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1. INTRODUCTION

... We are interested in obtaining an analysis of the bifurcating periodic

orbits arising in the generalized Hopf bifurcation problems in R®, The
exiétence of théee periodic orbits has often been obtained by using such
techniques as the Lyapunov-Schaidt method or topological degree arguments

¢{poe Marsden and McCracken (8] and Hale [6] and their references). Our ap-
proach, on the other hand, is based upon stability properties of the equili-
brium point of the unperturbed éystem. Andronov et. al. [1] showed the frult-
fulﬁes%vsf this amproach in studying bifurcation problems in Rz' (for more
vecent papers see Negrini snd Salvadori [9] and Bernfeld and Salvadori [21).
in the case of Rz, in contrast to that of Rn, n > 2, the stability arguments
can be effectively applied because of the Poincaré-Bendixson theory. Bifurca-
tion probleme in " can be reduced to that of Rz when two dimensional in-
varian* wanifelds are known to exist. The existence of such manifolds occurs,

for wxample when the unperturbed system contains only two purely imaginary

celgenvalues.

, . . n
Tn this paper woe shell be concerned with the general situation in R

i which the unperturbed system may have several pairs of purely imaginary

*This reseatch was partially supported by U. S. Army Research Grant
- DAAG25-80-C~0060.

#*jork performed under the auspices of Italian Council of Research (CNR).



eigenvalues. To be more precise, let us consider the differential system

(1.1) p = fo(p),’

4

where f, € c“’{s“(a )R], £ (0 = 0, and B“(a y = {peR": Iph < ag}e

Assume the Jacobian matrix f ‘(0) has two purely imaginary eigenvalues

3

i and;that the remaining eigenvalues {X }j 1 satisfy kj $#mi, m=0,

For those f € Cw[Bn(aO),Rn}, £(0) = 0, which are close to f0 (in

an appropriate topology) consider the perturbed system

(1.2) p = £(p).

We are interested in determining the number of nontrivial periodic orbits
of (1.2) lying near the origin and having period close to 2n for those
f close to fo.
In approaching this problem, we will coneider for any positive integer
k the following property:
(a) (i) there exists a neighborhood N* of fU’ an a, > 0 and a number
61 > 0 such that for every £ € N* there are at most k nontrivial
periodic orbits of (1.2) lying in B™(a ) whose period is in [2n-61,2w+6 1s
7(11) for each integer 4, 0 <3 <k, for each a, 153 (0 al) for each
"GZ'é (0,61) and fof each neighborhood N of fO’ N C N*, there exists
f €N such that (1.2) has exactly 3§ nontrivial periodic orbits lying
in Bn(a ) whose period is in [2ﬂ—62;2ﬂ+62};

({i1) for any & € (0,a ), s € (0, °1) there exists a neighborhcod'ﬁ
of fo, N C N* such that 1f f€N and 1f Y is a periodic orbit of



(1.2) lying in Bn(al) whose periéd is in EZn»Gii 2n+613 then ¥

1des in B(E) with period in [2r-T, 2m+sl.

In conttast to (a) another property which we consider in this paper is:
(A) For any neighborhood N of fo, for any integer 3 > 0, for

any a € (0981]; and for any 8> 0 there exists £ & N such

that (1.2)}has_3j ‘nontrivial periodic orbits lying in Bn(a) whose

period is in [2m-8,,2145,].

A'”iﬁ ‘R2, ‘Andronov et.al. [1] proved that property (a) ((1),(41)) 18

a consequence of the origin of {(1.1) being h-asymptotically stable or h-
completely unstable where h is an odd integer and k = E%l. The origin
of (1.1) in R® is said to be h-asymptotically atable (h-completely unstable)
{f h 1is the smallest positive integer auch that the origin of (1.2) is
asymptotically stable (completely unstable) for all f for which
£(p) - fo(p) - o(ﬁpﬁh); that 18 h 1s the smallest positive integer such
that asymptotic stability (complete instability) of the origin for (1.1)
18 recognizable by inspecting the terms up to order h in the Taylor expan—
sion of fo (see Negrini and Salvadori [9] for further information on h-
asymptotic stability). 1In a recent paper Bernfeld and Salvadori [21 in R2
extended the results of Andronov et.al. [1] by proving property (a) is
equivalent to the h-asymptotic stability (h-complete instability) of the
origin of (1.1) (where again k = E%l ). It was also shown that property (A)
is equivalent to the case in which the origin of (1.1) is neither h=-asymptoti
cally stable nor h-completely unstable for any positive integer h.

