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QUASILIKELIHOOD-BASED HIGHER-ORDER SPECTRAL
ESTIMATION OF RANDOM FIELDS WITH POSSIBLE LONG-RANGE

DEPENDENCE

V. V. ANH, N. N. LEONENKO, AND L. M. SAKHNO

Dedicated to Professor Chris Heyde on the occasion of his 65th birthday

Abstract. This paper provides a quasilikelihood/minimum contrast-type method for
parameter estimation of random &elds in the frequency domain based on higher-order
information. The estimation technique uses the spectral density of the general k-th order
and allows for possible long-range dependence in the random &elds. To avoid bias due
to edge effects, data tapering is incorporated in the method. The suggested minimum
contrast functional is linear with respect to the periodogram of k-th order, hence kernel
estimation for the spectral densities is not needed. Furthermore, discretisation is not
required in the estimation of continuously observed random &elds. The consistency and
asymptotic normality of the resulting estimators are established. Illustrative application
of the method to some problems in mathematical &nance and signal detection will be
indicated.

1. Introduction

Parameter estimation of random processes and &elds in the frequency domain has a
long history and is an elaborated area of statistical inference. Many estimation methods
have been available for different models of stationary processes and &elds with short or
long-range dependence, but the majority of these methods rely on the information pro-
vided by the spectral density, that is, the second-order information only. We mention
here some of the contributions which are most relevant to the approach of the present
paper. These are the results on minimum distance estimation techniques and, in partic-
ular, on the Whittle estimators of Ibragimov (1963), Hannan (1970,1973), Dunsmuir and
Hannan (1976), Guyon (1982), Rosenblatt (1985), Fox and Taqqu (1986), Bentkus and
Maliukevicius (1988), Giraitis and Surgailis (1990), Heyde and Gay (1993), Giraitis and
Taqqu 1999), Gao et al. (2001,2002). The related quasi-likelihood approach has been
elucidated in Heyde (1997).
This paper is concerned with parameter estimation of random &elds in the frequency

domain based on higher-order information. Statistical techniques relying on higher-order
moments and cumulants and higher-order spectra are of increasing demand in many
&elds of applications. The beginning of higher-order statistics can be traced back to
Kolmogorov�s work and those contributions in the 60s, such as Brillinger (1965) and
Brillinger and Rosenblatt (1967a, 1967b), but it is only during the past two decades
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that the area has been rapidly expanding. The bibliography on higher-order statistics
presented by Swami, Giannakis and Zhou (1997) listed 1759 papers, and these papers are
only those related to statistical signal processing and engineering applications.
We mention here some contexts where higher-order statistics play an essential role.

Firstly, various problems related to non-Gaussianity include detection and classi&cation of
non-Gaussian signals, separation of additive mixtures of independent non-Gaussian signal
and Gaussian noise, suppression of additive Gaussian noise, and tests for non-Gaussianity.
Next are those problems related to nonlinearity such as spectral analysis of nonlinear
processes, identi&cation of non-linear systems and tests for non-linearity, and modelling
and analysis of chaotic systems. Another area treated with higher-order statistics is non-
stationarity and, in particular, multiplicative noise models, useful for describing certain
kinds of non-stationary behaviour. Higher-order information can also be used to obtain
improved estimates, and, of course, to estimate those parameters which are not covered by
second-order information. We again refer to Swami, Giannakis and Zhou (1997), where
many further areas of application of higher-order statistics are indicated. Some recent
references and examples can also be found in Anh, Leonenko and Sakhno (2002b).
It should be noted that, although a variety of techniques and algorithms based on

higher-order statistics has been available for a wide range of applications, many practical
problems remain challenging, and new problems continue to arise. At the same time, there
exist an increasing need for the development of rigorous theories underpinning many ad-
hoc treatments in practice, as well as the need for the development of new statistical
methods based on higher-order information. We provide an approach here for such a
method, which is based on an extension of the idea of quasilikelihood in such a way that
the estimating function is generated from information on higher-order spectral densities.
This estimation technique is based on the spectral density of the general k-th order.

The classes of processes and &elds for which this technique is applicable are described
by the conditions on the spectral densities of the k-th order and the weight functions
incorporated into the minimum contrast functional. This approach does not exclude the
possibility of the process or &eld being long-range dependent. It should also be noted
that our functional is linear with respect to the periodogram of k-th order, therefore
we do not need to consider kernel estimation for the spectral densities. This approach
will be presented in a uni&ed manner, suitable for estimation of random processes and
&elds, continuous- and discrete-time settings, and with the use of data transformation
by means of tapering. Furthermore, the method does not require discretisation in the
estimation of continuous-time random processes and &elds based on continuously observed
data. Section 2 contains the main results on the consistency and asymptotic normality
of contrast estimators. A discussion and some examples are also provided to illustrate
the method. The proofs are given in Section 3.

2. Results and discussion

We begin with the following assumption.
I. Let Y (t) , t ∈ Rn, be a real-valued, measurable, strictly stationary random &eld with
zero mean and spectral densities of order k = 2, 3, ..., that is, functions fk (λ1, ...,λk−1) ∈
L1
¡
R(k−1)n

¢
exist such that the cumulant function of the k-th order of the &eld Y (t) is
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given by

ck (t1, ..., tk−1) =
Z
R(k−1)n

fk (λ1, ...,λk−1) ei
Pk−1
j=1 λjtjdλ1...dλk−1.(2.1)

We will assume that the spectral densities depend on an unknown parameter vector
θ ∈ Θ ⊂ Rm :

fk (λ1, ...,λk−1) = fk (λ1, ...,λk−1; θ)

= Re fk (λ1, ...,λk−1; θ) + i Im fk (λ1, ...,λk−1; θ)

= f
(1)
k (λ1, ...,λk−1; θ) + if

(2)
k (λ1, ...,λk−1; θ) ;

the parametric set Θ is a compact set and the true value of the parameter vector θ0 ∈
int Θ, the interior of Θ. Suppose further that fk (λ1, ...,λk−1; θ1) 6≡ fk (λ1, ...,λk−1; θ2) for
θ1 6= θ2 almost everywhere in Rn(k−1) with respect to the Lebesgue measure.
Suppose that we are given observations of the random &eld Y (t) over the cube [0, T ]n ,

and we are interested in the estimation of θ which is based on the k-th order empirical
information. For this purpose, we consider a generalization to the multidimensional
case of the quasilikelihood/minimum contrast estimation procedure elaborated in Anh,
Leonenko and Sakhno (2002b), which is based on the minimization of a certain empirical
spectral functional of k-th order.
An essential problem we need to address in the case n ≥ 2 is the bias problem due to

edge effects, which features signi&cantly in the asymptotic properties of the corresponding
estimators. We will use an approach based on tapered data (see Tukey 1967, Dahlhaus
1983, Dahlhaus and Künsch 1987, Guyon 1982, 1995 among many others), namely, we
will base our analysis on the tapered values

