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1 Introduction

Asymptotic symmetry generators in gravity have been known to play important roles in

the AdS/CFT correspondence [1], which should correspond to symmetry generators in the

dual field theory. Especially to realize the infinite dimensional symmetry generators in the

two-dimensional dual conformal field theory(CFT), the asymptotic symmetry generators

corresponding to asymptotic Killing vectors have been constructed in [2] based on the

Hamiltonian formalism. These generators are shown to form a Virasoro algebra with a non-

vanishing central charge and the central charge has been used in various setups to reproduce

the black hole entropy through the Cardy formula [3]. The successful outcomes include

the explanation of the microscopic origin of black hole entropy [4]. Since there have been

much interests in the extension of the AdS/CFT correspondence to the space-time which is

not asymptotically AdS, the methodology to construct asymptotic symmetry generators in

gravity is still important direction to be sought after. One such direction has been the study

on the asymptotic symmetry algebra in the context of the Kerr/CFT correspondence [5].

Among the asymptotic symmetry generators, there are generators or conserved charges

which form a sub-algebra corresponding to the isometry group of the given geometry. Inter-

estingly, it is not so straightforward in gravity to identify even such generators or charges,

and the method to obtain such charges has its own long history [6, 7]. In particular, the con-

cept of quasi-local conserved charges is not yet firmly established and still causes some con-

troversy. To identify conserved charges at the asymptotic infinity, the traditional ADM for-

malism has been extended to space-time with more generic asymptotic geometry by Abbott,
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Deser and Tekin(ADT) [8–11]. Compared to other approaches, this ADT formalism has

several merits. First of all, it is manifestly covariant and depends only on the equations of

motion(EOM). Furthermore, it can be applied to a generic higher curvature theory of grav-

ity. There is another covariant approach to conseved charges which is called the covariant

phase space formalism [12–15]. Contrary to the ADT formalism, this approach is based on

the Lagrangian, not the equations of motion. This covariant phase space formalism for con-

served charges has been extended to include the asymptotic symmetry generators [16, 17].

Yet another interesting covariant approach for asymptotic symmetry generators was

constructed by Barnich, Brandt and Compère(BBC) in [18–20], which is based on the,

so-called, variational bi-complex. For the exact Killing vectors, the final expression of the

symmetry generators in the BBC formalism turns out to be the same as the one from the

covariant phase space formalism. In general, the expression of the asymptotic symmetry

generators in this formalism differs from the one from the covariant phase space formalism.

As a result, the central charge in the asymptotic symmetry algebra might be different.

Still, both formalisms give the identical results for the set-ups in [2, 21, 22] and in [5].

However, in the context of the Kerr/CFT correspondence in higher derivative theory of

gravity, the BBC formalism gives the central charge, which, along with Cardy’s formula,

is consistent with the Wald formula for the black hole entropy [23].

Recently, the importance of the identically conserved or off-shell ADT current for a

Killing vector is recognized and its applications are explored in refs. [24–26]. It was shown

that one of the interesting aspects of the off-shell construction is its intimate relationship

with the quasi-local construction. In the end, the ADT formalism for conserved charges

was shown to give the same expression as those from the covariant phase space formalism,

and thus also, those from the BBC formalism. This result naturally leads to the question

on how to extend the ADT formulation to the case of asymptotic symmetry generators.

In this paper we would like to address this issue. We generalize the off-shell ADT

current and potential of the exact Killing vectors to those of the asymptotic Killing vectors.

In section 2, we construct the explicit form of the generalized off-shell ADT current. In

section 3, we give a natural way to obtain the generalized off-shell ADT potential from the

Lagrangian. And then we compare our results with those in [17, 18]. In the final section,

we summarize our results and give some comments on the open issues and on the future

direction.

2 Generalized off-shell conserved currents

In this section we introduce the generalized off-shell ADT current in the spirit of the original

construction of the ADT current [8–11], which is based on the equations of motion(EOM).

After reviewing the off-shell ADT current, we explain the necessity of its extension for

asymptotic Killing vectors in the context of the AdS/CFT correspondence and then present

its generic structure. By using the integration by parts iteratively, we give a prescription to

obtain the generalized off-shell ADT current unambiguously and present its explicit form

depending only on the EOM and the linearized EOM expressions.
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2.1 Off-shell currents

We consider a generic theory of gravity with the action

I[g] =
1

16πG

∫

dDx
√−g L(g) . (2.1)

For simplicity, we focus on the theory without any matter field in the following. The EOM

of the metric are given by Eµν(g) = 0, whose Bianchi identity is ∇µEµν = 0.

In the geometry admitting a Killing vector ξµ, the corresponding on-shell ADT current

is introduced as

J µ(g ; ξ, δg) = δEµνξν , (2.2)

where δ denotes the variation with respect to the metric. This on-shell current can be

shown to be conserved by using EOM, Bianchi identity and the Killing property of ξ. As

a result, the anti-symmetric second rank tensor Qµν = Q[µν], which is called the on-shell

ADT potential, is introduced by J µ = ∇νQ
µν . These on-shell current and potential are

highly involved for a higher curvature/derivative theories of gravity, as their EOM are very

complicated. Instead, the background independent ADT current and potential have been

used for TMG [27] and new massive gravity [28]. It was recognized that this background

independent ADT current has not just computational convenience in some specific theories

but more profound meaning in a generic theory of gravity as the off-shell extension of the

on-shell ADT formulation for conserved charges [25].