The problem in R® was first considered by Chafee [5]. Using the

Lyapunov-Schmidt method he obtained a determining equation ¢(E,f) = O




where § 1s a measure of the amplitude of the bifurcating period orbits
of (1.2) and f represents the right hand side of (1.2). By assuming that
the multiplicity of the zero root of w{o,fa) is a finite number k, he
proved that property (a) holds for this k.

Our goal in this paper is to relate the number k in property {a)
with theicondiéional asymptotic stability properties of the otrigin for a
differential system which 1s close in some sense to the unperturbed system
(1.1). These stability properties are precisely the h-asymptotic stability
(h-complete instability) of the origin for a particular differential
equation (Sh) in Rz. The conatruction of (Sh} as well as the recogni-
tion of the h-asymptotic stability (h-complete instability) of the origin

of (8,) can be accomplished by solving linear algebraic systems. Indeed,

h
these stability properties can be recognized by applying the classical

Poincare procedure (see [9]1 or [10]). Thus, the number k, k = B%i, can be

determined using elementary algebraic techniques. The analysis of our problem

is completed by observing that when the origin for {Sh) is neither h~-
asymptotically stable nor h-completely unstable for every h > 0 then
property (A) holds.

The main ingredients of our analysis are: (i) the construction of a
quasi-invariant manifold )  for the unpertubed system (1.1); (ii) the
use of the Poilncare map aiogg a particular set of solutions of (1.1) which
are initially close to z .

In conclusion, the qiantitative problem of determining the number of
bifurcating periodic solutions of the perturbed system (1.2) can be re~.

duced to an analysis of the qualitative behavior of the flow near the origin

of a two dimensional system appropriately related to the unperturbed system



(1.1). 1In addition, an algebraic procedure allows for a concrete solution
to the problem.
Finally, we remark that an announcement of our results was presented

at a conference in Trento, Italy {31

2. RESULTS
i :'we,will endow the space C ec[Bn(ao),an with the following topology:

define a function |||+|l| mapping Cw[Bn(aG}gan] into R as

el + | L
a+ll £ 11D
where H flS(E) denotes the usual C(£)~gupremum norm of £ on Bn(ao).
Then thBn(ao),Rn] {g & metric linear space under l+lll. For any vector

w € " we shall denote by |lw|| the Euclidean norm of w.
By an appropriate change of coordinates depending on f we may write

systems (1.1) and (1.2) regpectively in the form

X = -y +x0(x,y52)

(2.1) § o= x4y (x,y,2)
z = Az +7 (xe JE
and
% = ax ~ By + X(x,v,z,)
(2.2) y o= ay + Bx + Y(x,y,2,f)

5 = Az + Z2(x,v,2:F).

For each fixed f, o and B are constants sntisfying a(fﬁ) = 0, B(fo) = 1



and A is an (n~2) x (n-2} constant matrix satisfying A(fa) = AO. More-
over, for fixed £, X and Y belong to Cm{Bn(sg},RE, 7 belongs to
Gmﬁﬁn(a },Rnazj, and X,Y,72 are of order greater than one. The eigenvalues

of AO’ {1 satisfy the condition that kj fmi, m=0, +1 ...,

j =1
We now consider en {(n-2) dimensional polynomial of some degree h,

h > 1, ‘given by

2.3 $ M Gy = 0 Gy) + e 4 b OGN,

where éj(x,y) is homogeneous of degree 3. We attempt to determine
¢1,...,¢? in order to obtain along the solutions of (2.1)
d 2, 2.h/2
(2.4) {iéi z {%}’x,y)ﬁ:l = pl{x"+y )
s Zsé {x’y}
that is, we have to satisfy

(h}

ox

vy [ , 1
9 x >‘i -y + Xg(xsygé{h}{x,y}§‘l
[ .

zxm_ [:-:-FY 9,6 o,9)) |

S

(2.5) +

- a M ¢ x93 + oty M2,

0 (x,y) + ZU(x,y;

This implies for every 3§ € {1,...,h}, ¢, has to satlsfy the partial

3

differential equation

(2.6) AN R

where Uj ig an (n-2) dimensional homogeneous polynomial of degree ]
depending on the functions él ves éﬁ-l“ Under the assumptions on A0
(2.6) has & unigue solution and can be solved recutrsively by observing

that ¢1(x,y} z § (see for instance Bibikov [41),



The two dimensional surface z = @gh}{xgy} iz tangent at the origin
to the eigenspace corresponding to the eigenvalues +i. This surface will
be called a quasi-invariant manifold of order h.

