r130(H) forall 3eA—{a}}.
Then Y, [6] C Yy - Clearly we may ensure that U = R*u for some unit vector u,
1
and for every a € A, either a(u) =0 or a(u) > 6. O
For = € ¢_1(YV5+), define ¢y (z) = 7y o ¢(x).
Lemma 6.7 (¢y satisfies Conditions I and II). Let U, v, 6 be such thate < 6 < 1,
and Y,[26] C YU;A . Then for any x,y € ¢~ (Y, [8]) the following two facts hold:
1
(15)  d(z,y) — O(6d,(2,0)) < d(du(z), ¢u(y)) < d(z,y) + O(6d,(z,0)),

(16) %dp(a:,()) < (v (2), €) < 4Kd)(z,0).

Proof. 1f x,y € ¢$=1(Y,[8]), then ¢(z), ¢(y) C Y,[26] C Yy - Note that on Yy,

(17) d(z, 7y (z)) = O(8d(z, €)).
Hence
(18) d(d(x), pu (z)) = O(8d(¢(x), €)) = O(bd,(x,0))

by Condition II. Applying the triangle inequality together with (18) and Condition
I then gives (15).
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To prove the second fact, we know from (18) and Condition IT that, if € < 6,

(19) (2,0) — O(6d,(x,0)) < d(Pv(x),e) <2Kd,(x,0)+ O(6d,(x,0)).

1
2K
Now (16) follows from (19) if § < 1. O

6.3.3. Proof of 1-dimensional pinching. In this subsection we prove a “l-dimen-
sional” version of Lemma 5.6. This is the base case of the inductive proof in §6.4.

The motivation for the definition of pinching function came from functions such
as d(g(z), e), where g is a reasonably efficient map of R™ into a hyperbolic space. For
example a quasi-isometric embedding ¢ : R2 — H? x H? composed with projection
onto an H? factor, restricted to ¢~1(X?).

For general X, the role of a hyperbolic plane factor is played by Y, as in the
Expanding Annulus Lemma (Lemma 6.1). The property of Y, used is that “travel
transverse to the radial direction in Y, is exponentially expensive”, as given precisely
by the Expanding Annulus Lemma.

The pinching functions we need to construct, however, use instead the neighbor-
hood Y, [6] of Y,, in X. This neighborhood only introduces a linear error term O(ér)
in the functions involved, so proving that d(my o ¢(z), e) is a pinching function on
¢~ 1(Y,[6]) follows easily from the Expanding Annulus Lemma. However, one must
keep track of the error term and show that the axioms of a pinching function are
satisfied.

Lemma 6.8 (Constructing a pinching function on ¢=1(Y,[8])). If ¢ < § < 1,
then for any unit vector v in ay, the set ¢~ 1(Y,[0]) has a pinching function f with
pinching constants (ro,w =1+ 0(6), 8 = O()), where ro = ro(8). Furthermore, f
also satisfies:

(20) &dp(x, 0) < f(x) < 4Kd,(x,0) for all x € ¢~ (Y, [8]).

Proof. By Lemma 6.6 we can choose U so that Y, [26] C YU$15' Let ¢y = my o ¢.
We claim that f(z) = d(¢u(x),e) is the required pinching function. The equation
(20) is the same as (16); this also shows that f is proper.

Now suppose z,y € ¢~ 1(Y,[6]), s > ro and s < f(z) <
[0,1] — ¢~ 1(Y,[6]) be a path from z to y satisfying f(y(t)) >
show d(z,y) < és.

Let 4 be the path constructed from ¢ o v as in Lemma 3.3. Property (1) of
Lemma 3.3 gives 4 C ¢ o y[Ae]. Hence by part (b) of Lemma 3.2, 4 C Y,,[26], since
€ < 6. Also the fact that 4 C ¢ o y[Ae] implies that for every point & € 4 there is a
point § € ¢(7y) so that d(Z,§) = O(ed(y,e)). Hence, if e < § < 1, by Lemma 6.5,

d(my (9), 7u (£)) < 6d(g,e) < bd(mu (7),e),
where the last estimate follows from (17) and the triangle inequality. Thus
d(my(2),e) = d(mu (), €) — d(mu (), 7u () = (1 — O(8))d(wu (), ).

Since § = ¢ o y(t) for some t € [0,1], d(mu(9),e) = f(y(t)) > s. Thus for all £ in
the image of 7,

(21) Al (2),€) > (1— \6)s,

fy) < ws. Let v :
s for all t. We must

for some constant \.
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We want to apply Lemma 6.1 to the path ¢ = my 0 4. Let » = (1 — Ad)s. Then
by (21), d(v(t),e) > r for all ¢ in [0,1], hence the first hypothesis of Lemma 6.1
holds.

Let ¢; = 8A8, w = 14+(A\/2)68, ap = ¢y (x), and by = ¢y (y). Since d(ao, e), d(bo, €)
€ [s,ws], it easy to check that our choice of ¢; and w gives d(ao,e),d(bo,€) €
[r,(1 + c1/4)r], as long as 6 <« 1. Property (2) of Lemma 3.3 and Lemma 6.5
imply that the second hypothesis of Lemma 6.1 holds with c; = O(1/¢"~1). Hence
Lemma 6.1 gives a constant ro so that if r > rg

d(¢v(z), ¢u(y)) = d(ao,bo) < cir < c15 = O(s).
Hence
d(z,y) < c1s +0(8d,(z,0)) by (15)
< 15+ 0(6d(gy (z),e)) by (16)
< 15+ 0(6s) since d(¢y(x),e) < ws < 2s
< ds.

By the construction of U = Rt w, for every a € A either a(u) = 0 or a(u) > 6.
Thus by the “remark on uniformity” following the statement of Lemma 6.1, rg
depends only on €, ¢, and not on v. O

Corollary 6.9 (The set ¢~ 1(Y,[]) is pinched). Suppose ¢ < § < 1 and max(r, p)
is sufficiently large (depending on &,¢). Then for every subset W C ¢=1(Y,[8]) and
all p > 1, the homomorphism i, : H,(W U B(0,7)) — H,(Wné] U B(0,r)) induced
by the inclusion is the zero map. Here n = n(K) > 1 is independent of 6.

Proof. Since if f is a pinching function on a set .S, then f is a pinching function on
any subset of S, and the first assertion follows immediately from Lemma 6.8 and
Lemma 6.4, and the observation that by (20) and the definition of the pinching
constant 3, W C W[né] for n = O(1). O

6.4. Higher dimensional pinching and Mayer-Vietoris. We have a finite
group W (the Weyl group) acting properly discontinuously on S"~!. Let C be
a linear complex on S"~! Nay, i.e. C is a finite cell complex whose cells are inter-
sections with S™~! of linear subspaces. For a linear complex C, we define Yz to be
Kexp(RTC)K C X.

We now wish to generalize the pinching phenomenon to a setting where the
target space has flat directions, and so does not admit a pinching function like Y,,.
Specifically we want to generalize the conclusion of the pinching lemma, with Y,
replaced by Ye.6

Although Y does not have an Expanding Annulus Lemma or any other hyper-
bolic properties, it is foliated by copies of Y,,. We use this together with Mayer-
Vietoris to prove pinching.

