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Abstract. We analyse the reaction between almost aperiodically growing Jeans-unstable gravity perturbations
and stars of a rotating and spatially inhomogeneous disk of flat galaxies. A mathematical formalism in the approx-
imation of weak turbulence (a quasi-linearization of the Boltzmann collisionless kinetic equation) is developed. A
diffusion equation in configuration space is derived which describes the change in the main body of equilibrium
distribution of stars. The distortion in phase space resulting from such a wave–star interaction is studied. The
theory, applied to the Solar neighborhood, accounts for the observed Schwarzschild shape of the velocity ellipsoid,
the increase in the random stellar velocities with age, and the essential radial migration of the Sun from its
birth-place in the inner part of the Galaxy outwards during its lifetime.
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1. Introduction

The theory of spiral structure of rotationally supported
galaxies has a long history, but, as we emphasize below,
is not yet complete. Even though no definitive answer can
be given at the present time, the majority of experts in
the field is yielded to opinion that the study of the stabil-
ity of collective vibrations in disk galaxies of stars is the
first step towards an understanding of the phenomenon.
This is because the bulk of the total optical mass in the
Milky Way and other flat galaxies is in stars. Recent mea-
surements of the local dynamical density by Hipparcos
rule out any disk-shaped dark matter (Crézé et al. 1998).
Hipparcos data indicate a moderate contribution of un-
seen matter to the local potential (Haywood et al. 1997).
In addition, spiral arms are smoother in images of galaxies
in the near IR (Rix & Zaritsky 1995) indicating that the
old disk stars participate in the pattern. Therefore, the
spiral structures are intimately connected with the stel-
lar constituent of a galaxy. We regard spiral structure in
most flattened galaxies of stars as a wave pattern, which
does not remain stationary in a frame of reference rotat-
ing around the center of the galaxy at a proper speed,
excited as a result of the Jeans instability of gravity per-
turbations (those produced by a bar or oval structure in a
galactic center, a spontaneous spiral perturbation, and/or
a companion galaxy). It is our purpose to extend the

Send offprint requests to: E. Griv,
e-mail: griv@bgumail.bgu.ac.il

investigation by studying the nonlinear effects. The prob-
lem is formulated in the same way as in plasma kinetic
theory.

In the Solar neighborhood the random velocity distri-
bution function of stars with an age t & 108 yr is close
to a Schwarzschild distribution – a set of Gaussian distri-
butions along each coordinate in velocity space, i.e., close
to equilibrium along each coordinate (Binney & Tremaine
1987; Gilmore et al. 1990). In addition, older stellar popu-
lations have a higher velocity dispersion than younger ones
(Mayor 1974; Wielen 1977; Strömgren 1987; Meusinger
et al. 1991; Fuchs et al. 1994; Dehnen & Binney 1999).
High-quality Hipparcos data for a complete sample of
nearly 12 000 main-sequence and subgiant stars show that
the velocity dispersion of a coeval group is found to in-
crease with time (Binney et al. 2000). The latter means
that an unknown mechanism increases the velocity disper-
sion of stars in the Galaxy’s disk after they are born. It
is argued that the increase in velocity dispersion (and the
diffusion of stellar orbits in coordinate space) with time
is predominantly a gradual process. Grivnev & Fridman
(1990) have shown, by using the observed stellar velocities,
that the random velocity distribution of youngest stars is
close to a δ-like one. As the age of stars of spectral types
B5–A9 increases from t ≈ 5 × 107 yr to t ≈ 5 × 108 yr,
the distribution functions of the residual velocities of stars
along each coordinate in the momentum space approach
a normal distribution. On the other hand, a simple cal-
culation of the relaxation time of the local disk of the
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Galaxy due to pairwise star–star encounters brings the
value ∼1014 yr (Chandrasekhar 1960; Binney & Tremaine
1987, p. 187), which considerably exceeds the lifetime of
the universe. Thus, observations indicate that the local
disk is well relaxed, so some form of scattering process is
going on most likely in the form of collisionless processes.

During the years several mechanisms have been pro-
posed to explain the growth of the velocity dispersion:
encounters of stars with massive gaseous clouds (Spitzer
& Schwarzschild 1951, 1953), heating of the galactic disk
by transient spiral waves (Barbanis & Woltjer 1967), a
systematic increase in the velocity dispersion of protostel-
lar gas clouds as the region of space increases (Larson
1979; Myers 1983), heating by proposed black holes in the
Galactic dark halo (Lacey & Ostriker 1985) or by dwarf
galaxies (Quinn & Goodman 1986). To date, a convincing
mechanism to explain the observed amount of the disk
heating has not been found. For instance, it is difficult to
explain the observed relaxation by the usual binary en-
couters between stars and giant molecular clouds. This is
because Binney & Lacey (1988) have shown that binary
encounters with giant clouds of an interstellar medium
result in a stellar velocity dispersion which will increase
with age as t1/4, instead of the observed roughly cr ∝ t1/2
law (Wielen 1977). Also, if only giant molecular clouds are
responsible for heating the ratio of the vertical-to-radial
velocity dispersion cz/cr will approach 0.75 and, if spi-
ral structure also contributes to the disk heating the ra-
tio will be lower. The most accurate measurements using
the Hipparcos data indicate a ratio cz/cr of 0.53 ± 0.07
(Dehnen & Binney 1999). This behaviour is again consis-
tent with the predictions of disk-heating by spiral struc-
ture. Scattering by giant molecular clouds plays only a
modest role (Binney & Tremaine 1987, p. 470; Gilmore
et al. 1990, p. 174; Binney 2001)1.

In this paper a statistical mechanism of smoothing out
stellar plane velocities, necessary to make them agree with
a Schwarzschild distribution is suggested. This mechanism
explains the observable increase in stellar velocity disper-
sion with age. In our approach, collisionless relaxation by
virtue of interaction between Jeans-unstable density waves
and stars does play a determining role in the evolution of
stellar populations of the Galactic disk. In this regard,
recent data from the Hipparcos satellite already made it
clear that the Galaxy is by no means in a steady state
(Dehnen & Binney 1999; Binney 2001). There are pre-
liminary indications that we see in the local phase-space
distribution the dynamical footprints of long-dissolved un-
stable waves.

The classical Jeans instability of gravity disturbances
is one of the most frequent and most important instabil-
ities in the stellar and in the planetary cosmogony, and
galactic dynamics. The instability is driven by a strong

1 Only the combined effect of star–cloud interactions and
collective effects (unstable spiral waves with a growth time
<∼109 yr) will be able to explain the observations (Binney &
Tremaine 1987, p. 484; Griv & Peter 1996c; Binney 2001).

interaction of the gravity fluctuations with the bulk of the
particle population, and the dynamics of Jeans perturba-
tions can be characterized as a fluidlike interaction. The
gravitational Jeans-type instability does not depend on
the behavior of the particle distribution function in the
neighborhood of a particular speed, but the determining
factors of the instability are macroscopic parameters like
the random velocity spread, mean density, and angular
velocity of regular rotation. The Jeans instability associ-
ated with departures of macroscopic quantities from the
thermodynamic equilibrium is hydrodynamical in nature
and has nothing to do with any explicit resonant effects;
a relatively simple hydrodynamical model can be used to
investigate the instability (Lovelace & Hohlfeld 1978; Lin
& Lau 1979; Drury 1980).

The criterion for a rotationally flattened stellar disk
to be Jeans-unstable to substructure formation by self-
gravitation is that Toomre’s (1964) stability parameter
Q be less than Qcrit = 2–2.5 (see Sect. 3.3 below). Here
Toomre’s Q-value, Q = cr/cT, is a measure of the ratio
of thermal and rotational stabilization to self-gravitation,
cr is the radial dispersion of residual (random) velocities
of stars, cT ≈ 3.4Gσ0/κ is the Toomre (Toomre 1964;
see also Safronov 1960) critical velocity dispersion, σ0 is
the local projected surface density of stars, and κ is the
local epicyclic frequency. Combined with the Lin–Shu type
dispersion relation for density waves, this is a venerable
suggestion as to why disk galaxies almost always exhibit
spiral structure.

