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Abstract In this paper, we introduce and study a new class of CR-lightlike submanifold of an indefinite nearly
Sasakian manifold, called quasi generalized Cauchy–Riemann (QGCR) lightlike submanifold. We give some
characterization theorems for the existence of QGCR-lightlike submanifolds and finally derive necessary and
sufficient conditions for some distributions to be integrable.

Mathematics Subject Classification 53C25 · 53C40 · 53C50

1 Introduction

Blair [3] introduced the notion of a nearly Sasakian manifold as a special class of almost contact metric
manifolds. An indefinite nearly Sasakian manifold differs from an indefinite Sasakian manifold, since in the
former the manifold is not necessarily normal [2]. In fact, any normal nearly Sasakian manifold is Sasakian
(see [3] and references therein for more details). From then, many papers have appeared on these manifolds
and their submanifolds [1,2,6,17]. In these papers, the geometry is restricted to a Riemannian case and,
thus, little or no attempt has been made to investigate their lightlike (null) cases. Lightlike geometry has its
applications in mathematical physics, in particular, general relativity and electromagnetism [7]. Differential
geometry of lightlike submanifolds was introduced by Bejancu and Duggal [7] and later studied by many
authors [8,10,11,13,14,16] and references therein.

In [10], the authors initiated the study of generalized Cauchy–Riemann (GCR) lightlike submanifolds of
an indefinite Sasakian manifold, in which the structural vector field, ξ , of the almost contact metric structure
(φ, η, ξ, g) was assumed to be tangent to the submanifold. Moreover, when ξ is tangent to the submanifold,
Calin [5] proved that it belongs to the screen distribution. However, the structural vector field is globally
defined on the tangent bundle of the ambient manifold, which implies that other classes of submanifolds with
non-tangential structural vector fields are certainly possible. Recently, a few papers have been published on
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the subject, focusing on ascreen and generic lightlike submanifolds [11,12]. Thus, the absence of evidence of
research in the geometry of lightlike submanifolds of nearly Sasakian manifolds and the fact that ξ belongs to
the tangent bundle of the ambient space have motivated us to introduce a new class of CR-lightlike submanifold
of a nearly Sasakian manifold, known as quasi generalized Cauchy–Riemann (QGCR) lightlike submanifold.

The objective of this paper is to characterize totally umbilical and totally geodesic QGCR-lightlike sub-
manifolds of a nearly Sasakian manifold. The rest of the paper is organized as follows. In Sect. 2, we present
the basic notions of nearly Sasakian structures and lightlike submanifolds which we refer to in the remaining
sections. In Sect. 3, we introduce QGCR-lightlike submanifolds. Section 4 is devoted to the non-existence
theorems regarding totally umbilical and totally geodesic QGCR-lightlike submanifolds. Finally, in Sect. 5 we
derive the necessary and sufficient conditions for the integrability of the key distributions of a QGCR-lightlike
submanifold of an indefinite nearly Sasakian manifold.

2 Preliminaries

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact structure (φ, ξ, η), i.e., φ is a
tensor field of type (1, 1), ξ is a vector field, and η is a 1-form satisfying

φ
2

= −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φ(ξ) = 0. (2.1)

Then, (φ, ξ, η, g) is called an indefinite almost contact metric structure on M if (φ, ξ, η) is an almost contact
structure on M and g is a semi-Riemannian metric on M such that [4] for any vector field X , Y on M ,

g(φ X , φ Y ) = g(X , Y ) − η(X) η(Y ). (2.2)

It follows that, for any vector X on M ,

η(X) = g(ξ, X). (2.3)

If, moreover,
(∇Xφ)Y + (∇Y φ)X = 2g(X , Y )ξ − η(Y )X − η(X)Y , (2.4)

for any vector fields X , Y on M , where ∇ is the Levi-Civita connection for the semi-Riemannian metric g, we

call M an indefinite nearly Sasakian manifold.
We denote by Ŵ(�) the set of smooth sections of the vector bundle �. Let � be the fundamental 2-form

of M defined by

�(X , Y ) = g(X , φ Y ), X , Y ∈ Ŵ(T M). (2.5)

Replacing Y by ξ in (2.4), we obtain

∇Xξ − φ
2
∇ξ X + φ ∇ξφ X = −φ X , (2.6)

for any X ∈ Ŵ(T M).

Introduce a (1,1)-tensor H on M taking

H X = −φ
2
∇ξ X + φ ∇ξφ X ,

for any X ∈ Ŵ(T M), such that (2.6) reduces to

∇Xξ + H X = −φ X . (2.7)

Lemma 2.1 The linear operator H has the properties

H φ + φ H = 0, Hξ = 0, η ◦ H = 0,

and g(H X , Y ) = −g(X , H Y ) (i.e., H is skew-symmetric). (2.8)

Proof The proof follows from a straightforward calculation. ⊓⊔

By (2.7), it is easy to check that
∇ξ ξ = 0. (2.9)

The fundamental 2-form � and the 1-form η are related as follows.
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Lemma 2.2 Let (M, φ, ξ, η, g) be an indefinite nearly Sasakian manifold. Then,

�(X , Y ) = dη(X , Y ) + g(H X , Y ), (2.10)

for any X, Y ∈ Ŵ(T M). Moreover, M is Sasakian if and only if H vanishes identically on M.

Proof The relation (2.10) follows from a straightforward calculation. The second assertion follows from
Theorem 3.2 in [2]. ⊓⊔

Note that, for any X , Y , Z ∈ Ŵ(T M),

g((∇Zφ)X , Y ) = −g(X , (∇Zφ)Y ). (2.11)

This means that the tensor ∇ φ is skew-symmetric.

Let (M, g) be an (m + n)-dimensional semi-Riemannian manifold of constant index ν, 1 ≤ ν ≤ m + n

and M be a submanifold of M of codimension n. We assume that both m and n are ≥ 1. At a point p ∈ M ,
we define the orthogonal complement Tp M⊥ of the tangent space Tp M by

Tp M⊥ = {X ∈ Ŵ(Tp M) : g(X, Y ) = 0, ∀Y ∈ Ŵ(Tp M)}.

