Commun. math. Phys. 50, 103-112 (1976)

Quasi-free "Second Quantization"

Lars-Erik Lundberg

Matematisk Institut HCØ, Copenhagen University, DK-2100 Copenhagen, Denmark

Abstract. Araki and Wyss considered in 1964 a map $A \rightarrow Q(A)$ of one-particle trace-class observables on a complex Hilbert-space \mathcal{H} into the fermion C^* -algebra $\mathfrak{A}(\mathcal{H})$ over \mathcal{H} . In particular they considered this mapping in a quasi-free representation.

We extend the map $A \rightarrow Q(A)$ in a quasi-free representation labelled by $T, 0 \leq T \leq I$, to all $A \in B(\mathscr{H})_{sa}$ such that $tr(TA(1-T)A) < \infty$ with Q(A) now affiliated with the algebra. This generalizes some well-known results of Cook on the Fock-representation T=0.

1. Introduction

Let $\mathfrak{A}(\mathscr{H})$ denote the fermion C^* -algebra over a complex Hilbert space \mathscr{H} , i.e. there exists a conjugate linear mapping $f \mapsto a(f)$ of \mathscr{H} into $\mathfrak{A}(\mathscr{H})$, whose range generates $\mathfrak{A}(\mathscr{H})$ as a C^* -algebra such that $a(f)a(g)^* + a(g)^*a(f) = \langle f, g \rangle I$, a(f)a(g) + a(g)a(f) = 0 for all $f, g \in \mathscr{H}$ and where $\langle \cdot, \cdot \rangle$ denotes the inner product on \mathscr{H} .

A gauge-invariant quasi-free state ω_T of $\mathfrak{A}(\mathscr{H})$ is uniquely defined by the *n*-point functions $\omega_T(a(f_n)^*...a(f_1)^*a(g_1)...a(g_m)) = \delta_{nm} \det(\langle g_i, Tf_j \rangle)$ where $T \in B(\mathscr{H})$ and $0 \leq T \leq I$. Denote by \mathscr{H}_T, π_T and Ω_T the Hilbert-space, the representation, and the cyclic unit-vector associated with ω_T via the GNS-construction, i.e. $\omega_T(x) = (\Omega_T, \pi_T(x)\Omega_T), x \in \mathfrak{A}(\mathscr{H})$.

Let A be a self-adjoint (s.a.) finite-rank operator on \mathscr{H} , i.e. there exists an orthonormal set $\{u_n\}_{n=1}^N$ in \mathscr{H} and $\alpha_n \in \mathbb{R}$ such that $Af = \sum_{n=1}^N \alpha_n u_n \langle u_n, f \rangle$ for $f \in \mathscr{H}$. Araki and Wyss [1] considered the following map Q of finite-rank s.a. operators on \mathscr{H} into $\mathfrak{A}(\mathscr{H})_{sa}, A \mapsto Q(A) = \sum_{n=1}^N \alpha_n a(u_n)^* a(u_n)$, which has the following properties:

$$Q(A) + Q(B) = Q(A + B),$$
 (1.1)

$$[Q(A), a(f)^*] = a(Af)^*, \qquad (1.2)$$

$$i[Q(A), Q(B)] = Q(i[A, B]).$$
 (1.3)

They showed in particular that the map $A \mapsto Q(A)$ extends to all s.a. trace-class operators on \mathscr{H} and by complexification to all trace-class operators on \mathscr{H} (see also Araki [2]).

Let us now consider $\pi_T(\mathfrak{A}(\mathscr{H}))$ and put

$$Q_T(A) = \pi_T(Q(A)) - \omega_T(Q(A)), \qquad (1.4)$$

where A is a s.a. finite rank operator, i.e. $(\Omega_T, Q_T(A)\Omega_T) = 0$. One easily verifies that $\omega_T(Q(A)) = \operatorname{tr}(TA)$. For convenience we put $\pi_T(a(f)) = a_T(f)$. Equations (1.1)–(1.3) now imply

$$Q_T(A) + Q_T(B) = Q_T(A+B),$$
 (1.5)

$$[Q_T(A), a_T(f)^*] = a_T(Af)^*, (1.6)$$

$$i[Q_T(A), Q_T(B)] = Q_T(i[A, B]) - 2 \operatorname{Im} \operatorname{tr}(TAB) 1.$$
(1.7)

A simple calculation gives

$$(\Omega_T, Q_T(A)Q_T(B)\Omega_T) = \operatorname{tr}(TA(1-T)B), \qquad (1.8)$$

which suggests an alternative form of (1.7)

$$i[Q_T(A), Q_T(B)] = Q_T(i[A, B]) - 2\operatorname{Im} \operatorname{tr} (TA(1-T)B)1, \qquad (1.9)$$

(observe that tr(*TATB*) is real). Let us put $W_T(A) = e^{iQ_T(A)}$; then $W_T(sA)$, $s \in \mathbb{R}$, is a unitary one-parameter group on \mathcal{H}_T . Equations (1.6) and (1.9) now imply that

$$a_T(e^{isA}f) = W_T(sA)a_T(f)W_T(sA)^{-1}, \qquad (1.10)$$

$$W_{T}(A)W_{T}(B)W_{T}(A)^{-1} = W_{T}(e^{iA}Be^{-iA})e^{ib_{T}(A,B)}, \qquad (1.11)$$

$$b_T(tA, B) = -2 \operatorname{Im} \int_0^t \operatorname{tr} (TA(I-T)e^{isA}Be^{-isA}) ds \,. \tag{1.12}$$