The reaction of the distribution function of stars to
the Jeans-unstable field fluctuations is such that the ran-
dom velocity dispersion (or “temperature”) increases un-
til the difference Q − Qcrit → 0, and the system tends
toward marginal stability. Hence, in differentially rotat-
ing galaxies, once the entire disk has been heated to val-
ues Q ≈ Qcrit, no further spiral waves can be sustained
by virtue of the Jeans instability – unless some “cooling”
mechanism is available leading to Toomre’s Q-value, un-
der approximately 2. By using N -body simulations, first
Miller et al. (1970), Hohl (1971), and then Sellwood &
Carlberg (1984), Tomley et al. (1991), and Griv & Chiueh
(1998) have shown that the process of formation of fresh
particles, which move on nearly circular orbits, plays a vi-
tal role in prolonging spiral activity in the plane of the disk
by reducing the random velocity dispersion of the entire
stellar component. Also, in good conformity with obser-
vations (van der Kruit & Freeman 1986; Bottema 1993)
and the theory outlined above, both N -body simulations
(Sellwood & Carlberg 1984; Tomley et al. 1991) and nu-
merical solutions of the collisionless Boltzmann equation
(Nishida et al. 1984) showed that the stability number Q
of Toomre in relaxed equilibrium disks does not fall be-
low a critical value, which lies about 2–2.5. Liverts et al.
(2000) used computer simulations to test the validity of
the modified stability criterion Qcrit.

The investigations carried out in the linear approxi-
mation allow us to determine only the spectrum of the
excited oscillations and their growth rates during the first
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stages of the excitation. Arbitrary perturbations can be
expressed as a superposition of eigenmodes, with each
eigenmode evolving independently. Other problems, which
can be treated within the framework of nonlinear theory,
are account of the reaction of the oscillations on the equi-
librium parameters of the system and the determination
of the amplitude of the oscillations that are produced. The
quasi-linear approach to nonlinear plasma theory is usu-
ally referred to as the theory of weak turbulence, i.e., the
case when the dynamics of the system can be described
in the language of weakly interacting linear waves. That
is, there are many random collective oscillations present
in the system and it is permissible to treat the phases of
these oscillations as being random in some sense. It can
be justified if the energy in the excited spectrum is small
compared with the total mechanical energy in particles
but large compared to thermal noise. The theory of strong
turbulence is still far from complete.

As applied to the fluidlike Jeans instabilities connected
with a “thermodynamic nonuniformity” of the stellar disk
(the system is not sufficiently “hot” in the equatorial
plane), the nonlinear effects appear in the following fash-
ion. The velocity dispersion of a young stellar population
is small, and their space and velocity distribution are not
completely relaxed. As the result of the reaction of the os-
cillations, the velocity dispersion of the main part of the
distribution function of young stars would be expected
to increase in the field of unstable waves with an ampli-
tude increasing with time. Because the Jeans instability
is characterized by the critical value of velocity disper-
sion ccrit = cTQcrit, the rise in temperature in turn leads
to a decrease in the growth rate of the wave amplitude.
Eventually, as a result of such “heating”, the Jeans in-
stability will be switched off and finally the spiral can-
not be maintained (Binney & Tremaine 1987, p. 479).
This process of the self-suppression of instability by the
growing wave amplitude is reminiscent of the nonreso-
nant relaxation in a plasma, which can effectively heat the
medium even in the absence of collisions between particles
(Alexandrov et al. 1984, p. 420; Krall & Trivelpiece 1986,
p. 520). Apparently, Toomre (1964, p. 1237) first advanced
the idea that the stars in the galactic disk would tend
to develop random motion from the gravitational energy
via this tendency toward gravitational instability. In addi-
tion, the nonlinear relaxation causes the diffusion of stars
in coordinate space, that is, mass re-distribution. Romeo
(1990) already discussed the role played by instabilities in
the disk’s secular evolution. The collective relaxation of
stars may be done by their interaction with the gravita-
tional field of unstable waves, solely. In interaction with
standing waves, with the exception of spatially small reso-
nant regions, there is no energy exchange in the wave–star
system (Binney & Tremaine 1987, p. 482).

At the qualitative level, Goldreich & Lynden-Bell
(1965) and Marochnik (1968) have suggested instabil-
ities as a cause of enhanced relaxation in galaxies.
Lynden-Bell (1967) and later Shu (1978) considered the
problem of the collisionless relaxation in a vigorously

nonstationary process of formation of the equilibrium
state. A very nonequilibrium initially configuration was
studied (the virial theorem is strongly violated). Kulsrud
(1972) also discussed the inverse effects of different insta-
bilities of gravity oscillations on the averaged velocity dis-
tribution function of stars by collective interaction. It was
stated that, because of its long-range Newtonian forces, a
self-gravitating medium (a stellar “gas”, say) would pos-
sess collective motions in which all the particles of the sys-
tem participate. These properties would be manifested in
the behavior of small gravity perturbations arising against
the equilibrium background. Collective processes are com-
pletely analogous to two-body collisions, except that one
particle collides not with another one but with many
which are collected together by some coherent process such
as a wave. The collective processes are random, and usu-
ally much stronger than the ordinary two-body collisions
and leads to a random walk of the particles that takes the
complete system toward thermal quasi-steady state. Thus,
relaxation in stellar systems could occur without binary
star–star enconters through the influence of collective mo-
tions of the stellar gas upon the particle distribution.

Barbanis & Woltjer (1967) studied almost circular or-
bits of stars of a rotating galaxy in the gravitational field
of spiral arms on the basis of both epicyclic theory (see
also Binney & Tremaine 1987, p. 478) and numerical inte-
gration of the equations of motion. Lynden-Bell & Kalnajs
(1972) treated the resonant regions separately. Carlberg &
Sellwood (1985) re-derived Dekker’s (1975) basic equation
governing the response of a rotating stellar disk to any
transient-perturbing potential, and then calculated nu-
merically the resonant response to a model slowly-varying
wave in the vanishing growth rate limit. Binney & Lacey
(1988), Jenkins & Binney (1990), and Jenkins (1992) de-
veloped a formalism to describe a heating of the local disk
due to gravitational scattering by an imposed weak, time-
varying perturbing potential. They showed that such a
heating process could be described by a diffusion equa-
tion in action space and solved the diffusion equation by
Monte Carlo simulation for cloud and spiral wave scat-
terers. Although all of these studies showed that the disk
perturbations affect the dynamical evolution significantly,
they focused mainly on a test particle responce to a given
field of waves having adopted the model form for spi-
ral perturbation and assumptions as to the typical wave-
length, etc. of the spiral waves (Carlberg & Sellwood 1985,
p. 81; Jenkins 1992, p. 623). The exact velocity depen-
dence of the velocity diffusion tensor, and the resultant
evolution in velocity space, were not completely pinned
down.

We present a self-consistent quasi-linear theory of dy-
namical relaxation of two-dimensional self-gravitating, ro-
tating stellar disks toward a thermal quasi-steady state
via collective effects. In the process a star “collides” with
almost aperiodically growing inhomogeneities of a galac-
tic gravitational field which result from the development
of the fierce Jeans instability. The dominant interactions,
which change the velocities and orbits of stars, are those



E. Griv et al.: Quasi-linear theory of the Jeans instability 341

with transient, rapidly-varying gravity perturbations. We
find that the theory successfully accounts for several basic
observations of the Galaxy, given that the growth rate of
the perturbations is comparable to the epicyclic period of
stars. In particular, we find that the off-resonant charac-
ter of the interaction leads to a velocity diffusion tensor
that is independent of velocity, and leads to an anisotropic
Maxwellian distribution whose velocity dispersion grows
with time. Nonlinear effects near resonances in a Jeans-
stable system deserve separate research (e.g., Rauch &
Tremaine 1996). To emphasize it again, unlike Carlberg
& Sellwood (1985), Binney & Jenkins (1988), and Jenkins
& Binney (1990) we solve a self-consistent Boltzmann–
Poisson system of equations. The relaxation mechanism
suggested in the present paper has an essential depen-
dence on the equilibrium of the disk matter, and it has
nothing to do with Lynden-Bell’s violent relaxation. Brief
first reports have been published by Griv et al. (1994) and
Griv et al. (2001).

2. Basic equations

A thin rotating disk is taken as a model of the flat galaxy
in many papers for analysis of the gravity perturbations.
This is because stars of the nonrotating spherical-like sub-
system, if it exists at all, which have large random veloci-
ties, will make a relatively small contribution to the wave
field (Marochnik & Suchkov 1969)2. In the spirit of Griv
& Peter (1996a), we solve the system of the collisionless
Boltzmann equation and the Poisson equation describing
the motion of a self-gravitating ensemble of stars in such a
system within an accuracy of up two orders of magnitude
with respect to small parameters 1/|kr|r and cr/rΩ for
radial wavenumber kr, radius r, and angular velocity Ω,
looking for waves which propagate in a two-dimensional
galactic disk. This approximation of an infinitesimally thin
disk is a valid approximation if one considers perturba-
tions with a radial wavelength λ = 2π/kr that is greater h,
the typical disk thickness. In actual spiral galaxies for a
subsystem of young, low-dispersion stars, h ≈ 200 pc. The
dimensionless parameters 1/|kr|r and cr/rΩ are small, and
in addition 1/|kr|r ∼ cr/rΩ. The fact is took into account
that because of the nature of the gravitational force, disks
of spiral galaxies are always spatially inhomogeneous and
are far from uniform rotation.