The off-shell ADT current for a Killing vector ξ can be introduced as

J µ
ADT (g ; ξ, δg) ≡ δEµνξν +

1

2
gαβδgαβ Eµνξν + Eµνδgνρ ξ

ρ − 1

2
ξµEαβδgαβ . (2.3)

This off-shell current can be shown to be identically conserved by using the Bianchi identity

and the Killing property of the vector ξ. One may note that this current reduces to the

on-shell current in eq. (2.2) after using the EOM, Eµν(g) = 0. This identical conservation

property allows us to introduce the off-shell ADT potential Qµν
ADT for a Killing vector ξ as

J µ
ADT (g ; ξ, δg) = ∇νQ

µν
ADT (g ; ξ, δg) . (2.4)

By using the above off-shell ADT potential and the one-parameter path in the solution

space [25, 29], one can introduce quasi-local conserved charges for the Killing vector ξ as

Q(ξ) =
1

8πG

∫ 1

0
ds

∫

B
dD−2xµν

√−g Qµν
ADT (g; ξ|s) , (2.5)

where B may be taken in the interior region not just at the asymptotic infinity of the space-

time. One may note that quasi-local charges are computed, at the end, on the on-shell value

since we have used a one-parameter path in the solution space. As was shown in [24, 25],

these quasi-local charges for the Killing vector associated with a Killing horizon reproduce

the Wald’s entropy formula for black holes and those computed at the asymptotic infinity

coincide with the original ADT charges.

In view of AdS/CFT correspondence, it is desirable to extend this formulation to

the case with asymptotic symmetry generators, which may be realized as the conserved

– 3 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
1

charges for the asymptotic Killing vectors. Recall that the off-shell ADT current, which is

introduced in eq. (2.3), is conserved for an exact Killing vector but not for an asymptotic

Killing vector. Rather, for an asymptotic Killing vector ζ, it satisfies

∂µ(
√−gJ µ

ADT ) = δ(
√−gEµν)∇(µζν) +

1

2

√−gEµν£ζδgµν

−1

2

√−g
[

∇µζ
µEαβδgαβ +£ζ(Eαβδgαβ)

]

=
1

2

[

δ(
√−gEµν)£ζgµν −£ζ(

√−gEαβ) δgαβ

]

, (2.6)

which shows us that the off-shell ADT current J µ
ADT is not conserved for asymptotic Killing

vectors and needs to be extended.

In this paper, we would like to generalize the above off-shell ADT current for a Killing

vector ξ to the off-shell current for an asymptotic Killing vector ζ. By noting that this

generalized off-shell ADT current should depend linearly on the vector ζ and reduce to

the off-shell ADT current J µ
ADT when ζ is taken as a Killing vector, one may take the

generalized off-shell ADT current Jµ
ADT , without loss of generality, in the form of

J
µ
ADT (ζ) =Mµνζν+Mµαβ£ζgαβ+∇ν1(Mµν1αβ£ζgαβ)+∇ν1∇ν2(Mµν1ν2αβ£ζgαβ) (2.7)

+ ∇ν1∇ν2∇ν3(Mµν1ν2ν3αβ£ζgαβ) + · · ·+∇ν1 · · · ∇νn(Mµν1···νn£ζgαβ) ,

where £ζ denotes the Lie derivative along ζ direction. Mµν1···νkαβ ’s are taken such that

they satisfy the following properties

Mµνζν = J µ
ADT (ζ) , Mµν1···νkαβ = Mµ(ν1···νk)αβ , (2.8)

where the round parenthesis denotes the total symmmetrization with a normalization factor

1/k!. One can always take these forms of M’s and J
µ
ADT by using the fact that any

commutator of ∇’s can be replaced by the Riemann tensor. The identical conservation of

J
µ
ADT leads to severe constraints on the form of M’s. Rather than solving these constraints

directly, we will take a different methodology and propose a way to obtain the unambiguous

form of the generalized off-shell ADT current in the following section.

2.2 Construction

We introduce the generalized off-shell ADT current for an asymptotic Killing vector ζ as

J
µ
ADT (g ; ζ, δg) = J µ

ADT (g ; ζ, δg) + J µ
∆(g ; £ζg, δg) . (2.9)

The second term J µ
∆ is introduced to preserve the off-shell conservation of the ADT current

for an asymptotic Killing vector ζ, such that its divergence cancels the right-hand side of

eq. (2.6). To obtain J µ
∆ explicitly, let us consider an n-th order derivative theory of gravity.