Given any h > 0 define the following two dimensional system

()
h)

(x,¥,¢6°  (=,9}}

Sde

2 =i
y + X,

= % + Ygix,y,é'

S8 )

{x, ‘3;:’

v

(This is the system referred to in the introductionj.

We distinguish the two possible cases:

t
-

st

<

I. There exists h > 1 (and then h must be odd) such that x =
is either h-asymptotically stable or h-completely unstable for (Sh).
11. Case I does not hold.

We are now able to state our main result.

Theorem 1. 1In Case I property (a) holds with k m-égi. In Case 11, property
(A) holds.
1f all the eigenvalues of ég have real part not equal to zero, then
for every h > 1 there exists & €h+l two dimensional center manifold
which will be denoted by 8hi We notice that if 2 = ¢{x,y} 1is the equation

of this center manifold, we can write
. , (h) 2. h/2

(2.7 ${x,y) = ¢ T {x,y) + o(x” +v )

As a consequence of Theorem 1 the followlng result holds.

Corollary 1. Suppose that all the eigenvalues of AG have real part dif-
Ferent than zero. Then: (1) if there exists an h (and h must be odd)

such that the origin of the unperturbed system {2.1) is either h-asymptotically




stable or h-completely unstable on Hh (that is, with respect to initial
points on Hh) then (a) holds with k = Bgl; (41) 4f for every h> 1
the origin for the unperturbed system (2.1) is neither h-asymptotically
stable nor h-completely unstable on ﬁh then (A) holds.

Under some more particular hypotheses on the eigenvalues of fo'(O)
the stability properties in Theorem 2 can be expressed in terms of the
runpertyrbed syatem (2.1) without any explicit involvement of" Hh' This
_f§§h bg_proved by the extension of the Poincare procedure [10] given by

Lyapunov [7]. Precisely the following result holds.

Corolia%z . Suppoée all the eigenvalues of AO have negative real part.

Then (1) if the origin of the unperturbed system (2.1) is either h-

asymptotically stable or h-unstable (in the whole) then (a) holds with

k = E%l; (11) if for every h > 1 the origin for the unperturbed system

(2.1) is neither h-asymptotically stable nor h-unstable, then (A) holds.
Notice that we are using the concept of h-unstable whose definition

is analogous to that of h-complete instability. A similar theorem can

be stated when fo'(O) has two purely imaginary eigenvalues +i and the

remaining eigenvalues have positive real part.

3. PRELIMINARY PROPOSITIONS

Using the transformation

» ()

L=z~ (x,¥),

we can rewrite the unperturbed system (2.1) as



k= -y + %, y,0)
(3.1) § = x + quh)(xsysg}
{ = At + wa{h)(x,ygi),
.where rxc(h)(xiYiD} = ﬁg(X;Y9¢{h}(st)}g YG{h)QX:YsG} = YO(stiégh)(xsy)}‘

B L N 4 i
71_;_?;§m~(2.4) we observe that wﬂ‘hB(x,ysﬁ) is of order greater than h.

Analogously, we can rewrite the perturbed system (2.2) as

(h}{x
{h§(g

= gx - By + & s¥s5,E)

He

(3.2) = gy + B + Y 55055}

e

= Ay + W(h}(st;E;f)s

£

where X(h)(x,y,ﬁ,f} = X(x,y,ééh){x,y},f}; Y(h)<X9y98§§) = Y€xsys¢<h}<xsy},f)

by (W) (R

; ¥ s W are of order > 2, Let us set

and for fixed £, X

16 s (27 - 8, 26 + 61 for any & > 0. We now glve the following proposition.

