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Quasi-Interpolating Spline Models
for Hexagonally-Sampled Data
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Abstract—The reconstruction of a continuous-domain represen-
tation from sampled data is an essential element of many image
processing tasks, in particular, image resampling. Until today, most
image data have been available on Cartesian lattices, despite the
many theoretical advantages of hexagonal sampling. In this paper,
we propose new reconstruction methods for hexagonally sampled
data that use the intrinsically 2-D nature of the lattice, and that
at the same time remain practical and efficient. To that aim, we
deploy box-spline and hex-spline models, which are notably well
adapted to hexagonal lattices. We also rely on the quasi-interpola-
tion paradigm to design compelling prefilters; that is, the optimal
filter for a prescribed design is found using recent results from ap-
proximation theory. The feasibility and efficiency of the proposed
methods are illustrated and compared for a hexagonal to Cartesian
grid conversion problem.

Index Terms—Approximation theory, box-splines, hexagonal
lattices, hex-splines, interpolation, linear shift invariant signal
spaces, quasi-interpolation.

I. INTRODUCTION

D
IGITAL images and most other 2-D data are available on
Cartesian lattices. The two basis vectors that span such a

lattice are orthogonal to each other and the corresponding pixel
element is a rectangle. Hexagonal sampling usually refers to
the case where both vectors have equal norm and their angle is
60 or 120 . Theoretical advantages of hexagonal sampling are
well known, such as more efficient representation of isotropic
bandlimited 2-D signals [1], [2]. The better isotropic properties
like twelve-fold symmetry and six-connectivity can be success-
fully exploited for various basic image processing tasks [3]–[7].
Also, imaging sensors with a hexagonally arranged capture grid
have been designed, e.g., [8] and [9]. Despite the advantages
of the hexagonal lattice, the Cartesian lattice remains the most
popular. The fact that the design and application of algorithms
for hexagonally sampled data must be done intrinsically in 2-D,
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while the Cartesian lattice allows a “separable” extension of 1-D
algorithms (i.e., by applying the 1-D algorithm along rows and
columns), has probably contributed most to the persisting suc-
cess of Cartesian sampling.

In general, performing operations on sampled data requires
a discrete/continuous model that links the sample values to a
function that is defined continuously. Such an “analog” func-
tion can then be evaluated on new lattice sites for resampling
problems or to apply geometric transformations. When the data
is assumed to be bandlimited and sampled at sufficiently high
density, Shannon’s theorem guarantees perfect reconstruction of
the underlying continuous-domain function using interpolation
with the ideal lowpass function [2], [10]. However, real-world
images are not bandlimited and have a finite support on which it
is quite cumbersome to approximate the cardinal sine interpo-
lator because of its slow decay. Instead, practitioners rely on
more localized generators with compact support, but usually
maintain the interpolation condition; i.e., the model is designed
to pass through the available samples, which makes it consistent
when sampled on the same sites again [11]. If the interpolation
condition is relaxed, a so-called quasi-interpolating scheme can
be obtained [12]. Although quasi-interpolation is well-known
among approximation theoreticians (e.g., [13]), it has found lim-
ited support in signal processing applications.

B-splines are particularly popular 1-D reconstruction gen-
erators, thanks to their versatility and easy implementation
[14]–[19]. They can easily be extended to multiple dimensions
on the Cartesian lattice using tensor-products. There are mainly
two extensions of B-splines for hexagonal lattices: box-splines
and hex-splines. Box-splines, popularized by de Boor [20],
form a general multidimensional extension of B-splines, that
have found practical applications in geometric modelling,
multiscale representation systems, and many other fields
[21]–[23]. More recently, hex-splines were proposed to model
data sampled on any 2-D regular lattices [24], e.g., for printing
applications [25]. On the hexagonal lattice, three-directional
box-splines and hex-splines preserve the twelve-fold symmetry
and exploit the theoretical advantages of hexagonal sampling
in a nonbandlimited setting [26].

In this work, we propose new reconstruction schemes for
hexagonally sampled data using these 2-D splines. In partic-
ular, we show the tradeoff between implementation cost and ap-
proximation quality, related to the choice of the basis function
(box-spline or hex-spline) and the particular prefilter (interpo-
lation prefilter or custom quasi-interpolation filter). The use of
quasi-interpolation in such a multidimensional setting is new
and leads to interesting algorithms that combine fast implemen-
tation and high approximation quality.