We put Rad Tp M = Rad Tp M⊥ = Tp M ∩ Tp M⊥. The submanifold M of M is said to be r -lightlike subman-

ifold (one supposes that the index of M is ν ≥ r ), if the mapping

Rad T M : p ∈ M −→ Rad Tp M

defines a smooth distribution on M of rank r > 0. We call Rad T M the radical distribution on M . In the sequel,
an r -lightlike submanifold will simply be called a lightlike submanifold and g is lightlike metric, unless we
need to specify r .

Let S(T M) be a screen distribution which is a semi-Riemannian complementary distribution of Rad T M

in T M , that is,

T M = Rad T M ⊥ S(T M). (2.12)

Choose a screen transversal bundle S(T M⊥), which is semi-Riemannian and complementary to Rad T M in
T M⊥. Since, for any local basis {Ei } of Rad T M , there exists a local null frame {Ni } of sections with values
in the orthogonal complement of S(T M⊥) in S(T M)⊥ such that g(Ei , N j ) = δi j , it follows that there exists
a lightlike transversal vector bundle ltr(T M) locally spanned by {Ni } [7].

Let tr(T M) be a complementary (but not orthogonal) vector bundle to T M in T M . Then,

tr(T M) = ltr(T M) ⊥ S(T M⊥), (2.13)

T M = S(T M) ⊥ S(T M⊥) ⊥ {Rad T M ⊕ ltr(T M)}. (2.14)

Note that the distribution S(T M) is not unique and is canonically isomorphic to the factor vector bundle
T M/Rad T M [10].

We say that a lightlike submanifold M of M is

(1) r -lightlike if 1 ≤ r < min{m, n};
(2) co-isotropic if 1 ≤ r = n < m, S(T M⊥) = {0};
(3) isotropic if 1 ≤ r = m < n, S(T M) = {0};
(4) totally lightlike if r = n = m, S(T M) = S(T M⊥) = {0}.

Similarly to [11], we use the following range of indices in this paper,

i, j, k ∈ {1, . . . , r}, α, β, γ ∈ {r + 1, . . . , n}.

Consider a local quasi-orthonormal fields of frames of S(T M)⊥ along M , on U as

{E1, . . . , Er , N1, . . . , Nr , W1+r , . . . , Wn},

where {W1+r , . . . , Wn} is an othornomal basis of Ŵ(S(T M⊥)|U ) and let ǫα = g(Wα, Wα) be the signatures
of Wα .
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Let P be the projection morphism of T M on to S(T M). Using the decomposition (2.14), consider the
projection morphisms L and S of tr(T M) on ltr(T M) and S(T M⊥), respectively. Then, the Gauss–Wiengartein
equations [9] of an r -lightlike submanifold M and S(T M) are the following:

∇X Y = ∇X Y +

r∑

i=1

hl
i (X, Y )Ni +

n∑

α=r+1

hs
α(X, Y )Wα, (2.15)

∇X Ni = −ANi
X +

r∑

j=1

τi j (X)N j +

n∑

α=r+1

ρiα(X)Wα, (2.16)

∇X Wα = −AWα X +

r∑

i=1

ϕαi (X)Ni +

n∑

β=r+1

σαβ(X)Wβ , (2.17)

∇X PY = ∇∗
X PY +

r∑

i=1

h∗
i (X, PY )Ei , (2.18)

∇X Ei = −A∗
Ei

X −

r∑

j=1

τ j i (X)E j , ∀X, Y ∈ Ŵ(T M), (2.19)

where hl(X, Y ) = Lh(X, Y ), hs(X, Y ) = Sh(X, Y ), ∇ and ∇∗ are the induced connections on T M and
S(T M), respectively, hl

i and hs
α are symmetric bilinear forms known as local lightlike and screen fundamental

forms of T M, respectively. Also, h∗
i are the second fundamental forms of S(T M). ANi

, A∗
Ei

and AWα are

linear operators on T M, while τi j , ρiα , ϕαi and σαβ are 1-forms on T M . It is known [7,9] that

hl
i (X, Y ) = g(∇X Y, Ei ), ∀X, Y ∈ Ŵ(T M), (2.20)

from which we deduce the independence of hl
i on the choice of S(T M).

The second fundamental tensor of M is given by

h(X, Y ) =

r∑

i=1

hl
i (X, Y )Ni +

n∑

α=r+1

hs
α(X, Y )Wα, (2.21)

for any X, Y ∈ Ŵ(T M). It is easy to see that ∇∗ is a metric connection on S(T M), while ∇ is generally not a
metric connection and is given by

(∇X g)(Y, Z) =

r∑

i=1

{hl
i (X, Y )λi (Z) + hl

i (X, Z)λi (Y )},

for any X, Y ∈ Ŵ(T M) and λi are 1-forms given by

λi (X) = g(X, Ni ), ∀X ∈ Ŵ(T M). (2.22)

The above three local second fundamental forms are related to their shape operators by the following set of
equations

g(A∗
Ei

X, Y ) = hl
i (X, Y ) +

r∑

j=1

hl
j (X, Ei )λ j (Y ), ḡ(A∗

Ei
X, N j ) = 0, (2.23)

g(AWα X, Y ) = ǫαhs
α(X, Y ) +

r∑

i=1

ϕαi (X)λi (Y ), (2.24)

ḡ(AWα X, Ni ) = ǫαρiα(X), (2.25)

g(ANi
X, Y ) = h∗

i (X, PY ), λ j (ANi
X) + λi (AN j

X) = 0, (2.26)

for any X, Y ∈ Ŵ(T M).
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For any r -lightlike submanifold, replacing Y by Ei in (2.24), we get

hs
α(X, Ei ) = −ǫαϕαi (X), ∀X ∈ Ŵ(T M). (2.27)

A lightlike submanifold (M, g) of a semi-Riemannian manifold (M, g) is said to be totally umbilical in

M [9] if there is a smooth transversal vector field H ∈ Ŵ(tr(T M)), called the transversal curvature vector of
M such that

h(X, Y ) = Hg(X, Y ), (2.28)

for all X, Y ∈ Ŵ(T M).