Here we have used the fact that $\pi_T(\mathfrak{A}(\mathcal{H}))''$ is a factor (see Powers and Størmer [3]) to conclude that $b_T(A, B)$ is a real number. The one-parameter group property of $W_T(tA)$ implies that $b_T((t_1+t_2)A, B) = b_T(t_1A, B) + b_T(t_2, e^{it_1A}Be^{-it_1A})$, which is the cocycle equation. Equation (1.11) gives $W_T(tA)Q_T(B)W_T(tA)^{-1} = Q_T(e^{it_A}Be^{-it_A}) + b_T(tA, B)$ i.e. (1.9) implies $(d/dt)b_T(tA, B) = -2 \operatorname{Im} \operatorname{tr}(TA(I-T)B) + b_T(tA, i[A, B])$ with the initial condition $b_T(0, B) = 0$. The solution is given by (1.12).

In this paper we show that the mapping $A \to W_T(sA)$ can be extended to $O_T(\mathscr{H}) = \{A \in B(\mathscr{H})_{sa}; \operatorname{tr}(TA(1-T)A) < \infty\}$ and such that $W_T(sA)$ is a strongly continuous unitary one-parameter group on \mathscr{H}_T fulfilling (1.10) and (1.11). Stones theorem then ensures the existence of a s.a. operator $Q_T(A)$ such that $W_T(sA) = e^{isQ_T(A)}$.

We furthermore construct a domain \mathscr{D}_T in \mathscr{H}_T such that $Q_T(A)\mathscr{D}_T \subset \mathscr{D}_T$ for all $A \in O_T(\mathscr{H})$ and the restriction of $Q_T(A)$ to \mathscr{D}_T is essentially s.a. Formulas (1.5), (1.6), and (1.9) hold on \mathscr{D}_T and (1.8) hold for all $A, B \in O_T(\mathscr{H})$.

We shall also briefly discuss the *-algebras generated by the complexified operators $Q_T(A)$.

In a second paper we apply these results to quantum field theory. In particular we show how the Luttinger, Thirring and Schwinger models fit into this framework. Quasi-free "Second Quantization"

2. Quasi-free Representations in Terms of the Fock-Representation

For later convenience we review some well-known properties of quasi-free states and representations (see for example [2]).

Let γ_t denote the gauge-automorphism group of $\mathfrak{A}(\mathscr{H})$ whose action on a(f) is given by $\gamma_t(a(f)) = a(e^{it}f)$. The quasi-free state ω_T $(T \in B(\mathscr{H})_{sa}, 0 \leq T \leq I)$ is gauge-invariant, i.e. invariant under the transposed action of γ_t .

Definition 2.1. Let $U_T(t)$ denote the unitary group on \mathscr{H}_T implementing the gaugeautomorphism γ_t of $\pi_T(\mathfrak{A}(\mathscr{H}))$ and leaving Ω_T invariant, i.e.

$$\pi_T(\gamma_t(x)) = U_T(t)\pi_T(x)U_T(t)^{-1}, \qquad U_T(t)\Omega_T = \Omega_T.$$
(2.1)

In the case when T is a projection T = P, then ω_P is a pure state and π_P is irreducible. A state ω_T of $\mathfrak{U}(\mathcal{H})$ can always be expressed as a restriction of a pure state ω_{P_T} of $\mathfrak{U}(\mathcal{H} \oplus \mathcal{H})$ with P_T given by

$$P_{T} = \begin{pmatrix} T & T^{\frac{1}{2}}(I-T)^{\frac{1}{2}} \\ T^{\frac{1}{2}}(I-T)^{\frac{1}{2}} & I-T \end{pmatrix}$$
(2.2)

and

$$\omega_T(a(f_n)^* \dots a(g_m)) = \omega_{P_T}(a(f_n \oplus 0)^* \dots a(g_m \oplus 0)).$$

$$(2.3)$$

Remark 2.2. One can identify \mathscr{H}_T , $\pi_T(\mathfrak{A}(\mathscr{H}))$ and Ω_T with a subspace of \mathscr{H}_{P_T} , $\pi_{P_T}(\mathfrak{A}(\mathscr{H} \oplus O))$ and Ω_{P_T} respectively. The commutant $\pi_T(\mathfrak{A}(\mathscr{H}))'$ is then identified with a part of $U_{P_T}(\pi)\pi_{P_T}(\mathfrak{A}(O \oplus \mathscr{H}))''$.

Definition 2.3. Let $\mathscr{F}(\mathscr{H})$ denote the anti-symmetric Fock-space over \mathscr{H} , i.e. $\mathscr{F}(\mathscr{H}) = \bigoplus_{n=0}^{\infty} \mathscr{H}_n^a$ with $\mathscr{H}_0^a = \mathbb{C}$, $\mathscr{H}_1^a = \mathscr{H}$, and \mathscr{H}_n^a is the antisymmetric part of $\otimes^n \mathscr{H}$. The Fock-vacuum $\Omega = \bigoplus_{n=0}^{\infty} \Omega_n$ is given by $\Omega_0 = 1$, $\Omega_n = 0$ for $n \ge 1$. Let furthermore $a_0(f)$ denote the Fock-representation in $\mathscr{F}(\mathscr{H})$ of $a(f) \in \mathfrak{A}(\mathscr{H})$ i.e. $a_0(f) \Omega = 0, \forall f \in \mathscr{H}$.

