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Dedicated to the memory of Irving Reiner

In their work on highest weight categories arising in the representation
theory of Lie algebras and algebraic groups, E. Cline, B. Parshall and L. Scott
recently introduced the notion of a quasi-hereditary algebra (see [1] and [2]).
They define a quasi-hereditary algebra recursively in terms of the existence of
a particular idempotent ideal; finite-dimensional hereditary algebras are typi-
cal examples of quasi-hereditary algebras. On the other hand, they showed
that every quasi-hereditary algebra has finite global dimension.
The purpose of this note is to establish the following three results. First,

finite-dimensional hereditary algebras are characterized as those quasi-heredi-
tary algebras which satisfy a certain refinement property on chains of their
idempotent ideals (Theorem 1). Second, all finite-dimensional algebras of
global dimension 2 are shown to be quasi-hereditary (Theorem 2). Third, the
question of whether every finite-dimensional algebra of finite global dimension
is quasi-hereditary is answered in the negative by providing an example of an
(ll-dimensional serial) algebra of global dimension 4 which is not quasi-
hereditary. The same example illustrates that the class of quasi-hereditary
algebras is not closed under tilting (in the sense of [4]).

In what follows, all tings are semiprimary rings. An associative ring A with
1 is called semiprimary if its Jacobson radical N is nilpotent and A/N is
semisimple artinian. Recall that an ideal I of A is idempotent if and only if
I AeA for an idempotent e of A; in particular, I is a minimal (non-zero)
idempotent ideal provided that e is primitive. An ideal J of A is said to be a
heredity ideal of A if j2 j, JNJ 0 and J, considered as a right A-module
JA, is projective. In fact, this also implies that the left A-module AJ is
projective (see [2] or [3]). A semiprimary ring A is called quasi-hereditary if
there is a chain

of ideals of A such that, for any 1 _< < m, Jt/Jt_l is a heredity ideal of
A1Jt_ . Such a chain of idempotent ideals is called a heredity chain. Let us
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remark that .4 is quasi-hereditary if and only if .4op is quasi-hereditary (see [2]
or [31).

THEOREM 1. Let A be a semiprimary ring. Then A is hereditary if and only if
every chain of idempotent ideals ofA can be refined to a heredity chain.

Proof. First, let A be a hereditary semiprimary ring. Note that, for any
idempotent ideal, the ring A/I is again hereditary. Thus, it is sufficient to
show that any non-zero idempotent ideal I of A contains a non-zero heredity
ideal. To this end, consider J AeA with a primitive idempotent e in I. Since
A is hereditary, JA is projective. Moreover, since the left multiplication by any
element x eNe defines a non-invertible map from the indecomposable
module eA onto xA and xA is projective, necessarily x 0. It follows that
JNJ AeNeA O.

Conversely, assume that every chain of idempotent ideals of A can be
refined to a heredity chain. We want to show that A is hereditary. We shall
proceed by induction; thus assume that A/I is hereditary for every non-zero
idempotent ideal I of A.

Let us start by choosing a primitive idempotent f in A such that the Loewy
length L(fA) of the module fA is maximal. Observe that 1 AfA is a heredity
ideal. Indeed, AfA is a minimal idempotent ideal of A. Thus fNf 0 and IA
is a projective A-module. We claim that Nf 0. For, if Nf 0 then there is a
primitive idempotent e such that eNf 0 and thus eNf eAf. Furthermore,
I el (1 e)I, and thus (eI) is a projective A-module. Since el eAfA
is generated by fA, it is a non-zero direct sum of copies of fA and therefore
L(el) L(fA). On the other hand, el eAf.4 eNfA c_ eN, and conse-
quently

L(eI) < (eN) L(eA) 1

which contradicts the maximality of L(fA). Hence, Nf= O.
Now, write 1 ET=lei with primitive orthogonal idempotents ei. Assume

that f e is equivalent to e if and only if 1 < < k. Thus ejAe 0 for all
< k < j. If k n, then A is simple arfinian and thus hereditary. If k < n,

we show that (AfN) is a projective A-module. For then, in conjunction with
the fact that Nf 0 and that B A/AfA is hereditary, we can conclude that
A is hereditary, as required.