Proposition 1. There exist €,6, L > 0 and a neighborhood ﬂa of fO such

that whenever f € NO and (x,v,z) € vy, where vy 1s any T-periodic orbit

of (3.2) lying in B"(e) with T € 1, then }éc}!g_L(x2+y2)a

Proof. Choose £y € (Ogaﬁ), 51 > 0 and a neighborhood Nl of fO such that:

() det(t-éT) 40 for £EN, and TE Ig; (1) the solutions of (3.2)

through the initial point (U,x NN (x{tgﬁﬁ,yaggesf}, Y(t;xo,?gsioyf);

0*¥o0' %0

' 3 ' i ¢ n for “ & n
;{t,xa,yo,so,f)) exist and belong to B (aa} for all (ﬂo,yg,ge) B (El)’
f & Nl end t € [0,2r + 51], Here I is the {(n-2) x (n=2) ddentity
matrix. Condition {1} can be satisfied for f close to fa and 61 small

because our assumptions on the eigenvalues of AG implies that

det (I-e270) 4 0.
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N
. € g &
We now want to determine (xo,yo,co) B {61)’ £ Nl and T € 161

which satisfy the condition
(3.3) C(T,xﬂ,yogtg,f) = L.

From the third equation in (3.2) it follows that (3.3) is equivalent to the

gquation— F{xO,yO,;Q,T,f) = 0, where

S . AT A{T-~ h
F(XO’YO'ﬁﬁ’T’f) = (I-e );O - EO e ( S)Ew( )(x(s,xgsyﬁsCO.on y(s;xo,yo,cg,f),

C(s ;XOQYO'} Co! f} ;f) }és.

(h)

S8ince W 18 of order > 2 in (x,y,t) for each f we have

F(0,0,0,2m,£) = 0 and let D F(0,0,0,2m,£) = det(1-e2™0y ¢ 0. Then,
0
by the implicit function theorem, there exist €€ (0,£1j, 8 € (0,61].

ﬂ“'z-}

N.CN and o€ C{BZ(E) X 15 x NQ, R i, ﬁ(D,G,Zw,fG} = 0 such that

0 1

(a) For every (xp,¥ptg) € ey, T E 1,, end f€ Ny (3.3) holds 1f

and only 1if Ly ™ c(xO,yg,T.f).

(8) “a(xo,yo,T,f)ﬂ gﬁL(x02+y0‘) for some conatant L > 0 and for all
2 .
& : .
(xo,yﬂ) € 87 (e), T Is, f e ﬁe
The function o- ig ¢ in (xg,yg) and its derivatives are continuous
in gll variables XU’YG’T‘f‘ For any TE€ I, and £ €& HO we have

£(0,0,0,T,f) = 0 and then 0(0,0,T,f) = 0. Moreover, dat DC ¥(0,0,0,T,£) =

0
det (I-eAE) ¢ 0 (because of (1)) and Dx ¥(0,0,0,7,£f) = By ¥(0,0,0,T,f) = O,
3] 0
which implies D_ o(0,0,T,£) = Dy 5(0,0,T,£) = 0. In particular, consider
0 O '

any T-periodic solution of (3.2) lying in B%(e), with TE I, and f €N,
and denote its orbit by y. Since (3.2) is autonomous condition (3.3) is

patisfied for any point (x,¥,z) € y. Thus, Proposition 1 immediately follows

from (a), (B8).



The substitution
(3.4) x=rcos 8, y=1v sin 8, L = vv,

{into (3.2) gives a system which we write as

dr hy .,
4 L 2™ o,r,v,0)
(3.5)
. Y
g% = é v -+ n{h,{girsvsf}i

where R(h),‘n(h) € ¢”. The solutions of (3.5) for which ©(8) # 0 for all
8 are the orbits of corresponding solutions of (3.2). sMoreover, the origin
is & selution of both (3.2) and (3.5). We denote by (r(0,e,vy%), v(8,c,v4,£))

the solution of (3.5) passing through (O,e,v. ). When the golutions (r(8),v(8))

g

of (3.5) are known, the corresponding solutions of (3.2) can be completely .

determined by solving the equation

d8 e oras
EE’Q d<§9r€8}§vi8}if}s
where © is greater than some positive number in a neighborhood of the orlgin

in R“‘l and for £ close to 53. Fvery Zn-periodic solution of (3.5),
(£(8),v(8)) represents a periodic orbit of (3.2} whose period T 18 given by

d8 ,
0(8,r(6),v(8),1)

(3.6) T J
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For any € > 0 denote by P(g) = {(r,v) € Rn_l, r > 0, 22 + nvu2 < 52}.
We now introduce for system (3.5) property (a') which corresponds

to property (a) for system (3.2).