For any linear complex D, we define the inner size (resp. outer size) of D to be
the maximal (resp. minimal) number s so that every cell in D contains (resp. is
contained in) a ball of radius s. Note that every complex can be completed to a
(W-invariant) triangulation of S"~! with “bounded geometry”; i.e. there exists a
A = A(n) > 1 such that every linear complex D has a refinement D’ (which may be

6We note that this generalization is not necessary in the case X = H? x H?, and so is not
covered in [EF].
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completed to a W-invariant triangulation of S"~!) or which the ratio of the outer
size of D’ to the inner size of D’ is less than A.

Now define the feature size of C, denoted f.s.(C), to be the maximum over s € RT
such that C can be completed to a W-invariant triangulation C’ of S"~! with inner
size at least s and outer size at most As. This number is finite and nonzero for any
linear complex.

We note the following trivial fact: there is a constant A; = A1(n) so that if C is
a linear complex and u < £.5.(C), then there exists a refinement C” of C such that
)\flu <fs.(C") < \p.

We also note here that ‘bracketing with [ ]’ commutes with translating by K; so,
for example, Y¢[6] = K ((expR*C)[8])K.

Lemma 6.10 (The sets ¢~1(Y¢[§]) are pinched for linear complexes C). For  all
1 < g < n-—1, there exist constants By = B4(K),8, = 6,(K) such that for ev-
ery (q — 1)-dimensional linear complex C in S"~' Nay, for all e < § < §,£.5.(C),
and for every W C ¢~ (Yc[8]), the map i. : Hy(W U F) — H,(W[B,6] U F) is
zero for all p > g, and every ball F' centered at 0, with d,(0F,0) sufficiently large
(depending on €,6).

Proof. For simplicity we provide a proof ignoring the ball F. The proof which
includes F' is quite similar, as in the proof of Lemma 6.4.

We use induction on q. Suppose ¢ = 1. Then C is a 0-complex, i.e. a collection
of points {v;}. Its feature size is at most Ap min;z; d(v;,v;), where Ay = Aa(n).
Hence if 6 < 1/(3A2)f:8.(C), the sets Yz,[6] are disjoint. Hence the case ¢ = 1 is
Corollary 6.9, with 6; = 1/(3A2).

Suppose ¢ > 1 and that the lemma holds for ¢ — 1 with constants B;_1, 64—1.
Without loss of generality, 8,—1 > 1, and 64—1 < 1. We choose 1 < 11 < 12 <
13 < N4, with sufficiently large implied constants (depending only on K and n). Let
C be a linear complex of dimension g—1. Choose 6 = 64—1/(14A184-1), and suppose
6 < 64f.5.(C). By the “trivial fact” above with pu = (6/84)(n3/14) = 6n3A18q—=1/64-1,
we may refine C so that f.5.(C) € [\ ', M), ie.

2
(22) 13015 £5.(C) < 137181 5
8q1 8g1

We choose
By = max (4nsA} B2, (3n3/6q—1 + 8m)Be—151) -
We will show that for W C Y¢[é], the map i, : Hy(W) — H,(W[G,6]) induced by

inclusion is zero.

Let S be the (¢—2)-skeleton of C. Let B = Ys[n2,-16], and let A = (Yc[6]\ B)[4].
So Ye[6] c AUB. Let A=¢ Y (A)NnW, B=¢"(BYNW. Then W = AU B.
Note that Wn] = A[n] U B[n] for all n > 0. See Figure 6.

For p > ¢, consider the commutative diagram

Hy(A) © Hp(B) Hp (W) - Hp1(ANB)
| | |
HP(A[4B¢1—16]) D HP(B[‘Wq—l‘SD = HP(W[4ﬁq—15]) Hp—l(A[‘lﬁq—l‘ﬂ N 3[4511—16])

Hy(A[Bq6]) © Hp(B[Bq6]) L’ Hp(W[Bs8]) ——— Hp—1(A[Bq8] N B[Bq6])
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FIGURE 6. How Mayer-Vietoris is applied. The entire picture is
a single cell of C. The shaded region is AN B, which has width
0. We emphasize that the size of any cell is much bigger than the
thickness of B, which in turn is much bigger than the thickness
of AN B. In other words (138,-16)/(84—1) > 128,16 > 6. One
reason these sizes are chosen this way is so that the sets A in
different cells remain disjoint after thickening. This allows us to
apply the inductive hypothesis.

where the rows are Mayer-Vietoris exact sequences, and the vertical maps are in-
clusions. From the definition of A and B and the continuity of ¢, it is easy to check
that the hypotheses of Mayer-Vietoris are satisfied.

We claim that the map k. is zero. Let C’ denote the intersection of C with OB.
Since OB is defined by linear equations, C’ is also a linear complex of dimension g—2.
C’ has one component C; in each cell of C. By construction, AN B C ¢~L (AN B),
and ANBis a disjoint union of sets C; where each C; is contained in Ye; [46]. Since
8g—1 < 1 and 12 < 13, the distance from C; to S equals 1725,-16 < f.5.(C) by (22).
Hence f.5.(C}) > (1/2)f.s.(C). Thus, by (22), 8¢4—1£.5.(C}) > (1/2)n38,-16 > 46, since
Bq—1 > 1 and 13 > 1. Thus we can apply the inductive hypothesis to each C; to
conclude that k., = 0.

We now claim that the map [, = lil) &) liQ) is also zero. We first consider
19 H,(B[43,-16]) — H,(B[B,6]). Note that

B[48,-16] C ¢~ (Ys[n2Bg-16)) [484-168] C ¢~ (Ys[n3Bg-16])

with the last inclusion by part (c¢) of Lemma 3.2 and 12 < 13. Also 030,16 <
84—1f.5.(C) by (22). Thus, by the induction hypothesis, the map H,(B[454-16]) —
Hy(B[464-16][n367_,6]) is the zero map. But

B[4534-16] [77355—16] C B[4773ﬂ§—15] C B[B49]

by Lemma 3.2 part (b) and 8, > 4n3ﬁ§_1, so that lf) is indeed the zero map.

We now consider 11"+ H,(A[40,18]) — H,(A[3,8]). Note that A[48, 18] C
¢ (A)[4By-16) C ¢~ (A1 B4-16]), since m1 > 1 by part (c) of Lemma 3.2. Since
1M <K 12, the set A[m By-10] is a disjoint union of sets Ai, where each A; is contained
in some D;[n1B4—16], where D; is a single cell of C. Then A[48,-16] is a disjoint

union of sets A; = (;5_1(1211-) N A[484-16]. If v; is the barycenter of D;, then D; C
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Yiy,3[Mfs.(C)] and

A; C ¢_1 (S/{vl}[)\lfS(C)][leﬂq_lé]) C ¢_1 (Y{UI}[Q)\lfS(C) + nlﬁq—lé])
C o7t (Yiw (2033 /6g—1 + m)Bg-10])

with the second inclusion by part (b) of Lemma 3.2 and the third inclusion by
formula (22). Note that if § < §,£.5.(C), then (2n3A3 /8,1 + n1)By—16 < 61£.5.(C),
because 14 > n3. Hence by the induction hypothesis applied in turn to each
O-complex {v;}, and by the disjointness of the A;’s, the map H,(A[48,-16]) —
Hy,(A[(3n3A3/84—1+m)By—1510)) is the zero map. Since (3n3A3/64—1+m)Bs—-151 <
By, the map A H,(A[484-16]) — Hp(A[B,6]) is the zero map, hence [, is the
Zero map.