The quasi-free state ω_0 is usually called the Fock-state and one can identify \mathscr{H}_0 , $\pi_0(a(f))$ and Ω_0 with $\mathscr{F}(\mathscr{H})$, $a_0(f)$ and Ω respectively.

Definition 2.4. Let P be an orthogonal projection operator on \mathscr{H} and J a conjugation commuting with P, i.e. $J^2 = 1$, $\langle Jf, Jg \rangle = \langle g, f \rangle$ for $f, g \in \mathscr{H}$ and [J, P] = 0. Let us then define

$$a_P(f) = a_0((I-P)f) + a_0(JPf)^*, \quad f \in \mathcal{H}.$$
 (2.4)

It is easy verified that $a_P(f)$ gives a representation of $a(f) \in \mathfrak{A}(\mathcal{H})$ in Fockspace $\mathscr{F}(\mathcal{H})$ and one can identify \mathscr{H}_P , $\pi_P(a(f))$ and Ω_P with $\mathscr{F}(\mathcal{H})$, $a_P(f)$ and Ω respectively.

3. On Innerness of One-Particle *-Automorphisms in $\pi_T(\mathfrak{A}(\mathscr{H}))''$

In the introduction we considered the map $A \to W_T(sA)$ of s.a. finite-rank operators on \mathscr{H} into strongly continuous one parameter groups in $\pi_T(\mathfrak{U}(\mathscr{H}))$ fulfilling (1.10) and (1.11). Definition 3.1. Let $T \in B(\mathscr{H})_{sa}$ such that $0 \leq T \leq I$ and put $O_T(\mathscr{H}) = \{A \in B(\mathscr{H})_{sa}; tr(TA(1-T)A) < \infty\}$. $O_T(\mathscr{H})$ is a real linear vector space. We shall call $O_T(\mathscr{H})$ the vector space of one-particle observables.

Remark 3.2. If $A, B \in O_T(\mathcal{H})$ then $i[A, B] \in O_T(\mathcal{H})$ and $e^{iA}Be^{-iA} \in O_T(\mathcal{H})$.

Theorem 1. There exists a map $A \mapsto W_T(sA)$ of $O_T(\mathcal{H})$ into $\pi_T(\mathfrak{A}(\mathcal{H}))''$ such that $W_T(sA)$ is a strongly continuous unitary one-parameter group, fulfilling (we put $a_T(f) = \pi_T(a(f))$)

$$a_T(e^{isA}f)) = W_T(sA)a_T(f)W_T(sA)^{-1}, \quad \forall f \in \mathscr{H}.$$
(3.1)

 $\Omega_T \in D((d/ds)W_T(sA)_{s=0})$, and $W_T(sA)$ are uniquely determined if we require that

$$(\Omega_T, (d/ds)W_T(sA)_{s=0}\Omega_T) = 0.$$
(3.2)

For $A, B \in O_T(\mathcal{H})$ the following identity holds

$$W_T(A)W_T(B)W_T(A)^{-1} = W_T(e^{iA}Be^{-iA})e^{ib_T(A,B)}, \qquad (3.3)$$

$$b_T(tA, B) = -2 \operatorname{Im} \int_0^t \operatorname{tr} (TA(I-T)e^{isA}Be^{-isA}) ds \,.$$
(3.4)

The proof of this theorem will be divided into several lemmas. We will first prove it when T is a projection P and then reduce the general case to this by a method indicated in the previous section.

Let P denote an orthogonal projection on \mathscr{H} and decompose $A \in O_P(\mathscr{H})$ as follows

$$A = A_0 + A_1, A_0 = (1 - P)A(1 - P) + PAP, A_1 = PA(1 - P) + (1 - P)AP$$

i.e. $[P, A_0] = 0$ and A_1 is Hilbert-Schmidt (H.S.).

Lemma 3.3. Let $U(s) = e^{-isA_0}e^{isA}$. The following representation of U(s) holds:

$$U(s) = \sum_{n=0}^{\infty} R_n(s), \qquad (3.5)$$

with $R_0(s) = I$, $R_n(s) = i \int_0^s A_1(s') R_{n-1}(s') ds'$, $n = 1, 2, ..., A_1(s) = e^{-isA_0} A_1 e^{isA_0}$ and the convergence is with respect to H.S. norm and is uniform in s for compact subsets of \mathbb{R} .