(a') (1) There exists a neighborhood N* of f_ and an €, > 0 such that

0 1

for every f € N* there are at most k nontrivial 2m-periodic orbits of
(3.5) lying in 'P(sl).
(11) For each integer 3, 0 < J < k, for each neighborhood N of £
N C N*, and for each e, > 0 there exists f € N such that (3.5) has
exactly 3 nontrivial 2w-periodic solutions lying in P(sz).
(111) for any ¢ € (0,e,) there exists a neighborhood N_ of f, NEE N#
such that if fEN and if y 18 a 2m-periodic solution of (3.5) lying
in P(el) then vy iies in P(e).

The solutions of (3.5) are the representation in polar coordinates of
the orbits of the solutions of (3.2). It 1is not clear apriori that (a')
impliesr(a) because these properties involve neighborhoods of the origin
in (r,v) space and of the origin in (x,y,z) space respectively while the

substitution (3.4) 1is singular at r = 0. Nonetheless, we can prove the

following proposition,

Proposition 2., Property (a') implies (a).

Proof. Without loss of generality we may assume ey < 1. Define the mapping
v (x,y,8) > (r,v), (x,y) # (0,0), given by the substitution (3.4), that is

r = /xz + y2 and v=1p/ x2 + y2. Then w—l(P(e])) C Bn(c]) since

2 4 v? < 512 2 4w < 512.

2n-periodic solution of (3.5) lying in P(el) corresponds in polar coordinates

implies r2 + "cuz = r2 + rznvnz <r Each



(o the orbit of a periodic solution of (3.2) lying in Bn(sl) whose period

is included in some interval I5 . Let ¢,6, L, and NO te the constants
1 ,

and neighborhood of fo defined in Proposition 1 and assume €y < €,
tn view of (3.6) and the observation 0(8,030,f0) = 1 we may choose 51

and N* such that 61 < & and N*C Ny Let a, = ellfl + 12 1 f C N* and

any periedic orbit of (3.2) lying in Bn(al} whoge pericd is in 16 then

1
by Proposition 1 ¢(Y) C P(ﬁi}’ Indeed, 1f (x,vy,5) €y and r = ¢x2 + yz*
) . 2
then (r,v) = ¢(x,y,t) satisfies “v“z + 2 - ﬁ5%~ +r? < L2r2 + rz = r2

r
(1+L2) < 812(1+L2) < € 2 Thus, property (a)(3) follows from

=
(a')(1).

Proof of (a)(d1). Pick any a, < &, < 51/ %@ + 1% and N N* such

2 2
that for every f € & we have: (1) the periodic orbits of (3.2) lying in

Bn(Ez), which correspond to the 2tn-periodic orbits of (3.5) lying in P(Egét

have period in 16 . This foliows by using (3.6) and the fact that
2 .
G(B,O,O,EO) =1, (2) £ €N dmplies that all the 2n-periodic orbits of

(3.5) lying in P(el) iie in P(gz). This can be done in view of (a") (114,

In view of fa')(ii) pilck £ € N such that (1,5) has exactly J 2n-periodic
orbits lying in P(gz). 1f Y 1is any periodic orbit of (3.2} lying in

Bn(az) whose period is in 15 then Y(y) € P(eli. 1 view of (2)

”y

¥v(y) C P(Ez). This completes the proof of (a) (11).

Proof of (a)(iii). Assume a

— ¥ —
1 < a < EX/J& + L° and N C N* such that

conditions (1) and (2) above hold with N  replaced by N and 81 2;2,

and a, replaced by ‘g"gl' and a respectively., Then, 1l 'y is

a periodic orbit of (3.2) lying in B“(al) with period 1n I6 , then
: 1

$(r) C P(ey) which implies P(y) € P(El). Then, in view of (1) and (2),




R (N W X :
5 C 3 {a,) € B (&) with perfod In L., This cowpletes the proof of
} R O
vroposition 2.
A soluidicn {r(8),v{0;} of {3,3) that existe on I0,27] will be

v(3). FEvery 2n-periodic solucio

[}

calied a (2n,v) solution £ v{2v)
obvicusly a  (2w,v) solutiors: thus, i order to find the 2w-peclodic zal
only need to inspect the sof of (2n,v) soiutivns. This leads ur to

the followling proposition.