Moreover, it is easy to see that M is totally umbilical in M , if and only if on each coordinate neighborhood
U there exist smooth vector fields H

l ∈ Ŵ(ltr(T M)) and H
s ∈ Ŵ(S(T M⊥)) and smooth functions H

l
i ∈

F(ltr(T M)) and H
s
α ∈ F(S(T M⊥)), such that

hl(X, Y ) = H
l g(X, Y ), hs(X, Y ) = H

s g(X, Y ),

hl
i (X, Y ) = H

l
i g(X, Y ), hs

α(X, Y ) = H
s
αg(X, Y ), (2.29)

for all X, Y ∈ Ŵ(T M).

The above definition is independent of the choice of the screen distribution.

3 Quasi generalized CR-lightlike submanifolds

Generally, the structure vector field ξ belongs to T M . Therefore, we define it according to decomposition
(2.14) as follows;

ξ = ξS + ξS⊥ + ξR + ξl , (3.1)

where ξS is a smooth vector field of S(T M) and ξS⊥ , ξR , ξl are defined as follows

ξR =

r∑

i=1

ai Ei , ξl =

r∑

i=1

bi Ni , ξS⊥ =

n∑

α=r+1

cαWα (3.2)

with ai = η(Ni ), bi = η(Ei ) and cα = ǫαη(Wα) all smooth functions on M .

Generalized Cauchy Riemann (GCR) lightlike submanifolds were introduced in [9,10], in which the struc-
ture vector field ξ was assumed tangent to the submanifold. Contrary to this assumption, we introduce a special

class of C R-lightlike submanifold in which ξ belongs to T M , called quasi generalized Cauchy–Riemann

(QGCR)-lightlike submanifold as follows.

Definition 3.1 Let (M, g, S(T M), S(T M⊥)) be a lightlike submanifold of an indefinite nearly Sasakian man-

ifold (M, g, φ, ξ, η). We say that M is quasi generalized Cauchy–Riemann (QGCR)-lightlike submanifold of

M if the following conditions are satisfied:

(i) there exist two distributions D1 and D2 of Rad(T M) such that

Rad T M = D1 ⊕ D2, φD1 = D1, φD2 ⊂ S(T M), (3.3)

(ii) there exist vector bundles D0 and D over S(T M) such that

S(T M) = {φD2 ⊕ D} ⊥ D0, (3.4)

with φD0 ⊆ D0, D = φ S ⊕ φ L, (3.5)

where D0 is a non-degenerate distribution on M and L and S are respectively vector subbundles of ltr(T M)

and S(T M⊥).
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If D1 �= {0}, D0 �= {0}, D2 �= {0} and S �= {0}, then M is called a proper QGCR-lightlike submanifold.

Let M be a QGCR-lightlike submanifold of an indefinite nearly Sasakian manifold M . If the structure
vector field ξ is tangent to M , then ξ ∈ Ŵ(S(T M)). The proof of this is similar to the one given by Calin in
the Sasakian case [5]. In this case, if X ∈ Ŵ(S) and Y ∈ Ŵ(L), then η(X) = η(Y ) = 0 and

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) = 0,

which reduces the direct sum D in (3.5) to the orthogonal direct sum D = φ S ⊥ φ L, and thus φ D = S ⊥ L.

Since ξ ∈ Ŵ(S(T M)) and ξ is neither a vector field in φD2 nor in D, ξ is in D0. By φD0 ⊆ D0, there exists a
distribution D′

0 of rank (rank(D0) − 1) and satisfying φD′
0 = D′

0 such that D0 = D′
0 ⊥ 〈ξ〉, where 〈ξ〉 is the

1-dimensional distribution spanned by ξ . Therefore, the QGCR-lightlike submanifold tangent to ξ reverts to
a GCR-lightlike submanifold [10].

Proposition 3.2 A QGCR-lightlike submanifold M of an indefinite nearly Sasakian manifold M tangent to

the structure vector field ξ is a GCR-lightlike submanifold.

Next, we follow Yano and Kon [18, p. 353] definition of contact CR-submanifolds and state the following
definition for a quasi contact CR-lightlike submanifold.

Definition 3.3 Let (M, g, S(T M), S(T M⊥)) be a lightlike submanifold of an indefinite nearly Sasakian man-

ifold (M, g, φ, ξ, η). We say that M is quasi contact CR-lightlike submanifold of M if the following conditions
are satisfied:

(i) Rad T M is a distribution on M such that Rad T M ∩ φ(Rad T M) = {0};
(ii) there exist vector bundles D0 and D′ over S(T M) such that

S(T M) = {φ(Rad T M) ⊕ D′} ⊥ D0, (3.6)

with φD0 ⊆ D0, D′ = φL1 ⊕ φltr(T M), (3.7)

where D0 is non-degenerate; L1 is a vector subbundle of S(T M⊥).

It is easy to see that when the structure vector field ξ is tangent to the quasi contact CR-lightlike submanifold
M , then M is a contact CR.

Proposition 3.4 A QGCR-lightlike submanifold of an indefinite nearly Sasakian manifold M is a quasi contact

CR if and only if D1 = {0}.

Proof Let M be a quasi contact CR-lightlike submanifold. Then, φ(Rad T M) is a distribution on M such that
φ(Rad T M)∩Rad T M = {0}. Therefore, D2 = Rad T M and D1 = {0}. Hence, φ(ltr(T M))∩ltr(T M) = {0}.
Then it follows that φ(ltr(T M)) ⊂ S(T M). The converse is obvious. ⊓⊔

From (2.12), the tangent bundle of any QGCR lightlike submanifold, T M , can be rewritten as

T M = D ⊕ D̂, where D = D0 ⊥ D1 and D̂ = {D2 ⊥ φD2} ⊕ D.

Notice that D is invariant with respect to φ, while D̂ is not generally anti-invariant with respect to φ.

Note the following for a proper QGCR-lightlike submanifold (M, g, S(T M), S(T M⊥)) of an indefinite

almost contact metric manifolds M according to Definition 3.1:

(1) Condition (i) implies that dim(Rad T M) = s ≥ 3.
(2) Condition (ii) implies that dim(D) ≥ 4l ≥ 4 and dim(D2) = dim(L).

Next, we adopt the definition of ascreen lightlike submanifolds used by Jin [12] for the case of contact ambient
manifold in case of lightlike submanifolds of an almost contact manifold.