Proof. Differentiation and integration of U(s) gives

$$U(s) = 1 + i \int_0^s A_1(s') U(s') ds' .$$
(3.6)

Iteration of (3.6) in N steps gives $U_N(s) = \sum_{n=0}^{N} R_n(s)$. The H.S. convergence in the limit follows from the following estimates

$$\begin{aligned} \|R_1(s)\|_2 &\leq \|A_1\|_2 |s|, \|R_2(s)\|_2 \leq \|A_1\| \int_0^s \|R_1(s')\|_2 ds' \leq \|A_1\|_2^2 / 2! \\ &\cdot |s|^2, \|R_n(s)\|_2 \leq (\|A_1\|_2^n / n!) |s|^n , \end{aligned}$$
(3.7)

where $\| \|_2$ denotes the H.S. norm \Box

Remark 3.4. It follows that $Pe^{isA}(1-P)$ is H.S. $\forall s \in \mathbb{R}$, i.e. $Pe^{isA}(1-P) = e^{isA} \circ PU(s)(1-P)$ which obviously is H.S.

Quasi-free "Second Quantization"

As mentioned in the previous section one can identify \mathscr{H}_P , $\pi_P(a(f))$ and Ω_P with $\mathscr{F}(\mathscr{H})$, $a_P(f)$ and Ω respectively. We shall do this in the following. Equation (3.1) then takes the form

$$a_{P}(e^{isA}f) = W_{P}(sA)a_{P}(f)W_{P}(sA)^{-1}.$$
(3.8)

The defining equation for $a_P(f)$, (2.4) implies that (3.8) is equivalent to

$$a_0(L(s)f) + a_0(M(s)f)^* = W_P(sA)a_0(f)W_P(sA)^{-1}, \qquad (3.9)$$

where L(s) is complex linear, M(s) is complex anti-linear and they are explicitly given by $L(s) = L_1(s) + L_2(s)$, $M(s) = M_1(s) + M_2(s)$ with

$$L_1(s) = (1 - P)e^{isA}(1 - P), \quad L_2(s) = PJe^{isA}JP,$$
(3.10)

$$M_1(s) = JPe^{isA}(1-P), \quad M_2(s) = (1-P)e^{isA}JP$$
 (3.11)

We note if there exists a unitary operator $W_P(sA)$ in $\mathcal{F}(\mathcal{H})$ such that (3.9) holds then

$$[a_0(L(s)f) + a_0(M(s)f)^*]W_P(sA)\Omega = 0$$
(3.12)

for all $f \in \mathcal{H}$.

Theorem 1 will be proved by actually first constructing $\chi_s = W_P(sA)\Omega$ explicitly. This method of proof goes back to Friedrichs [4] (see also Shale and Stinespring [5] and Araki [2]).

Lemma 3.5. There is an $\chi_s \in \mathscr{F}(\mathscr{H})$ such that for small s

$$[a_0(L(s)f) + a_0(M(s)f)^*]\chi_s = 0, \quad \forall f \in \mathscr{H}.$$
(3.13)

Proof. We first construct a vector χ_s such that (3.13) holds for all $f \in (1 - P)\mathcal{H}$, and then we show that this vector solves (3.13) for all $f \in \mathcal{H}$. For $f \in (1 - P)\mathcal{H}$ (3.13) takes the form

$$[a_0(L_1(s)f) + a_0(M_1(s)f)^*]\chi_s = 0, \quad \forall f \in (1-P)\mathscr{H}.$$
(3.14)

The operator $L_1(s):(1-P)\mathcal{H} \to (1-P)\mathcal{H}$ is easily seen to have a bounded inverse (at least for small s). This means that (3.14) is equivalent to

$$[a_0(g) + a_0(M_1(s)L_1(s)^{-1}g)^*]\chi_s = 0, \quad \forall g \in (1-P)\mathscr{H}.$$
(3.15)

 $M_1(s)$ is H.S. by Remark 3.4; hence $K(s) \equiv M_1(s)L_1(s)^{-1}$ also is H.S. and therefore has a spectral representation

$$K(s)g = \sum_{n=1}^{\infty} \lambda_n(s)v_n(s)\langle g, u_n(s)\rangle, \quad \lambda_n(s) \ge 0, \qquad (3.16)$$

where $\sum_{n=1}^{\infty} \lambda_n(s)^2 < \infty$ and $\{v_n(s)\}_{n=1}^{\infty}$, $\{u_n(s)\}_{n=1}^{\infty}$ are orthonormal sets in \mathcal{PH} , $(1-\mathcal{P})\mathcal{H}$ respectively. Let us define $\chi_s^N \in \mathcal{F}(\mathcal{H})$ by

$$\chi_s^N = \prod_{n=1}^N e^{-\lambda_n(s)a_0(u_n(s))^*a_0(v_n(s))^*} \Omega.$$
(3.17)

One easily verifies that (3.15) holds with $\chi_s = \chi_s^N$ for all $g \in \text{span} \{u_n(s)\}_{n=1}^N$. A simple calculation gives

$$\|\chi_s^{N_1} - \chi_s^{N_2}\|^2 = \left|\prod_{n=1}^{N_1} (1 + \lambda_n(s)^2) - \prod_{n=1}^{N_2} (1 + \lambda_n(s)^2)\right|,$$
(3.18)

which shows that $s - \lim_{N \to \infty} \chi_s^N$ exists in $\mathcal{F}(\mathcal{H})$. Let us then define

$$\chi_s = c(s) \prod_{n=1}^{\infty} e^{-\lambda_n(s)a_0(u_n(s))^*a_0(v_n(s))^*} \Omega, \qquad (3.19)$$