The rest of the argument is a diagram chase: if x € H,(W), then j.(z) = U(y)
for some y since k., = 0. But then m,(j.(x)) = ¥/ (l.(y)) = 0 since I, = 0. Hence
i« = My o j, = 0, which is what we needed to show. O

Proof of the Main Lemma (Lemma 5.6). Recall that (X%)¢ = U,ca Ya\(a}lé]-
Apply Lemma 6.10 to the “wall complex” whose cells are the intersections of the
unit sphere with subspaces of the form L, :={H €ay : a(H)=0 forall a & o}
(so that Y, = K exp L, K). The dimension of this complex is n — 2. O

7. PROOF OF THEOREM 1.1

7.1. Flats and the boundary. The hyperplanes = 0 for § € ¥ divide a into
finitely many regions called Weyl chambers. The Weyl group, denoted by W, is
defined to be Nk (a)/M, where Nk (a) is the normalizer of a in K under the adjoint
action. As above, M is the intersection with K of the centralizer of a. The Weyl
group is finite, and acts transitively on the Weyl chambers.

We first write the action on the boundary of X explicitly. Let n = @ .5+ g%
Then n is a nilpotent Lie subalgebra of g, and its exponential is a nilpotent Lie group
N. From the definition it is clear that M A normalizes N, hence B = M AN is a
subgroup of G, called a Borel subgroup. In view of the Iwasawa decomposition G =
K AN and the fact that M is a normal subgroup of B, we have a diffeomorphism
of K/M onto G/B given by

kM — kB.

The relation K/M = G/B shows in particular that G acts as a transformation
group on the boundary X; this action agrees with the action defined by (2). The
action in the K /M picture is given by
g- kM = R(gk)M
if for x € G, &(z) € K is given by © € &(x)AN. Thus the stabilizer of the point
o=eM in K/M is B.
The Bruhat decomposition decomposes G into double cosets of B. In fact
G= || BuB
weW

where the union is disjoint. For exactly one wy € W the set BwgB is open; wy
is called the longest element of the Weyl group. The set BwoB/B is an open and

dense subset of the boundary G/B, on which B acts transitively. The complement
of BwogB in G is called the singular set; the intersection of the singular set with K
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is the singular subset, denoted by S. The complement of S in K is open and dense,
and MSM = S.

Now for each flat F in X we can associate a finite set F(c0) C X of (equivalence
classes) of Weyl chambers in F. We call F(co) the limit set of F. For every
pair of points (8,7) of X, there ex1sts a flat F so that 8,7 € F(oc0). If (under
the identification of X with K /M) 371y ¢ S, then F is unique; we denote it by

F(8,7)-

Definition 7.1. We define a function ©.(3,7) to be dx(5,7S), and then extend
it to all p € X, 8,7 € X so that for any g € G, Oy (98, 97) = ©.(8,7)-

The following geometric fact generalizes the fact that, in the hyperbolic plane, if
the angle ZABC of a triangle is bounded below, then the distance from B to AC
is bounded above. The proof is given in the Appendix.

Lemma 7.2. For every € > 0 there exists a number R > 0 such that for p € X
and 3,y € X, if ©,(8,7) > ¢, then d(p, F(3,7)) < R

7.2. Proof of Theorem 1.1. We are given a (k,C)-quasi-isometric embedding
¢ : R™ — X. The idea of the proof is roughly as follows.

First off, suppose z € X is a point which sees two far-away points ¢(x1), ¢(z2) €
X°%(z) at a visual angle bounded below (actually we need a lower bound on
O (é(x1), #(x2))). By Lemma 5.8, for each ¢ = 1,2, there is a path 7; from z;
to infinity in ¢~!(X?(z)) with ¢ o ~; limiting to a limit point £;. If we knew that
the paths ¢ o 7; stayed outside a large ball containing z, then by Lemma 4.3 (no
shifting lemma) 81 # (2. Since the visual distance O, (¢(x1), ¢(z2)) is bounded be-
low, the visual distance O’ (81, 82) is bounded below (again by no shifting). Then
by an analog of thin triangles (Lemma 7.2), z must be a bounded distance from
the flat F(ﬂl,ﬁg).

Why do the paths ¢ o ; stay outside a large ball containing z? There are two
cases: either z is far from ¢(R™) (and we are obviously done), or ¢(R™) comes close
to z at a point p € ¢(R™), in which case we can (Lemma 5.8) find paths 7; as
above which stay far from ¢~!(p). Then ¢ o v; would stay far from p since ¢ is a
quasi-isometry. Since p and z are close, this implies that the paths stay far away
from z as well.

Now given an arbitrary z; € R”, we can use Lemma 5.7 to find zo € R™ which
is a large (but fixed) distance R from x;, and so that each ¢(x;) € X°(z), where
z is the midpoint of the geodesic from ¢(x1) to ¢(x2). We then apply the above
argument to show that z is close to a flat connecting two limit points of ¢, and so
¢(x1) is close plus kR /2 to that flat.

Notice that, in the above argument, we really had to apply all of the previous
machinery that gave existence of limit points two different times. We write out the
step which will be repeated in the following:

Proposition 7.3. Suppose 0,z1,20 € R™, e € X and €,6,KC, \g,r > 0 are such
that

(a

xla$2€¢ (Xé)

)
)
§$1,$2¢B
) Oc(¢(z1), ¢(x2)) = Ao > 0.
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(f) d(¢(z2),e) > d(¢(x1),e) > r withr sufficiently large (depending on K, 6, €, Ao ).

Then there exist constants 8’ (depending on K,8) and A (depending on \o) such
that

d(e, F(B,7)) <A,  with B,y € Ls:(9).

Proof. Let &' = §/m where 1; is as in Proposition 5.9. Then by Proposition 5.9
there exist ¢’-limit points 1, (B2 so that for i =1, 2,

Oc(B(xi), B;) < e v2de(m2:0),

As 7 increases, so does d,(z;,0) by Condition II. Then for sufficiently large r,
Oc(P(xi), 8;) < Ao/4, so by the triangle inequality, ©,(81, 52) > Ao/2. Then by
Lemma 7.2, d(e, F(B1,82)) is bounded by some constant A depending only on Ao
and X. |

Choosing constants. Choose v smaller than a large negative power of k (v =
1/(32k3), where £ > 1). Choose ¢,§ so that € < 1/(12k), Lemma 5.7 is satisfied
with K = k, and so that condition 77 of Proposition 7.3 is satisfied both with IC = &
and K = k?/v. Note that ¢ and § depend only on k. Now choose R so large that
condition ?? of Proposition 7.3 is satisfied with » = R/(4K), with €, 6 as chosen,
and both with K = x and with K = x2/v. Now let § denote one half of the smaller
of the two constants ¢’ produced by the two applications (K = x and K = k2 /v) of
Proposition 7.3.

Method of proof. We will show the following: for every point 1 € R", ¢(z1)
is within a bounded distance of a flat of the form F(8;,(2) where /31, 32 belong
to the &-limit set Lz(¢), and ﬂz_lﬂl ¢ S. This is enough since the cardinality of
the limit set is bounded by Proposition 5.2 (limit set is finite), and the limit set is
independent of the point z; by Lemma 5.4 and the choice of 8.

Separation into cases. Let x; € R™ be an arbitrary point. Since ¢ is a quasi-
isometry, we may assume, without loss of generality, that”

(23) ¢ satisfies Condition I with base point z1 and some p; = p1(¢, C).