Definition 3.5 [12] A lightlike submanifold M , immersed in a semi-Riemannian manifold M, is said to be
ascreen if the structural vector field, ξ , belongs to Rad T M ⊕ltr(T M).
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Note that, since L defined in Definition 3.1 is a subbundle of ltr(T M), there is a complementary subbundle
ν of ltr(T M) such that

ltr(T M) = L ⊥ ν.

It is easy to check that the complementary subbundle ν is invariant under φ, i.e., φν = ν.

Let M be an ascreen QGCR-lightlike submanifold of an indefinite nearly Sasakian manifold M . Then by
Definition 3.5, the structural vector field ξ ∈ Rad T M ⊕ltr(T M). This means that ξ is either in Rad T M or
ltr(T M). If ξ ∈ Rad T M , then ξ ∈ D2 since φD1 = D1 and φξ = 0. On the other hand, if ξ ∈ ltr(T M), then
ξ ∈ Ŵ(L) because of the fact that φν = ν and φξ = 0. Therefore, we have the following.

Lemma 3.6 If M is an ascreen QGCR-lightlike submanifold of an indefinite nearly Sasakian manifold M,
then ξ ∈ Ŵ(D2 ⊕ L).

Theorem 3.7 Let (M, g, S(T M), S(T M⊥)) be a 3-lightlike QGCR submanifold of an indefinite almost con-

tact manifold (M, g, φ, ξ, η). Then, M is ascreen lightlike submanifold if and only if φL = φD2.

Proof Suppose that M is ascreen. Then, by Lemma 3.6, ξ ∈ Ŵ(D2 ⊕ L). Since M is a 3-lightlike QGCR
submanifold, and Rad T M = D1 ⊕ D2 with φD1 = D1 and ltr(T M) = L ⊥ ν with φν = ν, the distributions
D2 and L are of rank 1. Consequently,

ξ = aE + bN , (3.8)

where E ∈ Ŵ(D2) and N ∈ Ŵ(L), and a = η(N ) and b = η(E) are non-zero smooth functions. Applying φ

to the first relation of (3.8) and using the fact that φξ = 0, we get

aφE + bφN = 0. (3.9)

From (3.9), one gets φE = ωφN , where ω = − b
a

�= 0, a non-vanishing smooth function. This implies that

φL ∩ φD2 �= {0}. Since rank(φD2) = rank(φL) = 1, it follows that φL = φD2.

Conversely, suppose that φL = φD2. Then, there exists a non-vanishing smooth function ω such that

φE = ωφN . (3.10)

Taking the g-product of (3.10) with respect to φE and φN in turn, we get

b2 = ω(ab − 1) and ωa2 = ab − 1. (3.11)

Since ω �= 0, by (3.11), we have a �= 0, b �= 0 and b2 = (ωa)2. The latter gives b = ±ωa. The case b = ωa

implies that ab = ωa2 = ab − 1, which is a contradiction. Thus b = −ωa, from which 2ab = 1. Since

ω = − b
a

, a �= 0 and φE = ωφN , it is easy to see that aφE + bφN = 0. Applying φ to this equation, and
using the first relation in (2.1), together with 2ab = 1, we get ξ = aE + bN . Therefore, M is ascreen lightlike

submanifold of M . ⊓⊔

In the ascreen QGCR-lightlike submanifold case, the item (ii) of Definition 3.1 implies that dim(D) ≥

4l ≥ 4 and dim(D2) = dim(L). Thus, dim(M) ≥ 7 and dim(M) ≥ 11, and any seven-dimensional ascreen
QGCR-lightlike submanifold is 3-lightlike.

As an example for QGCR-lightlike submanifold of indefinite nearly Sasakian manifold, we have the
following.

Example 3.8 Let M = (R11
4 , g) be a semi-Euclidean space, where g is of signature (−, −, +,+, +, −,−, +,

+, +, +) with respect to the canonical basis

(∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂z).

Let (M, g) be a submanifold of M given by

x1 = y4, y1 = −x4, z = x2 sin θ + y2 cos θ and y5 = (x5)
1
2 ,
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where θ ∈ (0, π
2
). By direct calculations, we can easily check that the vector fields

E1 = ∂x4 + ∂y1 + y4∂z, E2 = ∂x1 − ∂y4 + y1∂z,

E3 = sin θ∂x2 + cos θ∂y2 + ∂z, X1 = 2y5∂x5 + ∂y5 + 2(y5)2∂z,

X2 = − cos θ∂x2 + sin θ∂y2 − y2 cos θ∂z, X3 = 2∂y3, X4 = 2(∂x3 + y3∂z)

form a local frame of T M . From this, we can see that Rad T M is spanned by {E1, E2, E3}, and therefore
M is 3-lightlike. Further, φ0 E1 = E2; therefore, we set D1 = Span{E1, E2}. Also, φ0 E3 = −X2 and thus

D2 = Span{E3}. It is easy to see that φ0 X3 = X4, so we set D0 = Span{X3, X4}. On the other hand, following
direct calculations, we have

N1 =
1

2
(∂x4 − ∂y1 + y4∂z), N2 =

1

2
(−∂x1 − ∂y4 + y1∂z),

N3 =
1

2
(− sin θ∂x2 − cos θ∂y2 + ∂z), W = ∂x5 − 2y5∂y5 + y5∂z,

from which ltr(T M) = Span{N1, N2, N3} and S(T M⊥) = Span{W }. Clearly, φ0 N2 = −N1. Further,

φ0 N3 = 1
2

X2 and thus L = Span{N3}. Notice that φ0 N3 = − 1
2
φ0 E3 and therefore φ0L = φ0 D2. Also,

φ0W = −X1 and therefore S = Span{W }. Finally, we calculate ξ as follows; Using Theorem 3.7, we have

ξ = aE3 +bN3. Applying φ0 to this equation, we obtain aφ0 E3 +bφ0 N3 = 0. Now, substituting for φ0 E3 and

φ0 N3 in this equation, we get 2a = b, from which we get ξ = 1
2
(E3 + 2N3). Since φ0ξ = 0 and g(ξ, ξ) = 1,

we conclude that (M, g) is an ascreen QGCR-lightlike submanifold of M .