$$c(s) = e^{i\varphi_s} \prod_{n=1}^{\infty} (1 + \lambda_n(s)^2)^{-\frac{1}{2}}, \qquad \varphi_s \in \mathbb{R},$$
(3.20)

then χ_s is a normalized vector fulfilling (3.15) for all $g \in \text{span} \{u_n(s)\}_{n=1}^{\infty}$. If $(1-P)\mathcal{H} \ni g \perp \text{span} \{u_n(s)\}_{n=1}^{\infty}$ it easily follows that (3.15) holds and (3.14) also holds. If one makes an analogous construction for $f \in P\mathcal{H}$ one just has to make the replacement $L_1(s) \rightarrow L_2(s)$, $M_1(s) \rightarrow M_2(s)$. A formula similar to (3.19) is then obtained. To compare the two formulas we anti-commute the creation operators in one of the formulas. The two vectors are now seen to coincide (up to a phase) because

$$M_1(s)L_1(s)^{-1} = -(M_2(s)L_2(s)^{-1})^*,$$

which follows from (3.10) and (3.11).

Lemma 3.6. There exists a strongly continuous unitary one-parameter group V(s), unique up to a phase $e^{i\varphi s}$, $\varphi \in \mathbb{R}$ such that $a_P(e^{isA}f) = V(s)a_P(f)V(s)^{-1}$, $\forall f \in \mathcal{H}$.

Proof. Let α_s denote the one-parameter *-automorphism group of $\mathfrak{A}(\mathscr{H})$ whose action on a(f) is given by $\alpha_s(s(f)) = a(e^{isA}f)$ and let us define an operator V(s) on $\pi_P(\mathfrak{A}(\mathscr{H}))\Omega$ by

$$V(s)\pi_P(x)\Omega = \pi_P(\alpha_s(x))\chi_s, \quad x \in \mathfrak{A}(\mathscr{H}).$$
(3.21)

It is easily verified that V(s) defines an isometry by using that $a_P(e^{isA}f)\chi_s=0$, $\forall f \in (1-P)\mathscr{H}$ and $a_P(e^{isA}g)^*\chi_s=0$, $\forall g \in P\mathscr{H}$, which follows from Lemma 3.5. The irreducibility of the representation implies that the range of V(s) is dense in $\mathscr{F}(\mathscr{H})$, i.e. V(s) extends to a unitary operator on $\mathscr{F}(\mathscr{H})$. Equation (3.21) implies that $a_P(e^{isA}f) = V(s(a_P(f)V(s)^{-1})$. The irreducibility implies that V(s) is unique up to a phase, which is just the phase in formula (3.20). It follows from a theorem by Kadison [6] that this phase can be chosen such that V(s) becomes a strongly continuous one-parameter group of unitaries and we are then left with a phase $e^{i\varphi_s}, \varphi \in \mathbb{R}$.

We shall from now on assume that $e^{i\varphi_s}$ in (3.20) is chosen such that Lemma 3.6 holds.

Lemma 3.7. The phase φ_s is analytic in a neighbourhood of zero and $\Omega \in \mathcal{D}((d/ds)V(s)_{s=0})$ and provided $\varphi'_0 = 0$ (3.2) holds with $W_P(sA) = V(s)$.

Proof. We first note that c(s) in (3.20) can be extended to an analytic function in a neighbourhood of zero, i.e. consider

$$(\psi, V(s)\Omega) = c(s) \left(\psi, \prod_{n=1}^{\infty} e^{-\lambda_n(s)a_0(u_n(s))^* a_0(v_n(s))^*} \Omega \right),$$
(3.22)

where ψ is an analytic vector of the generator of V(s).

œ

But

$$\sum_{n=1}^{\infty} e^{-\lambda_n(s)a_0(u_n(s))^*a_0(v_n(s))^*}\Omega$$

$$= e^{-\Sigma\lambda_n(s)a_0(u_n(s))^*a_0(v_n(s))^*}\Omega \equiv e^{-\mathcal{K}(s)}\Omega = \Sigma(-\mathcal{K}(s))^k\Omega/k!$$

and $\mathscr{K}(s)^k \Omega \in \mathscr{H}_a^{2k} \subset \widetilde{\mathscr{F}(\mathscr{H})}$ is just the appropriately antisymmetrized tensor product of k copies of K(s).

The fact that K(s) has an analytical extension in a neighbourhood of zero then shows that c(s) is analytic, which implies the first statement in the lemma. Let us now compute $(d/ds)V(s)\Omega|_{s=0}$ explicitly and verify that it is a vector in $\mathscr{F}(\mathscr{H})$. We have

$$(d/ds)K(s)|_{s=0} \equiv K = JPiA(1-P), \qquad (3.23)$$

which is H.S. and therefore has a spectral representation

$$Kg = \sum_{n=1}^{\infty} \lambda_n v_n \langle g, u_n \rangle, \quad \lambda_n \ge 0$$
(3.24)

with $\Sigma \lambda_n^2 < \infty$ and $\{v_n\}_{n=1}^{\infty}$, $\{u_n\}_{n=1}^{\infty}$ are orthogonal sets in $P\mathcal{H}$, $(1-P)\mathcal{H}$ respectively. ly. Equation (3.19) then gives

$$(d/ds)V(s)\Omega|_{s=0} = i\varphi'_0\Omega - \sum_{n=1}^{\infty} \lambda_n a_0(u_n)^* a_0(v_n)^*\Omega, \qquad (3.25)$$

which clearly is a vector in $\mathscr{F}(\mathscr{H})$ and by choosing $\varphi'_0 = 0$ we find that $(\Omega, (d/ds)V(s)\Omega)_{s=0} = 0$.