{hT (t)Y (t), t ∈ [0, T ]n},
where hT (t) = h(t/T ), t ∈ Rn. We will suppose that the taper function factorizes as

h(t) =
nY
i=1

h1(ti), ti ∈ R1,

and the measurable function h1(t) : R1 → R1 is of bounded variation, vanishes outside
the interval [0, 1] and should be smooth with h(0) = h(1) = 0.
We de&ne the &nite Fourier transform of tapered data {hT (t)Y (t), t ∈ [0, T ]n}, and the

tapered periodogram of the k-th order, respectively, as

dhT (λ) =

Z
[0,T ]n

hT (t)Y (t) e
−i(λ,t)dt, λ ∈ Rn,(2.2)

Ihk,T (λ1, ...,λk) = ((2π)
nHk,T (0))

−1
kY
i=1

dhT (λi) , λi ∈ Rn, i = 1, ..., k,(2.3)

where
Pk

i=1 λi = 0, but no proper subset of λi has sum 0. We have denoted here

Hk,T (λ) =

Z
[0,T ]n

(hT (t))
ke−i(λ,t)dt, λ ∈ Rn,

and have supposed that Hk,T (0) 6= 0.
To simplify our exposition, we will use the following notation: We will write the spectral

density of k-th order as fk(λ) or fk(λ; θ), where λ = (λ1, ...,λk) with λk = −
Pk−1

j=1 λj
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and λj ∈ Rn, j = 1, ...k; we denote λ0 = (λ1, ...,λk−1) ; the same notations will be
applied to functions of k arguments λ1, ...,λk ∈ Rn with λk = −

Pk−1
j=1 λj . Sometimes

in the following we will also write the spectral density of k-th order as a function of k
variables fk (λ1, ...,λk) , where λk = −

Pk−1
j=1 λj . Furthermore, where it does not cause any

confusion, we will write
R
R(k−1)n g (λ) dλ

0, where, again, λ = (λ1, ...,λk) , λk = −
Pk−1

j=1 λj ,

λj ∈ Rn, j = 1, ...k, and λ0 = (λ1, ...,λk−1). Sometimes we will also write such an integral

in the form
R
R(k−1)n g(λ)δ

³Pk
i=1 λj

´
dλ0, with δ (·) being the Kronecker delta function.

If ν is a set of natural numbers, we will write |ν| to denote the number of elements in
ν, and ν̃ to denote the subset of ν which contains all the elements of ν except the last
one. We will also deal with integrals of the form

R
R(k−p)n g(u)

Qp
l=1 δ

³P
j∈νl uj

´
du0, where

(ν1, ..., νp) is a partition of the set {1, ..., k}. In such a case, integration is understood
with respect to (k − p)n-dimensional vector u0, obtained from the vector u = (u1, .., uk)
in view of p linear restrictions on k variables uj.

Remark 1. From the practical point of view, tapering can improve statistical analysis
as it lessens the importance of observations close to the edges and, therefore, lessens any
non-stationary effect which could be present on the boundary of the observation domain.
An additional advantage of data tapering is reducing the leakage effect, hence provid-
ing better estimators for spectral densities with peaks. Furthermore, tapering provides a
means to control bias for spectral estimators of the form

R
Rn(k−1) I

h
k,T (λ)ϕ (λ) dλ

0 with an
appropriate choice of a taper h and a weight function ϕ.

Although our exposition concentrates on continuous-time random &elds, the results
stated below hold true for the discrete case. When the discrete case differs essentially
from the continuous case, we will provide necessary details.

II. Let the real-valued functions w(i)k (λ) , i = 1, 2, wk,0 (λ) , λ ∈ R(k−1)n, and the spectral
density of k-th order satisfy the following conditions:
(i) w(i)k (λ) , i = 1, 2, and wk,0 (λ) satisfy the same conditions of symmetry as the k-th

order spectral density;
(ii) wk,0 (λ) is nonnegative and wk,0 (λ) ≡ 0 if any proper subset of λi has sum 0, that is,

wk,0 (λ) ≡ 0 on all hyperplanes of the form
P

i∈ν λi = 0, where ν = {i1, ..., il} ⊂ {1, ..., k}
and 1 ≤ l < k;
(iii) w(i)k (λ)wk,0 (λ) f

(i)
k (λ; θ) ∈ L1

¡
R(k−1)n

¢
, i = 1, 2, for all θ ∈ Θ;

(iv) w(i)k (λ) f
(i)
k (λ; θ) ≥ 0, i = 1, 2, (λ; θ) ∈ R(k−1)n ×Θ.

In what follows we will suppose k ≥ 3; the case k = 2 will be outlined in Remark 3
below. Consider the following factorization of the real and imaginary parts of the spectral
density fk (λ; θ) , λ ∈ Rn(k−1), k ≥ 3 :

f
(i)
k (λ; θ)w

(i)
k (λ) = σ

(i)
k (θ)ψ

(i)
k (λ; θ) , i = 1, 2, θ ∈ Θ,(2.4)

λ = (λ1, ...,λk) , λk = −
k−1X
j=1

λj, λj ∈ Rn, j = 1, ..., k,

with

σ
(i)
k (θ) =

Z
Rn(k−1)

f
(i)
k (λ; θ)w

(i)
k (λ)wk,0 (λ) dλ

0, i = 1, 2(2.5)
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and

ψ
(i)
k (λ; θ) =

f
(i)
k (λ; θ)w

(i)
k (λ)

σ
(i)
k (θ)

(2.6)

so that Z
Rn(k−1)

ψ
(i)
k (λ; θ)wk,0 (λ) dλ

0 = 1.(2.7)

We additionally suppose
III. The derivatives ∇θψ

(i)
k (λ; θ) , i = 1, 2, exist and

∇θ

Z
R(k−1)n

ψ
(i)
k (λ; θ)wk,0 (λ) dλ

0 =
Z
R(k−1)n

∇θψ
(i)
k (λ; θ)wk,0 (λ) dλ

0 = 0, i = 1, 2.(2.8)

In the following, where it does not cause any confusion, we will omit the index k in the
functions w(i)k and wk,0.
We next introduce the de&nition of quasilikelihood/minimum contrast estimators.