Proposition 3.9 There exist no co-isotropic, isotropic or totally lightlike proper QGCR-lightlike submanifolds

of an indefinite nearly Sasakian manifold.

4 Some characterization theorems

In this section, we discuss an existence and some non-existence theorems for proper QGCR-lightlike subman-

ifolds of an indefinite nearly Sasakian manifold (M, φ, η, ξ, g).

Theorem 4.1 There exist no totally umbilical or totally geodesic proper QGCR-lightlike submanifolds (M, g,

S(T M), S(T M⊥)) of an indefinite nearly Sasakian manifold (M, φ , η, ξ, g) with the structure vector field ξ

tangent to M.

Proof Suppose that ξ ∈ Ŵ(T M) and that M is totally umbilical in M . Then, ξ = ξR + ξS and bi = cα = 0.
Using (2.7) and (2.15), we get

−φX = H X + ∇Xξ +

r∑

i=1

hl
i (X, ξ)Ni +

n∑

α=r+1

hs
α(X, ξ)Wα, (4.1)

for all X ∈ Ŵ(T M). Taking the g–product of (4.1) with respect to Wα ∈ Ŵ(S), we get

g(X, φWα) = g(H X, Wα) + ǫαhs
α(X, ξ), ∀ ∈ Ŵ(T M). (4.2)

Now, letting X = φWα in (4.2), we obtain

g(φWα, φWα) = g(H φWα, Wα) + ǫαhs
α(φWα, ξ). (4.3)

Since cα = ǫαη(Wα) = 0, then −H φWα = (∇Wαφ)ξ + Wα and the first term on the right hand side of (4.3)
therefore simplifies as follows using (2.4)

−g(H φWα, Wα) = g((∇Wαφ)ξ, Wα) + g(Wα, Wα)

= −g(ξ, (∇Wαφ)Wα) + g(Wα, Wα)

= −g(ξ, ḡ(Wα, Wα)ξ) + g(Wα, Wα)

= −g(Wα, Wα) + g(Wα, Wα) = 0. (4.4)
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Then substituting g(H φWα, Wα) = 0 in (4.3), we obtain

g(φWα, φWα) = ǫαhs
α(φWα, ξ). (4.5)

By virtue of the fact that M is totally umbilical in M , (4.5) yields

g(φWα, φWα) = ǫαH
s
αg(φWα, ξ) = 0. (4.6)

Then, simplifying (4.6) while considering η(Wα) = 0, we get g(φWα, φWα) = g(Wα, Wα) = ǫα = 0, which
is a contradiction. ⊓⊔

We notice from the above theorem that if ξ is tangent to M , then ḡ(H φWα, Wα) = 0. It is easy to see that

ḡ(H X, Wα) = 0, for all X ∈ Ŵ(φS). Hence, H X has no component along S for all X ∈ Ŵ(φS).

Corollary 4.2 There exist no totally geodesic proper QGCR-lightlike submanifolds (M, g, S(T M), S(T M⊥))

of an indefinite nearly Sasakian manifold (M, φ, η, ξ, g) with the structure vector field ξ tangent to M.

Using Theorem 4.1 and Corollary 4.2 above, we get the following non-existence theorem:

Theorem 4.3 There exist no totally umbilical or totally geodesic proper QGCR-lightlike submanifolds (M, g,

S(T M) , S(T M⊥)) of an indefinite nearly Sasakian manifold (M, φ, η, ξ, g) with the structure vector field ξ

tangent to M.

When the structure vector field ξ is normal, we have the following.

Theorem 4.4 There exist no proper QGCR-lightlike submanifolds (M, g, S(T M), S(T M⊥)) of an indefinite

nearly Sasakian manifold (M, φ, η, ξ, g) with the structure vector field ξ normal to M.

Proof Suppose that ξ ∈ Ŵ(T M⊥), then

ξ = ξR + ξS⊥, ξl = ξS = 0, bi = 0, ai �= 0 and cα �= 0. (4.7)

Differentiating the first equation of (4.7) with respect to X and using (2.6), (2.15) and (2.18), we get

−φX =

r∑

i=1

X (ai )Ei +

n∑

α=r+1

X (cα)Wα

+

r∑

i=1

ai

⎧
⎨
⎩∇X Ei +

r∑

j=1

hl
j (X, Ei )N j +

n∑

β=r+1

hs
β(X, Ei )Wβ

⎫
⎬
⎭

+

n∑

α=r+1

cα

⎧
⎨
⎩−AWα X +

r∑

i=1

ϕαi (X)Ni +

n∑

β=r+1

σαβ(X)Wβ

⎫
⎬
⎭ + H X, (4.8)

for all X ∈ Ŵ(T M). Taking the g-product of (4.8) with respect to Ek and φNk ∈ Ŵ(S(T M)) in turn, where
Nk ∈ Ŵ(L), we get

g(X, φEk) = −

r∑

i=1

ai h
l
i (X, Ek) −

n∑

α=r+1

cαhs
α(X, Ek) + g(H X, Ek). (4.9)

Replacing X with φNk in (4.9), we obtain

g(Nk, Ek) = −

r∑

i=1

ai h
l
i (φNk, Ek) −

n∑

α=r+1

cαhs
α(φNk, Ek) + g(H φNk, Ek). (4.10)
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The g-product with φNk yields

−g(φX, φNk) = −

r∑

i=1

ai g(A∗
Ei

X, φNk) +

r∑

i=1

ai

r∑

j=1

hl
j (X, Ei )λ j (φNk)

−

n∑

α=r+1

cαg(AWα X, φNk) +

n∑

α=r+1

cα

r∑

j=1

ϕα j (X)λ j (φNk)

+ g(H X, φNk). (4.11)

Now, using (2.22)–(2.24) in (4.11), we obtain

g(φX, φNk) =

r∑

i=1

ai g(A∗
Ei

X, φNk) +

n∑

α=r+1

cαg(AWα X, φNk)

− g(H X, φNk),

which on replacing X with Ek and simplifying gives

g(Ek, Nk) = bkak +

r∑

i=1

ai h
l
i (Ek, φNk) +

n∑

α=r+1

cαhs
α(Ek, φNk)

− g(H Ek, φNk). (4.12)

Adding (4.10) to (4.12) yields

2g(Ek, Nk) = g(H φNk, Ek) − g(H Ek, φNk). (4.13)

But H is skew-symmetric and thus (4.13) becomes

g(Ek, Nk) = g(H φNk, Ek) = 1. (4.14)

By virtue of (4.14), it is easy to see that H φNk ∈ Ŵ(ltr(T M)), particularly, in the direction of Nk . Hence, there

exists a non-vanishing smooth function fk such that H φNk = fk Nk . Taking the g-product of this equation

with respect to ξ , we get 0 = g(H φNk, ξ) = g( fk Nk, ξ) = fk g(Nk, ξ) = fkak , from which ak = 0, a
contradiction. Therefore, in a proper QGCR-lightlike submanifolds of an indefinite nearly Sasakian manifold,
ξ does not belong to T M⊥. ⊓⊔

In particular, we have the following.