1057-7149/$25.00 © 2007 IEEE
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Fig. 1. (a) Hexagonal lattice of the first type � and the orthogonal lat-
tice � . (b) Their respective Voronoi cells and (c) the corresponding natural
Nyquist regions in the Fourier domain. Note that the reciprocal lattice of �
is a hexagonal lattice of the second type.

The presentation is organized as follows. In Section II, we

review some properties of 2-D lattices and signals defined

on them. Then, in Section III, we present the reconstruction

problem and the approximation theoretic notion of quasi-in-

terpolation. Next, we focus in Section IV on box-splines and

hex-splines. The design of quasi-interpolation filters is then

proposed in Section V. A case study of hexagonal to Cartesian

grid conversion is presented in Section VI.

II. PRELIMINARIES

A. Notations

Throughout this paper, we use bold lowercase such as

for a vector of . Matrices are denoted

by bold and uppercase. Bivariate functions are equiva-

lently denoted as , , or . The

Fourier transform of a function is defined as

, where

is the usual inner product of vectors. A 2-D discrete signal

is denoted as , . Continuous and

discrete convolutions are denoted by , and a star indicates

the complex conjugate. We use the mathematical notation

to indicate that is dominated by , i.e.,

, and to indicate

the equivalence . We also introduce

the Kronecker symbol , that

should not be confused with the Dirac distribution .

B. Lattices and Tilings

We briefly summarize the theory related to lattices and tilings,

relevant to this paper. For a more complete overview, we refer

the interested reader to [1], [27], and [28].

A 2-D periodic lattice is a regular set of points of the plane.

It is characterized by two linearly independant vectors and

, grouped in a lattice matrix , such that the lattice

sites are indicated by for every .

The surface area of the rhomboid generated by is

. Then, the density of the lattice is , ex-

pressed as lattice sites per unit surface. The uniform hexagonal

lattice (for the so-called first type, see [29]) and the

Cartesian lattice , both with normalized density, are

shown in Fig. 1. They are described by their respective matrices

(1)

Each lattice has a unique associated Voronoi cell, which is the

region of the plane consisting of all points closer to than to any

other lattice site. Mathematically, we can define the indicator

function of the Voronoi cell as

(2)

where is the number of lattice sites that are the closest to .

By definition, this function, when periodically replicated onto

all the lattice sites, tiles the plane, which means that satisfies

the partition of unity

(3)

The Voronoi cells of the Cartesian and hexagonal lattices are

depicted in Fig. 1.

We also define , the dual or reciprocal lattice of , whose

matrix is defined as ; i.e., for the lattices of (1) we

have

(4)

The effect of sampling a function on is to replicate its

spectrum on the lattice sites , as described by the

Poisson sum formula (see [24])

(5)

Therefore, the Voronoi cell of the reciprocal lattice can be con-

sidered as the “natural Nyquist region”: If is nonvanishing
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only in this region, sampling on does not create aliasing, since

the replicas do not overlap. The Nyquist region

for the orthogonal lattice is the square , while

in the hexagonal case, this is a hexagon of the second type with

same surface area , as illustrated in Fig. 1(c).

C. Discrete Signals and Lattices

A discrete signal can be associated with a lat-

tice ; i.e., is located at the lattice site . Therefore, a

representation in the continuous domain can be obtained as a

weighted Dirac comb . Conse-

quently, its Fourier transform is defined accordingly as

. For , we get the

transform of as , where

. With , we denote the convolution inverse of ,

that is the signal with transform .

For every function , we define its discrete auto-

correlation sequence by , using the flip

operator . With the fact that , the Poisson

sum formula in (5) yields

(6)

III. APPROXIMATION IN LINEAR SHIFT-INVARIANT SPACES

A. Reconstruction Problem

Image reconstruction from data sampled on a lattice can be

formulated as follows: We would like to estimate the underlying

function from which we are only given the sample values

, . The reconstruction can then

be used for many tasks in image processing, such as resampling

or the calculation of differential operators (e.g., a gradient for

edge detection).

In order to make the problem tractable, we have to constrain

to lie in some parametric space. It is classical to reconstruct

a function that belongs to a linear shift-invariant (LSI) function

space (like a spline space), spanned by shifted versions

of a generator [30], [31]

(7)

As such, any signal is completely determined by a

sequence of coefficients . In order for this sequence

to be unique, we have to impose that the functions

form a Riesz basis of . This condition is equivalent to the

requirement that there exist two constants , ,

the lower and upper Riesz bounds, such that

almost everywhere for .