In order to prove that (AfN) is projective, consider the A-module X
AfN/(AfN AgA), where g is a primitive idempotent satisfying Ng

_
I

(= AfA). Such an idempotent g ej for some j > k exists, since B A/I is
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hereditary. Clearly, X is isomorphic to the ideal

(AfN + AgA)/AgA

of the ring C A/AgA which is, by induction, hereditary. Consequently, X is
a projective C-module. Since X is annihilated by A(f + g)A, it is a projective
D-module for D A/A(f + g)A. But, in view of Ng c. I, every projec-
tive D-module is a projective B-module, and in view of Nf 0, every
projective B-module is a projective A-module. Hence, X, is a projective
A-module. As a result, the canonical A-homomorphism (AfN)A ---, XA splits
and thus (AfN)A is isomorphic to the direct sum of the projective A-module
XA and (AfN N AgA).4. However, the latter A-module is also projective. This
follows from the fact that

k

( * ) A.[N q AgA eiAgA
i----1

which is trivially a direct summand of the projective A-module

AgA eiAgA.
i=l

In order to verify (,), notice that, on the one hand,

e,AgA c_ AgA and eiAgA c_ (Ae,A)(AgA) AfNgA c_ AfN,

and that, on the other hand,

(k ) k

AfNAgA c. eA OAgA e,AgA.
i=1 i---1

This concludes the proof of Theorem 1.

THEOREM 2. A semiprimary ring of global dimension 2 is quasi-hereditary.

The proof is based on the following proposition.

PROPOSITION. Let A be a semiprimary ring of global dimension at most 2.
Let e be a primitive idempotent of A such that the Loewy length L(eA) is
minimal. Then AeA is a heredity ideal.

Proof. Write J AeA. Clearly j2._ j. First, we are going to show that
eNe 0; this implies immediately that JNJ 0. Assume that there is a
non-zero element x eNe. The left multiplication by x yields an endomor-
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phism of ea with a non-zero kernel K eN. Since gl dim A 2, kernels of
maps between projective modules are projective. Thus K is projective and
therefore the Loewy length L(K) > L(eA). But

L(K) < L(eN) L(eA) 1,

in contradiction to the preceding inequality.
Second, in order to show that JA is projective, consider the minimal

projective cover p" P -o Jx. We claim that p is an isomorphism. Otherwise,
there exists a finitely generated direct summand P’ of P such that the
restriction of p to P’ is not a monomorphism. Now, P and therefore P’ is a
direct sum of copies of eA. We may assume that P’ P" P with P eA
and such that the restriction of p to P" is a monomorphism. Denoting by X
the image of P" under p, consider the commutative diagram of A-modules

where the horizontal maps are the canonical inclusions and projections, and
the vertical ones are induced by p and the embedding of J in A. Observe that
p’ is not a monomorphism and ff : 0. Forming the kernels, we obtain the
exact sequence

0 Ker p" -o Ker p’ -o Ker ft.

Now, since p’ is a map between projective modules, Kerp’ is a non-zero
projective module, and thus its Loewy length L(Kerp’)> L(eA). But this
contradicts the inequality L(Kerp’) < L(Kerff) < L(eA). The proof of the
proposition is completed.

Proof of Theorem 2. Choose a primitive idempotent e of A such that the
Loewy length L(eA) is minimal. Since, by the proposition, J AeA is a
heredity ideal, it follows that gl dim A/J < gl dim A (see [2] or [3]). Therefore,
by induction, A/J is quasi-hereditary, and thus A is quasi-hereditary.

Example. Let A be the path algebra (over a field) of the diagram

2

modulo the ideal generated by "taft and afl"ta. Denote by e the idempotent
corresponding to the vertex i, and let Pi eiA. Thus, A is a serial algebra,
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and the lengths of the indecomposable projective A-modules are as follows: P1
and P2 are of length 4 and P3 is of length 3. One can check easily that
gl dim A 4 and that A has no (non-zero) heredity ideals; for, e Rad A e
: 0, e2 RadA e2 : 0 and (Ae3A)A is not projective.
Let S2 P2/Rad P2 be the simple A-module of projective dimension 1.

Since the modules P1 and P2 are both projective and injective, it follows that
T=PIP2 $2 is a tilting module [4]. Let B=EndTA. Then B is a
quasi-hereditary algebra. Indeed, if J1 is the set of all endomorphisms of T
which factor through $2 and J2 the set of all those which factor through
S2 P2, then 0 c J c J2 c A is a heredity chain. This may be verified
without difficulty. In fact, one can see easily that B is the path algebra (over a
field) of the diagram

modulo the ideal generated by aft, a3, 3, and

Appendix: Heredity ideals

For the convenience of the reader, we wish to collect here various results of
[1] and [2]. In doing so, we aim to minimize assumptions and, at the same
time, to strengthen conclusions (cf. examples at the end). Furthermore, we
include some assertions from the general ring theory, and provide proofs
which are direct and elementary.