Corollary 4.5 There exist no totally umbilical or totally geodesic proper QGCR-lightlike submanifolds (M, g,

S(T M), S(T M⊥)) of an indefinite nearly Sasakian manifold (M, φ, η, ξ, g) with the structure vector field ξ

normal to M.

Corollary 4.6 Let (M, g, S(T M), S(T M⊥)) be a proper QGCR-lightlike submanifold of an indefinite nearly

Sasakian manifold (M, φ, η, ξ, g). If the structure vector field ξ is normal to M, then

(1) H X belongs to ltr(T M) for all X ∈ Ŵ(φL).

(2) H X belongs to Rad T M for all X ∈ Ŵ(φD2).

Theorem 4.7 There exist no totally umbilical proper QGCR-lightlike submanifolds (M, g, S(T M), S(T M⊥)),

with totally umbilical screen distributions, of an indefinite nearly Sasakian manifold (M, φ, η, ξ, g) with the

structure vector field ξ transversal to M.

Proof Suppose that ξ ∈ Ŵ(tr(T M)) and that M is totally umbilical in M , then

ξ = ξl + ξS⊥, ξR = ξS = 0, ai = 0, bi �= 0 and cα �= 0. (4.15)
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Differentiating the first equation of (4.15) with respect to X and using (2.6), (2.16) and (2.18), we get

−φX =

r∑

i=1

X (bi )Ni +

n∑

α=r+1

X (cα)Wα +

r∑

i=1

bi

⎧
⎨
⎩−ANi

X +

r∑

j=1

τi j (X)N j

+

n∑

α=r+1

ρiα(X)Wα

⎫
⎬
⎭ +

n∑

α=r+1

cα

⎧
⎨
⎩ − AWα X +

r∑

i=1

ϕαi (X)Ni

+

n∑

β=r+1

σαβ(X)Wβ

⎫
⎬
⎭ + H X,

for all X ∈ Ŵ(T M). Now, taking the g-product of the above equation with respect to φNk ∈ Ŵ(S(T M)) where
Nk ∈ Ŵ(L), we get

−g(φX, φNk) = −

r∑

i=1

bi g(ANi
X, φNk) −

n∑

α=r+1

cαg(AWα X, φNk)

+ g(H X, φNk). (4.16)

Replacing X with Ek ∈ Ŵ(D2) in (4.16), we obtain

−g(φEk, φNk) = −

r∑

i=1

bi g(ANi
Ek, φNk) −

n∑

α=r+1

cαg(AWα Ek, φNk)

+ g(H Ek, φNk). (4.17)

Substituting (2.23) and the first equation of (2.26) in (4.17) give

−g(φEk, φNk) = −

r∑

i=1

bi h
∗
i (Ek, φNk) −

n∑

α=r+1

cαhs
α(Ek, φNk)

+ ḡ(H Ek, φNk). (4.18)

Since M is totally umbilical in M , with a totally umbilical screen, (4.18) yields

−g(φEk, φNk) = g(H Ek, φNk), (4.19)

which reduces to g(Ek, Nk) = g(φ H Ek, Nk) = 1. It is easy to see from this equation that φ H Ek ∈

Ŵ(Rad T M). In particular, there exist non-vanishing smooth functions wk such that φ H Ek = wk Ek . Taking

the g-product of this last equation with respect to ξ , we obtain 0 = g(φ H Ek, ξ) = wk g(Ek, ξ) = wkbk .
Hence, bk = 0, and this contradiction completes the proof. ⊓⊔

Corollary 4.8 There exist no totally geodesic proper QGCR-lightlike submanifolds (M, g, S(T M), S(T M⊥)),

with totally geodesic screen distributions, of an indefinite nearly Sasakian manifold (M, φ, η, ξ, g) with the

structure vector field ξ transversal to M.

Next, we consider the special case H = 0. In particular, the indefinite nearly Sasakian manifold (M, φ, η, ξ,

g) with H = 0 becomes Sasakian. An indefinite Sasakian manifold M is called an indefinite Sasakian space

form, denoted by M(c), if it has a constant φ-sectional curvature c [13]. The curvature tensor R of the indefinite

space form M(c) is given by

4R(X , Y )Z = (c + 3){g(X , Z)Y − g(Y , Z)X} + (1 − c){η(X)η(Z)Y

− η(Y )η(Z)X + g(X , Z)η(Y )ξ − g(Y , Z)η(X)ξ

+ g(φ Y , Z)φ X + g(φ Z , X)φ Y − 2g(φ X , Y )φ Z}, (4.20)

for any X , Y , Z ∈ Ŵ(T M).
Now, using (4.20) we have the following existence theorem.

123



98 Arab. J. Math. (2016) 5:87–101

Theorem 4.9 Let (M, g, S(T M), S(T M⊥)) be a lightlike submanifold of an indefinite Sasakian space form

M(c) with c �= 1. Then, M is a QGCR-lightlike submanifold of M(c) if and only if

(a) The maximal invariant subspaces of Tp M, p ∈ M define a distribution

D = D0 ⊥ D1,

where Rad T M = D1 ⊕ D2 and D0 is a non-degenerate invariant distribution.

(b) There exists a lightlike transversal vector bundle ltr(T M) such that

g(R(X, Y )E, N ) = 0, ∀X, Y ∈ Ŵ(D0), E ∈ Ŵ(Rad T M), N ∈ Ŵ(ltr(T M)).