Generically the linearized EOM expression Eµν can be written as

δ(
√−gEµν) =

√−g

[

fµναβδgαβ +
n
∑

k=1

fµναβ | ρ1···ρk∇(ρ1 · · · ∇ρk)δgαβ

]

, (2.10)
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where the coefficient functions f ’s satisfy

fµναβ | ρ1···ρk(g) = fµναβ | (ρ1···ρk)(g) = f (µν)αβ | ρ1···ρk(g) = fµν(αβ) | ρ1···ρk(g) . (2.11)

The above form of the linearized EOM may be regarded as a generic derivative expansion

since the commutators of the covariant derivatives can always be replaced by Riemann

tensors. Because of the symmetrization, the order of covariant derivatives does not matter.

From now on, we will always order the covariant derivatives in the increasing ρi-numbering

just for the convenience.

As noted above, the additional current J µ
∆ is designed to satisfy the following relation

δ(
√−gEµν)£ζgµν −£ζ(

√−gEαβ) δgαβ = −∂µ(2
√−gJ µ

∆) . (2.12)

By using the expression in (2.10), the first term in the left-hand side can be written

generically in the form as

δ(
√−gEµν)£ζgµν =

√−g

[

fµναβδgαβ +
n
∑

k=1

fµναβ | ρ1···ρk∇(ρ1 · · · ∇ρk)δgαβ

]

£ζgµν

=
√−gFαβδgαβ + ∂ρ(

√−gHρ) , (2.13)

where we performed the integration by parts iteratively to arrive at the second equality.

The explicit forms of Fαβ and Hρ are given by1

Fαβ(£ζg) = fµναβ £ζgµν +
n
∑

k=1

(−1)k∇ρ1 · · · ∇ρk(f
µναβ | ρ1ρ2···ρk £ζgµν) ,

Hρ (£ζg, δg) = fµναβ | ρ£ζgµν δgαβ +
n
∑

k=2

fµναβ | ρρ2···ρk£ζgµν∇ρ2 · · · ∇ρkδgαβ (2.14)

+
n
∑

k=2

k
∑

l=2

(−1)ℓ−1∇ρ2 · · · ∇ρl(f
µναβ | ρρ2···ρk £ζgµν) ∇ρl+1

· · · ∇ρkδgαβ .

As shown in the appendix A, it turns out that

√−gFµν(£ζg) = £ζ(
√−gEµν) . (2.15)

By combining the equations, (2.12), (2.13) and the relation (2.15), we can naturally identify

the additional current J ρ
∆ as

J ρ
∆(£ζg, δg) ≡ −1

2
Hρ(£ζg, δg) . (2.16)

In general, the identical conservation condition alone does not give us the unique

expression of the additional current J ρ
∆. In the above, we have fixed this ambiguity by

1As mentioned earlier, the covariant derivatives are ordered in the increasing ρi indices. Furthermore,

in order to express the formula compactly, we also adopt the summation convention such that there is no

covariant derivative if the left hand covariant derivative numbering is greater than the right hand one, i.e.

∇ρk+1
∇ρkδgαβ denotes δgαβ under the k summation.
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declaring that J ρ
∆ is constructed only by f functions as in eq.s (2.14) and (2.16). In other

words, by performing the integration by parts successively, J ρ
∆ can be rewritten in the

following form of

J ρ
∆ (£ζg, δg) = δgαβ Vαβ | ρ(£ζg) +∇ρ′S

ρρ′(£ζg, δg) , (2.17)

where Sρρ′ should be a symmetric tensor over indices ρ and ρ′. This is the criterion for

fixing the ambiguity in our approach.

As shown in appendix B, one can obtain more useful expression of Fαβ in eq. (2.14) as

Fαβ =

n
∑

p=0

n
∑

k=p

(−1)k
(

k

p

)

∇ρp+1 · · · ∇ρkf
µναβ | ρ1···ρk ∇ρ1 · · · ∇ρp£ζgµν , (2.18)

and J ρ
∆ in eq. (2.16) can be written in the form of

J ρ
∆(£ζg, δg) =

1

2

n
∑

p=1

n
∑

k=p

[

p−1
2

]

∑

q=0

(−1)p+k+q+1

(

k − p+ q

q

)

∇ρp+1 · · · ∇ρkf
µναβ | ρρ2···ρk (2.19)

×
(

1− 1

2
δ2q+1,p

)(

∇ρp−q+1 · · · ∇ρp£ζgµν ∇ρ2 · · · ∇ρp−qδgαβ

− ∇ρ2 · · · ∇ρp−q£ζgαβ∇ρp−q+1 · · · ∇ρpδgµν

)

.

This expression of J ρ
∆(£ζg, δg) is one of our main results. By construction, the additional

current J ρ
∆ depends only on the EOM. It is manifestly covariant and conserved when g

satisfies the EOM and δg does the linearized EOM. Furthermore, it turns out to be a

symplectic current as will be shown in the next section.

Now, it is straightforward to see that this current is antisymmetric about its arguments:

J ρ
∆(£ζg, δg) = −J ρ

∆(δg,£ζg) . (2.20)

One might say that the demanded condition of J µ
∆ in eq. (2.12) implies the above anti-

symmetric property. We would like to emphasize that the demanded condition does not

warrant the above antisymmetric property since it does not fix the ambiguity which allows

the addition of total derivative terms. In contrast, we constructed the explicit form of

J ρ
∆(£ζg, δg) in eq. (2.19) with manifestly antisymmetric property without any ambiguity.