So, we are looking for a function of the form

(8)

where the coefficients are obtained by discrete filtering of

the sample values

(9)

The reconstruction process depends on both the reconstruction

space, through the choice of , and the prefilter , that controls

the way the approximation is performed in . In the re-

mainder of this section, we show the role of the prefilter and

how to assess the quality of the reconstruction.

B. From Interpolation to Quasi-Interpolation

The interpolation condition is probably the most popular ap-

proach to perform reconstruction; i.e., is required to pass

exactly through the known sample values

(10)

In the function space , there is a unique function satis-

fying the interpolation condition. It is obtained by choosing in

(9) the interpolation prefilter [18], [32] with tranform

(11)

that is, is the convolution inverse of the discretized version

of with . If , then

, which means that is an interpolant. In this case,

we recover the classical formula for interpolating the signal ,

putting in (8). In the general case where is not

an interpolant, one speaks about generalized interpolation [18],

[32] and the prefiltering step is required.

The interpolation condition ensures that the reconstruction is

perfect at the lattice sites, i.e., , but there

is no guarantee concerning the quality of reconstruction inbe-

tween. In general, we could be interested to evaluate new sam-

ples that lie between the sites of the initial lattice. Therefore,

pointwise equality on the source lattice is less important than

global approximation quality: should be close to

for every , even at the price of losing the interpolation condi-

tion. In this paper, we use an alternative to interpolation, which

is quasi-interpolation: One speaks about quasi-interpolation of

order if perfect reconstruction is achieved when

is a polynomial of degree1 at most . This implies that the

interpolation condition in (10) holds when the are samples

of a polynomial of degree at most . Quasi-interpolation of

order is equivalent to the following condition for the prefilter

and the generator [33]

(12)

For instance, quasi-interpolation of order 1 is the partition of

unity [as in (3)], which means that a constant signal is perfectly

reconstructed.

For quasi-interpolation of order to be possible, it is neces-

sary that every polynomial of degree at most can

1The degree of a bivariate polynomial �(x ; x ) is defined the degree of uni-
variate polynomial �(x; x).
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be expressed as a linear combination of the translates of ;

i.e., there must exist a sequence of coefficients such that

. In that case, is said to have

approximation order . This is equivalent to the Strang–Fix con-

ditions of order [34]

and for every

(13)

If has approximation order , (12) is satisfied with

, which means that quasi-interpolation is a weaker constraint

than interpolation. This additional freedom in the choice of

can be exploited to get a better reconstruction quality than with

interpolation, that is, for the reconstruction to be closer to

the unknown function . We quantify this notion of approxima-

tion quality in the next subsection, and we show that it is mainly

related to a high quasi-interpolation order for the prefilter .

C. Approximation Error and Optimal Prefilters

Approximation theory provides us with a convenient way to

quantify the approximation error

(14)

by means of the error kernel in the frequency domain [33]. Ba-

sically, we can predict this error as

(15)

where

(16)

The first part of the error kernel, , characterizes the

orthogonal projection into the space . It gives a lower

bound on the error that is unattainable in our case, since is

unknown. When a practical reconstruction method is used, that

is, using a prefilter , the second part of the error kernel comes

into play.

In practice, most energy of images is concentrated in the

low-frequency part of the spectrum, which implies that the error

is dominated by the behavior of the error kernel at the origin. An

asymptotic analysis at yields , for

a generator with approximation order . Thus, it is desirable

to have as high as possible, since this parameter determines

the flatness of around the origin and, hence, the ability to

reproduce the low-frequency content of with a small error in

the space . However, the size of the support of grows

with , and is directly related to the computational complexity

of the reconstruction process. In practice, is suitable

for most applications. In the next section, we choose so that

is a multidimensional spline space adapted to the hexag-

onal lattice.

Once has been chosen, the prefilter should be designed

so as to exploit at best the approximation capabilities of .

Fig. 2. (a) Hex-splines � and (c) box-splines � are piecewise polynomial
over triangles, which are three times larger in the case of box-splines. The sup-
ports of � and � (hexagons in solid lines) have surface area L and 3n ,
respectively. (b) The rings collecting sampling points at the same distance to the
origin allow to express the Z transform of isotropic discrete filters in a conve-
nient compact form.