Lemma 3.8. Let us define a mapping $A \mapsto Q_P(A)$ of $O_P(\mathcal{H})$ into s.a. operators on $\mathcal{F}(\mathcal{H})$ by $W_P(sA) = e^{isQ_P(A)}$. Then for $A_1, A_2 \in O_P(\mathcal{H})$ we have $Q_P(A_2)\Omega \in \mathcal{D}(Q_P(A_1))$ and

$$(\Omega, Q_P(A_1)Q_P(A_2)\Omega) = \operatorname{tr}(TA_1(1-T)A_2).$$
(3.26)

Proof. We note that (3.25) implies that

$$iQ_P(A_2)\Omega = -\Sigma\lambda_{2n}a_P(u_{2n})^*a_P(Jv_{2n})\Omega.$$
(3.27)

If we apply $W_P(sA_1)$ to (3.27) we get

$$iW_{P}(sA_{1})Q_{P}(A_{2})\Omega = -\Sigma\lambda_{2n}a_{P}(e^{isA_{1}}u_{2n})^{*}a_{P}(e^{isA_{1}}Jv_{2n})W_{P}(sA_{1})\Omega.$$
(3.28)

The s-derivative at s=0 is easily seen to exist in $\mathcal{F}(\mathcal{H})$. In fact we get

$$-Q_{P}(A_{1})Q_{P}(A_{2})\Omega = -\Sigma\lambda_{2n}a_{P}(iA_{1}u_{2n})^{*}a_{0}(v_{2n})^{*}\Omega - \Sigma\lambda_{2n}a_{0}(u_{2n})^{*}$$

$$a_{P}(iA_{1}Jv_{2n})\Omega + \Sigma\Sigma\lambda_{1m}\lambda_{2n}a_{0}(u_{1m})^{*}a_{0}(v_{1m})^{*}a_{0}(u_{2n})^{*}a_{0}(v_{2n})^{*}\Omega.$$
(3.29)

Equation (3.30) finally gives

$$(\Omega, Q_P(A_1)Q_P(A_2)\Omega) = \Sigma \lambda_{2n} \langle JiA_1 u_{2n}, v_{2n} \rangle = i \operatorname{tr}(A_1 J K_2)$$

= tr(PA_1(1-P)A_2). (3.30)

Lemma 3.9. If $A, B \in O_P(\mathcal{H})$ then

$$W_{P}(tA)W_{P}(sB)W_{P}(tA)^{-1} = W_{P}(e^{itA}sBe^{-itA})e^{ib(tA,sB)}$$
(3.31)

where $b_P(tA, sB) = -2 \operatorname{Im} \int_0^t \operatorname{tr} (TA(I-T)e^{iAr}sBe^{-iAr}) dr$.

Proof. Equation (3.31) follows directly from (3.1) and the irreducibility of π_{P} . By taking the vacuum expectation value of (3.31) and differentiating with respect to t and s at t=s=0 we get

$$(d/dt)b_{P}(tA, B)_{t=0} = i(\Omega, [Q_{P}(A), Q_{P}(B)]\Omega) = -2\operatorname{Im} \operatorname{tr}(TA(I-T)B).$$
(3.32)

The cocycle equation can now be solved as in the introduction.

We have thus completed the proof of Theorem 1 when T is an orthogonal projection. In order to prove the general case of a $T: 0 \leq T \leq I$ we recall Remark 2.2 which says that one can identify \mathscr{H}_T with a subspace of $\mathscr{F}(\mathscr{H} \oplus \mathscr{H}), \pi_T(\mathfrak{A}(\mathscr{H}))$ with $\pi_{P_T}(\mathfrak{A}(\mathscr{H} \oplus \mathcal{O}))$ and $\pi_T(\mathfrak{A}(\mathscr{H}))'$ with a part of $U_{P_T}(\pi)\pi_{P_T}(\mathfrak{A}(\mathcal{O} \oplus \mathscr{H}))''$.

Let us now identify $A \in O_T(\mathcal{H})$ with $A \oplus O \in O_{P_T}(\mathcal{H} \oplus \mathcal{H})$. One easily verifies that

$$\operatorname{tr}(P_T(A \oplus O)(1 - P_T)(B \oplus O)) = \operatorname{tr}(TA(1 - T)B).$$
 (3.33)

Let α_s denote the one-parameter *-automorphism group of $\mathfrak{U}(\mathcal{H} \oplus \mathcal{H})$ whose action on $a(f \oplus g)$ is given by $\alpha_s(a(f \oplus g)) = a(e^{isA}f \oplus g)$, i.e. $\mathfrak{U}(O \oplus \mathcal{H})$ is left invariant. We have thus reduced the general case to the case of a projection and now we identify $W_T(A)$ with $W_{P_T}(A \oplus O)$. Finally $W_T(A)$ belongs to $\pi_T(\mathfrak{U}(\mathcal{H}))''$ because the automorphism α_s leaves $\pi_T(\mathfrak{U}(\mathcal{H}))'$ invariant in our identifications. The uniqueness follows from the factor nature which was proved by Powers and Størmer [3] and which also is obvious in the explicit representation in Fockspace given above. This completes the proof of Theorem 1.