A few leading order terms of J ρ
∆ are given explicitly as

J ρ
∆(£ζg, δg) =

1

2

n
∑

k=1

(−1)k∇ρ2 · · · ∇ρkf
µναβ | ρρ2···ρk

1

2

[

£ζgµν δgαβ −£ζgαβ δgµν

]

− 1

2

n
∑

k=2

(−1)k∇ρ3 · · · ∇ρkf
µναβ | ρρ2···ρk

[

£ζgµν ∇ρ2δgαβ −∇ρ2£ζgµν δgαβ

]

+
1

2

n
∑

k=3

(−1)k∇ρ4 · · · ∇ρkf
µναβ | ρρ2···ρk

[(

£ζgµν ∇ρ2∇ρ3δgαβ −∇ρ2∇ρ3£ζgµν δgαβ

)

– 6 –
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− 1

2
(k−2)

(

∇ρ2£ζgµν∇ρ3δgαβ −∇ρ3£ζgµν∇ρ2δgαβ

)]

+ · · · . (2.21)

For example, in the case of Einstein gravity, the expression of J ρ
∆(£ζg, δg) from our formula

is given by

J ρ
∆(£ζg, δg) = −1

2
fµναβ | ρρ2

[

£ζgµν ∇ρ2δgαβ −∇ρ2£ζgµν δgαβ

]

, (2.22)

where

fµναβ | ρ1ρ2 =
1

2

[

gµνgαβgρ1ρ2 − gµνgα(ρ1gρ2)β − gαβgµ(ρ1gρ2)ν

−gα(µgν)βgρ1ρ2 + gρ1(µgν)(αgβ)ρ2 + gρ2(µgν)(αgβ)ρ1
]

.

It is interesting to note that the expression of J µ
∆ is exactly half of the expression of the

so-called invariant symplectic current Wµ at (E.15) in [19] up to the sign convention.

Since we have constructed J µ
∆ explicitly, we can obtain the generalized off-shell ADT

current Jµ
ADT . Furthermore, by Poincaré lemma, one can introduce the generalized off-shell

ADT potential Qµν
ADT as

√−g Jµ
ADT (g ; ξ, δg) ≡ ∂ν

(√−gQµν
ADT (g ; ξ, δg)

)

. (2.23)

In the following section, we explore the connection of our construction, which depends

only on the EOM, to the covariant phase space approach, and then show how to obtain

the above generalized off-shell ADT potential from the Lagrangian.

3 Off-shell potential and asymptotic symmetry generators

In this section, we compare our construction to the covariant phase space approach [12–14]

and indicate the difference explicitly. Then we present the method to obtain the generalized

off-shell ADT potential from the given Lagrangian. As a specific example, we consider a

generic higher curvature theory of gravity. We also give some comments on the relation

of our construction to a mathematical construction based on the so-called variational bi-

complex [18, 20].

3.1 Comparison with the covariant phase space

It has been known that there are several ways to construct conserved charges for an asymp-

totic Killing vectors [2, 18, 21, 29, 30]. Though we have constructed quasi-local conserved

charges through the additional current J µ
∆ explicitly, it is useful to find the connection of

our construction with the covariant phase space method which is based on the Lagrangian.

For simplicity, we will focus on a covariant theory of gravity. It is straightforward to include

gravitational Chern-Simons terms, which will be omitted.

The variation of the action (2.1) with respect to gµν is taken in the form of

δI[g] =
1

16πG

∫

dDx δ(
√−gL) = 1

16πG

∫

dDx
[√−gEµνδgµν + ∂µΘ

µ(δg)
]

, (3.1)

– 7 –
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where Θµ denotes a surface term. By using the surface term Θµ, one can introduce the

so-called symplectic current ωµ as

ωµ(g ; δ1g, δ2g) ≡ δ1Θ
µ(g ; δ2g)− δ2Θ

µ(g ; δ1g) , (3.2)

which is symplectic in the sense that it satisfies [12]

δ1ω
µ(g ; δ2g, δ3g) + δ2ω

µ(g ; δ3g, δ1g) + δ3ω
µ(g ; δ1g, δ2g) = 0 .

By applying another variation to eq. (3.1) and using δ1δ2I[g] = δ2δ1I[g] with δ1δ2gµν =

δ2δ1gµν , one can show that this symplectic current satisfies the following relation

∂µω
µ(g ; δ1g, δ2g) = δ1(

√−gEµν)δ2gµν − δ2(
√−gEµν)δ1gµν . (3.3)

This relation shows us that ωµ is a conserved current when g and δg satisfy the EOM

and the linearized EOM, respectively. Furthermore, one may notice that the symplectic

current ωµ(g ; £g, δg) satisfies the same divergence relation with our additional current

J µ
∆(£g, δg) in eq. (2.12). This means that the difference between them should be, at most,

a total derivative as

2
√−gJ µ

∆(g ; £g, δg) = ωµ(g ; £g, δg) + ∂ν

(√−gAµν(g ; £g, δg)
)