Choose R > 16x2p;. By Lemma 5.7 there exists a point x5 € ¢~ 1(X?(¢(21)))
with d(z1,2z2) = R. Let z denote the midpoint of the geodesic in X between
@(z1) and ¢(x2). We choose coordinates on X so that the origin e is z. An easy
similar triangles argument shows that x1, 79 € ¢~ (X?(e)), hence condition (d) of
Proposition 7.3 holds. Since ¢(x1) and ¢(z2) are points in opposite Weyl chambers
of a flat passing through z = e, ©(¢(x1)) = O(¢(x2))wy, where wy is the longest
element of the Weyl group W. Hence

0, (d(x1), d(x2)) = di (wo,S) = Ao

depending only on X. Thus condition (e) of Proposition 7.3 also holds. The
conditions (b) and (f) hold by the choice of constants. Hence we need to verify the
conditions (a) and (c) of Proposition 7.3. There are two cases to consider:

"We will use only this more general condition in the rest of the proof. This is done in order to
simplify the proof of Theorem 8.1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



680 ALEX ESKIN AND BENSON FARB

Case 1. d(¢p(R™),z) > vR. In this case choose coordinates so that z; = 0 € R".
We claim that the map ¢ satisfies Condition I and Condition IT on all of R™ with
p = k2R and K = x?/v. Condition I holds because p > R > p; and K > k. The
lower bound in Condition II follows like this: For any u € R",

d(¢(u),e) > max(d(¢(u), $(0)) — d(¢(0),e),vR)
> max(%d(u, 0) — (5 + )R/2 — edy, (u, 0), vRR)

1
> max(;d(u, 0) —2kR/3 — edp, (u,0),vR)

Y

% max{g((d(u, 0) — 262R/3 — erd,, (u,0)), k2R)}

Y

v
pel max{d(u,0), xR}

1
= Edp(ua O)

where the second line follows from

(k+ R,

N =

(kR + edp, (x1,22)) <

N =

A(6(0),€) = 5d(B(e1), 6(22)) <

and the second to last line following since: If d(u,0) < k?R, then it is clear; if
d(u,0) > k?R, then % . (3 — ke)d(u,0) > d(u,0) since K > 4v, ex < 1/12 and
K2R =p> p1.

The upper bound in Condition II follows from

(24) dplu),e) < d9(u),(0) + d(60),€) < wa(w,0) + M 4 g 0
< %2 max(d(u,0), k*R) = Kd,(u,0)

since v < 1/2 and k > 1.
Thus condition (a) of Proposition 7.3 is verified in Case 1. Condition (c) of
Proposition 7.3 is vacuous since B is empty.

Case 2. There exists p € ¢(R™) such that d(p,e) < vR.

Choose coordinates on R™ so that ¢~!(p) is the origin 0. We claim that ¢
satisfies the conditions of Proposition 7.3 with = k, p = 0 and B = B(0,7’),
where 7’ = 8%.

We first check condition (c) of Proposition 7.3. It follows from (23) that

d(mlao) d ¢(xl)7p)+/€€d91($170)

¢(I1)7 6) + ’id(pa 8) + Redﬂl (ajla 0)

IN A
E
/S\ —

IN

kd(p(x1), p(x2)) + KVR + Ked,, (21, 0)

IN
N XN

(k+ €)R + kvR + ked,, (71,0) < K*R + Ked,, (21,0).
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Also,

A(21,0) > ~d(@(1), ) — ~edy,(21,0)

Y

Sd(0(a1), ) — ~d(p.) — e, (11,0)

1 1 1

> m(lﬁ - E)R - EVR - EEdpl (1’1, 0)
1 €

= el Edm(ﬁiho)

where the first line used (23) and to go from the second line to the third we used
d(é(x1),e) > ((1/k) — €)R and d(p,e) < vR. Hence

1
(25) gl d(z1,0) < 26°R.

Analogously

A(w2,0) 2 +d(0la2, ) — <y (01,32) = dy(a1,0)

1 € 1
2 ER — Edpl (fEl,O) 2 @R

Therefore x1,x2 & B, so condition (c) of Proposition 7.3 is satisfied.
We now check condition (a) of Proposition 7.3. We have by (23)

A(§(u), $(u')) < rd(u, ) + ed(u, 1) + ed(u/, 21).
If d(u,0) > 2k*R, then
d(u,0) > 2k*R > d(z1,0).
If d(u,0) < 2k%R, then
d(u, 1) < 4k*R < 32k%d(u, 0)

since d(u,0) > gz R. Therefore d,, (u, 1) < 32k%d(u,0) and ¢(z) satisfies Condi-
tion I outside B with K =k, p = 0 and € replaced by 32x%e = €.
Finally we check Condition II.

d(d(u),e) = d(¢(u),p) —d(p,e)
> %d(u, 0) — ed(u,0) —vR
1
S
(26) 2 5pd,0)
since d(u,0) > gz R and v < z3—. Analogously

d(p(u),p) < Kd(u,0) + ed(u,0) < 2Kd(u,0).

Note that for the simplicity of notation we write in (26) € instead of ¢ = 32x%e.
Thus condition (a) of Proposition 7.3 is satisfied.
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~—

Completing the proof. By Proposition 7.3, d(e, F(8,v)) < A. But then
<

d(¢(z1), F(8,7)) < d(¢(z1), 2) + d(z, F(3,7))

This proves the theorem. O

(kR+C)+A.

N~

Corollary 7.4 (Single flat). Suppose ¢ : R™ — X is a (k, C)-quasi-isometric em-
bedding, and for some sufficiently small &6 > 0 (depending on k), Ls(¢) = F(00)
for some flat F C X. Then the image of ¢ is in an N-neighborhood of F', where N
depends only on (k,C) and X.

Proof. This is clear from the proof since in this case, the union of flats constructed
coincides with F'. O

8. CONSEQUENCES

8.1. Quasi-flats with holes. Suppose 2 C R". Let Q¢ r be the set of all z € 2
such that for any y € R™ \ B(z, R) the closed ball B(y,ed(z,y)) contains points
of Q, i.e. there exists z € Q with d(z,y) < ed(x,y). If for some € and R, Q. g is
nonempty, we think of 2 as a “quasi-flat with holes”.

As a corollary of the proof of Theorem 1.1 we have the following theorem:

Theorem 8.1 (Quasi-flats with holes). Suppose ¢ is a (k,C)-quasi-isometric em-
bedding from  C R™ into X. Then there exist constants F = F(k) and ¢y = eo(k)
such that if € < eg, R > 1 and Q¢ r is not empty, then ¢(Qe r) lies in the N-
neighborhood of F flats in X, where N depends on k,C, and R.

This theorem is used in [E] to deduce quasi-isometric rigidity for nonuniform
lattices in semisimple groups without rank one factors.

Proof. Suppose z € Q¢ r. We build a grid as in §3.2, so that each point y is
contained in a cell of size between (e/2)d(x,y), and ed(z,y). Then, by the definition
of Q¢ g, for every cell C' with d(C,z) > R, QN C is not empty; we pick a point yc
in the intersection. We also consider the ball of radius R as a cell, with the point
x as the grid point.

We can now use the “connecting the dots” argument (see §3) to construct a
continuous function ¢, defined on all of R™ which agrees with ¢ on every yo. We
may also ensure that for all y € Q — B(z, R),

(27) d(o(y), b (y)) < cpred(y, )

where ¢,, depends only on the dimension.

Choose ¢y to be 1/(2¢,k) times the € chosen in the proof of Theorem 1.1. The
function ¢, satisfies Condition I with base point x; because of (27) combined with
the fact that ¢ does. We then repeat the proof of Theorem 1.1, except that we
immediately replace ¢ by ¢, and choose 1 = x. Thus the proof of Theorem 1.1
shows that ¢(x) is within a bounded distance from one of the flats F'(3,~) where
B and 7 belong to the limit set L5(¢,). We must show that this limit set is
independent of z € Q) g.