(c) There exists a vector subbundle M2 on M such that

g(R(X, Y )W, W ′) = 0, ∀W, W ′ ∈ Ŵ(M2),

where M2 is orthogonal to D and R is the curvature tensor of M(c).

Proof Suppose M is a QGCR-lightlike submanifold of M(c) with c �= 1. Then, D = D0 ⊥ D1 is a maximal
invariant subspace. Next, from (4.20), for X, Y ∈ Ŵ(D0), E ∈ Ŵ(D2) and N ∈ Ŵ(ltr(T M)), we have

g(R(X, Y )E, N ) =
c − 1

4
{η(X)η(E)g(Y, N ) − η(Y )η(E)g(X, N )

− 2g(φX, Y )g(φE, N )}

=
1 − c

2
g(φX, Y )g(φE, N ).

Since g(φX, Y ) �= 0 and g(φE, N ) = 0, we have g(R(X, Y )E, N ) = 0. Similarly, from (4.20), one obtains

g(R(X, Y )W, W ′) =
1 − c

2
g(φX, Y )g(φW, W ′),

∀X, Y ∈ Ŵ(D0) and W, W ′ ∈ Ŵ(φS). Let W = φW1 and W ′ = φW2 with W1, W2 ∈ Ŵ(S). Since g(φX, Y ) �=

0 and g(φW, W ′) = g(φ
2
W1, φW2) = g(φW1, W2) = 0. Therefore, we have g(R(X, Y )W, W ′) = 0.

Conversely, assume that (a), (b) and (c) are satisfied. Then (a) implies that D = D0 ⊥ D1 is invariant.
From (b) and (4.20), we get

g(φE, N ) = 0, (4.21)

which implies that φE ∈ Ŵ(S(T M)). Thus, some part of Rad T M , say D2, belongs to S(T M) under the action

of φ. Further, (4.21) implies that g(φE, N ) = g(φ
2

E, φN ) = g(−E + η(E)ξ, φN ) = −g(E, φN ) = 0.
Therefore, a part of ltr(T M), say L, also belongs to S(T M) under the action of φ. On the other hand, (c) and
(4.20) imply g(φW, W ′) = 0. Hence, we obtain φM2 ⊥ M2. Also, g(φE, W ) = −g(E, φW ) = −cαη(E)

implies that generally φM2 ⊕ RadT M or, equivalently, M2 ⊕ φRadT M . Now, from M2 ⊕ φRadT M and the
fact that φD1 = D1, M2 ⊥ D1 and M2 ⊕ φD2. This also tells us that φM2 has a component along ltr(T M),
essentially coming from ξ . On the other hand, invariant and non-degenerate D0 implies g(φW, X) = 0, for

X ∈ Ŵ(D0). Thus, M2 ⊥ D0 and φM2 ⊥ D0. Since ξ ∈ Ŵ(T M), we sum up the above results and conclude
that

S(T M) = {φD2 ⊕ M1 ⊕ M2} ⊥ D0,

where M1 = φL. Hence, M is QGCR-lightlike submanifold of M(c) and the proof is completed. ⊓⊔

Note that conditions (b) and (c) are independent of the position of ξ and hence valid for GCR-lightlike

submanifolds [10] and QGCR-lightlike submanifolds of an indefinte Sasakian space form M(c). When ξ is
tangent to M , it is well known [5] that ξ ∈ Ŵ(S(T M)). In this case, one has a GCR-lightlike submanifold, in
which D2 ⊥ φD2 is an invariant subbundle of T M , leading to D = D1 ⊥ D2 ⊥ φD2 ⊥ D0 as the maximal

invariant subspace of T M . On the other hand, when M is QGCR-lightlike submanifold, then ξ ∈ Ŵ(T M)

and thus D2 ⊥ φD2 is generally not an invariant subbundle of T M, since the action of φ on it gives a
component along ξ . In particular, let E ∈ Ŵ(D2) then E + φE ∈ Ŵ(D2 ⊥ φD2). But on applying φ to
this subbundle and considering the fact that η(E) �= 0, we get −E + φE + η(E)ξ /∈ Ŵ(D2 ⊥ φD2).
Hence, D = D0 ⊥ D1 is the maximal invariant subbundle of T M . Further, in the case of QGCR-lightlike
submanifold, φD2 ⊕ M2. In fact, let φE ∈ Ŵ(φD2) and W = φW1 ∈ Ŵ(M2), where W1 ∈ Ŵ(S). Then,
g(φE, W ) = g(φE, φW1) = −η(E)η(W1) �= 0. This explains the second direct sum in the decomposition
S(T M) = {φD2 ⊕ M1 ⊕ M2} ⊥ D0. For the case of GCR-lightlike submanifold, η(E) = η(W1) = 0; hence,
g(φE, W ) = g(φE, φW1) = 0. This implies that φD2 ⊥ M2 and hence the first direct orthogonal sum in the
decomposition S(T M) = {φD2 ⊕ M1} ⊥ M2 ⊥ D0 ⊥ 〈ξ〉.
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5 Integrability of the distributions D and D̂

Let M be a QGCR-lightlike submanifold of an indefinite nearly Sasakian manifold (M, g, φ, ξ, η). From
(2.12), the tangent bundle of any QGCR lightlike submanifold, T M , can be rewritten as

T M = D ⊕ D̂, (5.1)

where D = D0 ⊥ D1 and D̂ = {D2 ⊥ φD2} ⊕ D.

Notice that D is invariant with respect to φ, while D̂ is not generally anti-invariant with respect to φ.

Let π and π̂ be the projections of T M onto D and D̂, respectively. Then, using the first equation of (5.1),
we can decompose X as

X = π X + π̂ X, ∀X ∈ Ŵ(T M). (5.2)

It is easy to see that φπ X ∈ Ŵ(D). However, the action of φ on π̂ X gives a tangential and transversal component
due to a generalized ξ , i.e.,

φX = P1 X + P2 X + Q X, ∀X ∈ Ŵ(T M), (5.3)

where P1 X = φπ X while P2 X is the tangential component of φπ̂ X and Q X is the transversal component of
φX , essentially coming from φπ̂ X since φD = D.