2.1. Boltzmann and Poisson equations

We assume that the stars move in the disk plane so that
vz = 0. This allows us to use the two-dimensional distri-
bution function f(r, ϕ, vr, vϕ, t) such that f̃ = fδ(z)δ(vz),
f =

∫
f̃dzdvz, and

∫
fdvrdvϕ = σ, where σ(r, t) is the

surface density. In the rotating frame of a disk galaxy, the
local distribution function of stars f(r,v, t) must satisfy

2 The stellar halo can account only for about 1% of the local
dark halo density (Robin et al. 1999).

the collisionless Boltzmann equation (Lin et al. 1969)

∂f
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+ vr
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(
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∂vϕ
= 0, (1)

where the total azimuthal velocity of the stars was repre-
sented as a sum of vϕ and the basic circular velocity rΩ.
Here vr and vϕ are the residual velocities in the radial
and azimuthal directions, and r and ϕ are the galacto-
centric cylindrical coordinates. As a rule, in spiral galax-
ies |vr| and |vϕ| � rΩ. In Eq. (1), Φ(r, t) is the total
gravitational potential determined self-consistently from
the Poisson equation ∆Φ = 4πGσδ(z).

As the equilibrium state an axisymmetric, weakly in-
homogeneous in the radial direction stellar disk is adopted.
The system in the equlibrium is described by the equation:

vr
∂fe

∂r
+

(
2Ωvϕ +

v2
ϕ

r

)
∂fe

∂vr
−
(
κ2

2Ω
vr +

vrvϕ
r

)
∂fe

∂vϕ
= 0 (2)

or ∂fe/∂t = 0, and the angular velocity of rotation Ω(r)
at a distance r from the center is such that the neces-
sary centrifugal acceleration is exactly provided by the
central gravitational force, rΩ2 = ∂Φe/∂r. In these equa-
tions, fe(r,v) and Φe(r) are the equilibrium distribution
function and the gravitational potential.

In the quasi-linear theory, one may follow the proce-
dure of linearization by writing f = f0(r,v, t) + f1(r,v, t)
and Φ = Φ0(r, t) + Φ1(r, t) with |f1/f0| � 1 and
|Φ1/Φ0| � 1 for all r and t. The functions f1 and Φ1

are functions oscillating rapidly in space and time, while
the functions f0 and Φ0 describe the slowly developing
“background” against which small perturbations develop;
f0(t = 0) ≡ fe and Φ0(t = 0) ≡ Φe. Linearizing Eq. (1)
and separating fast and slow varying variables one obtains
the equation for the fast developing distribution function

df1

dt
=
∂Φ1

∂r

∂f0

∂vr
+

1
r

∂Φ1

∂ϕ

∂f0

∂vϕ
, (3)

where d/dt means total derivative along the star orbit
and f0 is a given equilibrium distribution function deter-
mined from Eq. (2). The equation for the slow part of the
distribution function is

∂f0

∂t
=
〈∂Φ1

∂r

∂f1

∂vr
+

1
r

∂Φ1

∂ϕ

∂f1

∂vϕ

〉
, (4)

where 〈· · ·〉 denotes a time average.

2.2. Equilibrium distribution

Making use of expressions for the unperturbed epicyclic
trajectories of stars in the equilibrium central field Φe,

r = r0 + v⊥
κ [sinφ0 − sin(φ0 − κt)] , ur = dr/dt,

ϕ = Ωt+ 2Ω
κ
v⊥
rκ [cos(φ0 − κt)− cosφ0] , uϕ = r dϕ

dt , (5)
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where v⊥, φ0 are constants of integration, v⊥/κr ≈
ρ/r � 1, and ρ ∼ v⊥/κ is the mean epicyclic radius, we
can choose the Schwarzschild (the anisotropic Maxwellian)
distribution function f0(r, |v|, t = 0) satisfying the unper-
turbed part of the kinetic equation, that is, Eq. (2)3. In
Eqs. (5), ur and uϕ are the components of the star’s veloc-
ity relative to the disk center. To integrate Eq. (3) over t,
we need to determine the components of the star’s velocity
at each point relative to the local standard of rest:

vr = ur = v⊥ cos(φ0 − κt),
vϕ = uϕ − rΩ ≈ (κ/2Ω)v⊥ sin(φ0 − κt) (6)

(Spitzer & Schwarzschild 1953). As is seen, the motion
of a star in the disk of a rotating galaxy is represented
as in epicyclic motion along the small Hipparchus epicy-
cle with a simultaneous circulation of the epicenter about
the galactic center. The problem of epicyclic motion in
its most general form is equivalent to the problem of
the motion of a charged particle in a given electromag-
netic field, in which the solution can be decomposed into
the guiding center motion and the epicyclic motion. The
epicycle radius is analogous to the gyroradius in a plasma
(Marochnik 1966). The Schwarzschild distribution func-
tion, which is a function of the two epicyclic constants of
motion v2

⊥/2 and r2
0Ω(r0), has been given by Shu (1970):

f0 =
2Ω(r0)
κ(r0)

σ0(r0)
2πc2r (r0)

exp
[
− v2

⊥
2c2r (r0)

]
· (7)

In Eq. (7), r0 is the radius of the circular orbit, which is
chosen so that the constant of areas for this circular orbit
r2
0ϕ̇0 is equal to the angular momentum integral r2ϕ̇, v2

⊥ =
v2

r + (2Ω/κ)2v2
ϕ, ϕ̇2

0 ≡ Ω2(r0) = (1/r0)(∂Φ0/∂r)0, and Ω
as well as κ and and cr are evaluated at r0. In the equation
above the fact is used that in a rotating reference frame
the radial velocity dispersion cr and the azimuthal velocity
dispersion cϕ are not independent but connected through
(Eqs. (6)) cr ≈ (2Ω/κ)cϕ. In the Solar vicinity a velocity
distribution of the early O and B stars with ages t < (5−
7)×107 yr is almost the spherical Maxwellian distribution
with the velocity dispersion near 8 km s−1 (Grivnev &
Fridman 1990). Such a distribution function f0(t = 0) for
the unperturbed system is particularly important because
it fits observations for all stars in the Galaxy (Shu 1970).
It is this metaequilibrium that is examined for stability.

The partial derivatives in Eqs. (3) and (4) transform
as follows (Shu 1970; Morozov 1980; Griv & Peter 1996a):
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, (8)
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· (9)

3 Equation (2) does not determine the equilibrium distribu-
tion uniquely: there are, in fact, many solutions f0 of Eq. (2)
that satisfy ∂f0(t = 0)/∂t = 0. In plasma physics, these states
are often called metaequilibria, since they are only equilibria
on a time scale short compared with collision times.

3. Linear theory

To determine oscillation spectra, let us consider the sta-
bility problem in the lowest (or local) WKB approxima-
tion; this is accurate for short wave perturbations only, but
qualitatively correct even for perturbations with a longer
wavelength, of the order of the disk radius R. In galaxies,
R ≈ 15 kpc. In the local WKB approximation in Eqs. (3)
and (4), assuming the weakly inhomogeneous disk, the
perturbation of equilibrium parameters is selected in the
form of a plane wave (in the circular rotating frame)
ℵ1(r, t) = 0.5

∑
k ℵk

(
eikrr+imϕ−iω∗t + c. c.

)
, where ℵk is

an amplitude that is a constant in space and time, m is
the nonnegative azimuthal mode number (= number of
spiral arms), ω∗ = ω−mΩ is the Doppler-shifted complex
wavefrequency, ω∗,k = <ω∗,k+ i=ω∗,k, |kr|R� 1, suffixes
k denote the kth Fourier component, and c. c. means the
complex conjugate. In the local WKB approximation it
is assumed that the wave vector and the wavefrequency
vary continuously. By utilizing the more accurate nonlo-
cal WKB approximation, it may be shown that in fact
the characteristic oscillation frequencies of an inhomoge-
neous disk must be quantized, i.e., must pass through a
discrete series of values. In galaxies, discrete spiral modes
were already found in stellar population by Rix & Zaritsky
(1995), Zaritsky & Rix (1997), Rudnick & Rix (1998), and
Block & Puerari (1999). In the near-infrared, the morphol-
ogy of older star-dominated disk indicates a simple classi-
fication scheme: the dominant Fourier m-mode. Fridman
et al. (1998) and Burlak et al. (2000) detected m = 1−9
spiral modes in relatively young stellar population of the
nearly face-on galaxies from observations in the Hα line.
A ubiquity of low-m (m = 1−4) modes was confirmed. In
the linear theory, one can select one of the Fourier har-
monics: 0.5 [ℵk exp(ikrr+ imϕ− iωt)+c. c.]. The solution
in such a form represents a spiral wave with m arms.

