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1 Introduction

During the last 25 years one of the greatest achievements in classical general relativity is certainly
the proof of the positivity of the total gravitational energy, both at spatial and null infinity. It
is precisely its positivity that makes this notion not only important (because of its theoretical
significance), but a useful tool as well in the everyday practice of working relativists. This success
inspired the more ambitious claim to associate energy (or rather energy-momentum and, ultimately,
angular momentum too) to extended but finite spacetime domains, i.e. at the quasi-local level.
Obviously, the quasi-local quantities could provide a more detailed characterization of the states
of the gravitational ‘field’ than the global ones, so they (together with more general quasi-local
observables) would be interesting in their own right.

Moreover, finding an appropriate notion of energy-momentum and angular momentum would
be important from the point of view of applications as well. For example, they may play a cen-
tral role in the proof of the full Penrose inequality (as they have already played in the proof of
the Riemannian version of this inequality). The correct, ultimate formulation of black hole ther-
modynamics should probably be based on quasi-locally defined internal energy, entropy, angular
momentum etc. In numerical calculations conserved quantities (or at least those for which bal-
ance equations can be derived) are used to control the errors. However, in such calculations all
the domains are finite, i.e. quasi-local. Therefore, a solid theoretical foundation of the quasi-local
conserved quantities is needed.

However, contrary to the high expectations of the eighties, finding an appropriate quasi-local
notion of energy-momentum has proven to be surprisingly difficult. Nowadays, the state of the art
is typically postmodern: Although there are several promising and useful suggestions, we have not
only no ultimate, generally accepted expression for the energy-momentum and especially for the
angular momentum, but there is no consensus in the relativity community even on general ques-
tions (for example, what should we mean e.g. by energy-momentum: Only a general expression
containing arbitrary functions, or rather a definite one free of any ambiguities, even of additive con-
stants), or on the list of the criteria of reasonableness of such expressions. The various suggestions
are based on different philosophies, approaches and give different results in the same situation.
Apparently, the ideas and successes of one construction have only very little influence on other
constructions.

The aim of the present paper is therefore twofold. First, to collect and review the various specific
suggestions, and, second, to stimulate the interaction between the different approaches by clarifying
the general, potentially common points, issues, questions. Thus we wanted to write not only a
‘who-did-what’ review, but primarily we would like to concentrate on the understanding of the
basic questions (such as why should the gravitational energy-momentum and angular momentum,
or, more generally, any observable of the gravitational ‘field’, be necessarily quasi-local) and ideas
behind the various specific constructions. Consequently, one-third of the present review is devoted
to these general questions. We review the specific constructions and their properties only in the
second part, and in the third part we discuss very briefly some (potential) applications of the
quasi-local quantities. Although this paper is basically a review of known and published results,
we believe that it contains several new elements, observations, suggestions etc.

Surprisingly enough, most of the ideas and concepts that appear in connection with the grav-
itational energy-momentum and angular momentum can be introduced in (and hence can be un-
derstood from) the theory of matter fields in Minkowski spacetime. Thus, in Section 2.1, we review
the Belinfante–Rosenfeld procedure that we will apply to gravity in Section 3, introduce the no-
tion of quasi-local energy-momentum and angular momentum of the matter fields and discuss their
properties.The philosophy of quasi-locality in general relativity will be demonstrated in Minkowski
spacetime where the energy-momentum and angular momentum of the matter fields are treated
quasi-locally. Then we turn to the difficulties of gravitational energy-momentum and angular mo-
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10 László B. Szabados

mentum, and we clarify why the gravitational observables should necessarily be quasi-local. The
tools needed to construct and analyze the quasi-local quantities are reviewed in the fourth section.
This closes the first, the general part of the review.