4. Some Properties of the Quantization Map $A \rightarrow Q_T(A)$

Let $A \in O_T(\mathcal{H})$ and consider the map $A \to W_T(sA)$ described in Theorem 1. The generator of the strongly continuous unitary one-parameter group $\{W_T(sA)\}_{s \in \mathbb{R}}$ is denoted by $Q_T(A)$; i.e., $W_T(sA) = e^{isQ_T(A)}$.

By $\mathfrak{A}_0(\mathscr{H})$ we denote the *-algebra generated by a(f), $f \in \mathscr{H}$, and put $\mathscr{D}_T^0 = \pi_T(\mathfrak{A}_0(\mathscr{H}))\Omega_T$. It is clear that $\overline{\mathscr{D}_T^0} = \mathscr{H}_T$.

Lemma 4.1. $\mathscr{D}_T^0 \subset \mathscr{D}(Q_T(A))$ for all $A \in O_T(\mathscr{H})$. Furthermore $Q_T(A_{n-1}) \ldots Q_T(A_1) \mathscr{D}_T^0 \subset \mathscr{D}(Q_T(A_n))$ for all $A_1, \ldots, A_n \in O_T(\mathscr{H})$, $n = 2, 3, \ldots$

Proof. Lemma 3.7 and Lemma 3.8 proves that $\Omega_T \in \mathcal{D}(Q_T(A))$ and that $Q_T(A_1)\Omega_T \in \mathcal{D}(Q_T(A_2))$ if we make the identification of $W_T(sA)$ with $W_{P_T}(sA \oplus O)$. A direct generalization of this shows that $Q_T(A_{n-1}) \dots Q_T(A_1)\Omega_T \subset \mathcal{D}(Q_T(A_n))$. The extension of this to the whole of \mathcal{D}_T^0 follows easily by remembering equation (3.1) and the boundedness of A_1, \dots, A_n .

Definition 4.2. Let \mathcal{D}_T denote the domain in \mathscr{H}_T obtained by acting with monomials $\prod_{i=1}^n Q_T(A_i), A_1, \dots, A_n \in O_T(\mathscr{H}) \text{ on } \mathscr{D}_T^0 n = 1, 2, \dots, \text{ i.e. } Q_T(A) \mathscr{D}_T \subset \mathscr{D}_T \text{ for all } A \in O_T(\mathscr{H}).$ Quasi-free "Second Quantization"

Theorem 2. The map $A \rightarrow Q_T(A)$ of $O_T(\mathcal{H})$ into self-adjoint operators affiliated with $\pi_T(\mathfrak{U}(\mathcal{H}))''$ has the following properties: The restriction of $Q_T(A)$ to \mathcal{D}_T is essentially self-adjoint, and

$$\overline{Q_T(A) + Q_T(B)} = Q_T(A + B),$$
 (4.1)

$$[Q_T(A), a_T(f)^*] = a_T(Af)^*,$$
(4.2)

$$i[Q_T(A), Q_T(B)] = Q_T(i[A, B]) - 2\operatorname{Im} \operatorname{tr}(TA(1-T)B)1.$$
(4.3)

The last term in (4.3) will be referred to as the Schwinger term. These relations are generalizations of (1.5), (1.6) and (1.9).

Proof. Let $\varphi \in \mathscr{H}_T$, $\psi \in \mathscr{D}_T$ and consider $(\varphi, W_T(sA)\psi)$. By doing computations similar to the ones in the proof of Lemma 3.8 one can verify that $(\varphi, W_T(sA)\psi)$ has an analytical extension around s=0. Thus ψ is an analytical vector for $Q_T(A)$, i.e. \mathscr{D}_T is a dense set of analytic vectors and the restriction of $Q_T(A)$ to \mathscr{D}_T is ess. s.a. by Nelson's theorem. The verification of (4.1) is done by first verifying it on Ω_T which is a consequence of (3.27), (3.24) and (3.23). In order to verify it on an arbitrary vector in \mathscr{D}_T we first note that (4.2) follows from (3.1) by differentiation at t=0. That (4.1) holds on \mathscr{D}_T then follows from (4.2). Finally (4.3) follows by letting $A \to tA$, $B \to sA$ in (3.3) and differentiate with respect to t and s on \mathscr{D}_T at t=s=0.