3.1. Perturbed distribution function

Using the transformation of the partial derivatives ∂/∂vr

and ∂/∂vϕ given by Eqs. (9), the solution of the linearized
kinetic Eq. (3) may be written immediately:

f1 =
∫ t

−∞
dt′
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v⊥
v⊥
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∂r

∂f0

∂v⊥
+

2Ω
κ2

1
r
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∂ϕ
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∂r

)
, (10)

where f0 is given by Eq. (7), and f1(t → −∞) = 0, so
by considering only growing perturbations we neglected
the effects of the initial conditions. Paralleling the analysis
leading to Eq. (13) of Griv & Peter (1996a), from Eq. (10)
it is straightforward to show that

f1 = Φ1

[
κ

v⊥

∂f0

∂v⊥

∞∑
l=−∞

∞∑
n=−∞

l
ei(n−l)(φ0−ζ)Jl(χ)Jn(χ)

lκ− ω∗

+
2Ω
κ2

m

r

∂f0

∂r

∞∑
l=−∞

∞∑
n=−∞

ei(n−l)(φ0−ζ)Jl(χ)Jn(χ)
ω∗ − lκ

]
,

(11)
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where Jl(χ) is the Bessel function of the first kind, χ =
k∗v⊥/κ, tan ζ = (2Ω/κ) tanψ, and k∗ = k{1 + [(2Ω/κ)2−
1] sin2 ψ}1/2 is the effective wavenumber. In Eq. (11) the
denominators vanish when ω∗ − lκ = 0. This occurs near
corotation and other resonances. The Lindblad resonances
occur at radii where the field (∂/∂r)Φ1 resonates approx-
imately with the harmonics l = −1 (inner resonance) and
l = 1 (outer resonance) of the epicyclic (radial) frequency
of equilibrium oscillations of stars κ. Clearly, the location
of these resonances depends on the rotation curve and
the spiral pattern speed <ω∗/m; the higher the m value,
the closer in radius the resonances are located (Lin et al.
1969). The corotation resonance occurs at a radius where
l = 0 in Eq. (11). Resonances are places where linearized
equations describing the motion of particles do not apply.
In the vicinity of the resonances it is necessary to use non-
linear equations, or to include terms of higher orders into
the approximate form of the equations. The former ap-
proach was adopted by Contopoulos (1979) and the latter
one was adopted by Griv et al. (2000a,b).

3.2. Generalized dispersion relation

Integrating Eq. (11) over velocity space and equating the
result to the perturbed surface density given by the im-
proved solution of the Poisson equation σ1 = −|k|Φ1/2πG
(Lin & Lau 1979; Griv & Peter 1996a), the generalized
dispersion relation may easily be obtained

k2c2r
2πGσ0|k|

= κ
∞∑

l=−∞
l
e−xIl(x)
lκ− ω∗

+2Ω
mρ2

rL

∞∑
l=−∞

e−xIl(x)
ω∗ − lκ

,(12)

where κ ∼ 2Ω, ω∗ 6= lκ, x = k2
∗c

2
r/κ

2 ≈ k2
∗ρ

2, ρ = cr/κ
is now the mean epicyclic radius, and Il(x) is the Bessel
function of imaginary argument. In the second term on the
right-hand side, |L| ≈

∣∣∂ ln(2Ωσ0/κc
2
r )/∂r

∣∣−1 is the radial
scale of a spatial inhomogeneity, and in the local WKB
approximation ρ2/r|L| � 1. The dispersion relation (12)
connects the frequency of excited oscillations ω∗ with the
wavenumber k for every r and describes the ordered be-
havior of a medium near its equilibrium state.

The asymptotic expansion of the Bessel function Il(x)
in the short-wavelength limit, x ≈ k2

∗ρ
2 � 1 (the case of

epicyclic radius that is large compared with wavelength):

Il(x) ' ex√
2πx

[
1 +O

(
1
x

)]
. (13)

In the opposite long-wavelength limit, x ≈ k2
∗ρ

2 <∼ 1:

Il(x) =
∞∑
n=0

(x
2

)l+2n 1
n!(n+ l)!

· (14)

In the later limit the epicyclic radius is small (or compa-
rable to) compared with wavelength.

In Eq. (12), the functions Λl(x) = e−xIl(x) appear
commonly in a theoretical treatment of Maxwellian plas-
mas in a magnetic field. It is instructive to note: (a)
0 ≤ Λl(x) ≤ 1; (b) Λ0(x) decreases monotonically from

Λ0(0) = 1; and (c) Λl(x) for l 6= 0 start from Λl(0) = 0,
reach maxima, and then decrease.

Equation (12) replaces the standard Lin–Shu disper-
sion relation (Lin & Shu 1966; Lin et al. 1969; Shu 1970),
to take into account all terms up to 2 orders in small pa-
rameters ρ/r and 1/|kr|r. Also, the terms ∝ L−1 were
omitted in Toomre (1964), Lin & Shu (1966), Lin et al.
(1969), Shu (1970), Mark (1977), Lynden-Bell & Kalnajs
(1972) studies. The main difference from the original Lin–
Shu dispersion relation is in the factor ψ 6= 0, which makes
the generalized dispersion relation to be correct even in
the regime of open perturbations (see Griv & Peter 1996a
for a discussion). Actually, Lin & Shu (1966), Lin et al.
(1969), Shu (1970), and Mark (1977) allowed for a de-
parture from axial symmetry of the perturbations only
partially by introducing a Doppler-shifted in a rotating
reference frame wavefrequency ω∗ = ω−mΩ but omitting
all other m and ψ-dependent terms in Eq. (12), on the
grounds that they were interested in almost axisymmet-
ric perturbations. Therefore, in fact these authors as well
as Toomre (1964) obtained a criterion for an instability
of axisymmetric perturbations of the Jeans kind only –
the widely used Toomre critical radial velocity dispersion.
It says nothing about the stability of Jeans modes which
are not tightly wound, particularly the dominant open in-
stabilities of the differentially rotating disks. The effects
of the azimuthal forces have been analyzed by Lin & Lau
(1979) by adopting the hydrodynamical model. Important
conclusions were obtained about the enhanced amplifica-
tion of nonaxisymmetric density waves in a differentially
rotating system (Bertin & Mark 1978; Lin & Lau 1979;
Bertin 1980). The free kinetic energy associated with the
differential rotation of the system under study is one pos-
sible source for the growth of the energy of these spiral
perturbations, and appears to be released when angular
momentum is transferred outward.

In disk-shaped galaxies, L ∼ (d lnσ0/dr)−1 < 0. In
the Solar vicinity of the Galaxy the value of the radial
scale length |L| is about 3 kpc, which is a typical value for
the radial scale length of the exponential component of
the disk when compared with external galaxies of similar
morphological types (Porcel et al. 1998).

The dispersion relation (12) is valid for relatively open
spirals throughout a weakly inhomogeneous disk excluding
resonance zones4. The existence of solutions of Eq. (12)
ω∗ = ω∗(k∗) with <ω∗ 6= 0, |=ω∗/<ω∗| � 1, and
=ω∗ > 0 implies oscillating instability, while the solu-
tions with <ω∗ 6= 0 and =ω∗ < 0 describe the absorp-
tion of waves. The solutions with =ω∗ = 0 and <ω∗ 6= 0
describe the natural (harmonic) oscillations, and the so-
lutions with =ω∗ > 0, |=ω∗/<ω∗| � 1 describe the Jeans

4 Griv & Peter (1996a) and Griv et al. (2000a,b) have found a
peculiar instability of collective oscillations of stellar disks that
is different in nature from the Jeans instability. It was shown
that in the Jeans-stable differentially rotating disk a resonant
Landau-type oscillating instability (overstability) may develop.
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Fig. 1. The generalized Lin–Shu dispersion relation of a ho-
mogeneous (|L| → ∞) stellar disk in the case 2Ω/κ =√

2 and | sinψ| = 1 for the different Toomre’s Q-values:
a) Q = 0.5(2Ω/κ), b) Q = 0.8(2Ω/κ), c) Q = 2Ω/κ, and
d) Q = 1.5(2Ω/κ). The solid curves represent the real part
of the dimensionless Doppler-shifted wavefrequency of low-
frequency, |ω∗| < κ, long-wavelength (1) and short-wavelength
(2) Jeans oscillations we are interested in. The dashed curves
represent the imaginary part of the dimensionless wavefre-
quency of low-frequency vibrations. The dot-dashed curves
represent the wavefrequencies of additional high-frequency,
|ω∗| > κ, Jeans modes. Long-wavelength vibrations (those with
k2
∗ρ

2 <∼ 1) are the most unstable ones.

instability. The quantity Ωp = <ω∗/m characterizes the
rate of rigid-body rotation of the wave pattern.