De&nition 1. A nonrandom real-valued function K (θ0; θ) ≥ 0 is called a contrast func-
tion if it has a unique minimum at θ = θ0. A random &eld UT (θ) , θ ∈ Θ, related to the
observation {Y (t) , t ∈ [0, T ]n} is called the contrast &eld for a contrast function K (θ0; θ)
if it satis&es the following inequality:

lim inf
T→∞

[UT (θ)− UT (θ0)] ≥ K (θ0; θ)(2.9)

in P0-probability, where P0 = Pθ0, a member of the family of distributions {Pθ, θ ∈ Θ}.
The mimimum contrast estimator θ̂T is de&ned as a minimum point of the functional
UT (θ) , that is,

θ̂T = argmin
θ∈Θ

UT (θ) .(2.10)

For the random &eld Y (t) de&ned above, we consider the contrast &eld based on the
tapered periodogram of k-th order:

UhT (θ) = U
h
k,T (θ) = −

µ
p

Z
Rn(k−1)

Re Ihk,T (λ)w
(1) (λ)w0 (λ) logψ

(1)
k (λ; θ) dλ0

+q

Z
Rn(k−1)

Im Ihk,T (λ)w
(2) (λ)w0 (λ) logψ

(2)
k (λ; θ) dλ0

¶
,(2.11)

with nonnegative numbers p and q satisfying p+ q = 1. Denote

K (θ0; θ) = Kk (θ0; θ) = p

Z
Rn(k−1)

f
(1)
k (λ; θ0) log

ψ
(1)
k (λ; θ0)

ψ
(1)
k (λ; θ)

w(1) (λ)w0 (λ) dλ
0

+q

Z
Rn(k−1)

f
(2)
k (λ; θ0) log

ψ
(2)
k (λ; θ0)

ψ
(2)
k (λ; θ)

w(2) (λ)w0 (λ) dλ
0(2.12)

and

U (θ) = Uk (θ) = −
µ
p

Z
Rk−1

f
(1)
k (λ; θ0)w

(1) (λ)w0 (λ) logψ
(1)
k (λ; θ) dλ0

+q

Z
Rk−1

f
(2)
k (λ; θ0)w

(2) (λ)w0 (λ) logψ
(2)
k (λ; θ) dλ0

¶
.(2.13)
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We will need the following assumptions. Denote ϕi (λ) = w
(i) (λ) logψ

(i)
k (λ) .

IV. For all θ ∈ Θ, the functions Gk (u;ϕi, w0) , i = 1, 2, are bounded and continuous at
the point u = 0, where Gk (u;ϕ, w) is de&ned by the formula

Gk (u) = Gk (u1, ..., uk;ϕ, w)(2.14)

=
X

ν=(ν1,...,νp)

Z
R(k−p)n

pY
l=1

f|νl| (λj + uj, j ∈ ν̃l)

×ϕ (λ)w (λ)
p−1Y
l=1

δ

ÃX
j∈νl

(λj + uj)

!
δ

Ã
kX
i=1

λi

!
dλ0.

To formulate some further assumptions, we introduce for m = 2, 3, ... the functions

Gkm (u) = Gkm (u;ϕ1, ...,ϕm,ψ)

=
X

ν=(ν1,...,νp)

Z
R((k−1)m−p+1)n

mY
i=1

ϕi
¡
λ(i−1)k+1, ...,λik

¢

×
mY
i=1

ψ
¡
λ(i−1)k+1, ...,λik

¢
f|ν1| (uj + λj, j ∈ ν̃1)× ...× f|νp| (uj + λj, j ∈ ν̃p)

×
p−1Y
l=1

δ

ÃX
j∈νl

(uj + λj)

!
mY
i=1

δ
¡
λ(i−1)k+1 + ...+ λik

¢
dλ0,(2.15)

where the summation is taken over all indecomposable partitions ν = (ν1, ..., νp) of the
table

1 ... k
k + 1 ... 2k
... ... ...
m(k − 1) + 1 ... mk

that is, over those partitions ν of the elements of the above table into disjoint sets in
which there exist no sets νi1 , ..., νin (n < p) such that for some rows rj1, ..., rjm (m < k)
of the table, the following equality holds: rj1 ∪ ... ∪ rjm = νi1 ∪ ... ∪ νin.
V. The functions G2k (u;ϕi,ϕi, w0) , i = 1, 2,
(i) are bounded;
(ii) are continuous at the point u = 0.

VI. There exist nonnegative functions v1 (λ) and v2 (λ) such that
(i) the functions

a
(i)
k (λ; θ) = vi (λ) logψ

(i)
k (λ; θ) , i = 1, 2,

are uniformly continuous in R(k−1)n ×Θ;

(ii) the functions Gk
³
u; w

(i)

vi
, w0

´
, i = 1, 2, are bounded and continuous at u = 0 and

the functions G2k
³
u; w

(i)

vi
, w

(i)

vi
, w0

´
, i = 1, 2, are bounded.

VII. w(1)k (λ)Re ITk (λ) ≥ 0, w(2)k (λ) Im ITk (λ) ≥ 0.
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Theorem 1. Let the random &eld Y (t) , t ∈ Rn, satisfy the assumptions I, II, IV, V(i),
VI and VII. Then the function K (θ0; θ) given by (2.12) is the contrast function for the
contrast &eld UhT (θ) given by (2.11). The resulting minimum contrast estimator θ̂T is
then a consistent estimator of the parameter vector θ, that is, θ̂T → θ0 in P0-probability
as T →∞, and the estimators

σ̂
(1)
k,T =

Z
R(k−1)n

Re Ihk,T (λ)w
(1) (λ)w0 (λ) dλ

0(2.16)

and

σ̂
(2)
k,T =

Z
R(k−1)n

Im Ihk,T (λ)w
(2) (λ)w0 (λ) dλ

0(2.17)

are consistent estimators of σ(1)k (θ) and σ
(2)
k (θ) , respectively.

Remark 2. It should be noted that Theorem 1 actually holds with the use of the unta-
pered periodogram (h(t) = 1) in the functional (2.11) for the multidimensional case as
well as for the one-dimensional case. However, in order to state the result on asymp-
totic normality of the estimator (2.10), tapering is essential (or another adjustment of
the periodogram is needed such as constructing the k-th order periodogram by means of
unbiased estimators of the moments of second and higher orders).