Jpoposition 3. Thoye ewxists an o > 0 and a neighborhosod N of 1 .
G

and a function T € CI{0,e; x 1,00 "4, 1 C.i)y € € ,1(0,£) =0 fer ¥ CN,
for every (C,VG} EP() and [ €N tie sclucion of (1LY through i@,

iz a (Z2w,v; solution 1 and only §f v, © t{c.1),

As in une srocf of Proposition 1 we choose €, » 0 and & v

: - ) s L. 2mA . .
i of . wuch thag (1) det (i-a s 40 For =M, and {({1) 5o

i J 1

vdang (rfﬁucﬂi(,f), v{B;ﬂ,vvqf)) of {3.5) exist and helong to Pla )
’ { -4

o

ali {o,v, © P{al}, sE ¢, oand 0€ [0,20), Frem the sccond eguation

Cl 1!

73.5) it {oliows that the condition v(?n,u,vv;f} 2 v( is eqguivale o
¢ }
requlvenent that F(c,vvtf) = (), where
J
‘ Zn \ L
. A VN [0 n(zim) . Gy o ;
FAC,Y L) T e JEL, oy @ in \wggg,c;wnga),fig,c;v shi .t
G e P 0 0
Yo recognize that (G U, f3 = 0. Now we prove U 06,0, ) = dex  {:
* ‘ 1
Yo L
3 i 1 ¢ {h‘) r 15}
o wee this, observe that since N 18 of order > 2 du v we only u.
Sr(G,O,Q,fC} ()
to prove thut ‘M—*Mgg—‘-~w'? 0 fore={0,2n7 {(recall that n s’y
: ;

, , _{h) - ) } .
linear teims ju ¥, Sitnee RO (0,0,v,i.) = 0 lhen for any v, "Y
i A

)

}r of (3.5) satisfies r{@,ﬁ,vﬁ?fn‘ = 0 Ve

ir(ﬂ,ﬂ,v F )v v{d,0,v
d

£
G G’ 0

3 € [4,2n], Thus, Tgé' (0,0.0,fﬂ} 2 0 and consequently, det Dv FOO,0
0 G
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det(I-eZWAO) 4 0. Therefore, the conclusion of Propoeition 3 follows from
the implicit function theorem and the fact that ¥(0,0,f) = 0.
Denote by (r(8,c,f), v(8,c,f)) the (2m,v) golution of (3.5) passing

through (0,c,t(c,f)). Because of Proposition 3 we can write

£(8,c,E) = uy(8,5)c + oou ¥ uh(e,f)ch PR

(3.7) h-1 h-1
v(8,c,f) = vl(B,f)c 4+ 4.0 + vh_l(e,f)c +o(c ),

where ul(O,f) = 1, ui(D;f) =0 for 1> 1 and
(3.8) v,(0,8) = v (2n,f) for 121,

Consider now the displacement function relative to the (2m,v) solutions

which is defined in a right interval of ¢ = 0 and in a neighborhood of f0
(309) V(C,f) = r(z",c,f) - Co

Then the 2n-periodic solutions of (3.5) correspond to the zeros of V(c,f).

We now prove the following result.

Proposition 4. Assume the origin of (Sh) is either h-asymptotically stable

or h-completely unstable. Then h is odd and

i h
(3.10) l-v_ (ng ) = 0, i = 1ongh - 1 and _a——v- (ng ) # 0.

i 0 h 0

ac s8¢
Proof. Substitute (3.7) into the second equation in (3.5) for f = fo and
equate coefficients of c. Since n(h)(e,r,o,fo) ig of order > h -1 in
r we find that vi(e,fo) =0 for 1 =1, ... h - 1. Indeed,

Ivy
55 (8,£g) = Agvp

- Ap®
implying vl(e,fo) vl(O,fO)e .




1

Condition (3.8) and the fact that det(I-eZ"AO) + 0 d4mplies that vi(o,fo)f-i
and consequently, vl(e.fo) = 0. Since vl(e,fo) = 0 we then have

sz i
55 (Bsfp) = Agv,

and as before, vz(e,fo) z 0. Continuing in this manner we obtain vi(e,fo) =0,
i=1... h -1, Thus, in order to compute the functions ui(e.fo) we may
put v =0 into the first equation in (3.5) for f = fo. We then obtain the

equation

dr (h)

'a'é' = R (eoraosfo);

which is precisely the equation in polar coordinates of the orbits of (Sh).
Since x =y = 0 is either h-asymptotically stable or h~completely unstable

for (Sh) we have that h 1s odd and
ul(e,fo) = 1, ui(Zn,fo) =0, {=2,.. h-1, uh(Zn,fo)'# 0,

(see [9] for more details), thus implying (3.10) holds.
Finally, we have the following result concefning the roots of V(c,f)

for f close to fo.