In what follows, unless specified otherwise, A is an arbitrary associative ring
with 1, J and ideal and B A/J. The B-modules will always be viewed as
those A-modules which are annihilated by J.

Let us remark that, under the assumption that A is semiprimary, every
A-module X has finite Loewy length which will always be denoted by L(X).
Note that for semiprimary rings, L(A) and L(,A) are equal and will be
simply denoted by L(A). Always, L(X) < L(A).

STATEMENT 1. Let Ja be projective. If X is a B-module, then

proj dim X < 1 + proj dim Xs.

In particular, proj dim B < 1.

Proof. Proceed by induction. The exact sequence 0 J
shows that

proj dim B, < 1.
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Therefore, for any projective B-module XB, proj dim XA < 1. Now, assume
that

proj dim XB d > 0,

and consider an exact sequence 0 ---, X Pn ---, Xs --, 0 with a projective
B-module Pn. Thus projdim X d- 1. An application of HomA(-, Yn)
yields the exact sequence

Ext+X(X,, Y,) Ext+2(Xa, Y,) Extd+2(PA, Ya).

Since d > 1 and proj dim P, < 1, the last term is zero. By induction,

proj dim X < d,

and consequently the first term is zero also. This yields

Extd+2(X,, Y,) 0

for any YA, and thus proj dim X. < d + 1.

STATEMENT 2. j2 j if and only if Hom.(JA, XA) 0 for any B-module
X. IfJ is projective, then j2 j if and only if Hom,(JA, BA) O.

Proof First, assume that J2 j and let : JA Xa be a homomorphism.
Then (j) (j2)

_
XJ 0, and thus 0. Conversely, let

HomA(JA, XA)= 0 for any B-module X. Write Y j/j2. Since YJ O, Y
can be viewed as a B-module. Hence, HomA(JA, Ya) 0, and the canonical
epimorphism Ja YA shows that Y 0.

Finally, assume that JA is projective and that HomA(JA, BA) 0. Given a
B-module X, let Fs be a free B-module with an epimorphism rr: FB --, Xn.
Since Ja is projective, any map q: J, XA lifts to a map ’: Ja --, Fa with
q ,rq/. But HomA(Ja, F,) 0, because Fa is a direct sum of copies of BA.

STATEMENT 3. Let J2 j and J be projectioe. If X, Y are B-modules, then

Ext ( Xs, Ys ) Ext ( Xa Y. ) for all > O

In particular, Ext(Ba, BA) 0 for > 1.

Proof Clearly,

Homn(XB, Ys) HomA(XA, YA).
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To prove the case 1, regard Extls(xs, Ys) as a subgroup of Extl(xA, YA).
Then, given an exact sequence

of A-modules with an inclusion map /, it follows, in view of XJ 0, that
ZJ /(Y). Furthermore,

ZJ ZJ- _c/(Y)J 0,

and thus Z is a B-module. This completes the proof for 1.
Finally, let 0 X PB XB 0 be an exact sequence with a projective

B-module Ps. An application of Homs(-, Ys) yields, for all > 0, the exact
sequences

Ext(Ps, Ys) Ext(X, Ys) Ext/s+X(X, Ys) Ext+X(Ps, Ys).

Here, since Ps is projective, the first and the last terms are zero for > 1.
Similarly, an application of Homa(-, Y,) yields, for all i> 0, the exact
sequences

Ext,(Pa, YA) - Ext,( XA, Y) Ext+( X, Y) Ext+(P, YA).

Here, according to Statement 1, proj dim Pa < 1, and thus the last term is zero
for all > 1. Moreover, Ext(P, Y,) Exds(Ps, Ys)= 0, and therefore the
first term is zero also for all > 1. By induction, we may assume

and

as required.

Ext,( X, Ys) Ext,( X,, Y)

Ext+(Xs, Ys) Ext+(X, Y,),

STATEMENT 4. Let J2 j and J, be projective. Then

gl dim B < gl dim A.