We will need some further conditions to state the result on asymptotic normality of
the estimator θ̂T .
VIII. The functions ψ(i)k (λ; θ) , i = 1, 2, are twice differentiable in the neighborhood of
the point θ0 and the functions

ϕijl (λ; θ) = w
(l) (λ)

∂2

∂θi∂θj
logψ

(l)
k (λ; θ) , i, j = 1, ...,m, l = 1, 2, θ ∈ Θ,(2.18)

g
(i)
k (λ; θ) = w(1) (λ)

∂

∂θi
logψ

(1)
k (λ; θ) , i = 1, ...,m, θ ∈ Θ,(2.19)

g
(i+m)
k (λ; θ) = w(2) (λ)

∂

∂θi
logψ

(2)
k (λ; θ) , i = 1, ...,m, θ ∈ Θ

are such that
(i) the functions Gk(u;ϕ

ij
l , w0), i, j = 1, ...,m, l = 1, 2, are bounded and continuous at

u = 0 for all θ ∈ Θ;
(ii) the functionsG2k(u;ϕ

ij
l ,ϕ

ij
l , w0), i, j = 1, ...,m, l = 1, 2, are bounded for all θ ∈ Θ;

(iii) the functions Gkl(u; g
(m1)
k , ... , g

(ml)
k , w0), are bounded for all θ ∈ Θ, l = 2, 3, ...

and all choices of (m1, ... , ml), 1 ≤ mi ≤ 2m, i = 1, ..., l.
The most essential assumption needed for the extension of the result on asymptotic

normality of Anh, Leonenko and Sakhno (2002b) to the multidimensional case is the
following assumption.
IX. The following convergence holds:

T n/2
µ
E

Z
Rn(k−1)

Ihk,T (λ) g
(i)
k (λ; θ)w0 (λ) dλ

0(2.20)

−
Z
Rn(k−1)

fk (λ) g
(i)
k (λ; θ)w0 (λ) dλ

0
¶
→ 0 as T →∞ ∀θ ∈ Θ

with the functions g(i)k (λ; θ) de&ned by (2.19).
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X. The matrices Sk (θ) =
n
s
(k)
ij (θ)

o
i,j=1,...,m

and Ak (θ) =
n
a
(k)
ij (θ)

o
i,j=1,...,m

are positive

de&nite, where

s
(k)
ij (θ) = p

Z
R(k−1)n

f
(1)
k (λ; θ)ϕij1 (λ; θ)w0 (λ) dλ

0(2.21)

+q

Z
R(k−1)n

f
(2)
k (λ; θ)ϕij2 (λ; θ)w0 (λ) dλ

0

= σ
(1)
k (θ) p

Z
R(k−1)n

Ã
∂2

∂θi∂θj
ψ
(1)
k −

1

ψ
(1)
k

∂

∂θi
ψ
(1)
k

∂

∂θj
ψ
(1)
k

!
dλ0

+σ
(2)
k (θ) q

Z
R(k−1)n

Ã
∂2

∂θi∂θj
ψ
(2)
k −

1

ψ
(2)
k

∂

∂θi
ψ
(2)
k

∂

∂θj
ψ
(2)
k

!
dλ0,

a
(k)
ij (θ) =

1

2

n
p2ReG2k

³
0; g

(i)
k , g

(j)
k , w0

´
+ q2ReG2k

³
0; g

(i+m)
k , g

(j+m)
k , w0

´
+ pq ImG2k

³
0; g

(i+m)
k , g

(j)
k , w0

´
− pq ImG2k

³
0; g

(i)
k , g

(j+m)
k , w0

´o
.(2.22)

Theorem 2. Let the assumptions I - X be satis&ed. Then, as T →∞,
T n/2

³bθT − θ0
´ D→ Nm

¡
0, e(h)S−1k (θ0)Ak (θ0)S

−1
k (θ0)

¢
,(2.23)

where Nm (·, ·) is the m-dimensional normal distribution, the matrices Sk (θ) and Ak (θ)
are given by the formulae (2.21) and (2.22) respectively and the tapering factor is of the
form

e(h) =

ÃZ
(h1(t))

2kdt

µZ
(h1(t))

kdt

¶−2!n
.(2.24)

Let us now discuss some particular features of the estimation method developed above
and some aspects of its application.

Remark 3. For the case of second-order spectral density, we suppose the existence of
a real-valued, nonnegative function w (λ), λ ∈ Rn, symmetric about zero, such that
w (λ) f (λ; θ) ∈ L1 (Rn) ∀θ ∈ Θ, and we can introduce the factorization

f2 (λ; θ) = σ2 (θ)ψ (λ; θ) , λ ∈ Rn, θ ∈ Θ,

where

σ2 (θ) =

Z
Rn
f2 (λ; θ)w (λ) dλ

and Z
Rn

ψ (λ; θ)w (λ) dλ = 1.

The contrast &eld in this case is of the form

U2,T (θ) = −
Z
Rn
I2,T (λ)w (λ) logψ (λ; θ) dλ,(2.25)

where I2,T (λ) is a tapered periodogram of the second order given by the formula (2.3) with
k = 2 (for the case n = 1 we can also use the untapered periodogram). Equivalently, we
can use in (2.25) an unbiased periodogram of the second order, constructed with the use of



9

an unbiased estimator of the correlation function (see, for example, Ivanov and Leonenko
1989). The conditions for consistency and asymptotic normality, I-X, can be rewritten
for the case k = 2 (see Anh, Leonenko and Sakhno 2002a, where these conditions were
presented for the case of processes (n = 1), and Anh, Leonenko and Sakhno 2003, where
the case of Gaussian &elds was considered).

Remark 4. Let us consider the reasons for introduction of the weight functions w (λ)
and w(i)k (λ), k ≥ 3, i = 1, 2, used in the contrast &elds (2.25) and (2.11), respectively.
Firstly, these functions are supposed to compensate for possible singularities of the spec-
tral densities, that is, to control the behaviour of the integrands in (2.25) and (2.11) (and
related integrals) at the points of singularities. In other words, introducing w, we will
have scope for a trade-off between smoothness of weight functions and that of spectral
densities. By means of weight functions, the high frequencies can be weighted down (or
cut off).
On the other hand, for the continuous-time case, when dealing with spectral densities
with their frequencies de&ned on Rn, introduction of a weight function will guarantee the
convergence of corresponding integrals over in&nite domains. This idea, and the contrast
&eld of the type (2.25), were used in Leonenko and Moldavs�ka (1999) where, for the
estimation of random &elds with spectral density f2 (λ; θ) ∈ L2(Rn), the weight function
of the form w (λ) = 1

1+|λ|2 was chosen (see also Ibragimov 1967 for the case of processes).
However, in some cases, it may happen that a weight function is not required. For exam-
ple, when considering the discrete case and �well behaved� spectral densities, the above
conditions for consistency and asymptotic normality may be satis&ed without any weight
function. It should be noted that the idea of introducing a weight function into a contrast
process for the case of continuous-time stochastic processes (observed continuously) was
also used in Gao et al. (2002), where a continuous version of the Gauss-Whittle contrast
function (with the weight function w (λ) = 1

1+λ2
) was considered.