Let £ be another point in )¢ r, and let ¢z be a continuous function constructed
analogously to ¢,. We have

(28) d(d2(y), d2(y)) = Oled(y, x) + ed(y,T)),  y < R"
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By Lemma 5.4 L5(¢,) is independent of the choice of basepoint (up to replacing &
by 6/2). Therefore by choosing  as basepoint for ¢, and using (28) and Lemma 5.5
we get L5(¢z) C L5/4(¢z). The opposite containment Lg(dz) C Ls/4(¢s) is proved
identically. Therefore the limit set is independent of the base point z, up to replac-
ing & by 6/4. |

8.2. More on quasi-flats. The following lemma is a coarse version of invariance
of domain. The proof is a variation of an argument due to Geoff Mess.® See also
[F'S, Corollary 5.3].

Lemma 8.2 (Local packing). Let f : B — D be a continuous map which is a
(k, C)-quasi-isometric embedding from the ball B = B(x,r1) C R™ into a ball D C
R™ around f(x). Then for any N > (26 + C), the image f(B) contains the ball
B(f(z),N) if r1 is sufficiently large (depending on N ). We emphasize that r1 does
not depend on k or f.

Note. A variant of the statement of Lemma 8.2 is true without the assumption that
f is continuous, as one can see by using the “connect-the-dots” construction (§3).

Proof. Let C'= B(f(z),N) C D. Let U C B be a ball of radius ro < r1 centered
at . Choose m and 7o so large that f(B — U) N C is empty. Hence we have a
continuous map of pairs

f : (BvB _U) - (f(B)7f(B) nOC).

We define a continuous map g : f(B) — B by choosing a sufficiently sparse net
of points in f(B), and sending a point y of this net to any point in f~*(y), and
extending the map to all of f(B) by connecting-the-dots. Since N > 2k + C, we
get a continuous map of pairs

where the second map is the obvious deformation retraction along rays emanating
from x. The map g o f is pair-preserving homotopic to the identity, so the induced
map

is injective (here we use homology with Z coefficients). Clearly H,(B,B —U) ~ Z,
so that H,(f(B),f(B) N C¢) # 0. Now suppose the proposition were false, so
that there exists y € C with y ¢ f(B). Since we are in the top dimension, it
follows easily from the definitions that the inclusion of pairs H, (f(B), f(B)NC*¢) —
H,(R™ — {y}, C°) is an injection, so the second group is nonzero. This is clearly a
contradiction. O

We note that Lemma 8.2 implies that any quasi-isometric embedding of R™ (with
a bounded geometry condition on the metric) into itself is in fact a quasi-isometry,
in particular some neighborhood of the image is all of R™.

If ¢ and ¢’ are two maps, we write d(¢, ¢') for sup, d(¢(x), ¢’ (x)).

Lemma 8.3 (¢(R") is close to cone over limit set). Let ¢ : R" — X be a (k,C)-
quasi-isometric embedding.

e For § sufficiently small the limit set Ls(¢) does not depend on 6 (we denote
it by L(9))-

8Thanks to Shmuel Weinberger for telling us about this argument.
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o There exists a (k, C')-quasi-isometric embedding ¢' : R™ — X so that d(¢, ¢")
< o0 and

¢ (R")CV and V C Nbhdg(¢'(R™))
where R > 0 and V' is the union of Weyl chambers passing through the origin:

V= J kA KCX.
keL(¢)

The functions ¢ and ¢’ have the same limit set.

Note. We do not claim that C’ or d(¢,¢') are bounded depending only on k and
C.

Proof. In the proof we abuse notation by identifying sets S C G with their projec-
tions to the symmetric space SK C X.

We first prove the second assertion. By Theorem 1.1, the image of ¢ is within
a bounded distance of a finite set F of flats. Let L' = (Jpcz F(00). Then L' is a

finite subset of X, which contains Ls(¢) for § sufficiently small. Note that in the
Key Example (§1.1), Ls(¢) is a proper subset of £’ for every value of 6.

We decompose each flat in F as a finite union of Weyl chambers. Every Weyl
chamber € thus obtained is equivalent to a Weyl chamber of the form kA, where
(with X identified with K/M) kM € L' (see §2). Let U = Uypsc 0 kAT. Since
L’ is finite, some neighborhood of U contains ¢(R™). Thus we may construct a
(k, C")-quasi-isometry ¢’ : R™ — U with d(¢,¢') < oo by composing ¢ with the
nearest-point projection from the image of ¢ to U. By connecting the dots (see
§3.2) we may assume that ¢’ is continuous.

Let Z C U be the union of the pairwise intersections of the Weyl chambers kA,
kM e L'. Pick R > C’ sufficiently large, and let U’ denote the subset of & which
is at least 2R away from Z. It is clear U’ is not empty, and is a disjoint union of
connected components, where each component is in the interior of a single Weyl
chamber. Then for v € U’, the connected component of B(u, R) NU containing
u is homeomorphic to a ball in R™. Take u € U’ N ¢'(R™). Then for r < R/k,
@' (B(¢'~Y(u),r)) is contained in a single Weyl chamber in . Hence by Lemma 8.2,
B(u,7")yNU C ¢'(R™). Since 7" does not depend on u, each connected component
of U’ is either completely contained in ¢'(R™) or is disjoint from ¢’'(R™). Now by
Proposition 5.9 it is clear that the connected components of U’ which are contained
in ¢'(R™) are precisely the interiors of the Weyl chambers associated to limit points
in ﬁg (¢)

The first assertion now follows immediately from the second. O

8.3. Quasi-isometries of higher rank symmetric spaces. The derivation of
Theorem 1.2 from Theorem 1.1 is a variation of the last part of Mostow’s proof of
his rigidity theorem. The difference is that we only know that the image of a flat
is close to a finite union of flats, as opposed to a single flat. In this subsection we
outline the relevant parts of Mostow’s proof with the modifications we need, and
refer the reader to [Mo] for details.

We denote the Hausdorft distance between two sets A, B as hd(A, B).

Lemma 8.4 (Weyl chambers go to Weyl chambers). Let ¢ : X — X be a quasi-
isometry. Then for every Weyl chamber € of X there exists a Weyl chamber €' so
that hd(q(€), ") < .
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Proof. For v € RT and S C X, let T,,(S) denote the v-neighborhood of S in X.
Consider the restriction of g to a flat F'in X. Let V be as in Lemma 8.3, and let €
denote a Weyl chamber in F. By Lemma 8.3, we may assume that ¢(F) C V. Let
B; C € be a sequence of balls with radii tending to co. Since V is a finite union of
Weyl chambers, we may pass to a subsequence so that, after possibly shrinking the
original balls B; (with radii still tending to co), the images ¢(B;) are contained in
the interior of some fixed Weyl chamber €’ of V.9 [Mo, Lemma 15.1], combined with
[Mo, Theorem 7.8] states that every Weyl chamber ¢ is within a finite Hausdorff
distance from a set of the form T, (Fy) N Fy where Fy and F; are flats with Fp D €.
The proof of [Mo, Lemma 15.1] shows that there exists a flat F/ € X such that for
w sufficiently large, hd(T,,(F') NV, ¢") < co.

Now by the definition any quasi-isometry ¢ has a coarse inverse, which is a
quasi-isometry ¢’ : X — X, with ¢’ o ¢ a bounded distance from the identity.