The second part is devoted to the discussion of the specific constructions (Sections 5–12). Since
most of the suggestions are constructions, they cannot be given as a short mathematical defini-
tion. Moreover, there are important physical ideas behind them, without which the constructions
may appear ad hoc. Thus we always try to explain these physical pictures, the motivations and
interpretations. Although the present paper is intended to be a non-technical review, the explicit
mathematical definitions of the various specific constructions will always be given. Then the prop-
erties and the applications are usually summarized only in a nutshell. Sometimes we give a review
on technical aspects too, without which it would be difficult to understand even some of the con-
ceptual issues. The list of references connected with this second part is intended to be complete.
We apologize to all those whose results were accidentally left out.

The list of the (actual and potential) applications of the quasi-local quantities, discussed in
Section 13, is far from being complete, and might be a little bit subjective. Here we consider the
calculation of gravitational energy transfer, applications in black hole physics and a quasi-local
characterization of the pp-wave metrics. We close this paper with a discussion of the successes and
deficiencies of the general and (potentially) viable constructions. In contrast to the positivistic
style of Sections 5–12, Section 14 (as well as the choice for the matter of Sections 2, 3, and refsec-4)
reflects our own personal interest and view of the subject.

The theory of quasi-local observables in general relativity is far from being complete. The most
important open problem is still the trivial one: ‘Find quasi-local energy-momentum and angular
momentum expressions satisfying the points of the lists of Section 4.3’. Several specific open
questions in connection with the specific definitions are raised both in the corresponding sections
and in Section 14, which could be worked out even by graduate students. On the other hand, any
of their application to solve physical/geometrical problems (e.g. to some mentioned in Section 13)
would be a real success.

In the present paper we adopt the abstract index formalism. The signature of the spacetime
metric gab is −2, and the curvature and Ricci tensors and the curvature scalar of the covariant
derivative ∇a are defined by (∇c∇d − ∇d∇c)Xa := −Ra

bcdX
b, Rbd := Ra

bad and R := Rbdg
bd,

respectively. Hence Einstein’s equations take the form Gab + λgab := Rab − 1
2Rgab + λgab =

−8πGTab, where G is Newton’s gravitational constant and λ is the cosmological constant (and
the speed of light is c = 1). However, apart from special cases stated explicitly, the cosmological
constant will be assumed to be vanishing, and in Sections 13.3 and 13.4 we use the traditional cgs
system.
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2 Energy-Momentum and Angular Momentum of Matter

Fields

2.1 Energy-momentum and angular momentum density of matter fields

2.1.1 The symmetric energy-momentum tensor

It is a widely accepted view (appearing e.g. in excellent, standard textbooks on general relativity,
too) that the canonical energy-momentum and spin tensors are well-defined and have relevance
only in flat spacetime, and hence usually are underestimated and abandoned. However, it is only
the analog of these canonical quantities that can be associated with gravity itself. Thus first we
introduce these quantities for the matter fields in a general curved spacetime.

To specify the state of the matter fields operationally two kinds of devices are needed: The
first measures the value of the fields, while the other measures the spatio-temporal location of the
first. Correspondingly, the fields on the manifold M of events can be grouped into two sharply
distinguished classes: The first contains the matter field variables, e.g. finitely many (r, s)-type
tensor fields ΦN

a1...ar

b1...bs
, whilst the other contains the fields specifying the spacetime geometry, i.e.

the metric gab in Einstein’s theory. Suppose that the dynamics of the matter fields is governed by
Hamilton’s principle specified by a Lagrangian Lm = Lm(gab,ΦN ,∇eΦN , . . . ,∇e1

. . .∇ek
ΦN ): If

Im[gab,ΦN ] is the volume integral of Lm on some open domain D with compact closure then the

equations of motion areEN b...
a... := δIm/δΦN

a...
b... =

∑k
n=0(−)n∇en

. . . ∇e1
(∂Lm/∂(∇e1

. . .∇en
ΦN

a...
b... )) =

0, the Euler–Lagrange equations. The symmetric (or dynamical) energy-momentum tensor is de-
fined (and is given explicitly) by

Tab :=
2
√

|g|
δIm
δgab

= 2
∂Lm

∂gab
− Lmgab + 1

2∇e(σabe + σbae − σaeb − σbea − σeab − σeba) (1)

where we introduced the so-called canonical spin tensor

σea
b :=

k
∑

n=1

n
∑

i=1

(−)iδe
ei
∇ei−1

. . .∇e1

(

∂Lm

∂(∇e1
. . .∇en

ΦN
c...
d...)