A general impression of how the spectrum of non-
axisymmetric Jeans perturbations behaves in a homo-
geneous nonuniformly rotating disk can be gained from
Fig. 1, which shows the dispersion curves in the cases of
Jeans-unstable systems ((a) and (b)), a marginally Jeans-
stable system (c), and a Jeans-stable one (d) for values
of l = 0,±1,±2, and ±3 (as determined on a computer
from Eq. (12)). In this figure, the ordinate is the effective
wavenumber k∗ measured in terms of the inverse epicyclic
radius ρ and the abscissa is ν = ω∗/κ, i.e., the dimension-
less angular frequency at which the stars meet with the
pattern, measured in terms of the epicyclic frequency κ. In
general, for fixed dimensionless wavefrequency ω∗/κ there
are two solutions in k∗ρ, comprising a long-wavelength
wave, k∗ρ <∼ 1, and a short-wavelength wave, k∗ρ > 1. A
property of the solution (12) is that in a homogeneous sys-
tem the Jeans-stable modes those with Q > 2Ω/κ are sep-
arated from each other by frequency intervals where there
is no wave propagation: gaps occur between each harmonic
(cf. the Bernstein modes in a magnetized plasma).

In summary, the generalized dispersion relation (12)
can be explored to investigate detailed stability proper-
ties of an inhomogeneous stellar disk for the Schwarzschild
distribution function f0(r0, v2

⊥). In particular this relation
can be applied to study the excitation of Jeans-unstable

density waves. This problem has been studied by Morozov
(1980, 1981a), Polyachenko (1989), Griv & Peter (1996a),
Polyachenko & Polyachenko (1997), Griv et al. (1999). In
Sect. 4 of the present paper, the problem is studied in the
framework of the quasi-linear theory.

The generalized dispersion relation (12) is compli-
cated: the basic dispersion relation above is highly non-
linear in the frequency ω∗. Therefore, in order to deal
with the most interesting oscillation types analytically,
only various limiting cases of perturbations described by
some simplified variations of dispersion relation may be
considered.

3.3. Simplified dispersion relation

Let us first restrict ourselves to consideration of the princi-
pal part of a system between the inner and outer Lindblad
resonances, |l| ≤ 1, by considering low-frequency pertur-
bations with |ω∗| <∼ κ (which dispersion laws are given
in Fig. 1 by curves 1 and 2). That is, |ω∗| less than the
epicyclic frequency of any disk stars, and the consider-
ation is limited to the transparency region between the
turning points in a disk. In the opposite case of the high
perturbation frequencies, |ω∗| > κ, the effect of the disk
rotation is negligible and therefore not relevant to us: in
this “rotationless” case the star motion is approximately
rectilinear on the time and length scales of interest which
are the wave growth/damping periods and wavelength (cf.
Alexandrov et al. 1984, p. 110). Resonances of a higher
order, l = ±2,±3, . . ., are dynamically less important.
Secondly, in Eq. (12) one can consider two asymptotic
limits: the limit of long-wavelength perturbations, x <∼ 1,
and the opposite limit of short-wavelength perturbations,
x � 1. Finally, we consider the weakly inhomogeneous
system and the most important for the problem of spiral
structure low–m perturbations: from now on in all equa-
tions 2Ω(mρ2/rL)� 2Ω ∼ κ and m ∼ 1. Additionally, in
the local version of the WKB method |kr|−1 < |L| < r.
Therefore, in small terms proportional to L−1 we include
only l = 0 harmonics. As a result, from Eq. (12) the sim-
plified dispersion relation reads

ω3
∗ − ω∗ω2

J + Ωκ2mρ
2

rL

I0(x)
I1(x)

= 0, (15)

where the squared Jeans frequency is given by

ω2
J ≈ κ2 − 2πGσ0|k|F (x). (16)

In Eq. (16), F ≈ 2κ2e−xI1(x)/k2c2r is the so-called re-
duction factor, which takes into account the fact that the
wave field only weakly affects the stars with high pecu-
liar velocities. Thus, Lin–Shu density waves or local grav-
ity perturbations disturb essentially only the dynamically
cold (cr < 20−25 km s−1) stellar subpopulations. Making
use of expansions (13) and (14), we can use the follow-
ing asymptotic forms of the reduction factor. In the long-
wavelength limit

F (x) ≈ (k∗/k)2[1− x+ (3/4)x2] and x <∼ 1,
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and in the opposite short-wavelength limit

F (x) ≈ (1/kρ)2[1− (1/2πx)1/2] and kρ > 1, x > 1.

Analyzing the dispersion relation (15), it is useful to dis-
tinguish between the cases of axisymmetric (m = 0) and
nonaxisymmetric (m 6= 0) perturbations.

The resulting dispersion relation (15) is a third or-
der equation with respect to ω∗ with real coefficients,
which describes three branches of oscillations: two Jeans
branches (short-wavelength and long-wavelength ones)
modified by the inhomogeneity, and an additional gradient
branch. The frequency of the most important for the prob-
lem of disk’s stability Jeans oscillations slightly modified
by the inhomogeneity gradient in the frequency range

|ω3
∗| ∼ |ω3

J| � Ωκ2mρ
2

r|L|
I0(x)
I1(x)

,

is determined from Eq. (15):

ω∗1,2 ≈ ±p|ωJ| − Ω
κ2

2ω2
J

mρ2

rL

I0(x)
I1(x)

· (17)

In Eq. (17), p = 1 for Jeans-stable (ω2
J > 0) perturbations

and p = i for Jeans-unstable (ω2
J < 0) perturbations, the

term involving L−1 is the small correction, and in gen-
eral |ωJ| ∼ Ω. This is qualitatively similar to the original
dispersion relation of Lin & Shu (1966), Lin et al. (1969),
and Shu (1970) in that ω2

∗1,2 → κ2 in the high wavenumber
limit as well as at zero wavenumber. Accordingly, a spatial
inhomogeneity will not influence the stability condition of
Jeans modes. In the gravitationally stable system (ω2

J > 0)
the Jeans oscillations are the natural ones (<ω1,2 6= 0
and =ω∗1,2 = 0). In the gravitationally unstable disk
(ω2

J < 0) they grow almost aperiodically: in the unstable
range =ω∗1,2 > 0, <ω∗ ∝ L−1, and |=ω∗1,2/<ω∗1,2| � 1.
A very important feature of the instability under consider-
ation is the fact that it is almost aperiodic (the real part of
the wavefrequency almost vanishes in a rotating reference
frame we are using).

The Jeans perturbations can be stabilized by the ran-
dom velocity spread. Indeed, if one recalls that such unsta-
ble perturbations are possible only when ω2

∗1,2 ≈ ω2
J < 0,

then by using the condition ω2
J ≥ 0 for all possible k, from

Eq. (15) the stability criterion to suppress the instability
of all Jeans perturbations can be obtained. At the limit
of gravitational stability, the two conditions ∂ω2

J/∂k = 0
and ω2

J ≥ 0 are fulfilled. The first condition determines the
most unstable Jeans wavelength λcrit ≈ (4πΩ/κ)(cr/κ) =
(4πΩ/κ)ρ, corresponding to the minimum on the disper-
sion curve ω∗ = ω∗(k∗). In the Solar vicinity for the sub-
system of young, low-dispersion stars, λcrit ≈ 2 kpc.5

5 It is expected that the high-dispersion stars for which
F (x) ∝ exp(−c2r )→ 0 would not participate in the spiral pat-
tern in full, and that therefore the effective mass density of the
stars σ0 must be smaller than its actual value by a suitable
factor (Lin & Shu 1966; Griv & Peter 1996a). Therefore, in
contrast to the belief of Toomre (1964) the Jeans length in a
disk λJ = 4π2Gσ0/κ

2 may be smaller than the system radius.

Interestingly, from observations in the Galaxy, the dis-
tance between spiral arms is also λ ≈ 2 kpc. So, the radial
scale of the perturbations is small, λcrit � R.

Use of the second condition determines the marginal
radial velocity dispersion for the stability of arbitrary but
not only axisymmetric perturbations:

cr ≥ ccrit ≈
2Ω
κ
cT

[
1 +

∣∣∣ cr
κL

∣∣∣2/3] (18)

or

Q ≥ Qcrit = (2Ω/κ)[1 + (cr/κ|L|)2/3],

respectively, where cr/κ|L| ≈ ρ/|L| < 1. In galaxies,
Qcrit = 2−2.5. Equation (18) improves the Toomre sta-
bility criterion by including a destabilizing effect resulting
from shear ∝ dΩ/dr, azimuthal forces ∝ m, and spatial
inhomogeneity ∝ L. Morozov (1981b) took into account
the additional weak stabilizing effect resulting from the
small thickness of the disk. Bertin & Romeo (1988) es-
timated the destabilizing effect of a cold interstellar ma-
terial. According to Polyachenko (1989) and Polyachenko
& Polyachenko (1997) the marginal stability condition for
Jeans perturbations of an arbitrary degree of axial asym-
metry has been available since 1965 (Goldreich & Lynden-
Bell 1965), though in a slightly masked form.