, (3.4)

where Aµν denotes a certain antisymmetric second rank tensor determined by the given

Lagrangian. Note that this relation tells us that 2
√−gJ µ

∆ is symplectic up to a total deriva-

tive. And then, the generalized off-shell ADT current Jµ
ADT can be written in terms of ωµ as

√−g Jµ
ADT (g, ξ, δg) = ∂ν(

√−gQµν
ADT ) =

√−gJ µ
ADT +

1

2
ωµ + ∂ν

(

1

2

√−gAµν

)

. (3.5)

In order to see the relation between our construction and the covariant phase space

approach, one may note that J µ
ADT vanishes whenever g and δg satisfy the EOM and the

linearized EOM, respectively. Under this condition, the generalized off-shell ADT current

J
µ
ADT reduces to the symplectic current ωµ up to a total derivative. Hence, the on-shell

difference between our construction and the covariant phase space formalism resides in

the total derivative term Aµν . Now, we give a recipe to determine Aµν from the surface

term Θµ. By recalling the form of J µ
∆ obtained in eq. (2.17), the definition of ωµ given in

eq. (3.2) and the relation between them in eq. (3.4), one can set

δΘµ(£ζg)=£ζΘ
µ(δg)+δgαβ

[

−2
√−g Vαβ |µ(£ζg)

]

+
√−g∇ν

(

Aµν(£ζg, δg)−2Sµν(£ζg, δg)
)

,

(3.6)

where one may notice that the total derivative part is composed of two pieces, symmetric

Sµν and antisymmetric Aµν . This relation gives us a definite way to obtain Aµν from the

variation of the surface term Θµ. Schematically, the Θ term is given by Θ(δg) ∼ ∇ · · ·∇δg.

Therefore, one can see that

δΘ(£g) ∼ ∇ · · · δ∇£g +∇ · · ·∇δ£g ∼ ∇ · · · δ∇£g +∇ · · ·∇£δg ,

– 8 –
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where we have used £δg = δ£g. To relate this form to the expression of £Θ(δg), it is

useful to note the following identity for arbitrary tensor Tµ1···µk
:

[∇ρ,£ζ ]Tµ1···µk
=

1

2
T ν
µ1···µi−1 µi+1···µk

(

∇ρ£ζgµiν +∇µi
£ζgρν −∇ν£ζgρµi

)

. (3.7)

By performing the integration by parts on the variation of the covariant derivatives δ∇, one

can extract Aµν from the anti-symmetric part, over µν-indices, inside the total derivatives.

The explicit examples are given in the next section.

Though we have constructed J
µ
ADT and Q

µν
ADT from the EOM expression, it is much

better to obtain the generalized off-shell ADT Q
µν
ADT from the given Lagrangian. By doing

this, one can compare more clearly our construction to the covariant phase space approach

or the BBC formalism. To this purpose, it is useful to recall the Noether current and

potential. The off-shell Noether current Jµ under the general diffeomorphism ζ can be

introduced as

Jµ(ζ) = 2
√−g Eµνζν +

√−g ζµL−Θµ(£ζg) . (3.8)

This current can be shown to be identically conserved and thus the associated potential

Kµν can be defined by

Jµ(ζ) ≡ ∂νK
µν(ζ) . (3.9)

Now we derive the relation among the generalized off-shell ADT current, the Kµν term

and the Θµ term for the asymptotic Killing vectors, following the steps in the case of exact

Killing vectors [24]. By taking a generic metric variation of the off-shell Noether current,

one can obtain

∂νδK
µν = 2δ(

√−g Eµνζν) + δ(
√−g ζµL)− δΘµ(ζ)

= 2
√−gJ µ

ADT +£ζΘ
µ(δg)− δΘµ(ζ) + ∂ν

(

2ζ [µΘν](δg)
)

,

where we have used the generic variation of the Lagrangian in eq. (3.1) and the definition

of Lie derivative on the Θ term as

£ζΘ
µ = ζν∂νΘ

µ −Θν∂νζ
µ +Θµ∂νζ

ν .

This leads to the identity for the general diffeomorphism ζ:

2
√−gJ µ

ADT + ωµ(g ; £ζg, δg) = ∂ν

(

δKµν(ζ)− 2ζ [µΘν](g; δg)
)

. (3.10)

As a result, our final expression of the generalized off-shell ADT potential Qµν
ADT is given by

2
√−gQµν

ADT (g ; ζ, δg) = δKµν(g ; ζ)− 2ζ [µΘν](g; δg) +
√−gAµν(g ; £ζg, δg) , (3.11)

which is identical with the off-shell ADT potential Qµν
ADT except for the additional term

Aµν .

A couple of comments are in order.

• The generalized off-shell ADT current J
µ
ADT depends only on the EOM, while the

Noether current, Jµ depends on the Lagrangian and the symplectic current, ωµ does

on the surface term Θµ.
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• When ζ is an exact Killing vector, the corresponding generalized current J
µ
ADT re-

duces to the original off-shell ADT current J µ
ADT .