)

∆ac...
bei+1...end...

fi+1...fng...
h... ∇fi+1

. . .∇fn
ΦN

h...
g... .

(2)

(The terminology will be justified in the next Section 2.2.) Here ∆
ca1...apf1...fq

db1...bqe1...ep
is the (p+ q+1, p+

q+1)-type invariant tensor, built from the Kronecker deltas, appearing naturally in the expression
of the Lie derivative of the (p, q)-type tensor fields in terms of the torsion free covariant derivatives:

 LKΦa...
b... = ∇KΦa...

b... −∇cK
d∆ca...f...

db...e... Φ
e...
f.... (For the general idea of deriving Tab and Equation (2),

see e.g. Section 3 of [175].)

2.1.2 The canonical Noether current

Suppose that the Lagrangian is weakly diffeomorphism invariant in the sense that for any vector
field Ka and the corresponding local 1-parameter family of diffeomorphisms φt one has

(φ∗tLm)(gab,ΦN ,∇eΦN , . . . ) − Lm

(

φ∗t g
ab, φ∗t ΦN , φ

∗
t∇eΦN , . . .

)

= ∇eB
e
t

for some 1-parameter family of vector fields Be
t = Be

t (gab,ΦN , . . . ). (Lm is called diffeomorphism
invariant if ∇eB

e
t = 0, e.g. when Lm is a scalar.) Let Ka be any smooth vector field on M . Then,

calculating the divergence ∇a(LmK
a) to determine the rate of change of the action functional Im

along the integral curves of Ka, by a tedious but straightforward computation one can derive the
so-called Noether identity: EN b...

a...  LKΦN
a...
b... + 1

2Tab  LKg
ab + ∇eC

e[K] = 0, where  LK denotes the
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Lie derivative along Ka, and Ca[K], the so-called Noether current, is given explicitly by

Ce[K] = Ḃe + θeaKa +
(

σe[ab] + σa[be] + σb[ae]
)

∇aKb. (3)

Here Ḃe is the derivative of Be
t with respect to t at t = 0, which may depend on Ka and its

derivatives, and θa
b, the so-called canonical energy-momentum tensor, is defined by

θa
b := −Lmδ

a
b −

k
∑

n=1

n
∑

i=1

(−)iδa
ei
∇ei−1

. . .∇e1

(

∂Lm

∂(∇e1
. . .∇en

ΦN
c...
d...)

)

∇b∇ei+1
. . .∇en

ΦN
c...
d.... (4)

Note that, apart from the term Ḃe, the current Ce[K] does not depend on higher than the first
derivative of Ka, and the canonical energy-momentum and spin tensors could be introduced as the
coefficients of Ka and its first derivative, respectively, in Ce[K]. (For the original introduction of
these concepts, see [56, 57, 323]. If the torsion Θc

ab is not vanishing, then in the Noether identity
there is a further term, 1

2S
ab

c  LKΘc
ab, where the so-called dynamical spin tensor Sab

c is defined

by
√

|g|Sab
c := 2δIm/δΘ

c
ab, and the Noether current has a slightly different structure [193, 194].)