Remark 5. Continuing our observation concerning weight functions, let us consider
again the functional (2.25). We note the following fact: if there exists a smooth func-
tion v : Rn → Rn with Fourier transform v̂ such that w(λ) = |v̂(λ)|2, then the product
f2(λ)w(λ) can be viewed as the spectral density of the random &eld obtained from the
original one by linear &ltering with transfer function v̂(λ) (i.e., impulse response function
v(λ)). Here we &nd a parallel situation with Heyde and Gay (1993) where the asymp-
totics for the smoothed periodogram were derived based on &ltering of the original &eld,
which may not have a square integrable spectral density, to produce a related one for which
the spectral density is square integrable, and some standard results on the asymptotics of
corresponding covariances can be obtained. The set of assumptions to be satis&ed by the
spectral density and smoothing function was tailored to implement this idea.

Remark 6. The proofs of our main results rely on large sample properties of the empiri-
cal spectral functionals of the form

R
Rn(k−1) I

h
k,T (λ)ϕ (λ) dλ

0 (see Lemmas 1 and 2 below),
which can be deduced from the representation of the cumulants of these functionals in
the form of singular integrals. This technique was elaborated in Bentkus (1972a, 1972b)
and Bentkus and Rutkauskas (1973), for the case of untapered data. However, in our
approach we formulate more general conditions on the second- and higher-order spectra
as well as on the weight function ϕ (see Lemmas 1 and 2 below). These conditions are
formulated in such a way that the spectral densities and weight function are treated simul-
taneously. Here again the conditions (for k = 2) are parallel to those of the second-order
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spectral density and smoothing function in Heyde and Gay (1993) (see conditions (A)
and Theorem 1 therein), although our set of conditions has been deduced from a different
technique.

Remark 7. It should be noted that the contrast function K (θ0; θ) , given by (2.12), takes
origin from the Kullback-Leibler divergence de&ned as

DKL (p, q) =

Z
Γ

p (x) log

µ
p (x)

q (x)

¶
dµ (x) ,

where p, q belong to the set P of all probability densities given on (Γ, µ) with µ being a
σ-&nite measure on Γ, that is,

P =

½
p : Γ→ R1; p (x) ≥ 0,

Z
Γ

p (x) dµ (x) = 1

¾
.

Remark 8. Let us consider a modi&cation of the technique elaborated above with the
intention to apply it to some particular models of &nancial processes. It has been known
that &nancial data often display a characteristic that the data appear uncorrelated but the
absolute values or the squares of the data exhibit long-range dependence (LRD). Heyde
(1999) proposed a risky asset model with strong dependence through fractal-activity time.
Under this model the price Pt at time t of a risky asset is given by

Pt = P0 exp{µt+ σW (Tt)},
where µ,σ2 > 0 and {Tt} is a positive increasing stochastic process with stationary dif-
ferences independent of the Brownian motion W (t) and the differences τ t = Tt − Tt−1 of
the process {Tt} are long-range dependent. Then, under some assumptions,

Xt = logPt − logPt−1 = µ+ σ(Tt − Tt−1)1/2W (1)(2.26)

in distribution. Also, for k = 1, 2, ... and centered variables,

cov(Xt, Xt+k) = 0,

cov(|Xt|, |Xt+k|) = σ2cov
³
τ
1/2
t , τ

1/2
t+k

´
,

cov(X2
t , X

2
t+k) = 3σ4cov (τ t, τ t+k) ,(2.27)

the last covariance being de&ned if Eτ 2t <∞. Thus, the LRD of {|Xt|} and {X2
t } follows

from that of {τ 1/2t } and {τ t}, respectively. The parameters of the long-range dependent
process {τ t} cannot be estimated from the second-order information of {Xt}, but they can
be estimated, for example, from the second-order information of {X2

t }, which is the fourth-
order information of the process {Xt}. From (2.26) we can write down the following
relationship between the spectral density of fourth order, fX4 (λ1,λ2,λ3), of the process Xt,
t = 1, 2, . . . , which gives the aggregated returns for the log price process over intervals
of unit length, Xt = logPt − logPt−1 =

R t
t−1 d logPs, and the spectral density of second

order, f τ2 (λ), of the process τ t:Z π

−π

Z π

−π
fX4 (λ1,λ2 − λ1,λ3)dλ1dλ3 = 3σ

2f τ2 (λ2).

If we are interested in the estimation of an unknown parameter vector θ of the process
τ t, the above relation suggests considering the following contrast function:

U∗4,T (θ) = −
Z π

−π

Z π

−π

Z π

−π
IX4,T (λ1,λ2,λ3)w

∗(λ1 + λ2) logψτ(λ1 + λ2; θ)dλ1dλ2dλ3,(2.28)
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where IX4,T is the periodogram of fourth order constructed from observations of the process
Xt, t = 1, . . . , T, and the function ψτ comes from the following factorization of the
second-order spectral density of the process τ t:

f τ2 (λ, θ) = σ2(θ)ψτ (λ, θ),

σ2(θ) =

Z π

−π
f τ2 (λ, θ)w

∗(λ)dλ, ψτ (λ, θ) =
f τ2 (λ, θ)

σ2(θ)
.

In view of the equality in distribution (2.26), the conditions needed for the convergence

U∗4,T (θ)→ U∗4 (θ) = −
Z π

−π

Z π

−π

Z π

−π
fX4 (λ1,λ2,λ3)w

∗(λ1 + λ2) logψτ (λ1 + λ2; θ)dλ1dλ2dλ3

= −3σ2
Z π

−π
f τ2 (λ; θ0)w

∗(λ) logψτ (λ; θ)dλ(2.29)

in probability and uniformly in θ ∈ Θ can be formulated in terms of the conditions on the
spectral densities of the process τ t and the function w∗. Under this set of conditions, we
will have

U∗4,T (θ)− U∗4,T (θ0) → U∗4 (θ)− U∗4 (θ0)
= 3σ2

Z π

−π
f τ2 (λ; θ0)w

∗(λ) log
ψτ(λ; θ0)

ψτ(λ; θ)
dλ

= K∗(θ0; θ) ≥ 0,
and, hence, the minimum contrast estimator based on the functional (2.28) will be con-
sistent. Therefore, for the process τ t (which is not observed directly), one can obtain a
consistent estimator of its parameter vector θ, based on the contrast process (2.28), which
is constructed with the use of fourth-order empirical information on the observable pro-
cess Xt. Conditions for asymptotic normality can also be formulated in terms of spectral
densities of the process τ t.
In an analogous way to the above, we can construct a procedure for the estimation of
the stochastic volatility model proposed in Anh, Heyde and Leonenko (2002), namely, the
model for the evolution of an asset price,

dx(t) = (µ+ βσ2(t))dt+ σ(t)dW (t), t ≥ 0,
with x(t) being a log-price process, W (t) Brownian motion, and the volatility process σ(t)
following the stationary model