To approach the orthogonal projection as close as possible, we

require

(17)

in the lowpass region. This constraint can be reformulated as

(18)

with . In fact, as soon as , this equation is

equivalent to having quasi-interpolation of order . We go one

step further with (17), so that the whole kernel has the

same maximum flatness as the lower bound around

. Note that this condition of optimality is generally not

met by the interpolation prefilter .

Since (6) and (13) imply that ,

we can rewrite (18) (if ) as

(19)

(20)

Thus, the design of a finite-impulse-response (FIR) filter, using

(19), or an all-pole infinite-impulse-response (IIR) filter, using

(20), appears particularly simple: One simply looks for a pre-

filter with minimal complexity, such that has the desired
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Fig. 3. Box-splines (a) � (x) and (b) � (x), and hex-splines (c) � (x), (d) � (x), and (e) � (x).

Taylor series expansion up to a chosen order. The knowledge of

the autocorrelation filter is not required for obtaining such

an asymptotically optimal prefilter.

IV. MULTIDIMENSIONAL SPLINES

In this section, we present spline basis functions for the

hexagonal lattice , and discuss implementation issues

related to the use of these box-splines and hex-splines.

A. Box-Splines

Box-splines are a versatile generalization of 1-D B-splines

[20]. They are piecewise polynomial and can be nonseparable. A

box-spline depends on vectors, arranged conveniently

in a matrix , and can be defined in the

Fourier domain as [20]

(21)

So, we have the normalization and the

convolution property .

Three-directional box-splines, adapted to the hexagonal lat-

tice, use the three following vectors (depicted in Fig. 2)

(22)

From now on, we denote (known as the

Courant element [35]) and we define the higher-order versions

inductively as (that is, the -fold con-

volution of ), . The subscript value corresponds to the

approximation order; i.e., has approximation order .

In the Fourier domain, we can also write

(23)

with . The box-splines have twelve-

fold symmetry, hexagonal compact support (see Figs. 2 and 3),

and they generate a Riesz basis [20]. These functions have been

successfully used for numerous problems where hexagonal data

are handled [21], [22], [36]. Recently, we derived an explicit

analytical formula for three-directional box-splines of arbitrary

order, together with an efficient implementation [37].

The discrete box-spline filter is defined by

. Thanks to the convolution property ,

the autocorrelation filter is equal to . The first two dis-

crete box-spline filters, calculated using the analytical formula

of [37], are

Due to twelve-fold symmetry, coefficients located at the same

radial distance to the origin have the same value. In order to

compactly characterize the discrete box-spline filters, it is con-

venient to define their transforms using concentric rings, as

shown in Fig. 2: We denote by the transform of the

filter whose coefficients are 1 on the ring , 0 elsewhere. For

example, , where

. Note that is an in-

terpolant, since .
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B. Hex-Splines

Hex-splines are another extension of 1-D B-splines for 2-D

lattices. The first-order hex-spline is simply the indicator

function of the Voronoi cell, see (2). Higher orders hex-

splines are then constructed by successive convolutions:

, for . has approximation order .

On the Cartesian lattice, the hex-spline construction coincides

with the classical tensor-product B-splines. However, on the

hexagonal lattice, we get new nonseparable splines for which

we can provide the expression in the Fourier domain, using the

three vectors shown in Fig. 2

(24)

Then, for every , we have (see Appendix)

(25)

has twelve-fold symmetry, and a hexagonal compact sup-

port, as illustrated in Figs. 2 and 3. We refer to [24] for other

properties (analytical construction, Riesz basis ), as well as

for the practical evaluation of hex-splines. We have shown in

[26] that hex-splines are well suited for exploiting the superior

approximation capabilities of the hexagonal lattice.

Using the Maple programs2 described in [24], we can com-

pute the discrete hex-spline filters . Due

to the convolution property , the discrete auto-

correlation is equal to . The hex-splines and are

interpolants, while the coefficients of are given in Table I.

C. Efficient Evaluation of Box-Spline and Hex-Spline Models

In order to exploit the spline model , in practice, we

need a way to evaluate it efficiently at any desired point . To

compute the sum (8), most of the time is consumed by the mul-

tiple evaluations of . The efficient implementation of the

box-splines and hex-splines has been discussed in

[37] and [24], respectively. For , the eval-

uation complexity depends both on the number of elementary

triangular domains that compose its support (that is, 6, 6, 24,

54, 24, respectively, see Fig. 2), and the polynomial degree of

its expression inside each triangle (that is, 0, 1, 2, 4, 4, respec-

tively). In this paper, we limit ourselves to these five generators,

for which the complexity is still reasonable.