• When the background metric and the linearized metric δg satisfy EOM and the

linearized EOM, respectively, the generalized current J
µ
ADT reduces to a symplectic

current J µ
∆.

• Though the above Q
µν
ADT is ambiguous up to the total derivative term ∂ρU

µνρ by

construction, it is irrelevant in our discussion on the asymptotic symmetry generators.

Quasi-local charge for an asymptotic Killing vector ζ may be defined just like eq. (2.3).

Its infinitesimal variation under an asymptotic Killing vector η is given by

δηQ(ζ) ≡ 1

16πG

∫

dxµν
√−gQµν

ADT (g ; £ζg, δηg) (3.12)

=
1

16πG

∫

dxµν

(

ζ [µJν](η)− η[µJν](ζ)− ζ [µην]
√−gL −√−gζ [µEν]ρηρ

+
1

2

√−gAµν + · · ·
)

,

where · · · denotes irrelevant total derivative terms. In the last equality, we have used the

off-shell Noether current Jµ in eq. (3.8) along with the relation

£ηK
µν(ζ) = −2η[µJν](ζ) + 3∂α

(

η[αKµν](ζ)
)

. (3.13)

The asymptotic symmetry algebra can be constructed by using the above variational form

of quasi-local charges. Since the detailed steps for this construction is completely parallel

to those given, for instance, in [18, 20, 22], we will omit those.

3.2 Example: higher curvature gravity

In this section, we consider the higher curvature gravity as specific examples to apply

our formulation of the generalized quasi-local charges. In the higher curvature gravity

L = L(R,R2, RµνR
µν , · · · ), it is very useful to regard the Riemann tensor as an independent

variable and to introduce

Pµνρσ ≡ ∂L
∂Rµνρσ

.

Then, one can show that the EOM expression Eµν , the off-shell Noether potential Kµν and

the surface term Θµ take the canonical forms of

Eµν = P
(µ
αβγR

ν)αβγ − 2∇ρ∇σP
ρ(µν)σ − 1

2
gµνL , (3.14)

Kµν(ζ) = 2
√−g

(

Pµνρσ∇ρζσ − 2ζσ∇ρP
µνρσ

)

,

Θµ(δg) = 2
√−g

(

Pµ(αβ)γ∇γδgαβ − δgαβ∇γP
µ(αβ)γ

)

.

Now, it is sufficient to obtain Aµν in order to find the quasi-local charge for an asymptotic

Killing vector. To use our procedure in obtaining Aµν given in eq. (3.6), one may note

– 10 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
1

that, after the repeated integration by parts, the antisymmetric part Aµν comes only from

the variation of covariant derivatives in Θµ(£ξg). Specifically, the relevant part for the

first term of Θµ(£ξg) in (3.14) comes from the metric variation of the covariant derivative

and is given by

2Pµ(αβ)νδ∇ν£ζgαβ = −4Pµ(αβ)ν δΓρ

ν(α£ζgβ)ρ + · · ·

= −2∇ν

(

Pµ(νβ)αgρσδgσα£ζgρβ − Pµ(αβ)σgρνδgσα£ζgρβ

)

+ · · ·

= ∇ν

[

− 3

4
Pµναρ gβσ(£ζgαβ δgρσ − δgαβ £ζgρσ) + gρ[µP ν](αβ)σδgαβ £ζgρσ

]

+ · · · ,

where · · · denotes the irrelevant terms, which are either symmetric part over µν-indices,

Sµν , or non total derivative part, Vαβ | ρ. Just like the first term, the second term of

Θµ(£ξg) in (3.14) leads to the relevant terms as

2£ζgαβ δ∇γP
µ(αβ)γ = ∇ν

[

3

4
P

µναρ
g
βσ(£ζgαβ δgρσ − δgαβ £ζgρσ) + g

ρ[µ
P

ν](αβ)σ
£ζgαβ δgρσ

]

+ · · · .

Combining the above results, one can show that

Aµν(£ζg, δg) = −
(

3

2
Pµναρ gβσ + 2gρ[µP ν](αβ)σ

)

(£ζgαβ δgρσ − δgαβ £ζgρσ) . (3.15)

It is very interesting to notice the complete consistency with the result given in [23]. This

shows us that our construction in the case of the higher curvature theory of gravity is

identical with the mathematical construction through the, so-called, horizontal homotopy

operator in the BBC formalism. This equivalence also tells us that the central charge in

the asymptotic symmetry algebra should be the same as the one in the BBC formalism. It

may be straightforward to check that our construction leads to the same results with the

BBC formalism even in any higher derivative theory of gravity.

Just for concreteness, we present some detailed expressions in Einstein gravity. In this

case, P -tensor is given by

Pµνρσ
R = gρ[µgν]σ , (3.16)

and it turns out that

A
µν
R (£ζg, δg) = −

(

gµ(αgβ)(ρgσ)ν − gν(αgβ)(ρgσ)µ
)(

£ζgαβδgρσ − δgαβ£ζgρσ

)

.