By grouping the tangential and transversal parts in (5.3), it is easy to see that

φX = P X + Q X, ∀X ∈ Ŵ(T M), (5.4)

where P X = P1 X + P2 X .

Note that if X ∈ Ŵ(D), then P2 X = Q X = 0, and φX = P1 X .

The Eq. (5.4) can be properly understood through the following specific case of vector field in D ⊂ D̂. Let

ξM and ξtrM be the tangential and transversal components of ξ . If X ∈ Ŵ(D) and since D = φ S ⊕ φ L, then

φX = SX + L X − {η(SX) + η(LY )}ξM − {η(SX) + η(LY )}ξtrM .

Consequently, for X ∈ Ŵ(D),

P1 X = 0,

P2 X = −{η(SX) + η(LY )}ξM ,

and Q X = SX + L X − {η(SX) + η(LY )}ξtrM .

Similarly, for any V ∈ Ŵ(tr(T M)), V = SV + LV , and

φV = tV + f V, (5.5)

where tV and f V are the tangential and transversal components of φV , respectively.

Differentiating (5.4) with respect to Y, we get

∇Y P X + ∇Y Q X = ∇Y φX. (5.6)

Then using (2.15), (2.16), (2.18) and (2.4), we have

∇Y P X + ∇Y Q X = ∇Y P X + h(P X, Y ) − AQ X Y + ∇ t
Y Q X, (5.7)

and from (2.4), we have

∇Y φX = φ(∇Y X) + φ(∇X Y ) + 2φh(X, Y ) − ∇XφY

+ 2g(X, Y )ξM + 2g(X, Y )ξtrM − η(Y )X − η(X)Y

= P(∇Y X) + Q(∇Y X) + P(∇X Y ) + Q(∇X Y )

+ 2th(X, Y ) + 2 f h(X, Y ) − ∇X PY − ∇ t
X QY

− h(X, PY ) + AQY X + 2g(X, Y )ξM + 2g(X, Y )ξtrM

− η(Y )X − η(X)Y. (5.8)
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Finally putting (5.7) and (5.8) in (5.6) and then comparing the tangential and transversal components of the
resulting equation, we obtain

(∇Y P)X + (∇X P)Y = AQ X Y + AQY X + 2th(X, Y )

+ 2g(X, Y )ξM − η(X)Y − η(Y )X, (5.9)

and

(∇T
Y Q)X + (∇T

X Q)Y = −h(P X, Y ) − h(X, PY )

+ 2 f h(X, Y ) + 2g(X, Y )ξtrM , (5.10)

for all X, Y ∈ Ŵ(T M), where

(∇Y P)X = ∇Y P X − P(∇Y X) and (∇T
Y Q)X = ∇ t

Y Q X − Q(∇Y X). (5.11)

Proposition 5.1 Let (M, g, S(T M), S(T M⊥)) be a QGCR-lightlike submanifold of an indefinite nearly

Sasakian manifold (M, φ, η, ξ, g). Then,

P[X, Y ] = −∇Y P X − ∇X PY + 2P∇X Y + AQ X Y + AQY X

+ 2th(X, Y ) + 2g(X, Y )ξM − η(X)Y − η(Y )X (5.12)

and

Q[X, Y ] = −∇ t
Y Q X − ∇ t

X QY + 2Q∇X Y − h(P X, Y ) − h(X, PY )

+ 2 f h(X, Y ) + 2g(X, Y )ξtrM , (5.13)

for all X, Y ∈ Ŵ(T M).

Proof The proof follows from (5.9) and (5.10). ⊓⊔

Theorem 5.2 Let (M, g, S(T M), S(T M⊥)) be a QGCR-lightlike submanifold of an indefinite nearly Sasakian

manifold (M, φ, η, ξ, g). Then, the distribution D is integrable if and only if

h(P1 X, Y ) + h(X, P1Y ) = 2(Q∇X Y + f h(X, Y ) + g(X, Y )ξtrM ), and P2[X, Y ] = 0

for all X, Y ∈ Ŵ(D).

Proof The proof is a straightforward calculation. ⊓⊔

The integrability of D̂ is discussed as follows. Note that the distribution D̂ is integrable if and only if, for
any X , Y ∈ Ŵ(D̂), [X, Y ] ∈ Ŵ(D̂). The latter is equivalent to P1[X, Y ] = 0.

Theorem 5.3 Let (M, g, S(T M), S(T M⊥)) be a QGCR-lightlike submanifold of an indefinite nearly Sasakian
manifold (M, φ, η, ξ, g). Then, the distribution D̂ is integrable if and only if

AQ X Y + AQY X − ∇Y P2 X − ∇X P2Y + 2(P1(∇X Y ) + g(X, Y )ξM + th(X, Y )) ∈ Ŵ(D̂),

for all X, Y ∈ Ŵ(D̂).

Proof Let X, Y ∈ Ŵ(D̂), then it is easy to see that P1 X = P1Y = 0. Hence, P X = P2 X and PY = P2Y .
Now using (5.12), we derive

φ[X, Y ] = P[X, Y ] + Q[X, Y ]

= −∇Y P X − ∇X PY + 2P∇X Y + AQ X Y

+ AQY X + 2th(X, Y ) + 2g(X, Y )ξM − η(X)Y

− η(Y )X + Q[X, Y ]

= −∇Y P2 X − ∇X P2Y + 2P1∇X Y + AQ X Y

+ AQY X + 2th(X, Y ) + 2g(X, Y )ξM + 2P2∇X Y

− η(X)Y − η(Y )X + Q[X, Y ]. (5.14)

It is obvious from (5.14) that the last four terms belong to D̂. Hence, the assertation follows from the remaining
terms. ⊓⊔
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Let us consider the lightlike submanifold M given in Example 3.8. The distribution D is spanned by
{E1, E2, X3, X4}, while D̂ is spanned by {E3, φ0 E3, φ0W }. By straightforward calculations, we can see that
[E1, E2] = 2∂z = 2ξ . Thus, [E1, E2] does not belong to D and hence non-integrable. On the other hand,
[E3, φ0 E3] = −[E3, X2] = cos2 θ∂z = cos2 θξ . Since ξ does not belong to D̂, we can see that D̂ is not
integrable.
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