In general, the growth rate of Jeans modes is large,

=ω∗1,2 ≈ =ωJ ∼
√

2πGσ0|k|F (x) ∼ Ω, (19)

and depends on the azimuthal mode number. The insta-
bility develops on the dynamical time scale, ∼Ω−1. To re-
peat ourselves,N -body simulations have already indicated
the same behavior of the numerical models: the azimuthal
gravitational forces and the azimuthal dependence of the
radial forces maintain the rapidly developing (on a time
scale of single revolution) spiral density wave structure
in a nonuniformly rotating disk, which was initially sta-
ble at each point only with respect to axisymmetric Jeans
perturbations (Miller et al. 1970; Hohl 1971; Quirk 1972;
Sellwood & Carlberg 1984; Griv et al. 1999).

The growth rate of the Jeans instability as determined
on a computer from the expression

√
2πGσ0|k|F (x) is

shown in Fig. 2. As one can see visually in this figure,
the growth rates have maxima with respect to mcrit ∼ 1.
It means that of all harmonics of initial perturbation, one
perturbation with the maximum of the growth rate ∼ Ω
and with m = mcrit ∼ 1 will be formed asymptotically in
time. The low–m spiral modes (m < 10) are more unsta-
ble than the radial one (m = 0) and the high–m ones
(m >∼ 10). These low–m spiral modes are only impor-
tant in the problem of galactic spiral structure because
in contrast to the high–m modes, they do extend essen-
tially over a large range of the galactic disk (Lin et al.
1969; Shu 1970). Interestingly, the study of the azimuthal
structure of the stellar disk of 18 face-on spiral galaxies,
using K ′–band photometry, shows that most of them ex-
hibit lopsided (m = 1) or two-armed structures (Rix &
Zaritsky 1995). Fourier analysis of the spiral structure of
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Fig. 2. The growth rate of the Jeans instability of a homo-
geneous stellar disk (arbitrary units) in the case 2Ω/κ =

√
2,

r0 = 8, |kr| = 1, ρ = 1, and | sinψ| = 1 for the different val-
ues of the azimuthal mode number m. The growth rates have
maxima with respect to the critical mode number mcrit ∼ 1.

the galaxy NGC 4254 already revealed the dominance of
the m = 1 component (Iye et al. 1982). It was stressed
that theories of the origin of spiral structure of galax-
ies must explain the asymmetric structure of this galaxy
without the help of spiral exciters such as tidal compan-
ions or a bar. About 20% of all late-type spiral galaxies
and 54 early-type disk galaxies have the strong m = 1 az-
imuthal component of the surface brightness in the near
IR–band and the R–band, confirming lopsidedness as a
dynamical phenomenon (Zaritsky & Rix 1997; Rudnick
& Rix 1998). A similar fraction of galaxies ≈30%−50%
has lopsided HI distributions or kinematic asymmetries
(Baldwin et al. 1980; Bosma 1981; Richter & Sancisi 1994;
Swaters et al. 1999; Kornreich et al. 2000). In the single-
arm galaxy NGC 4378 the spiral arm can be traced over
most 1 1

4 revolutions (Kormendy & Norman 1979). Disk
ellipticity (m = 2) may also be common (Andersen et al.
2001).

The shape and the number of spiral arms depend on
the equilibrium parameters of a galaxy. For the Galaxy
the most unstable pattern is that of 1−4 arms, the radial
distance between the arms being about 2 kpc.

In the another frequency range, |ω∗| � |ωJ|, Eq. (15)
has another root, which describes the gradient, L−1 6=
0, branch of oscillations. The gradient perturbations are
stable and are independent of the stability of Jeans modes
(Griv & Peter 1996b). These low-frequency, |ω∗3| � Ω,
oscillations are not important in dynamics of galaxies.

Although Eq. (15) can be analyzed directly and even
solved analytically in the case |l| ≤ 1, graphical represen-
tation of the roots is much more convenient. A graphic
method of solution of Eq. (15) is indicated in Fig. 3. It
is seen in Fig. 3 how the usual Jeans oscillations with
|ω∗|/κ <∼ 1 as shown in Fig. 1 by curves 1 and 2 are

deformed and the additional low-frequency (|=ω∗3|/κ �
1) gradient oscillations appear in an inhomogeneous disk.

4. Quasi-linear equations

We anticipate that the fluidlike Jeans-unstable oscillations
must influence the distribution function of the main part
of stars in such a way as to hinder the wave excitation, i.e.,
to increase the random velocity spread ultimately at the
expense of circular motion or gravitational energy. This
is because the Jeans instability, being essentially a grav-
itational one, tends to be stabilized by random motions
of stars (Eqs. (16) and (17)). Therefore, along with the
growth of the oscillation amplitude the velocity dispersion
must increase, and finally in the disk there can be estab-
lished a stationary distribution so that the Jeans-unstable
perturbations are completely vanishing. Eventually the
disk evolves toward a quasi-stationary, marginally Jeans-
stable distribution. (In turn, the Jeans-stable perturba-
tions are subject to a weak Landau-type oscillating insta-
bility; Griv et al. 2000a,b.)

Next, we substitute the solution (11) into Eq. (4) and
average the latter over time. Taking into account that the
terms l 6= n vanish for axially symmetric functions f0,
after averaging over φ0 we obtain the equation

∂f0

∂t
= i

π

2

∑
k

∞∑
l=−∞

Ek
∂

∂v⊥

k∗κ

v⊥χ

[
l2J2

l (χ)
ω∗ − lκ

− l2J2
l (χ)

ω∗∗ − lκ

]

× ∂f0

∂v⊥
+ i

π

2

∑
k

∞∑
l=−∞

Ek
2Ω
κ2

m

r

∂

∂r

2Ω
κ2

m

r

[
J2
l (χ)

ω∗ − lκ

− J2
l (χ)

ω∗∗ − lκ

]
∂f0

∂r
, (20)

where Ek = |Φk|2 exp(2=ω∗t) and ω∗∗ is the complex con-
jugate wavefrequency.

As usual in the quasi-linear theory, in order to close
the system one must engage an equation for Ek. Averaging
over the fast oscillations, we obtain

(∂/∂t)Ek = 2=ω∗Ek. (21)

Equations (20) and (21) form the closed system of quasi-
linear equations for Jeans oscillations of the rotating in-
homogeneous disk of stars, and describe a diffusion in ve-
locity and coordinate space. The distortion of the wave
packet due to the disk inhomogeneity is included through
the second term on the right-hand side in Eq. (20). The
spectrum of oscillations and their growth rate are given
by Eqs. (12) and (19), respectively. In the Solar vicinity,
=ωJ ∼ Ω ≈ 2 × 10−8 yr−1. Equations (20) and (21) are
clearly very approximate, since the local WKB, epicyclic,
and weakly nonlinear approximations were used.

Two general physical conclusions can be deduced with-
out solving Eq. (20). First, the initial distribution of stars
will change upon time only under the action of growing
perturbations (=ω∗ > 0). Therefore, only transient, gravi-
tationally unstable patterns heat the disk and cause star’s
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Fig. 3. The behavior of the simplified dispersion relation of an inhomogeneous disk for reasonable galactic parameters L =
−0.01, 2Ω/κ =

√
2, | sinψ| = 1 and for the different Toomre’s Q-values (upper panels – Q = 0.5(2Ω/κ) and lower panels –

Q = 1.5(2Ω/κ)). Unlike in Fig. 1, only low-frequency modes are shown, |l| < 2 or |ω∗/κ| <∼ 1. The solid curves represent the
real part of the dimensionless Doppler-shifted Jeans wavefrequency (1 and 2) and the additional gradient frequency (3), and
the dashed curves represent the imaginary part of the wavefrequency. A feature of this dispersion relation is the existence of
the gradient branch of oscillations both in the case of the Jeans-unstable disk (panel c)) and in the case of the Jeans-stable one
(panel f)). The gradient perturbations are stable, =ω∗3 ≤ 0, and are low-frequency ones, |ω∗3| � Ω.

guiding centers to diffuse radially6. Secondly, the distri-
bution function of random velocities ∝ (∂/∂v⊥)(∂f0/∂v⊥)
will change under the action of both the radial and the tan-
gential forces (this is because in Eq. (20) k∗ ∝

√
k2

r + k2
ϕ 6=

0). But the mean surface mass density (that is, star’s guid-
ing centers positions) ∝ (∂/∂r)(∂f0/∂r) will change under
the action of only the azimuthal forces (m 6= 0): the re-
quirement that m 6= 0 is required for shifts in guiding cen-
ters. Since the guiding center encodes angular momentum,
this is merely a statement of angular-momentum conserva-
tion. As angular momentum is transferred outward, inner
material falls to the center and outer material migrates
outward (Lynden-Bell & Pringle 1974). Thus, the diffu-
sion of star’s guiding centers leads to the core-dominated
mass density profile in rotating galaxies, together with the
buildup of an extended outer envelope.