Proof. Let gl dim A d < oo. If X, Y are B-modules, then, in view of
Statement 3, Extas+ I(Xs ys) Ext,+ I(XA, Ya) 0. Hence, gl dim B < d.

STATEMENT 5. Let A be a semiprimary ring with radical N. Let JNJ 0
and Ja be projective. Then

gl dim A < gl dim B + 2.
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Proof Let gl dim B d < oo. Given an A-module X, first calculate the
projective dimension of the A-module XJ. Let ,r: P XJ be a minimal
projective cover. For every x X, let Jx JA, and let P’ x x J; finally,
define r’: P’ XJ by sending y J to xy. Since P’ is projective and ,r’ is
surjective, it follows that P can be identified with a direct summand of P’, and
thus

kerr___radP=PN_P’N= ( JxN.
xX

Consequently, (ker r)J 0, and thus ker r is a B-module. Therefore, by
Statement 1, proj dim (ker r)A < d + 1. Hence, proj dim (XJ)a < d + 2.
On the other hand, X/XJ is a B-module, and thus, making use of

Statement 1 again, proj dim (X/XJ)a < d + 1. Now, since X is an extension
of the A-modules XJ by X/XJ both of projective dimension < d + 2,

proj dim X < d + 2.

STATEMENT 6. If e is an idempotent of A, then (aea)2 AeA. Conversely,
ifA is semiprimary and J is an ideal ofA such that j2 j, then J AeA for an
idempotent e of A.

Proof The first assertion is trivial. So assume that A is semiprimary with
radical N and that j2 j. Any ideal of A/N is generated by an idempotent,
and any idempotent of A/N is of the form e + N with an idempotent e
in A. Thus J + N AeA + N for some idempotent e of A. Now, j2= j

implies (J + N) J + N for all > 1; similarly, (AeA + N)i= AeA + N
for all >_ 1. But for large i, N 0, and therefore J AeA.

STATEMENT 7. Let e be an idempotent of a ring A. If the right module
(AeA) or the left module A(AeA) is projective, then the multiplication map

I" Ae eA ---> AeA
eAe

is bijective. Conversely, assume that A is semiprimary with radical N and that
eNe O. Then, if tt is bijective, both modules (AeA)A and a(AeA) are
projective.

Proof For any A-module Xa, consider the multiplication map

Ix" X ( Ae ( eA --, X.
A eAe
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The map/xx is bijective for XA eA, and therefore for all direct summands of
direct sums of the module eA. Now, if (AeA)A is projective, there is a
surjective map of the form SeA AeA, where the direct sum is indexed by
all dements of A. Since this epimorphism splits, it follows that IJ.AeA is
bijective. But this means that g is bijective. The same argument applies in the
case that A(AeA) is projective.
Now, assume that A is semiprimary with radical N and that eNe 0. Since

eNe 0, the ring eAe is simple artinian, and thus any eAe-module is projec-
tive. Since (Ae)eAe and (eA)A are projective, (Ae eAe eh), is projective
also. Thus, the bijectivity of g implies that (AeA)A is projective. Similarly, it
implies that ,(AeA) is projective.

STATEMENT 8. Let A be a semiprimary ring with radical N and JNJ O.
Then L(A) < 2L(B) + 1.

Proof Since A, is an extension of J by Ba, we have

Moreover, Ja is an extension of (JN), by (J/JN)A. Since JNJ 0, JN is a
B-module and thus L((JN)a) < L(B). On the other hand, J/JN is semisim-
pie and thus L((J/JN)a) < 1. Consequently,

L(JA) < L((JN)A ) + L((J/JN),) < L(B) + 1.

Now, making a subsequent use of Statements 7, 5 and 8, one can easily
derive the following statement for quasi-hereditary tings.

STATEMENT 9.
chain

Let A be a semiprimary quasi-hereditary ring with a heredity

Then AP /s quasi-hereditary also, and

0 =JP_JP__C c Jrp_C C_Jmp =Ap

is a heredity chain.
Moreover, gl dim A < 2m 2 and L(A) < 2m- 1.

The following assertion can also be easily obtained.

STATEMENT 10.
chain

Let A be a semiprimary quasi-hereditary ring with a heredity
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Then, for each 1 < < m, Jt AetA for an idempotent e ofA and

O- etJoe C_ etJle C_ c_ etJtet= etAe
is a heredity chain of etAet.