Let us detail the evaluation of itself, at an arbitrary

point , using (8). To limit the number of evaluations of , we

need to know the indices of the lattice sites such that

2Available at http://www.bigwww.epfl.ch/demo/hexsplines/.

Fig. 4. Practical scheme to determine the lattice sites Rk for which '(x �
Rk) 6= 0. They are strictly included in the domain (light gray) resulting from
the dilation of the rhomboid containing x with the support of '. This rhomboid
can be easily determined. As an example, we show ' = � , for which the
support is the depicted hexagon; eight lattice sites are amenable to contribute to
the value f (x).

. These lattice sites are located in the domain

formed by the support of centered in , but it is difficult and

time-consuming to determine them for each . Instead, we pro-

pose the following strategy. First, we compute the coordinates

of in the basis , by . Taking

their integer parts yields . Thus, be-

longs to the rhomboid with vertices , , ,

. Then, as illustrated in Fig. 4, the sum in (8)

reduces to the few indices such that belongs to the do-

main obtained by morphological dilation of the rhomboid with

the support of as structuring element [38]. Thus, the number

of terms to compute in the sum is 4, 4, 8, 14, 14 for our five gen-

erators, respectively. These terms are then fixed for a given ,

independently of . For instance, if , we have for every

(after having determined the associated

(26)

Experimental computation times are given in Section VI for a

practical resampling problem.

While the evaluation of is important for a practical

scheme, we still need to determine the coefficients during

the prefiltering step. In the next section, we design prefilters that

offer good approximation performances for a limited computa-

tional complexity.

V. OPTIMAL QUASI-INTERPOLATION PREFILTERS

We now construct quasi-interpolation prefilters for

box-splines and hex-splines. For each generator , we propose

three different designs. Each of them respects the twelve-fold

symmetry, in order to fully exploit the isotropic properties of

the hexagonal lattice. We make use of the rings defined in Fig. 2

for a compact characterization in the -domain.

• The first prefilter, , is a low-complexity FIR filter

whose implementation is simple and fast. Its transform

is

(27)
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TABLE I
COEFFICIENTS h[k] IN (27), (28), and (30) FOR THE PROPOSED

QUASI-INTERPOLATION PREFILTERS. THE COEFFICIENTS OF THE

DISCRETE FILTERS b AND b ARE ALSO GIVEN, FOR

INTERPOLATION WITH THE PREFILTER p = b

By construction, this filter acts on the data only locally: A

small finite number of samples contributes to the compu-

tation of a coefficient. This property is particularly inter-

esting when handling high-resolution images.

• The second prefilter, , is an all-pole IIR filter, defined

as

(28)

This prefilter does not have a direct implementation in

the spatial domain since no factorization in causal and

anti-causal IIR filters (along particular directions) is avail-

able. Its implementation requires the use of an iterative op-

timization method like steepest descent [39] or a Fourier

domain version that multiplies with the response ,

see for example [24, Appendix E] using rectangular FFTs.

• The third prefilter, , is another all-pole IIR filter, but

this time defined as

(29)

where is given by

(30)

The filter’s structure is well chosen to have a factorization

into 1-D IIR recursive filters along the three natural direc-

tions of the hexagonal lattice. In fact, an efficient algorithm

is available in 1-D, that exploits a factorization of the filter

in two causal and anti-causal parts [14]. Applying it along

the three directions of the lattice yields a fast implementa-

tion for the proposed hexagonal filters. Notice that a similar

structure has been proposed before for hex-splines [40], but

without the optimality in the sense of (18).

Following the theoretical considerations in Section III-C, we

choose the coefficients of the filters so that the associated error

kernel is maximally flat at . We use in

(19) and (20), for the prefilters associated to hex-splines of even

order , and all box-splines. Using for odd order

hex-splines gives the interpolation prefilter in the first IIR case,

and also in the FIR case for the first-order hex-spline. Thus, we

consider for all odd order hex-spline prefilters. In all

cases, we propose the shortest filters, that is, in

(27), (28), and (30). Filters with more taps could be built with

higher values of , which make even closer to .