Obviously, Ce[K] is not uniquely determined by the Noether identity, because that contains only its
divergence, and any identically conserved current may be added to it. In fact, Be

t may be chosen
to be an arbitrary non-zero (but divergence free) vector field even for diffeomorphism invariant
Lagrangians. Thus, to be more precise, if Ḃe = 0, then we call the specific combination (3) the
canonical Noether current. Other choices for the Noether current may contain higher derivatives
of Ka, too (see e.g. [228]), but there is a specific one containing Ka algebraically (see the Points 3
and 4 below). However, Ca[K] is sensitive to total divergences added to the Lagrangian, and, if the
matter fields have gauge freedom, then in general it is not gauge invariant even if the Lagrangian
is. On the other hand, T ab is gauge invariant and is independent of total divergences added to Lm

because it is the variational derivative of the gauge invariant action with respect to the metric.
Provided the field equations are satisfied, the Noether identity implies [56, 57, 323, 193, 194] that

1. ∇aT
ab = 0,

2. T ab = θab + ∇c(σc[ab] + σa[bc] + σb[ac]),

3. Ca[K] = T abKb + ∇c((σa[cb] − σc[ab] − σb[ac])Kb), where the second term on the right is an
identically conserved (i.e. divergence free) current, and

4. Ca[K] is conserved if Ka is a Killing vector.

Hence T abKb is also conserved and can equally be considered as a Noether current. (For a formally
different, but essentially equivalent introduction of the Noether current and identity, see [389, 215,
141].)

The interpretation of the conserved currents Ca[K] and T abKb depends on the nature of the
Killing vector Ka. In Minkowski spacetime the 10-dimensional Lie algebra K of the Killing vectors
is well known to split to the semidirect sum of a 4-dimensional commutative ideal, T, and the
quotient K/T, where the latter is isomorphic to so(1, 3). The ideal T is spanned by the constant
Killing vectors, in which a constant orthonormal frame field {Ea

a } on M , a = 0, . . . , 3, forms a

basis. (Thus the underlined Roman indices a , b , . . . are concrete, name indices.) By gabE
a
aE

b
b =

ηa b := diag(1,−1,−1,−1) the ideal T inherits a natural Lorentzian vector space structure. Having
chosen an origin o ∈ M , the quotient K/T can be identified as the Lie algebra Ro of the boost-
rotation Killing vectors that vanish at o. Thus K has a ‘4 + 6’ decomposition into translations and
boost-rotations, where the translations are canonically defined but the boost-rotations depend on
the choice of the origin o ∈M . In the coordinate system {xa } adapted to {Ea

a } (i.e. for which the
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1-form basis dual to {Ea
a } has the form ϑ

a
a = ∇ax

a ) the general form of the Killing vectors (or

rather 1-forms) is Ka = Ta ϑ
a
a + Ma b (xa ϑ

b
a − xb ϑ

a
a ) for some constants Ta and Ma b = −Mb a .

Then the corresponding canonical Noether current is Ce[K] = Ee
e (θe a Ta − (θe a xb − θe b xa −

2σe [a b ])Ma b ), and the coefficients of the translation and the boost-rotation parameters Ta and
Ma b are interpreted as the density of the energy-momentum and the sum of the orbital and
spin angular momenta, respectively. Since, however, the difference Ca[K] − T abKb is identically
conserved and T abKb has more advantageous properties, it is T abKb that is used to represent the
energy-momentum and angular momentum density of the matter fields.

Since in the de-Sitter and anti-de-Sitter spacetimes the (ten dimensional) Lie algebra of the
Killing vector fields, so(1, 4) and so(2, 3), respectively, are semisimple, there is no such natural
notion of translations, and hence no natural ‘4 + 6’ decomposition of the ten conserved currents
into energy-momentum and (relativistic) angular momentum density.

2.2 Quasi-local energy-momentum and angular momentum of the mat-
ter fields

In the next Section 3 we will see that well-defined (i.e. gauge invariant) energy-momentum and
angular momentum density cannot be associated with the gravitational ‘field’, and if we want to
talk not only about global gravitational energy-momentum and angular momentum, then these
quantities must be assigned to extended but finite spacetime domains.