Proof. First, Jt AetA for some et, et2 et, by Statement 6. Clearly,

etJte etAethe
_

etAet,

and thus etJtet etAet. Now, if we show that etJle is a heredity ideal of

elXet, then the statement follows easily by induction. Since J1 AelA for an
idempotent e and e AetA,

etJle
_

( etJlet)2 etAelAetAelAe D_ etAel.,4e etJlet.

Furthermore, if N is the radical of A, then etNe is the radical of etAe and

( etJlet) ( etNet) ( e,Jle‘) c_ etJ1NJle O.

Finally, the A-module (J1), can be written as the finite direct sum of
projective A-modules

J1 ( a
l,
A P,

p

where P (1 e,)A, a,A eA with e

apel, i.e.,

2 1, ee ele e and ap etap

a, etAe c_ etAet.

Hence,

etJlet ( a,(etAet)
p

is a decomposition into a direct sum of projective etAet-modules

ap(etAe,) eAe, (etee,) (etAet).

Examples. Now we exhibit some examples (mostly path algebras over a

field) to illustrate the necessity of some assumptions in the previous statements
and the optimality of some bounds.

(i) The assumption that J, is projective cannot be omitted in Statements
1, 2 and 5.
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Let A be the path algebra of the diagram

modulo the ideal generated by aft and fla. Let J be a one-dimensional ideal.
Then, Hom,(J,, B,4 ) O, j2 0 J, JNJ O,

gldimA and gldimB=l.

(ii) The assumption j2 j cannot be omitted in Statements 3 and 4.
Let A be the path algebra of -, and J the unique one-dimen-

sional ideal. Then JA is projective, j2 0 #= J,

gldimA =1 and gldimB=2.

(iii) The assumption that JA is projective cannot be omitted in Statements
3 and 4.

Let A be the (basic) Auslander algebra of the algebra in (ii), i.e., the
endomorphism algebra of the direct sum of all six indecomposable modules
over the algebra in (ii). Let J be the set of all endomorphisms which factor
through the largest indecomposable (projective and injective) module. Then J
is an idempotent ideal,

gldimA =2 and gldimB=4.

(iv) The assumption JNJ 0 cannot be omitted in Statement 5.
Let A be the path algebra of the diagram

1 __2_+ 2fl
modulo the ideal generated by fl 2. Let J be the (idempotent) ideal AeA, where
e is the idempotent corresponding to the vertex 2. Then Ja is projective,
gl dimA and gl dim B 0.

(v) The assumption eNe 0 cannot be omitted in Statement 7.
Let A be the path algebra of the diagram

1 -- 2Dfl
modulo the ideal generated by aft and fiE. Let e be the idempotent corre-
sponding to the vertex 2. Then the multiplication map

Ae (R) eA AeA
eAe

is bijective, ,(AeA) is projective and (AeA)a is not projective.

(vi) The bounds on global dimensions in Statements 5 and 9 are best
possible.
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Let A be the path algebra of the diagram

1 2 Otto
lr--23.., m-lm

1 f12 -1

modulo the ideal generated by all atOlt+l, t+lt, tOlt- at+lflt+l for 1 _< <
m 2 and flm_lam_l Let e be the idempotent corresponding to the vertex t,
1 < t < m. Put Jt A(em + era-1 + +e-t+l)A. Then 0 J0 c J1
c c Jt J, A is a heredity chain of the quasi-hereditary alge-
bra A and gl dim A 2m 2. Let us remark that L(A) 3.

(vii) The bounds on Loewy lengths in Statements 8 and 9 are best possible.
Consider the complete oriented graph (without loops) on m vertices; denote

the arrow from the vertex r to the vertex s by a,s, 1 < r, s < m, r s. Let A
be the path algebra of this graph modulo the ideal I generated by all products

Oltlt2Olt2t3 Oltktk+l where tk+ and all t < t for 2 < < k. Let e be the
idempotent corresponding to the vertex t, 1 < < m. Let

Jt A(em + era-1 + +em-t+l) A"

Then

O=JoCJC c 4c cJ.=A
is a heredity chain of the quasi-hereditary algebra A. Consider the element

a ottlt20tt2t3 Oltklk+l Olt2m_2t2m_l modulo I,

where tk r + 1 such that k 2r(2s 1). It is not difficult to see that a is a
non-zero element of the socle of A, and to deduce, by induction, that
L(A) 2’ 1. Let us remark that gl dim A 2.
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