σ2(t) =

Z t

−∞
G(t− s)dL(s) ≥ 0,(2.30)

where L is the Lévy process such that the distribution of L(1) is nonnegative, and G
is a memory function such that

R t
0
G2(s)ds < ∞. Here again, for aggregated returns

yn =
R n∆
(n−1)∆ dx(t), we will have cov(yt, yt+k) = 0, but cov(y

2
t , y

2
t+k) 6= 0, and, moreover,

cov(y2t , y
2
t+k) can be expressed in terms of the covariances of the process σ2(t) given by

(2.30). Parametric families of spectral densities for the processes of the form (2.30) and
corresponding choices of G and L have been provided in Anh, Heyde and Leonenko (2002).
The functional analogous to (2.28) can be used for the estimation of parameters of the
model (2.30) for the (unobservable) process σ2(t).
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Remark 9. Several further examples in which the use of higher-order information is
needed for statistical inference and where use of the estimation technique developed in
this section can be suggested are presented in Anh, Leonenko and Sakhno (2002b) (for
the case n = 1). Some of these examples can be extended to the case of random &elds
(n ≥ 2), namely, in the estimation of stationary non-Gaussian linear &elds and also in
signal detection models of the form

Y (t) = Xθ (t) +Nζ (t) , t ∈ Rn,
which is an additive mixture of independent strictly stationary non-Gaussian &eld Xθ (t)
and stationary Gaussian &eld Nζ (t). Such models appear quite often in applications, for
example, in image analysis. Assume that the spectral densities fXk (λ1, ...,λk−1, θ) , k ≥ 2
of the &eld Xθ (t) exist. The spectral densities fNk (λ1, ...,λk−1, ζ) of the Gaussian &eld
Nζ (t) exist and fNk ≡ 0 for k ≥ 3. Therefore, the spectral densities of the &eld Y (t) are
of the form

fY2 (λ, θ, ζ) = f
X
2 (λ, θ) + f

N
2 (λ, ζ) ,

fYk (λ1, ...,λk−1, θ) = f
X
k (λ1, ...,λk−1, θ) , k ≥ 3.

Observe that the spectral densities fYk , k ≥ 3 do not depend on the parameter ζ. If
we are interested in estimation of the parameter vector θ of Xθ (t), it seems reasonable
to use the analytical information on θ contained in the higher-order spectral densities
fYk (λ1, ...,λk−1, θ) , and apply Theorems 1 and 2 to construct the minimum contrast es-
timator bθT , which is consistent and asymptotically normal. For example, we may choose
k = 3 in Theorems 1 and 2. We may also use Theorems 1 and 2 for hypothesis testing.

3. Proofs

The proofs of the results of the present paper are analogous to those of Anh, Leonenko
and Sakhno (2002b). Hence we only present an outline of the proofs here. We commence
with the basic ideas and facts needed for the proofs.
Firstly, we note that the following formula for the cumulants of the &nite Fourier

transform dhT (λ) , λ ∈ Rn, can be deduced:

cum
¡
dhT (α1) , ..., d

h
T (αk)

¢
=

Z
[0,T ]kn

hT (t1)...hT (tk)e
−iΣk1(αj ,tj)(3.1)

× cum (Y (t1) , ..., Y (tk)) dt1...dtk
=

Z
Rn(k−1)

fk
¡
γ1, ..., γk−1

¢ Z
[0,T ]kn

hT (t1)...hT (tk)

× exp{i(t1, γ1 − α1) + ...+ i(tk−1, γk−1 − αk−1)}

× exp
(
i

Ã
tk,−

k−1X
j=1

γj − αk

!)
dt1...dtk dγ1...dγk−1

=

Z
Rn(k−1)

fk
¡
γ1, ..., γk−1

¢
H1,T (γ1 − α1) ...H1,T

¡
γk−1 − αk−1

¢
×H1,T

Ã
−

k−1X
1

γj − αk

!
dγ1...dγk−1,
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where

H1,T (λ) =

Z
[0,T ]n

hT (t)e
−i(t,λ)dt.(3.2)

If
Pk

j=1 λj = 0, and Hk,T (0) 6= 0, then³
(2π)n(k−1)Hk,T (0)

´−1 kY
j=1

H1,T (λj) = Φhk,T (λ1, ...,λk−1)(3.3)

is a multidimensional kernel overRn(k−1), which is an approximate identity for convolution
(see the next Remark), and the following equality holds:

lim
T→∞

Z
Rn(k−1)

Φhk,T (u1, ..., uk−1)G (u1, ..., uk−1) du1...duk−1 = G (0, ..., 0) ,(3.4)

provided that the function G (u1, ..., uk−1) is bounded and continuous at the point
(u1, ..., uk−1) = (0, ..., 0) .
Note that, for the discrete case, the integrals over Rn(k−1) are to be substituted by

integrals over (−π,π]n(k−1) and the integrals over [0, T ]n are to be substituted by multi-
dimensional sums over the index set DT = {(t1, ..., tn), ti = 1, 2, ..., T, i = 1, ..., n}. The
result will be a family of multidimensional kernels over (−π,π]n(k−1).
Remark 10. Recall, for example, from Rudin (1991) that a family
{ΨT (λ) = ΨT (λ1, ...,λk−1), T ∈ N} of Lebesgue integrable functions on Πk−1 = (−π,π]k−1,
with values in C, is called an approximate identity for convolution if
(i) supT

R
Πk−1 |ΨT (λ)|dλ <∞;

(ii) limT→∞
R
Πk−1 ΨT (λ)dλ = 1;

(iii) limT→∞
R
Πk−1\{λ,kλk<δ} |ΨT (λ)|dλ = 0 ∀δ > 0, where kλk = supi=1,...k−1 |λi|.