Proposition 5. Assume the origin of (Sn) 18 either h~asymptotically stable o

h-completely unstable. Then there exist ¢ > 0 and a neighborhood N of fU
such that: (1) V(c,f) is defined for any ¢ € [0,c} and f € N; (2) for every

c, € (0,c) there exists a neighborhood N, C N such that for f € N, all

1 ~ 1 1
roots of V(c,f) 1lying in {[0,c] 1lie in [0.c1).
The proof of Proposition 5 utilizes Proposition 4 in order to show that . r
— — » h
c > 0 sufficiently small and c € [{0,c] we have IV(c,fO)|‘3 ne  for an ap

propriate constant p > 0. The
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continuity of V(c,f) 4n ¢ and f = fo aliows us to conclude that for every

¢y € [0,c] there exists N C N such that for f €N , |[vic,B)| > %uch
¢y cy - 1
for c € [cl,E]. We leave the details to the reader.
4. PROOF OF THEOREM 1
If 1n the transformation (3.4) we assume r < 0 dinstead of r > 0 we

obtain a new displacement function V(c,f) defined for ¢ < 0. We will extend
the domain of V by setting V{(c,f) = V(c,f) for e < 0. It is easy to
recognize that this extended function is continuous and for fixed f 18 C=

in c¢. 1In addition, we observe that for any 2w-periodic solution of (3.5)

there exist > 0, c, < 0 such that V(cl,f) = V(Czyf) = 0.

€1

Assume Case I. We shall prove property (a') holds and in view of Propositir-

3 the proof of the first part of Theorem 1 will be complete.

Proof of property (a')(1). Since the origin is a solution of (3.5) for any
f, an application of Rolle's Theorem, in view of (3.10), implies that there
exists an S 0 and a neighborhood N* of fO guch that for any f € M,
~V(c,f) has at most h-1 nonzero roots counting multiplicity in [—el,el].
For each positive roét of V(e,f) there is a negative root of V(c,f) cor-
responding to the same periodic orbit. Thus, there are at most k = hil

nontrivial 2m-periodic solutions of (3.3) lying in P(El) for f € N*.

Thus, property (a') (i) holds.

Proof of property (a')(41). We essentially adapt to our problem a proceedure

used in [11. Suppose the origin of Sh is h-asymptotically stable (the case

in which the origin of (Sh) {s h-completely unstable has a similar proof).
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Consider a perturbed system of (3.1) of the form

+ 2 2 k"’
X =~y + Xéh)(x,y,c) + % aix(x +y7) t
=1
3 -
(4.1) ¥y =x+ Yéh)(x,y,;) + z aiy(x2+y2)k 1
i=1
. h
L= Ayt + wé )(x,y,c),

where k = hél , ] 1is any integer, 1 < 1 <Kk, and ai are constants to

be determined (the case J = 0 follows by letting f = fo). We will denote
by V(c,al,...,aj) the displacement function relative to the (2n,v) solu-
tions of (3.5) which correspond to (4.1). We will denofevby S(al,...,aj)

the first two equations in (4.1) for ¢ = 0. Since the origin is h-asymp-

totically stable for $(0,...,0) then from Proposition 4
h h
V(C,O;O,...,O) = goc +O(C )a go < 0.

Thus, for s > 0 and sufficiently small we have V(cO,O,...,O) < 0. There

exists an ny > 0 such that V(CO’al""’aj) <0 for iai] < nys

1 =1,...,3. Fix now al,,0 <& < ny. Then

V(c,al,O,...,O) = glch—z + o(ch_z)

-where 8y = 21ra1 > 0. This can be recognized by replacing the expression

for r in (31.7) into S(a],D,...,O) and taking into account that ui(Zn,f) = 0
i=1,...,h-3 (see [9] for more details). There exists cys 0 < ¢ < S

such that V(Cl’a 40,00.,0) > 0 and thus, we can find ny > 0, n, < Ny such

1

that for lail < "2’ i= 2,001, v(c1'81’82’°"’aj) > 0. Fix now a2 < 0,

la2'< n,. Then
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h-13 -1
V(c,al,az,o,...,O) = gye * 0Ce )

where By = Zﬂaz < 0. Then there exists C,, 0« ¢, < ¢ guch that

V(cz,al,az,o,.,.,O) < 0 and thus, we can find fy > 0, u, <M, such that

3
for ‘&il< Nq 1= Fy000sd V(CZ’BI""’ﬁj) < 0. Continuing this processg
we can find a set of numbers El;EZ,...,Ej, ¢, <‘E1 <eyy 1= 1,.005]