In the most important low-frequency limit, |l| ≤ 1,
the function Λ(x) = exp(−x)I1(x) starts from Λ(0) = 0,
reaches a maximum Λmax < 1 at x ≈ 0.5 (Figs. 1 and 3),
and then decreases. Hence, the growth rate has a maxi-
mum at x ≈ 0.5 < 1 (or k∗ = kcrit ≈ κ2/4πΩcr).

6 The stationary (quasi-stationary) density waves, =ω∗ → 0,
could serve to heat the disk stars and to change star’s guiding
centers positions at the wave–particle resonances (Lynden-Bell
& Kalnajs 1972; Binney & Tremaine 1987, p. 482). These res-
onances, however, have only limited radial extent.

5. Astronomical implications

As an application of the quasi-linear theory we investi-
gate the relaxation of low-frequency and Jeans-unstable
(|ω∗| < κ and ω2

J < 0, respectively) oscillations in the
weakly inhomogeneous (ρ2/r|L| � 1) disk of the Galaxy.

5.1. Dynamical evolution of the stellar disk

In the following, we restrict ourselves to the fastest grow-
ing long-wavelength, χ2 and x2 � 1, and low-frequency,
|ω∗| <∼ κ perturbations (see the explanation just at the
end of Sect. 4 and Fig. 1). Then in Eqs. (12) and (20) one
can use the expansions J2

0 (χ) ≈ 1, J2
1 (χ) = J2

−1(χ) ≈ χ2/4
and e−xI1(x) ≈ (1/2)x−(1/2)x2+(5/16)x3. Equation (20)
takes the simple form

∂f0

∂t
−Dv

∂2f0

∂v2
⊥
−Dr

∂2f0

∂r2
= 0, (22)

where Dv = (π/2κ2)
∑
k k

2
∗=ω∗Ek, Dr =

π
∑
km

2Ek/η2=ω∗, both =ω∗ and Ek are functions
of t, and we took into account the fact that in actual
spiral galaxies with a flat rotation curve 2Ω/κ2 ≈ r/η,
where η ∼

√
(GM/r0) ln(r/r0) and M is a galaxy’s

mass. The term ∝ Dr(t) describes a diffusion of stellar
guiding centers in coordinate space. As is seen, the
velocity diffusion coefficient for stars Dv(t) is independent
of v⊥ (to lowest order). This is a qualitative result of
the nonresonant character of the star’s interaction with



348 E. Griv et al.: Quasi-linear theory of the Jeans instability

collective aggregates. Whereas Binney & Lacey (1988),
Jenkins & Binney (1990), and Jenkins (1992) attributed
the effect to some unspecified time behavior of the
spiral density wave, we attribute the effect to the term
resulting from wave growth of Jeans-unstable almost
aperiodic perturbations. Hence we obtain a velocity
diffusion coefficient that is independent of velocity v⊥,
without any further assumptions. In addition, in actual
spiral galaxies Dr is independent of r. By contrast,
Lynden-Bell & Kalnajs (1972) and Carlberg & Sellwood
(1985) considered a model slowly-varying density wave in
the vanishing growth rate limit, =ω∗ → 0. Therefore, the
density wave and the basic state stars could interact only
at the limited radially wave–particle resonances.

An expression for f0 at t → ∞ can be deduced from
Eq. (22). We introduce the substitution dτ/dt = Dv(t),
d/dt = (dτ/dt)(d/dτ). Then Eq. (22) can be re-written

∂f0

∂τ
− ∂2f0

∂v2
⊥
− Dr

Dv

∂f0

∂r2
= 0;

∂Dv

∂τ
= 2=ω∗. (23)

The particular solutions of the system (23) are

f0(v⊥, τ) =
const√
τ + c2r/2

exp
[

−v2
⊥

4(τ + c2r/2)

]
(24)

and

f0(r, τ)≈ const√
r2
0 + (Dr/Dv)τ

exp
{

−r2

4 [r2
0 + (Dr/Dv)τ ]

}
·(25)

(The observations have taken into account that most
spiral and S0 galaxies have an exponential disk with
radial surface distribution of oldest stellar populations,
σ0 ∝ exp[−(r/r0)2].) Accordingly, during the develop-
ment of the Jeans instability, the Schwarzschild distri-
bution of random velocities (i.e., Gaussian spread along
vr, vϕ coordinates in velocity space) is established. As
the perturbation energy increases, the initial distribution
spreads (f0(v2

⊥) becomes less peaked), the effective tem-
perature grows with time (i.e., Gaussian spread increases),
and the effective velocity dispersion attains the value:
〈v2〉 = 2τ = 2

∫
Dv(t)dt = (π/2κ2)

∑
k k

2
∗Ek. The en-

ergy of the oscillation field
∑
k(k2
∗/κ

2)Ek thus plays the
role of a “temperature” T in the particle distribution.
Subsequently, sufficient velocity dispersion prevents the
Jeans instability from occuring. The diffusion in configu-
ration space is due entirely to the growth of the Jeans-
unstable modes in a self-gravitating collisionless system
subject to a time-dependent potential.

This mechanism increases (a) the velocity dispersion of
stars in the Galaxy’s plane after they are born (Eq. (24)),
and (b) the radial spread of the disk (Eq. (25)). The col-
lisionless relaxation mimics thermal relaxation in a two-
dimensional stellar disk, leading to Maxwell–Boltzmann
type velocity distributions with an effective temperature
that increases with time. To repeat ourselves, sufficient
random velocity spread prevents the Jeans instability from
occuring (Griv et al. 1994; Griv et al. 1999). The diffusion

of the bulk of stars in configuration space takes place be-
cause they gain wave energy as the instability develops.
The instability-induced diffusion, however, presumably ta-
pers off as Jeans stability is approached: the radial velocity
dispersion cr becomes greater than the critical one ccrit.
Observations already convincingly indicated a secular dy-
namical evolution in spiral galaxies on the Hubble time
scale or even smaller (Martinet 1995).

Thus, the true time scale for relaxation in the Galaxy
may be much shorter than its standard value ∼1014 yr for
the Chandrasekhar collisional relaxation; it may be of the
order (=ωJ)−1 >∼ Ω−1 >∼ 3× 108 yr, i.e., comparable with
2−3 periods of the Galaxy rotation. This short relaxation
time is in agreement with both observations (Binney &
Tremaine 1987, p. 473; Grivnev & Fridman 1990) and N -
body simulations (Hohl 1971; Morozov 1981a; Sellwood &
Carlberg 1984; Tomley et al. 1991; Griv & Chiueh 1998).

5.2. Time evolution of the velocity dispersion

We have shown above that the squared plane velocity dis-
persion of stars increases with time t as

〈v2〉 ≈ (π/2κ2)k2
∗Ek ∝ exp(=ω∗t), (26)

where k∗ and =ω∗ ∼ Ω are the effective wavelength and
the growth rate of the most unstable oscillations. For
young stellar populations, say, with ages t < 109 yr,
=ω∗t < 1 and we see that heating by a Jeans-unstable
density wave can produce the observed 〈v2〉 ∝ t law for
the age–velocity dispersion rate (Wielen 1977). However,
over a long time span, the unstable mode itself would
change its properties as the basic state evolves. That is,
the wave–star interaction is a nonlinear process, which
should take into account the fact that the wave field
affects only weakly the stars with high peculiar veloc-
ities. Mathematically, this fact is expressed by the in-
verse dependence of the reduction factor F (x) in Eqs. (15)
and (19) on the velocity dispersion: only the young stars,
with their small velocity dispersion, are extremely sensi-
tive to any gravity perturbation. Thus, we expect the de-
crease in the growth of unstable modes, and, consequently,
the decrease in the growth of the velocity dispersion with
age of stars, and the growth will not lead to 〈v2〉 > v2

obs

in less than a Hubble time. Here vobs ≈ 40 km s−1 is the
observed velocity dispersion of the oldest disk stars. The
latter is consistent with the observed age–velocity correla-
tion in the Galaxy which tapers off beyond a certain age
∼3 Gyr (Wielen 1977; Strömgren 1987; Haywood et al.
1997; Dehnen & Binney 1999; Binney 2001). This process
of diffusion in phase-space, with the velocity distribution
function scattering into a smoother and hotter distribu-
tion, lead naturally to definitions of young disk, of age
less than about 1−2 Gyr, and old disk, of age older than
about 3 Gyr.

One concludes that the proposed mechanism of wave–
star interaction is able to account for both the shape of
the velocity ellipsoid (the anisotropic Maxwellian, that
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is, Schwarzschild distribution) and the form of the age–
velocity dispersion law in the plane of the Galaxy.