The coefficients of the proposed prefilters are summarized in

Table I. For instance, in the case of second-order box-spline

quasi-interpolation, is

To illustrate the ease of the procedure to obtain the prefilters,

we detail the design of the FIR prefilter for the hex-spline ,

using (19) with . The Taylor series expansion

of (25) around gives

(31)

The prefilter has the form . In the

Fourier domain, this reverts to

(32)

Thus, we only have to identify and such that (31) and

(32) are equal, which yields and .

Our asymptotical design of the prefilters can be validated

by examination of the associated error kernels. In Fig. 5, we

depicted the optimal error kernel for a selection of

hex-splines and box-splines. The approximation order controls

the flatness of the error kernel at zero, but also the global be-

havior within the whole Nyquist band. We now focus on the

second-order hex-spline. In Fig. 6(a), the error kernel as-

sociated to interpolation is shown. The large difference with

Fig. 5(b) means that the approximation capabilities of the space

are not optimally exploited. We notice that the value of

the error kernel can go up to 2, which is for the frequency com-

ponents that contribute twice to the error: once because they are

not reproduced and, thus, lost, and once because they give rise

to aliasing. In Fig. 6(b), the error kernel for the quasi-interpola-

tion FIR prefilter is shown. The behavior is clearly better for the

low- to mid-frequency part of the spectrum. This improvement

in the whole Nyquist band is visible when we plot the differ-

ence between the interpolation and quasi-interpolation kernels,

see Fig. 6(c). In the next section, we confirm experimentally the
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Fig. 5. Error kernel E for (a) first-order hex-spline � , (b) second-order hex-spline � , (c) fourth-order box-spline � . As the order increases, the error kernel
vanishes more and more in the hexagonal Nyquist region.

Fig. 6. Error kernels for the second order hex-spline � : (a) E (!!!) for interpolation (with no prefilter); (b) E(!!!) for quasi-interpolation using the FIR prefilter
proposed in Table I; (c) the difference E � E , which confirms the better approximation quality when using quasi-interpolation.

Fig. 7. Thumbnails of the seven natural images used for the resampling exper-
iments in Section VI.

advantages of quasi-interpolation with the proposed prefilters,

in a practical resampling setting.

Finally, note that the proposed box-spline prefilters can be

used on any lattice, and not only the hexagonal one, since the

three-directional box-splines can be deployed on any lattice by a

simple change of basis. This is not the case for hex-splines: They

are built from the Voronoi cell that is specific for each lattice.

However, hex-spline prefilters adapted to another lattice could

be easily designed using our generic method. Notice that for the

Cartesian lattice, we obtain the tensor-product quasi-interpola-

tion FIR or IIR prefilters, reported in [33] and [12], respectively.

VI. CASE STUDY: HEXAGONAL TO CARTESIAN

GRID CONVERSION

From now on, we concentrate on the resampling problem

when converting an image from the hexagonal lattice to the

Cartesian one, where both have the same sampling density. To

evaluate the quality of the various algorithms, we propose the

following methodology. First, a standard test image is resam-

pled from its Cartesian lattice to the hexagonal one

using cubic O-MOMS interpolation, which is a high fidelity re-

construction method for data defined on Cartesian lattices [15],

[18]. The O-MOMS surface plays the role of in Section III.

The obtained samples are then considered as input for the

proposed reconstruction methods on the hexagonal lattice. After

prefiltering, the reconstruction is evaluated again on the initial

Cartesian lattice : The samples form a new image

that can be compared with the original test image. Using this

procedure, we tested the seven 512 512 images depicted in

Fig. 7. Mirror conditions were used when handling the bound-

aries of the images.

A. Experimental Results

The PSNR measures between the resampled and ground-truth

images are summarized in Table II, for our test set and var-

ious combinations of and . For the interpolating generators

( , , ), no prefiltering is required to satisfy the interpo-

lation condition. It is remarkable that quasi-interpolation pro-

vides a significant improvement for the second-order genera-

tors, even when using low-complexity FIR filters. For the higher

order generators ( , ), quasi-interpolation with a nonsepa-

rable IIR filter still outperforms interpolation, but the FIR and

IIR2 filters decrease in quality. In all cases, the performance of

the separable IIR2 filter lies between its FIR and IIR2 counter-

parts. Also notice that the hierarchy between the generators is

respected; i.e., the resampling quality is directly linked to the

approximation order of the generator. The difference between

box-splines and hex-splines depends on the prefilter; e.g., for

the second-order reconstruction, box-splines are better when

interpolating, while hex-splines take an advantage when using

quasi-interpolation prefilters.
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TABLE II
PSNR OBTAINED BY USING INTERPOLATING AND QUASI-INTERPOLATING METHODS, FOR THE RESAMPLING PROBLEM IN SECTION VI