By Theorem 1.1, ¢’(F") is contained in a neighborhood of a finite union of flats
U§:1 F;. [Mo, Theorem 7.8] states that for v sufficiently large, and for some (pos-
sibly unbounded) convex polyhedra P; in F with singular faces,'® hd(T,(F;) N
F,Pj) < co. Hence, for sufficiently large v, hd(T,(¢'(F'))NF, Ule P;) < oo. Since
for sufficiently large v, T, (¢'(F")) contains the balls B; C €, there is a sequence
of balls B;- cen U?:l P; with radii increasing to infinity. An easy argument!!
shows that, by passing to a subsequence if needed, we may assume that all the
Bj are contained in € N P; for some 4, say ¢ = 1. Clearly the boundary of P,
cannot contain two parallel singular faces, hence P; must contain a Weyl chamber
¢ containing the B;. Since the B; belong to both € and €”, and the radii of the
B; tends to infinity, hd(€,€"”) < co. But for sufficiently large u > w > v > 1,
q(€") C q(P1) C q(Tu(d'(F"))NF) C Tw(F)NV C T, (¢'). Thus ¢(€) C T,,(¢') for
sufficiently large v.

The same argument shows that ¢'(¢’) C T,(€"”). Hence for sufficiently large
v>w>1,CC Ty (¢)) CT,(C"). Since € and € are both Weyl chambers, this
implies that hd(€, €”) < co. Hence for large enough v, ¢'(€') C T,,(€). Applying ¢
to both sides we get €' C T, (¢(€)) for large enough w. Hence hd(¢(€),¢") < co. O

Remark 8.5. Quasi-isometries have the basic property that
(29) hd(q(Nbhd(A) N Nbhd(B)),Nbhd(¢(A)) N Nbhd(¢q(B))) < co

for sufficiently large metric neighborhoods. It is another basic fact that hd(A, B) <
oo iff hd(q(A),q(B)) < co. Now given any chamber wall S, it is the intersection
of two Weyl chambers € and ®. Since ¢ takes the Weyl chambers €, to within
a finite Hausdorff distance of Weyl chambers €', ®’, equation (29) shows that ¢(5)
lies a finite Hausdorff distance from the intersection of (metric neighborhoods of)
¢’ and ©’. It is implicit in [Mo, §7] that this intersection is within a finite Hausdorff
distance of a chamber wall S’ of €’: by successive applications of [Mo, Theorem
7.8], the intersection is within a finite Hausdorff distance from a convex polyhedron
with singular faces which is contained in the Weyl chamber €’ hence it lies within
a finite Hausdorff distance from a chamber wall.

9¢(€) is not contained in a tubular neighborhood of a union of faces of Weyl chambers since
these sets have volume growth ~ R™ and ~ R"~1, respectively.

10A singular face is a hyperplane of the form o = c for o € A and ¢ € R.

' This argument is simply the fact that, if a union of ¢ convex sets in R™ contains a ball of
radius R, then at least one of the sets contains a ball of radius eR, where ¢ depends only on £.
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This argument shows that, up to finite Hausdorff distance, the quasi-isometry ¢
takes chamber walls to chamber walls. From this it is easy to see that ¢ induces an
order-preserving bijection of the partially ordered (by inclusion) set of equivalence
classes of Weyl chambers and their walls, where two sets are equivalent if they have
finite Hausdorff distance.

Lemma 8.6 (Flats go to flats). Let ¢ : X — X be a (K, C)-quasi-isometry. Then
there exists a number N = N(k,C) such that for every flat F' € X there exists a
flat F' € X with hd(gq(F), F') < N.

Proof. Another way to state the conclusion drawn in Remark 8.5 is that ¢ induces
an order-preserving bijection ¢* of the Tits building 7 (X) associated to X (see
[Ti]). In particular ¢* takes apartments to apartments. By [Ti, Theorem 5.2(i)],
apartments A in 7 (X) are in one-to-one correspondence with (maximal) flats F' in
X. Under this correspondence, the set of chambers of an apartment A is precisely
the set of points F(c0) C X for some flat F' in X. Hence the limit set £(g|r) in
X is of the form F’(co) for some flat F” in X. Now it follows from Corollary 7.4
that ¢(F) C Tn(F'"). To get the opposite inclusion F' C Tn(¢(F)) one can use
Lemma 8.2 (or the remark immediately following its proof). O

We remark that Lemma 8.6 implies a uniform version of Lemma 8.4 (see [Mo,
(15.2.6)]). It is in fact this uniform version by which Mostow obtains the continuity
of the induced map on the Furstenberg boundary.

Proof of Theorem 1.2. By Remark 8.5, ¢ induces an isomorphism ¢* : 7(X) —
7 (X). Since ¢ is a quasi-isometry which takes flats uniformly close to flats (Lemma
8.6), it can be shown (see [Mo, Ch. 15]) that ¢ induces a homeomorphism on the
Furstenberg maximal boundary X. Now Tits” Theorem ([Ti]) states that, if X has
no Euclidean or rank one factors, then every such isomorphism of 7 (X) is induced
by an isometry of X. Hence there is an isometry i of X with ¢¥* = ¢*. Then
Y~ toqis a (k,C)-quasi-isometry of X which induces the identity on 7 (X). Hence
for some N > 0 and for all flats FF C X,

(30) ¢~ o q(F) C Nbhdy (F).

Now it is not hard to check that there is a constant N’, depending only on N (hence
only on k, C), so that for any z € X, there exist flats Fy, Fp in X with Fy N Fy = z,
and with

(31) Nbhd y (F;) N Nbhdy (Fy) € Nbhdy (Fy N F).

It follows from (30) and (31) that d(¢~! o ¢(x),x) < N’, and the theorem follows
easily.
(]

Proof of Corollary 1.4. By now this type of proof has become standard; we provide
a sketch here for completeness. Recall that QI(X) is defined to be the group of
quasi-isometries of X modulo those quasi-isometries which are a bounded distance
from the identity (indeed this modding-out makes QI(X) into a group). Suppose
¢ : I' - X is a quasi-isometry, with coarse inverse ¢¥» : X — I'. We denote by
g — L4 the isometric action of I' on itself by left multiplication. We “conjugate”
this action by defining p(g) : X — X to be p(g) = ¢ o Ly 0 1, which is easily seen
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to be a quasi-isometry of X with q.i. constants independent of g. It is also clear
that there exists a constant C' > 0 so that

d(p(g) o p(h), p(gh)) < C.

Since elements of QI(X) which are a bounded distance from each other are
identified, this equation shows that p : T' — QI(X) is a homomorphism. Theorem
1.2 gives an isomorphism from QI(X) to Isom(X), so by composing we get a
homomorphism p : I' — Isom(X). What we need to show is that p has finite
kernel, and that p(I") is discrete and cocompact.

Pick a basepoint z € X. Since p(T") is a uniform family of quasi-isometries (i.e.
the quasi-isometry constants for p(g) are uniformly bounded), it follows that the set
of g € I' which take x into any fixed ball B in X must be finite. From this it easily
follows that p has finite kernel and p(I") is discrete. Finally, p(I") acts cocompactly
on X by definition of the action and by the fact that the C"’-neighborhood of ¢(T")
is all of X, for some constant C”" > 0. |

A. PROOFS OF SOME GEOMETRIC ESTIMATES

In this Appendix, we occasionally abuse notation and write d(g1, g2) as a short-
hand for d(g1 K, g2 K ), for elements g1, g2 of G.