Then, for all bounded, continuous, complex-valued functions f on Πk−1, limT→∞ΨT ∗f =
f . The kernels of the form

Ψh
T (λ1, ...,λk−1) =

³
(2π)(k−1)Hk,T (0)

´−1 k−1Y
j=1

H1,T (λj)H1,T

Ã
−

k−1X
j=1

λj

!
, (λ1, ...,λk−1) ∈ Πk−1,

which are, in essence, tapered multidimensional generalizations of the Féjer kernel, were
considered in Dahlhaus (1983) and it was shown that the above conditions (i)-(iii) hold for
these kernels, with h being continuously differentiable (see Lemma 3 of Dahlhaus 1983).
Analogously, this assertion can be stated also in the continuous-time setting for the

kernels ΦhT (λ1, ...,λk−1), (λ1, ...,λk−1) ∈ Rk−1. Furthermore, as we have chosen a taper
which factorizes, these assertions extend directly to the kernels given by (3.3) and their
discrete version.
The kernels which appear (coming from (3.1)) in the untapered case, namely,

Φk,T (u1, ..., uk−1) =
³
(2π)(k−1) T

´−1 Z
[0,T ]k

exp{i
kX
j=1

tjuj}dt1 . . . dtk

=
³
(2π)(k−1) T

´−1 kY
j=1

sin(Tuj/2)

uj/2
, uk =

k−1X
j=1

uj,
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Ψk,T (u1, ..., uk−1) =
³
(2π)(k−1) T

´−1 X
t1,...,tk=1,...,T

exp{i
kX
j=1

tjuj}

=
³
(2π)(k−1) T

´−1 kY
j=1

sin(Tuj/2)

sin(uj/2)
, uk =

k−1X
j=1

uj,

were treated in Bentkus (1972a, 1972b) and were shown to satisfy the above conditions
(i)-(iii)

For the case when
Pk

j=1 αj = 0, formula (3.1) leads to the following result:³
(2π)n(k−1)Hk,T (0)

´−1
cum

¡
dhT (α1) , ..., d

h
T (αk)

¢
(3.5)

=

Z
Rn(k−1)

Φhk,T
¡
γ1 − α1, ..., γk−1 − αk−1

¢
fk
¡
γ1, ..., γk−1

¢
dγ1...dγk−1

=

Z
Rn(k−1)

Φhk,T (u1, ..., uk−1) fk (u1 + α1, ..., uk−1 + αk−1) du1...duk−1.

The proofs of Theorems 1 and 2 make use of some general results concerning large-
sample properties of the empirical spectral functionals of k-th order,

Jhk,T (ϕ) = J
h
k,T (ϕ;w0) =

Z
Rn(k−1)

Ihk,T (λ)ϕ (λ)w0 (λ) dλ
0,

where Ihk,T (λ) is the periodogram based on tapered data, the function w0 (λ) satis&es the
condition II(ii), and ϕ (λ) is a weight function.
The cumulants of the functional Jhk,T (ϕ) can be represented in the form of singular

integrals (with the use of the formulae (3.1)-(3.3) and (3.5)), and, due to the property
(3.4) of the kernels Φhk,T (λ1, ...,λk−1) , the asymptotic behaviour of the functionals J

h
k,T (ϕ)

can be evaluated.
We summarize these results in the following two lemmas.

Lemma 1. Let the random &eld Y (t) , t ∈ Rn, satisfy assumption I.
1)

EJhk,T (ϕ) =

Z
Rn(k−1)

Φhk,T (u)Gk (u;ϕ, w0) du
0,

where Gk (u;ϕ, w0) is given by (2.14). Furthermore, if Gk (u) is bounded and continuous
at u = 0, then

EJhk,T (ϕ)→
Z
Rn(k−1)

fk (λ)ϕ (λ)w0 (λ) dλ
0 as T →∞.

2)

cov
¡
Jhk,T (ϕ1) , J

h
k,T (ϕ2)

¢
= (2π)nH2k,T (0) (Hk,T (0))

−2

×
Z
Rn(2k−1)

Φh2k,T (u)G2k (u;ϕ1,ϕ2, w0) du
0,

where the function G2k (u;ϕ1,ϕ2, w0) is given by (2.15) withm = 2; if the function G2k (u)
is bounded and continuous at u = 0, then as T →∞,

cov
¡
T n/2Jhk,T (ϕ1) , T

n/2Jhk,T (ϕ2)
¢
= (2π)n e(h)G2k (0;ϕ1,ϕ2, w0) ,(3.6)
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where

e(h) =

ÃZ
(h1(t))

2kdt

µZ
(h1(t))

kdt

¶−2!n
.(3.7)

3)

cum
¡
Jhk,T (ϕ1) , ..., J

h
k,T (ϕm)

¢
= (2π)n(m−1)Hkm,T (0) (Hk,T (0))

−m

×
Z
Rn(km−1)

Φhkm,T (u)Gkm (u;ϕ1, ...,ϕm, w0) du
0,

where the function Gkm (u;ϕ1, ...,ϕm, w0) is given by the formula (2.15); if Gkm (u) is
bounded, then as T →∞

cum
¡
Jhk,T (ϕ1) , ..., J

h
k,T (ϕm)

¢
= O

µ
1

Tn(m−1)

¶
.

Remark 11. As a consequence of Lemma 1, we have that, under assumption I, and
using results 1) and 2) (with ϕ1 = ϕ2 = ϕ) of Lemma 1,

Jhk,T (ϕ)→ Jk (ϕ) =

Z
Rn(k−1)

fk (λ)ϕi (λ)w0 (λ) dλ
0

in probability.

Let us now &x the weight functions ϕ1, ...,ϕm and set

Jhk,T =
©
Jhk,T (ϕi)

ª
i=1,...,m

=

½Z
Rn(k−1)

Ihk,T (λ)ϕi (λ)w0 (λ) dλ
0
¾
i=1,...,m

and

Jk = {Jk (ϕi)}i=1,...,m
=

½Z
Rn(k−1)

fk (λ)ϕi (λ)w0 (λ) dλ
0
¾
i=1,...,m

.

Let ξ = {ξi}i=1,...,m be a complex-valued Gaussian random vector with mean zero and
second-order moments

wij = Eξiξ̄j = (2π)
n e (h)G2k

¡
0;ϕi,ϕj, w0

¢
, i, j = 1, ...,m,(3.8)

where the tapering factor is given by (3.7).

Lemma 2. Let the assumptions of Lemma 1 hold and the functions Gkl
¡
u;ϕm1

, ...,ϕml
;w0

¢
,

de&ned by (2.15), be bounded for all l = 2, 3, ... and all choices (m1, ...,ml) with 1 ≤ mi ≤
m, i = 1, ..., l. Then, as T →∞,

T n/2
¡
Jhk,T −EJhk,T

¢ D→ ξ,(3.9)

and, moreover, if

Tn/2
¡
EJhk,T (ϕi)− Jk (ϕi)

¢→ 0 as T →∞, i = 1, ...,m,(3.10)

then, as T →∞,
Tn/2

¡
Jhk,T − Jk

¢ D→ ξ.(3.11)
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The proofs of Lemmas 1 and 2 parallel those of the corresponding results for the one-
dimensional case in Anh, Leonenko and Sakhno (2002b). We need only keep track of data
tapers which contribute, in particular, an additional tapering factor in the expression for
the covariance function (3.6) and, therefore, to the covariance matrix (3.8).