For any diffeomorphism paramter ζ (hµν = δgµν) in Einstein gravity
√
−gQ

µν
R ≡ 1

2
δK

µν
R − ζ

[µΘ
ν]
R =

√
−g

(

1

2
h∇[µ

ζ
ν]− ζ

[µ∇αh
ν]α+ ζα∇[µ

h
ν]α+ ζ

[µ∇ν]
h−h

α[µ∇αζ
ν]

)

, (3.17)

and so, the generalized off-shell ADT potential for an asymptotic Killing vector ζ in Einstein

gravity is given by

Q
µν
R = Qµν

R +
1

2
A

µν
R

=
1

2
h∇[µζν]−ζ [µ∇αh

ν]α+ζα∇[µhν]α+ζ [µ∇ν]h− 1

2
hα[µ∇αζ

ν]+
1

2
hα[µ∇ν]ζα . (3.18)
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4 Conclusion

We have constructed the generalized off-shell ADT current and potential by using only the

EOM and the linearized EOM expression. By connecting this construction to the covariant

phase space method, we have presented a definite way to obtain the off-shell ADT current

and potential from the given Lagrangian. Our construction can be applied to a generic

higher derivative theory of gravity even with gravitational Chern-Simons terms. We have

also indicated the relation of our construction to the BBC formalism. As a specific example,

we have presented the generalized off-shell ADT potential explicitly for a higher curvature

theory of gravity. Our construction shows us the usefulness of the off-shell or quasi-local

formulation of conserved charges.

In view of the generic structure of the generalized off-shell ADT current, our construc-

tion corresponds to the choice of a further symmetric form as follows

Mµν1···νkαβ = M(µν1···νk)αβ , k = 1, 2, · · · . (4.1)

This fact can be inferred from eq. (2.17) by noting that we can perform the iterative

integration by parts on £ζg instead of δg. By performing the integration by parts further

on the term Sρρ′ , one can show that Mµν1···νnαβ takes the above form. In this sense, our

construction may be regarded as the most symmetric one.

As was shown in the higher curvature theory of gravity, our final results are equivalent

to those from the BBC formalism. To compare our construction to the BBC formalism, it

is useful to recall that the BBC construction of the asymptotic symmetry generators starts

from the so-called on-shell vanishing current Sµ(ζ) =
√−gEµνζν . One may note that our

construction of the generalized off-shell ADT potential Qµν
ADT given in eqs. (2.9) and (2.23)

can be rewritten as

δ
(

2
√−gEµνζν

)

= −2
√−gJ µ

∆(£ζg, δg) +
√−gζµEαβδgαβ + ∂ν

(

2
√−gQµν

ADT

)

. (4.2)

This shows that our generalized off-shell ADT potential Qµν
ADT corresponds to the potential

kµν in the BBC formalism [18, 20]. In conjunction with the equivalence in the case of a

higher curvature theory of gravity, this form strongly indicates the formal equivalence be-

tween our construction of the generalized off-shell ADT potential and the BBC formalism,

though it does not prove the equivalence. On the other hand, there are some differences

between two constructions. In our construction we have not used an on-shell condition on

the metric g and do not need any canonical choices of the surface term Θµ or the off-shell

Noether potential Kµν . Any ambiguity in such terms should be canceled in eq. (3.11) by

construction. In the BBC formalism, a priori ambiguous quantities like the Θ-term are

fixed by the horizontal homotopy operator while we do not need such canonical choice.

However, it seems very plausible to expect the formal equivalence between them in con-

sideration of the final expression for the potentials. It would be very interesting to prove

their equivalence.

As a further direction, it would be also very interesting to study physics in [31–33] by

using our construction.
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A Useful formulae

Let us take another generic variation of the expression (3.1) as

δ2δ1I[g] =
1

16πG

∫

dDx
[

−δ2(
√−gEµν)δ1gµν −

√−gEµνδ2δ1gµν +∂µ

(

δ2Θ
µ(δ1g)

)]

. (A.1)

Through the extension of the relation (2.13) to the case of the generic variation, one can

set the above double variation in the form of

δ2δ1I[g] =
1

16πG

∫

dDx
[

−√−gFµν(δ1g) δ2gµν −
√−gEµνδ2δ1gµν

+ ∂µ

(

δ2Θ
µ(δ1g)−

√−gHµ(δ1g, δ2g)
) ]

=
1

16πG

∫

dDx
[

− δ1(
√−gEµν)δ2gµν −

√−gEµνδ1δ2gµν + ∂µ

(

δ1Θ
µ(δ2g)

) ]

,

where the second equality comes from the commuting relation between two generic varia-

tions as δ1δ2I[g] = δ2δ1I[g]. Now, let us take the variation δ2g to be generic but compactly

supported only in the bulk. In other words, δ2g is taken to be decaying sufficiently fast at

the boundary of the region of interest. This choice tells us that we can ignore the surface

term for such a variation δ2g. Under this condition with the relation δ1δ2gµν = δ2δ1gµν ,

we can obtain the relation

√−gFµν(δg) = δ(
√−gEµν) , (A.2)

which should hold for an arbitrary metric variation δgµν . By using the explicit form of Fµν

given in eq. (2.18) in conjunction with eq. (2.10), one can obtain the following identity

fαβµν | ρ1···ρℓ =
n
∑

k=ℓ

(−1)k
(

k

ℓ

)