5.3. Velocity diffusion in the Solar vicinity

Transient spiral arms excite random motions parallel to
the equatorial plane. According to Eq. (24), the heating
efficiency of unstable density wave features depends on
their spatial and temporal form. Let us evaluate the heat-
ing ∆v for a realistic model of the disk of the Galaxy
in the Solar vicinity. In accordance with the theory as
developed above, we consider the fastest growing mode
with k∗ = kcrit ≈ κ2/4πΩcr ≈ π kpc−1 and =ω∗ ≈ Ω.
According to observations, in the Solar vicinity Ek/Φ2

0 ≈
10−3 (Lin et al. 1969; Yuan 1969), Φ0 ≈ 0.5r2

0Ω2, r0 ≈
8.5 kpc, cr(t = 0) ≈ 10 km s−1, and κ ≈ 1.5Ω. From
Eq. (24), one obtains ∆v ≈

√
Dvt = 20−30 km s−1, where

t = 109 yr. This value of ∆v is in agreement with both
estimates based on the observed stellar velocities (Mayor
1974; Wielen 1977; Strömgren 1987; Meusinger et al. 1991;
Grivnev & Fridman 1990; Dehnen & Binney 1999) and
N -body simulations (Hohl 1971; Quirk 1972; Sellwood &
Carlberg 1984; Tomley et al. 1991). Thus already in the
first 4−5 galactic revolutions, in say about 109 yr, the stel-
lar populations see their epicyclic energy vary by a factor
of ten.

5.4. Migration of the Sun’s guiding center

There is considerable scatter in the metallicities of stars
that have a common guiding center and age. On the other
hand, it is widely believed that all interstellar material at a
given time and radius has a common metallicity. The para-
dox can be resolved if one assumes that these stars were
born at different radii and then migrated to its present
locations as a result of a series of uncorrelated scattering
events (Wielen et al. 1996; Binney 2001).

The migration may be explained naturally by
“collisions” of stars with the Jeans-unstable density waves.
Let us estimate the scale of radial migration ∆R� of the
Sun’s guiding center. According to observations, we adopt
the ratio Ek/Φ2

0 ≈ 10−3, η2 ≈ Ω2r2, m ≈ 1, r0 ≈ 8.5 kpc,
and =ω∗ ≈ Ω, k∗ ≈ kcrit. Then from Eq. (22) we obtain
∆R� ≈

√
Drt = 2−3 kpc. This ∆R� is in fair agreement

with the estimate of Wielen et al. (1996) ∆R� = 1.9 kpc
based on a radial galactic gradient in metallicity. We con-
clude that the Sun has migrated from its birth-place at
r = 6−7 kpc in the inner part of the Galaxy outwards by
2−3 kpc during its lifetime of t ≈ 4.5× 109 yr.

5.5. Problem of the spiral structure

Under the influence of Jeans-unstable perturbations, the
random velocity dispersion of the main part of the stellar
distribution function increases essentially on a dynamical
time scale (on the time scale of only 2−3 galactic rota-
tions). Because the Jeans instability is characterized by

the critical value of velocity dispersion ccrit, eventually as
a result of such heating the gravitational instability will be
switched off rapidly. Therefore, from the theoretical point
of view, the Jeans-unstable density waves in a collision-
less stellar disk have to be short-lived, and they should
dissipate after a few rotations of the system.

N -body experiments have shown similar behavior for a
hot system of stars repeatedly. A spiral structure usually
develops in a numerical model during the first rotation
of the system. These spirals are evidently Jeans-unstable
density waves and not material arms, since test particles
pass right through them (Miller et al. 1970; Quirk 1972).
Sellwood & Carlberg (1984), Sellwood & Athanassoula
(1986), and Griv et al. (1999) presented evidences that the
spirals arise from collective processes. The growth of these
perturbations then saturates due to the increasing velocity
dispersion of the particles, and the Jeans-unstable modes
decay during the next two to three rotations. The increase
of velocity dispersion in those experiments cannot be ex-
plained by usual two-body encounters (Hohl 1973; Griv
et al. 1999). It seems likely, the fast heating in theN -body
models is due to collective effects discussed in the present
paper, i.e., due to density fluctuations as a result of the
Jeans instability. The violent Jeans instability occurs in
numerical models because the Toomre stability criterion,
satisfied for an initial computer model, is not applicable to
nonaxisymmetric gravity perturbations in a differentially
rotating, inhomogeneous disk. Density perturbations aris-
ing from the instabilities of the nonaxisymmetric pertur-
bations grow into spiral structures. These density waves,
which have growth rates comparable to the mean orbital
frequency, dynamically heat the disk and exert torques
which redistribute both mass and angular momentum. In
a final, quasi-steady state after two to three rotations,
the stars in acomputer model acquire large random veloc-
ities about 2 times more than Toomre’s criterion predicts
(Hohl 1971; Morozov 1981a; Sellwood & Carlberg 1984;
Tomley et al. 1991; Griv et al. 1999). Thus, in the non-
linear regime, the stars (and indeed also the gas before
their formation) can continue developing Jeans-unstable
condensations only if some effective mechanism of cooling
exists, leading to Toomre’s Q-values smaller than 2−2.5.

Cooling of a numerical model through dissipation in
the gas layer, accretion, and/or star formation (injection
of new-born stars which are formed on almost purely cir-
cular orbits) has already been proposed as a mean to pro-
long collective instabilities in the plane of the stellar disk
(Miller et al. 1970; Quirk 1972; Sellwood & Carlberg 1984;
Tomley et al. 1991; Griv & Chiueh 1998). The cold inter-
stellar medium may play a dominant role in determin-
ing the wave-like structure in galaxies with a high star
formation rate because it is the site of the generation of
dynamically cold objects. The star formation process fu-
els the Jeans instability, favoring the excitation of short-
lived spiral modes exponentially growing through a recur-
rent instability cycle in the disk of newly formed stars. In
this regard, no prominent spirals are seen in S0 galaxies
that have little or no interstellar matter. Martinet (1995)
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already pointed out the connection between dynamical
evolution and efficiency of star formation in galaxies of
various morphological types. We expect that stellar disks
of flat galaxies are rife with many transient, chaotic-
looking Jeans-unstable wakes. Such short-lived spirals
develop in young stellar population in rapid succession
and possible interaction (cf. Sellwood & Carlberg 1984;
Tomley et al. 1991). Summarizing, multiple armed spiral
patterns in gas-rich galaxies may result from the simul-
taneous excitation and superposition of different Jeans-
unstable modes. The coexistence of several spiral waves is
possible. The low–m modes (m = 1−4) are the dominant
ones. Interestingly, many spiral structures in galaxies do
not appear to be well-organized grand designs. Galaxies
dominated by a single and symmetric pattern are exceed-
ingly rare (Binney & Tremaine 1987, p. 391; Elmegreen &
Elmegreen 1989).

6. Summary

The kinetic theory of the Jeans instability is extended by
deriving a diffusion equation in configuration space for the
main part of the distribution function of stars in the ro-
tating disk of a flat galaxy. The analytical method of the
quasi-linear kinetic theory is applied. It is shown that in
the collisionless case diffusion leads to effective tempera-
tures, i.e., to velocity dispersions relative to the bulk ve-
locities of the galaxy stars, increasing in time in the field
of the Jeans-unstable waves. Fluidlike stellar encounters
with almost aperiodically growing Jeans-unstable grav-
ity perturbations can explain the observed form of the
age–velocity dispersion correlation, the observed amount
heating of the local stellar disk in the plane of the Galaxy
∆v = 20−30 km s−1 as well as the observed Schwarzschild
shape of the stellar random velocity distribution. This re-
sult is in agreement with suggestions of previous work
(Griv et al. 1994; Griv & Peter 1996a; Griv et al. 1999;
Griv et al. 2000b). Sufficient velocity dispersion prevents
the Jeans instability from occurring but cooling of a galaxy
through dissipation in the gas layer, accretion, and/or star
formation (injection of new-born dynamically cold stars)
reduce the residual velocities of stars so that the Jeans in-
stability may be an effective long-term generating mech-
anism for the spiral ∼2 kpc structure of a disk galaxy.
We conclude that the spiral arms in gas-rich galaxies may
be of transient nature in systems with gas cooling, accre-
tion, and/or star formation. In such a way, we are able to
reconcile the apparent conflict between the theory of the
Jeans instability and the fact that spiral patterns in disk
galaxies of stars must be long lived.

The diffusion of stellar orbits in coordinate space leads
to the core-dominated mass density profile in disk galax-
ies. As a result of wave–star scattering, the Sun’s guiding
center diffused radially from its birth-place in the inner
part of the Galaxy outwards; ∆R� = 2−3 kpc.
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