Fig. 8. Results on a part of the “Barbara” image for the resampling problem in Section VI. The initial image, defined on the hexagonal lattice� is shown in (b).
From (c) to (l): Resampled images on the Cartesian lattice with the following combinations of generator ', and interpolation or quasi-interpolation prefilter: (c) � ,
p (PSNR = 27:31); (d) � , p (PSNR = 27:53); (e) � , p (PSNR = 30:79); (f)� , p (PSNR = 33:27); (g) � , p (PSNR = 30:51); (h)� ,
p (PSNR = 33:86); (i) � , p (PSNR = 35:91); (j) � , p (PSNR = 36:77); (k) � , p (PSNR = 36:79); (l) � , p (PSNR = 37:40). The
PSNRs correspond to the difference between the resampled images and the reference image (a) that actually served to generate (b).

These empirical results are also confirmed theoretically by

the error kernels. Their study predicts well the PSNR measure-

ments that we obtain for the test images. For , , and , the

error kernel is already very close to , which means

that only marginal improvement could be obtained with other

filters. The quasi-interpolation IIR1 prefilter, which has a sim-

ilar design as the interpolation prefilter, is the only one that could

crank out a small improvement. For the FIR and IIR2 filters as-

sociated to and , the optimality of the error kernel is guar-

anteed at , but the behavior degrades slightly elsewhere.

In these cases, it is better to adopt another design, that consists

in minimizing the error kernel globally, and not only asymptoti-

cally. As an example, we can look for a FIR prefilter for with

three coefficients , where two degrees of freedom

are used to ensure in (9) (and not as pro-

posed in Section V); the third one can then be manually tuned so
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Fig. 9. Reconstruction f of the “eye of Lena” from samples on a hexagonal lattice. The IIR2 prefilter is used in all cases, and the generator is (a) � , (b) � ,
(c) � , and (d) � .

as to minimize the error kernel in the Nyquist band. This results

into the prefilter

(33)

that gives a large average improvement of 1.5 dB for our test set,

compared to the FIR filter proposed in Table I.

In Fig. 8, we show a part of the “Barbara” image. Compar-

ison with the initial image in (a) demonstrates well the features

of the different methods. The first-order hex-spline suffers from

block artifacts, which clearly disturb the visual appearance of

the diagonal stripes. Second-order generators are smoother and,

thus, better from this point-of-view, but the interpolating solu-

tions show a certain degree of blur. This drawback is corrected

if the IIR1 prefilter is used instead. Further increasing the order

makes the resulting image almost unrecognizable from the orig-

inal one, especially the low-contrast regions are also rendered

well. A certain amount of blur is still present with interpolation,

and corrected with IIR1 quasi-interpolation, as demonstrated by

the gains of PSNR.

In the last row of Table II, we indicated the computation time

relatively to the fastest algorithm, which is the interpolating

first-order hex-spline that corresponds to nearest-neighbor in-

terpolation (1 unit is approximatively 0.1 s for a C code running

on a 1.6-GHz PC). The prefiltering step with the nonseparable

IIR prefilters (interpolation and IIR1 quasi-interpolation) was

implemented in the Fourier domain, using rectangular FFTs.

With an FFT-based implementation, the size of the prefilter does

not come into play, but the computational complexity is intrin-

sically higher versus operations for an

image of size ). From the computational point-of-view, the

most interesting methods are FIR and IIR2 quasi-interpolation.

They drastically reduce the computation time in comparison

with interpolation for high-order generators. In association with

a low-order interpolant, they provide a remarkable quality im-

provement for a slight increase in computation time. The FIR

solution also keeps the process completely local; i.e., both the

prefilter and the basis function evaluation are using local samples

only. The IIR2 solution is even faster than the FIR one, since only

1-D treatments are involved in this case for the prefiltering step.

B. Discussion

Stated as in Section III, the resampling problem amounts to

estimating samples of the unknown function (the real-world

luminance scene in the case of natural images) at new locations.