∇ρℓ+1
· · · ∇ρkf

µναβ | ρ1···ρk . (A.3)

In the case of Einstein gravity, this identity implies that the non-vanishing terms, fµναβ | ρ1ρ2

satisfy

fµναβ | ρ1ρ2 = fαβµν | ρ1ρ2 (A.4)
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B Derivation of J
ρ

∆

In this appendix we show the main steps leading eq. (2.19). For our convenience, we may

represent the expressions of Fαβ and J ρ
∆ in eqs. (2.14) and (2.16) compactly as

Fαβ =
n
∑

k=0

(−1)k∇ρ1 · · · ∇ρk(f
µναβ | ρ1ρ2···ρk £ζgµν) ,

J ρ
∆(£ζg, δg) =

1

2

n
∑

k=1

k
∑

l=1

(−1)ℓ∇ρl · · · ∇ρ2(f
µναβ | ρρ2···ρk £ζgµν) ∇ρl+1

· · · ∇ρkδgαβ .

By using the binomial expansion

∇(ρ1 · · · ∇ρk)(AB) =
k

∑

p=0

(

k

p

)

∇(ρ1 · · · ∇ρpA ∇ρp+1 · · · ∇ρk)B ,

one can rewrite those as

Fαβ =
n
∑

k=0

k
∑

p=0

(−1)k
(

k

p

)

∇ρp+1 · · · ∇ρkf
µναβ | ρ1···ρk ∇ρ1 · · · ∇ρp£ζgµν

J ρ
∆(£ζg, δg) =

1

2

n
∑

k=1

k
∑

ℓ=1

l−1
∑

p=0

(−1)ℓ
(

ℓ− 1

p

)

∇ρp+2 · · · ∇ρlf
µναβ | ρρ2···ρk

×∇ρ2 · · · ∇ρp+1£ζgµν ∇ρl+1
· · · ∇ρkδgαβ .

After rearranging the order of summation, one can obtain more useful expression as

Fαβ =
n
∑

p=0

n
∑

k=p

(−1)k
(

k

p

)

∇ρp+1 · · · ∇ρkf
µναβ | ρ1···ρk ∇ρ1 · · · ∇ρp£ζgµν , (B.1)

J ρ
∆ =

1

2

n
∑

p=1

n
∑

k=p

p−1
∑

q=0

(−1)p+k+q+1

(

k − p+ q

q

)

∇ρp+1 · · · ∇ρkf
µναβ | ρρ2···ρk (B.2)

×∇ρp−q+1 · · · ∇ρp£ζgµν ∇ρ2 · · · ∇ρp−qδgαβ .

Now we would like to show the anti-symmetric property of J µ
∆(£ζg, δg) over its argu-

ments. To this purpose, we need differential relations among f functions. Firstly, one may

note that

n
∑

ℓ=p

(−1)ℓ
(

ℓ− p+ q

q

)

∇ρp+1 · · · ∇ρℓf
αβµν | ρ1···ρℓ (B.3)

=
n
∑

ℓ=p

n
∑

k=ℓ

(−1)ℓ+k

(

ℓ− p+ q

q

)(

k

ℓ

)

∇ρp+1 · · · ∇ρkf
µναβ | ρ1···ρk .

=
n
∑

k=p

(−1)k
[ k
∑

m=p

(−1)m
(

k

m

)(

m− p+ q

q

)]

∇ρp+1 · · · ∇ρkf
µναβ | ρ1···ρk ,
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where we have used the identities (A.3) in the first equality and rearranged the order of

the summations in the second equality. Secondly, by using the binomial identity

k
∑

m=p

(−1)m
(

k

m

)(

m− p+ q

q

)

= (−1)p
(

k − q − 1

p− q − 1

)

, (B.4)

we obtain the identity

n
∑

ℓ=p

(−1)ℓ
(

ℓ− p+ q

q

)

∇ρp+1 · · · ∇ρℓf
αβµν | ρ1···ρℓ (B.5)

=
n
∑

k=p

(−1)k+p

(

k − q − 1

p− q − 1

)

∇ρp+1 · · · ∇ρkf
µναβ | ρ1···ρk .

By using the above identity into eq. (B.2), one can find the manifestly antisymmetric

form of J ρ
∆ over its arguments as

J ρ
∆(£ζg, δg) =

1

2

n
∑

p=1

n
∑

k=p

[

p−1
2

]

∑

q=0

(−1)p+k+q+1

(

k − p+ q

q

)

∇ρp+1 · · · ∇ρkf
µναβ | ρρ2···ρk (B.6)

×
(

1− 1

2
δ2q+1,p

)

(

∇ρp−q+1 · · · ∇ρp£ζgµν ∇ρ2 · · · ∇ρp−qδgαβ

− ∇ρ2 · · · ∇ρp−q£ζgαβ∇ρp−q+1 · · · ∇ρpδgµν

)

.
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