Remark 12. For the discrete-time case and k = 2, sufficient conditions for (3.10) pre-
sented in Guyon (1995) are the following: n = 1, 2, 3 and ϕi ∈ C(Πn), and the taper h
and the spectral density f2 belong to C2(Πn). Following the argument for bias evaluation
of the empirical spectral functional presented in Guyon (1995), but treating the spectral
density and weight function together, less restrictive conditions for (3.10) can be obtained.
We leave this problem for further investigation.

Proof of Theorem 1.
In view of Lemma 1 and Remark 11, we can conclude that, under the assumptions of

the theorem, the following convergence holds as T →∞ :

UhT (θ)→ U (θ) in P0-probability,(3.12)

which implies

UhT (θ)− UhT (θ0)→ U (θ)− U (θ0) = K (θ0; θ)
in P0-probability. By Jensen�s inequality and the relations (2.4) to (2.7),

−K (θ0; θ) = p

Z
R(k−1)n

f
(1)
k (λ; θ0) log

ψ
(1)
k (λ; θ)

ψ
(1)
k (λ; θ0)

w(1) (λ)w0 (λ) dλ
0

+q

Z
R(k−1)n

f
(2)
k (λ; θ0) log

ψ
(2)
k (λ; θ)

ψ
(2)
k (λ; θ0)

w(2) (λ)w0 (λ) dλ
0

= pσ
(1)
k (θ0)

Z
R(k−1)n

ψ
(1)
k (λ; θ0) log

ψ
(1)
k (λ; θ)

ψ
(1)
k (λ; θ0)

w0 (λ) dλ
0

+qσ
(2)
k (θ0)

Z
R(k−1)n

ψ
(2)
k (λ; θ0) log

ψ
(2)
k (λ; θ)

ψ
(2)
k (λ; θ0)

w0 (λ) dλ
0

≤ pσ
(1)
k (θ0) log

Z
R(k−1)n

ψ
(1)
k (λ; θ0)w0 (λ) dλ

0

+qσ
(2)
k (θ0) log

Z
R(k−1)n

ψ
(2)
k (λ; θ0)w0 (λ) dλ

0 = 0,

that is, K (θ0; θ) ≥ 0. The condition that fk (λ; θ1) 6≡ fk (λ; θ2) for θ1 6= θ2 almost
everywhere in Rn(k−1) with respect to the Lebesgue measure then assures that K (θ0; θ) >
0 if θ 6= θ0.

For the consistency of the estimator bθT it remains to show that the convergence in (3.12)
holds uniformly in θ ∈ Θ. Under condition VI(i), let us denote η (ε) = min {η1 (ε) , η2 (ε)} ,
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with ηi (ε) being the modulus of continuity of the function a
(i)
k (λ; θ) , i = 1, 2. Then,

sup
©¯̄
UhT (θ1)− UhT (θ2)

¯̄
, θ1, θ2 ∈ Θ, |θ1 − θ2| ≤ η (ε)

ª
≤ ε

·
p

Z
R(k−1)n

Re Ihk,T (λ)
w(1) (λ)

v1 (λ)
w0 (λ) dλ

0

+ q

Z
R(k−1)n

Im Ihk,T (λ)
w(2) (λ)

v2 (λ)
w0 (λ) dλ

0
¸
.(3.13)

Further, in view of VI(ii), Lemma 1 and Remark 11, we obtain thatZ
R(k−1)n

Ihk,T (λ)
w(i) (λ)

vi (λ)
w0 (λ) dλ

0 →
Z
R(k−1)n

fk (λ; θ0)
w(i) (λ)

vi (λ)
w0 (λ) dλ

0(3.14)

in probability. From (3.14), we can conclude thatZ
R(k−1)n

Ihk,T (λ)
w(i) (λ)

vi (λ)
w0 (λ) dλ

0 = Op (1) ,

which implies that the expression in the square brackets of (3.13) isOp (1). This completes
the proof of Theorem 1.

Proof of Theorem 2.
From Taylor�s formula we have the relation

∇θU
h
T

³bθT´ = ∇θU
h
T (θ0) +∇θ∇0θUhT (θ∗T )

³bθT − θ0
´
,(3.15)

where |θ∗T − θ0| <
¯̄̄bθT − θ0

¯̄̄
,

∇θU
h
T (θ) = −(p

Z
R(k−1)n

Re Ihk,T (λ)w
(1) (λ)w0 (λ)∇θ logψ

(1)
k (λ; θ) dλ0

+q

Z
R(k−1)n

Im Ihk,T (λ)w
(2) (λ)w0 (λ)∇θ logψ

(2)
k (λ; θ) dλ0);(3.16)

∇θ∇0θUhT (θ) = −(p
Z
R(k−1)n

Re Ihk,T (λ)w
(1) (λ)w0 (λ)∇θ∇0θ logψ(1)k (λ; θ) dλ0

+q

Z
R(k−1)n

Im Ihk,Tv (λ)w
(2) (λ)w0 (λ)∇θ∇0θ logψ(2)k (λ; θ) dλ0).(3.17)

It follows from the de&nition of the minimum contrast estimator that, for sufficiently
large T,

∇θU
h
T (θ0) = −∇θ∇0θUhT (θ∗T )

³bθT − θ0
´
.(3.18)

In view of assumptions VIII(i) and (ii), and by Lemma 1, we haveZ
R(k−1)n

Ihk,T (λ)w
(l) (λ)w0 (λ)∇θ∇0θ logψ(l)k (λ; θ) dλ0

P0→
Z
R(k−1)n

fk (λ; θ0)w
(l) (λ)w0 (λ)∇θ∇0θ logψ(l)k (λ; θ) dλ0, l = 1, 2,

which implies

∇θ∇0θUhT (θ∗T )→ Sk (θ0)(3.19)

in P0-probability, where the matrix Sk (θ0) is given by (2.21).



18 V. V. ANH, N. N. LEONENKO, AND L. M. SAKHNO

On the other hand, we have

T n/2∇θU
h
T (θ0) = Tn/2

³
pReJhk,T

³
g
(i)
k

´
+ q ImJhk,T

³
g
(m+i)
k

´´
i=1,...,m

= Tn/2(p(ReJhk,T (g
(i)
k )− Re Jk(g(i)k ))

+q(ImJhk,T (g
(m+i)
k )− ImJk(g(m+i)k )))i=1,...,m,

where the last equality is due to (2.8). Under the conditions of the theorem, and using
Lemma 2, we can conclude that the following convergence holds:

Tn/2∇θU
h
T (θ0)

D→ Nm (0, Ak (θ0)) as T →∞.(3.20)

Now by Slutsky�s arguments, the convergence (2.23) is a consequence of (3.18), (3.19)
and (3.20). This completes the proof of the theorem.
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