In the light of modern quantum field theoretical investigations it has become clear that all
physical observables should be associated with extended but finite spacetime domains [169, 168].
Thus observables are always associated with open subsets of spacetime whose closure is compact,
i.e. they are quasi-local. Quantities associated with spacetime points or with the whole spacetime
are not observable in this sense. In particular, global quantities, such as the total energy or electric
charge, should be considered as the limit of quasi-locally defined quantities. Thus the idea of quasi-
locality is not new in physics. Although apparently in classical non-gravitational physics this is
not obligatory, we adopt this view in talking about energy-momentum and angular momentum
even of classical matter fields in Minkowski spacetime. Originally the introduction of these quasi-
local quantities was motivated by the analogous gravitational quasi-local quantities [354, 358].
Since, however, many of the basic concepts and ideas behind the various gravitational quasi-local
energy-momentum and angular momentum definitions can be understood from the analogous non-
gravitational quantities in Minkowski spacetime, we devote the present section to the discussion
of them and their properties.

2.2.1 The definition of the quasi-local quantities

To define the quasi-local conserved quantities in Minkowski spacetime, first observe that for any
Killing vector Ka ∈ K the 3-form ωabc := KeT

efεfabc is closed, and hence, by the triviality of
the third de Rham cohomology class, H3(R4) = 0, it is exact: For some 2-form ∪[K]ab we have
KeT

efεfabc = 3∇[a ∪[K]bc]. ∨cd := − 1
2 ∪ [K]abε

abcd may be called a ‘superpotential’ for the
conserved current 3-form ωabc. (However, note that while the superpotential for the gravitational
energy-momentum expressions of the next Section 3 is a local function of the general field variables,
the existence of this ‘superpotential’ is a consequence of the field equations and the Killing nature
of the vector field Ka. The existence of globally defined superpotentials that are local functions of
the field variables can be proven even without using the Poincaré lemma [388].) If ∪̃[K]ab is (the
dual of) another superpotential for the same current ωabc, then by ∇[a(∪[K]bc] − ∪̃[K]bc]) = 0 and
H2(R4) = 0 the dual superpotential is unique up to the addition of an exact 2-form. If therefore S
is any closed orientable spacelike 2-surface in the Minkowski spacetime then the integral of ∪[K]ab

on S is free from this ambiguity. Thus if Σ is any smooth compact spacelike hypersurface with
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smooth 2-boundary S, then

QS [K] := 1
2

∮

S
∪[K]ab =

∫

Σ

KeT
ef 1

3!εfabc (5)

depends only on S. Hence it is independent of the actual Cauchy surface Σ of the domain of
dependence D(Σ) because all the spacelike Cauchy surfaces for D(Σ) have the same common
boundary S. Thus QS [K] can equivalently be interpreted as being associated with the whole
domain of dependence D(Σ), and hence quasi-local in the sense of [169, 168] above. It defines the

linear maps PS : T → R and JS : Ro → R by QS [K] =: TaP
a
S +Ma b J

a b
S , i.e. they are elements of

the corresponding dual spaces. Under Lorentz rotations of the Cartesian coordinates, P
a
S and J

a b
S

transform as a Lorentz vector and anti-symmetric tensor, respectively, whilst under the translation

xa 7→ xa +ηa of the origin, P
a
S is unchanged while J

a b
S 7→ J

a b
S +2η[aP

b ]
S . Thus P

a
S and J

a b
S may

be interpreted as the quasi-local energy-momentum and angular momentum of the matter fields
associated with the spacelike 2-surface S, or, equivalently, to D(Σ). Then the quasi-local mass

and Pauli–Lubanski spin are defined, respectively, by the usual formulae m2
S := ηa bP

a
S P

b
S and

S
a
S := 1

2ε
a

b c dP
b
S J

c d
S . (If m2 6= 0, then the dimensionally correct definition of the Pauli–Lubanski

spin is 1
mS

a
S .) As a consequence of the definitions ηa bP

a
S S

b
S = 0 holds, i.e. if P

a
S is timelike then

S
a
S is spacelike or zero, but if P

a
S is null (i.e. m2

S = 0) then S
a
S is spacelike or proportional to P

a
S .