A.1l. Proof of Proposition 2.3. For g € G, let £, denote left-translation by g,
and £ the differential of £. Since

®(kexp XM,aexpY) = kaexp(Ada ' X)(expY)K

it follows that E?ka),l 0 d®ar,0)(X,Y) is given by the projection to p along € of
the vector Ada !X +Y in g. We will now determine this explicitly in terms of
bases for ¥, a and €. For simplicity of notation we will use the convention that
Y1 consists of the roots 5 in ¥ each repeated according to its multiplicity pg. For
each 3 in ¥ we pick X3 € g” so that the various X g corresponding to the same
element of X1 form a basis for the root space g®. We also require that the basis X 8
is orthonormal with respect to the Killing form. Let X_g = 6(X3) where 0 denotes
the Cartan involution, defined by §(X) = X if X € ¢, and §(X) = - X if X € p.
Let Xj = Xg — 0(Xp), and let X = X5+ 6(Xg). Then X € t and X € p. The
elements X form a basis for ¥, and the elements X[ together with a basis for a
form a basis for p. Then the basis X é is orthonormal, and the elements X g are
also orthonormal with respect to the Killing form.

Lemma A.1. Let d® denote the differential of ®. Then
Clkay-1 © A®(kar,a) (Xj5) = — sinh f(a) Xj
and
Clkay-1 0 dPrra)(Z) =2 if Z € a.
Proof. See [Sc, Lemma 8.1.2]. O

Proof of Proposition 2.3. Pick an orthonormal basis Hy,..., H, for a. Since the
bases { X, } for ¢ and { X }U{H;} for p are orthonormal, and £(;4)-1 is an isometry,
the theorem follows immediately. O
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A.2. Proof of (i) of Lemma 4.1.

Lemma A.2. Suppose g = (gi;) € SL(n,R) is sufficiently far from the origin.
Then

A logtr gg' < d(gK,e) < Aglogtr gg*
where g' is the transposed matriz. Note that tr ggt = |gi;|?.
Proof. Note that if ¢ = kjaks, with k1,ky € K and a € Ay, then d(gK,e) =
d(aK,e), and trgg" = traa’ = Y, |a;|* where a = diag(ai,...,a,). Thus we
may assume g = a. Now d(aK,e) = (3 |log ai|2)1/2 and logtraa’ = log " |a;|?.

Since a1 > ag > -+ > ap, |logai| < d(aK,e) < y/nmax(|logal,|loga,|). Since
ar--an=1,a1 > a, =1/(ay---an_1) > 1/a}™!, so that | loga,| < (n—1)|loga|.

Hence,
|logai| < d(aK,e) < v/n(n—1)|logas.
Also
2|1loga;| < logaa® = log (Z |ai|2) < log(nlai]?) < 3|loga|
if d(aK,e) is large enough. The lemma follows. |

Lemma A.3. Suppose G = SL(n,R), and A is the diagonal subgroup. Ifn is upper
triangular and is sufficiently far from the origin e, then d(nK, AK) > Ad(nK,e),
where A\ depends only on the dimension.

Proof. Let a be the element of A so that aK is closest to nK. Note that d(nK,aK)
=d(a 'nK,e) and d(aK,e) = d(e,a ' K). By Lemma A.2,
dnK,aK) =d(a"'nK,e) > M\ tr(a”'n)(a " n)! > A tra™ (a7
> Mt K e) = MMy td(aK e).

Hence d(nkK,e) < d(nK,aK) +d(aK,e) < (1 + AT Hd(nK, aK). O

To prove part (i) of Lemma 4.1, we formulate a more general statement for the
case G = SL(n,R).

Lemma A.4. Suppose z,y € SL(n,R)/SO(n,R) satisfy a(x) > r, a(y) > r for all
a € o, where o C A is nonempty. Ifdx(©(x),0(y)My) > e V", then d(z,y) > Aor.
Here, M, = Zx(H,) is the subgroup of K consisting of elements fizing H, under
the adjoint action, where H, € a is defined by a(Hy) =1 if « € 0, a(Hy) = 0 if
ado.

Proof of Lemma A.4. The simple roots are a;(H) = H; — H;11 for 1 <i <n—1,
where H = diag(Hy,...,Hy,). Thus ¢ C A can be thought of as a subset of
1,...,n—1. Since (k;;) € My if k;j(H; — H;) = 0, we have

MU:{k:(kij)EK : kZJZOIf[j7Z—1]§ZA\O'}

We may write z = kjaK = kydiag(ay,...,a,)K and y = kea'K, where o’ =
diag(a,...,al). Then d(x,y) = d(kiaK, kya'K) = d(aK, ka'K), where k = k7 *ko.
Since the map X — A, K sending gK = kaK to aK is a contraction, d(x,y) >
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d(aK,a'K) > Aslloga;/aj|, for any j € [1,n —1]. Also for any pair (4,j), by
Lemma A.2,

d(z,y) > Mlogtra™'y(z™"y)"
> Al log(z™1y)iy
= )\4| log(aikijaj_l) + 10g(aj/a;-)|
> M| log(azkija; )| — Al log(a; /aj)]
> )\4| log(aikijaj_lﬂ - )\3)\4d(1‘, y)

Hence, for any pair (i, ),

(32) d(z,y) > As| log(aikijaj_lﬂ.

By compactness, for any k& € K there exists a pair (4,7) so that
(33) |kij| > Ak (M, e)

where A = A(X). Indeed, maxyecx dx (kM,,e) < di, and

min - max k| =ds >0,
k : drx(k,Ms)>do>0[j,i—1]¢A—0c

since if ds = 0 then there exists k1 € M, with dg (k1 M,,e) > 0. Thus for any
k € K such that dx(kM,,e) > da, there exists [j,i — 1] ¢ A\ o such that |k;;| >
d3/d1dK(kMU, 6).

We may now choose (i, j) so that (33) holds, and [i, j] ¢ A\ o. Since exchanging
x and y replaces k by k7! and k is orthogonal, we may assume i > j. Then
a;/a; > e since for some [, +1 € [j,i], a; € o and thus a;/a;41 > e”. Combining
this estimate with (32) and (33) proves the lemma. |

Proof of (i) of Lemma 4.1. Let Hy € a4 be defined by a(Hp) = 1 for all a € A.
Let p be a faithful linear representation of GG, i.e. an injective homomorphism
G — G’ = SL(n,R). We may choose K’, a’, A etc. so that p(G) N K’ = p(K) and
p(ag) C a/, etc. Let 7 C A’ be defined by

r—{a' €A : al(p(Ho)) > O},

Then M! = Zx/(H;) = Zk: (p(Ho)). Hence, p(K)NM. = p(M), andsop : K/M —
K'/M! is a totally geodesic embedding. Also p when viewed as a map from G/K
to G'/K' is a totally geodesic embedding. Now let ' = ming e, @/ (p(H)). By
construction, A’ > 0. Finally, if H € a, satisfies a(H) > r for all @ € A, then
H = rHy+ H, where H € ;. Hence, for all o/ € 7, o/ (p(H)) = ra’(p(Hp)) +
o/ (p(H)) > ro/(p(Ho)) > Nr. This shows that if z,y satisfy the hypothesis of
the lemma, i.e. a(x) > r, aly) > r, then p(x), p(y) satisfy the hypothesis of
Lemma A.4, i.e. o/(p(z)) > Nr,a/(p(y)) > N'r. Hence we can apply Lemma A.4
with 7 replaced by \'r. |

A.3. Proof of Lemma 7.2. Since W normalizes M A, for any w € W, BwB =
NwB. The longest element wy also has the property that woNwy 'nN = {e}.
This implies that for ny,ne € N, if njwoB = nowB, then ny = ny. Thus we can
define a map NV : (K \ S)/M — N be requiring k = N (k)man for some m € M,
a € A, n € N. This map is in fact a diffeomorphism onto; an inverse is obtained
by sending n € N to the K part of the Iwasawa decomposition of nwy.
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Proof of Lemma 7.2. We denote klkgl by k. Since k ¢ S, we may write
(34) k = nwoan’,
where n = N (k). Then, since M AN stabilizes o,
F = F(o0,k-0) = F(o,nwpan’ - 0) = F(o0,nwy - 0).
Since n stabilizes o,
d(e, F) = d(e, F(o,nwg - 0)) = d(n~*, F(o,wp - 0)) = d(n™*, A).