Definition 4.3. Let us for $A, B \in O_T(\mathcal{H}) + iO_T(\mathcal{H})$, define

$$\langle A, B \rangle_T = \operatorname{tr}(TA^*(1-T)B),$$
(4.4)

$$\gamma_T(A, B) = \langle A, B \rangle_T - \langle A, B \rangle_{1-T} \,. \tag{4.5}$$

For $A, B \in O_T(\mathcal{H})$ we easily verify that

$$-2 \operatorname{Im} \operatorname{tr} (TA(1-T)B) = i\gamma_T(A, B)$$
(4.6)

i.e. if we complexify the map $A \rightarrow Q_T(A)$ by defining

$$Q_T(A) = Q_T(\operatorname{Re} A) + iQ_T(\operatorname{Im} A) \quad \text{on} \quad \mathcal{D}_T,$$
(4.7)

we find that (4.3) generalizes to

$$[Q_T(A)^*, Q_T(B)] = Q_T([A^*, B]) + \gamma_T(A, B) \cdot 1, \qquad (4.8)$$

on \mathcal{D}_T for all $A, B \in O_T(\mathcal{H}) + iO_T(\mathcal{H})$, and we furthermore have

$$Q_T(A)^* \supset Q_T(A^*) \,. \tag{4.9}$$

We note that $\gamma_T(A^*, B^*) = -\gamma_T(B, A)$.

Remark 4.4. Consider complex subspace \mathscr{V} of $O_T(\mathscr{H}) + iO_T(\mathscr{H})$ with the property that all operators in \mathscr{V} are commuting and \mathscr{V} is invariant under adjoint operation, then (4.8) gives on \mathscr{D}_T

$$[Q_T(A)^*, Q_T(B)] = \gamma_T(A, B)1, \qquad (4.10)$$

for all $A, B \in \mathscr{V}$. These are just the commutation relations of the self-dual CCR algebra considered by Araki and Shiraishi [7], and Araki [8].

Remark 4.5. Araki [9] has discussed factorizable representations of commutation relations similar to (4.3).

Conclusions

We have considered the fermion C^* -algebra $\mathfrak{A}(\mathscr{H})$ over \mathscr{H} together with certain one-parameter groups of *-automorphisms of $\mathfrak{A}(\mathscr{H})$. Let A be a self-adjoint (s.a.) operator on \mathscr{H} . There exists a unique strongly continuous one-parameter *-automorphism group α_s of $\mathfrak{A}(\mathscr{H})$ with the property that $\alpha_s(a(f)) = a(e^{isA}f) f \in \mathscr{H}$.

Let ω_T be the gauge-invariant quasi-free state of $\mathfrak{A}(\mathscr{H})$ associated with T, $0 \leq T \leq I$ and let \mathscr{H}_T , π_T , and Ω_T be the Hilbert-space the representation and the cyclic vector associated with the GNS construction.

Let furthermore $O_T(\mathcal{H})$ denote the real vectorspace consisting of bounded s.a. operators A on \mathcal{H} with tr $(TA(1-T)A) < \infty$.

For $A \in O_T(\mathcal{H})$ the automorphism α_s of $\mathfrak{U}(\mathcal{H})$ extends to an inner automorphism of $\pi_T(\mathfrak{U}(\mathcal{H}))''$. Let $W_T(sA)$ denote the implementing strongly continuous group. $W_T(sA)$ is unique up to a phase $e^{i\psi_s}$. Let $Q_T(A)$ denote the s.a. generator i.e. $W_T(sA) = e^{is\Omega_T(A)}$. It is shown that $\Omega_T \in \mathcal{D}(Q_T(A))$ and the phase is then chosen such that $(\Omega_T, Q_T(A)\Omega_T) = 0$.

For $A, B \in O_T(\mathcal{H})$ one gets $W_T(A)W_T(B)W_T(A)^{-1} = W_T(e^{iA}Be^{-iA})e^{ib_T(A,B)}$ and there exists a dense domain $\mathcal{D}_T \subset \mathcal{H}_T$ such that $Q_T(A)\mathcal{D}_T \subset \mathcal{D}_T$ for all $A \in O_T(\mathcal{H})$ and the restriction of $Q_T(A)$ to \mathcal{D}_T is essentially s.a.

The *-algebras generated by the map $A \rightarrow W_T(A)$ are called observable algebras. Applications to quantum field theory will be considered in a second paper.

Acknowledgements. This paper has grown out of many discussions with George Elliott who I want to thank. H. Araki is finally acknowledged for critically reading a preliminary version of the manuscript and pointing out an error.

References

- 1. Araki, H., Wyss, W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 136 (1964)
- 2. Araki, H.: On quasi-free states of CAR and Bogoliubov automorphisms. Publ. RIMS Kyoto Univ. 6, 385 (1971)
- 3. Powers, R.T., Størmer, E.: Free states of the canonical anti-commutation relations. Commun. math. Phys. 16, 1 (1970)
- 4. Friedrichs, K.O.: Mathematical aspects of the quantum theory of fields. New York: Wiley-Interscience (1953)
- 5. Shale, D., Stinespring, W. F.: Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315 (1965)
- Kadison, R.V.: Transformations of states in operator theory and dynamics. Topology 3 (Suppl. 2), 195 (1965)
- 7. Araki, H., Shiraishi, M.: On quasi-free states of the canonical commutation relations (I). Publ. RIMS. Kyoto Univ. 7, 105 (1971)
- 8. Araki, H.: On quasi-free states of the canonical commutation relations (II). Publ. RIMS. Kyoto Univ. 7, 121 (1971)
- 9. Araki, H.: Factorizable representations of current algebra. Publ. RIMS. Kyoto Univ. 5, 361 (1970)

Communicated by H. Araki

Received April 5, 1976