In fact, if the target lattice is coarser than the initial lattice, an-

noying moiré patterns due to aliasing may appear. This problem
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can be avoided by lowpass filtering before sampling, with

a filter whose cutoff frequency is adapted to the target lattice.

Another suitable approach for such a case is a least-squares ap-

proach; i.e., a spline model that is the closest of in the

sense, is fitted on the target lattice [25]. In this article, we consid-

ered the case of resampling onto the orthogonal lattice having

the same density as , which allows us to neglect aliasing

issues on the target lattice. This approach is also well suited

when applying geometrical transformations, such as rotations

or shears, gradient estimations, warping, and so on.

The presented approach is also appropriate for resampling

onto a lattice with higher density, e.g., for zooming purpose. In

Fig. 9, we show the results obtained when resampling an image

defined on the hexagonal lattice with density 1 onto a Carte-

sian grid with density 100, so as to magnify the properties of

the surface in function of the chosen spline reconstruction

space. gives a piecewise constant model, while yields

a surface composed of linear patches over triangles. For

to be continuously differentiable, we have to rely on

or . The result with is not reproduced, since it cannot be

visually distinguished from the one with in Fig. 9(d). Note

how well the oblique contours are rendered with . For ap-

plications where derivatives have to be computed (edge detec-

tion ), or seem particularly adequate.

The same zooming setup can also be applied to compare the

intrinsic quality of sampling on a hexagonal versus Cartesian

lattice. For that purpose, we make use of the zoneplate test

image, whose analytical formula is given by

(34)

Samples on any source lattice (i.e., hexagonal and Cartesian of

the same density) can be computed to obtain the initial mea-

surements. The quantitative evaluation is then performed after

upsampling this image (of size pixels) onto a fine Cartesian

lattice with a density 100 times higher, and comparing these re-

sults against the sampled analytical formula on the fine grid. For

upsampling the data from the hexagonal source lattice, we apply

our box-spline methods (with interpolation and IIR1 prefilters),

while for the Cartesian source lattice, we make use of separable

B-splines (with interpolation and quasi-interpolation IIR pre-

filter as in [12]). The box-splines and B-splines were chosen

with the same order of approximation.

From the PSNR results in Table III, we observe that the

hexagonal lattice is outperforming the Cartesian one, as also

predicted by the theoretical analysis in [26]. Quasi-interpolation

provides a substantial gain over interpolation, which shows that

the theoretical asymptotical optimality of the IIR filters con-

tributes to better resampling quality in practice. These results

also demonstrate the superior quality that can be obtained by

sampling on a hexagonal lattice.

VII. CONCLUSION

This work demonstrated the relevance of combining multi-

dimensional splines with quasi-interpolation for reconstruction

and resampling from data defined on 2-D lattices. We focused

our study towards the hexagonal lattice, and proposed practical

TABLE III
PSNR EVALUATION FOR THE ZONEPLATE TEST IMAGE, GENERATED

FROM THE ANALYTICAL FORMULA ON THE SOURCE LATTICE AND

EVALUATED ON A HIGH-RESOLUTION CARTESIAN LATTICE

Fig. 10. Hex-spline � , which is the indicator function of the Voronoi cell of
the hexagonal lattice, can be decomposed into three parts. Each of them is the
sum of two box-splines.

solutions with theoretically optimal FIR and IIR prefilters to

be associated with box-splines and hex-splines. As confirmed

by practical experiments, FIR and separable IIR quasi-interpo-

lating prefilters achieve a particularly relevant tradeoff between

the approximation quality and the required computation time.

Hence, quasi-interpolation should be considered as a viable al-

ternative for all signal and image processing tasks in which there

is an underlying reconstruction problem.

Since box-splines and hex-splines are based on generic mul-

tidimensional concepts (vectors along the directions of the lat-

tice for the box-splines, Voronoi cell for the hex-splines), it is

straightforward to extend our approach to higher dimensional

problems. For example, high-quality visualization of 3-D data,

that is an active field of research [41], could greatly benefit from

our fast quasi-interpolating methods, because nontrivial interpo-

lation is not tractable in 3-D.

APPENDIX

DERIVATION OF (25)

Since , we just have to demonstrate (25) for .

As shown in Fig. 10, can be decomposed into three

indicator functions that yield the three terms in the sum of (25).

Let us detail how we get the Fourier transform of the first one.

This indicator function on the two rhomboids (each with

surface area 1/3) is the sum of two box-splines

(35)

(36)

(37)

where we used .
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