Since n=! = N (k)~!, the theorem follows immediately from the fact that N is a
diffeomorphism onto (K — S)/M. O

A.4. Proof of Lemma 2.4.

Proof of Lemma 2.4. By the assumption, = is nondegenerate. We write x = kaK;
then kM = ©(x). Then if we write g~k = k”a’'n’”, where k" € K, o € A, and
n” € N, then g=! - ©(x) = g~' - k = k"M, by the definition of the action on the
boundary. But g7 !z = ¢ 'kaK = k"a"n"aK = k"aa"(a"'n"a)K. Denote y =
k"aa" K so that ©(y) = k" M. Since Ad(a) is a contraction on N, d(a~'n"aK,e) <
d(n"K,e). By Lemma A.3, d(n"K,e) < A ld(gK,e). Thus d(a=‘n"aK,e) <
(v/A)r. But then d(g~'z,y) = d(a='n"aK,e) < (v/M\)r, thus, if r is sufficiently
large, dx(©(g7'z),0(y)) < e~ M7, since if dx(O(g~'2),O0(y)) > e M7 then by
Lemma 4.1 d(g~x,y) > Aor and v can be chosen to be arbitrarily small. O

A.5. Proof of Lemma 6.1. The following lemma is well known:

Lemma A.5 (Nilpotent orbits are exponentially distorted). Letz be a point in X,
and let y be a point in the orbit Nx. Then if x and y are sufficiently far apart,
dy(z,y) > A\ e2d@Y) where dy denotes the path metric along the orbit Nx.

Proof. We may assume that G = SL(n,R). Write x = anK. Then Nz = aNK, so
that yK = an’K. Hence d(z,y) = d(nK,n'K) < Mogtrn~!n'/(n=tn’)!. From the
elementary properties of nilpotent groups, dy(nK,n’'K) is bounded below by some
polynomial in trn=tn’(n=1n')t. O

Lemma A.6. Suppose 0 C A, x and y are points in X, and v a path connecting
z,y with a(y(t)) > r for all « € o and t € [0,1]. Then £(v) > eNdg (v M,,yM,).

Proof. This is clear from Proposition 2.3 and the observation that the only tangent
vectors in £ which are not multiplied by positive exponentials in the expression for
the metric are those tangent to M,. O

Lemma A.7 (Spheres in Y, are exponentially distorted). Let x and y be points in
Y, satisfying d(x,e) = d(y,e) = r. Then there exist constants A1, A2, A3 so that
for sufficiently large v, if d(z,y) > A3, then any path in Y, connecting x and y

which stays outside the ball of radius v centered at the origin has length at least
)\16)\2d(1ay).

Proof. Without loss of generality we may assume x = e. Let o denote the set
of @ € A such that a(v) = 0. Let N, = N/(N N M,). Let U be a compact
set containing e in the interior on which the N,M,AN decomposition is defined.
Suppose y € U. Let z be the point on which the projection to the sphere of the
geodesic T7 leaves U. Then £(y) > ((TF) > {(TZ). By Lemma A.6, £(TZ) > ",
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since dy (zM,,2M,) > X > 0. Since d(z,y) < 2r, £(y) > eP/24@Y) and the
lemma follows in this case. Thus we may assume that the projection to K of the
path v stays in U.

Suppose x and y are connected by a path ~(t). Since radial projection on the
sphere {z : d(z,e) =r} inY, is clearly a contraction, we may assume that ~(t)
is contained in the sphere, i.e. v(t) = k(t)a,K where a, is the unique element in
expay such that d(a,,e) = r. We may write k(t) = a(t)a(t)n(t), where 7(t) €
N, = woNywy'. Then y(t) = k(t)a, K = @(t)a(t)a,(a; 'n(t)a,)K. Let v (t) =
fi(t)a(t)a, K. Since Ad(a,) is a contraction on n, d(y(t)K,y1(t)) < d(n(t)K,e) =
O(1) by compactness. Let 2’ = 41(0), ¥ = v1(1). Then d(z,z’) = O(1), and
d(y,y’) = O(1). Here and below in the proof of Lemma A.7, O(1) means a constant
independent of 7.

Let u € A be such that for all @ € A, a(u) = info<i<1 @(a(t)). Then d(ukK,e) =
O(1), hence d(a,uK,a,K) = O(1). Let p be the map G/K — Na,uK send-
ing naa, K to na,uk. By the definition of u, p is a contraction when restricted
to the image of v1(¢). Hence £(v1(t)) > dy(p(z’),p(y")). Now dy(p(x),p(y)) >
erdp(@)p(y")) by Lemma A.5. Note that

dlp(mi (1), 1 (1)) = d(nta,uk, n(t)a(t)a, K) = d(uk, a(t)K) = O(1).

In particular, d(z’,p(z’)) = O(1), and d(y/,p(y")) = O(1). Thus d(z,p(z’')) =
O(1) and d(y,p(y’")) = O(1). Therefore by the triangle inequality, d(p(z’), p(y’)) >
d(z,y) — O(1) > (1/2)d(x,y) if r is sufficiently large. This implies the lemma. [

Proof of Lemma 6.1. Let ajy (resp. bf)) denote the radial projection of ag (resp. bo)
on a circle of radius r. Suppose d(ag,bg) > c1r. Then d(ay, b)) > (c1/2)r.

As above let o denote the set of & € A such that «(v) # 0. Since Y, need not
consist of nondegenerate elements, for € Y,,, ©(x) is only defined as a map to
K/M,, where M, is the centralizer of expv in K. (M, depends only on o, not on
v.) The space K/M, has a left K-invariant metric, denoted d,,.

For R > 0 let dsf,R) denote the induced metric on the sphere of radius R in Y,,.
Let ng) denote the metric on K/M, which is the pullback of dng‘) via the map

K/M, > k — k(exp Rv)K € Y,. For a path v in K/M,, let o) (7) denote the

length of v with respect to the metric dE,R).

If r is large enough, by Lemma A.7 and the fact that projection on the ball of
radius r is a contraction,

(35) ((O))) > d (al), b)) > A2 i) > ) gPeer/2r,
Since projection on the ball of radius 27r is a contraction,

(36) (PO N Ay) < LN Aj) < ey2r.

By Proposition 2.3, for any path v in K/M,,

(37) 127 (y) 2 e emn(a) 00 ()

where amin(a,) = minge, aa,) > 0 and we have used a(as,) = 2/a(a,). Hence
combining (36) with (37) we get

€000 N Ay)) < ca(2yr)e? mintan),
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Summing over j we get

égT) (@(1[))) < cor Z 2j6_2jatnin(ar)

J

which contradicts (35) if r is large enough. O
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