(and thus 0 < gy < ¢ 4= Lieewsd=D such that V(T,sapse+»ay) = O
{=1y.00.,3}. Since c = 0 1is a root of V(n,a},...,aj) of order h - 2}
(recall ui(Zn,f) =0 {=1,...,h-23-1) and fof each positive root of

V(c,a ..,8,) we have # negative root then we {mmediately have that the

1’ i

Ei { = 1,...,41 are the only positive roots of V(c,al,...,aj). Moreover,
we can obtain that the -Ei can be made close to ©F 0 by picking €,
sufficiently small. This completes the proof of (a')(11).

The proof of (a')(111) 1is an {mmediate conseguence of Proposition 5.
Thus, property (a') holds and so the First part of Theorem 1 1s proved.

We now show Case IT follows frouw Case L. tor any positive integer ] we

assume in (3.1) he=21+ 1 and consider perturbed systems of the form

hi~t
. h 2 2.7
X = ~¥ + x(g )(X,}’,U + b}{(){ +y )
h-1
(4.2) yo=x b ?éh)<x,y,n) + by(x4+y2) ?
i o= AOI; + Wéh) (X,Vs5)

where b 1is a constant. We then have that for the corresponding reduced
gystem (Sh) the origin is either h~asymptotically gtable or h-completely
unstable 1f b < Gorb > 0 respectively. Thys, we have reduced the problem

to Case 1,



Since j and b are arbitrary, property (A) tholds, thus concluding the

proof of Theorem 1.

5, PROOF OF COROLLARIES.

The proof of Corollary 1 follows from (2.7) and Theorem 1 by observing
that there is an equivalence between the h-asymptotic stability (h-complete
instability) of the origin of (3.1) on Hh and the h-asymptotic stability

(h~-complete instability) of the origin of (Sh}.

Proof of Corollary 2.

We observe that the origin of the system (3.1) is h-asymptotically gtable

in the whole 1if and only if the origin of (s.) is h-asymptotically ptable.

h
Indeed, Lf the origin of (Sh) ig h-asymptotieally stable, there exists a

constant © < 0 and a polynomial

2 2 .
F(X,}’,C) = X + ‘j + FjistsQ} + --‘th(SsYaC)

(F {s a homogeneous polynomial of degree 1)} such that the derivative

i
of F along the solutions of (3.1) can be written as
htl hil
. . ,
F(X;Y;C) = G{x +y2) 2 + 0(x?+y2+u cﬂz) 2

(note that Flx,y,0) differs from the derivative of F along the solutions
of (Sh) by terms of ordet greater than h + 2). Moreover, there exists

a quadratic form in L, Q(z), such that along the golutions of system (3.1)

Qx,y.5) = -“d‘z + xl(x,y,f:) + xz(x,y,r,)
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where xl ig of order > 3 and of order > 2 in L3 and X, is of order

> h + 1 (see Lyapunov [7] for a detailed analysis of the above statements).
Setting n=F + Q we have that along the solutions of system {(3.1), for

X,¥,% small,
htl
: 2 2 2
n(x,y,z) = =gl + c(x"+y") 2 4 xl(x,y,c) + a(%,¥,0)

g h+1
l 2. 2
= A+ G(x2+y 3 + 0(1&,5’,5),

where o 1s of order > h + 1 and includes xz(x,y,c). Then n 1is positive
definite and 1ts derivative along solutions of (3.1) 1is negative definite.

This property holds 1f we perturb (2.1) with terms of order greater than h.

On the other hand, this prcperfy will not hold by appropriately choosing pertur-

bations of order < h. Thus, the origin of (2.1) is h-asymptotically stable.

Using similar arguments we can ghow that {if the origin is h-asymptotically
stable in the whole then the origin is h-asymptotically stable on Hh.
Analogously, we can prove the origin is h-unstable in the whole if and

only if the origin of (Sh) {8 h-completely unstahle. TIn view of Corollary 1

this completes the proof of Corollary 2.
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