Obviously, we can form the flux integral of the current T abξb on the hypersurface even if ξa is
not a Killing vector, even in general curved spacetime:

EΣ [ξa] :=

∫

Σ

ξeT
ef 1

3!εfabc. (6)

Then, however, the integral EΣ[ξa] does depend on the hypersurface, because this is not connected
with the spacetime symmetries. In particular, the vector field ξa can be chosen to be the unit
timelike normal ta of Σ. Since the component µ := Tabt

atb of the energy-momentum tensor is
interpreted as the energy-density of the matter fields seen by the local observer ta, it would be
legitimate to interpret the corresponding integral EΣ[ta] as ‘the quasi-local energy of the matter
fields seen by the fleet of observers being at rest with respect to Σ’. Thus EΣ[ta] defines a different
concept of the quasi-local energy: While that based on QS [K] is linked to some absolute element,
namely to the translational Killing symmetries of the spacetime and the constant timelike vector
fields can be interpreted as the observers ‘measuring’ this energy, EΣ[ta] is completely independent
of any absolute element of the spacetime and is based exclusively on the arbitrarily chosen fleet of
observers. Thus, while P

a
S is independent of the actual normal ta of S, EΣ[ξa] (for non-Killing ξa)

depends on ta intrinsically and is a genuine 3-hypersurface rather than a 2-surface integral.
If P a

b := δa
b − tatb, the orthogonal projection to Σ, then the part ja := P a

b T
bctc of the energy-

momentum tensor is interpreted as the momentum density seen by the observer ta. Hence

(taT
ab)(tcT

cd)gbd = µ2 + habj
ajb = µ2 − |ja|2

is the square of the mass density of the matter fields, where hab is the spatial metric in the plane
orthogonal to ta. If T ab satisfies the dominant energy condition (i.e. T abVb is a future directed
non-spacelike vector for any future directed non-spacelike vector V a, see for example [175]), then
this is non-negative, and hence

MΣ :=

∫

Σ

√

µ2 − |je|2 1
3! t

fεfabc (7)

can also be interpreted as the quasi-local mass of the matter fields seen by the fleet of observers
being at rest with respect to Σ, even in general curved spacetime. However, although in Minkowski
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spacetime EΣ[K] for the four translational Killing vectors gives the four components of the energy-
momentum P

a
S , the mass MΣ is different from mS . In fact, while mS is defined as the Lorentzian

norm of P
a
S with respect to the metric on the space of the translations, in the definition of MΣ

first the norm of the current T abtb is taken with respect to the pointwise physical metric of the
spacetime, and then its integral is taken. Nevertheless, because of the more advantageous properties
(see Section 2.2.3 below), we prefer to represent the quasi-local energy(-momentum and angular
momentum) of the matter fields in the form QS [K] instead of EΣ[ξa].

Thus even if there is a gauge invariant and unambiguously defined energy-momentum density of
the matter fields, it is not a priori clear how the various quasi-local quantities should be introduced.
We will see in the second part of the present review that there are specific suggestions for the
gravitational quasi-local energy that are analogous to P 0

S , others to EΣ[ta] and some to MΣ.

2.2.2 Hamiltonian introduction of the quasi-local quantities

In the standard Hamiltonian formulation of the dynamics of the classical matter fields on a given
(not necessarily flat) spacetime (see for example [212, 396] and references therein) the configuration
and momentum variables, φA and πA, respectively, are fields on a connected 3-manifold Σ, which is
interpreted as the typical leaf of a foliation Σt of the spacetime. The foliation can be characterized
on Σ by a function N , called the lapse. The evolution of the states in the spacetime is described
with respect to a vector field Ka = Nta +Na (‘evolution vector field’ or ‘general time axis’), where
ta is the future directed unit normal to the leaves of the foliation and Na is some vector field, called
the shift, being tangent to the leaves. If the matter fields have gauge freedom, then the dynamics
of the system is constrained: Physical states can be only those that are on the constraint surface,
specified by the vanishing of certain functions Ci = Ci(φ

A, Deφ
A, . . . , πA, DeπA, . . . ), i = 1, . . . , n,

of the canonical variables and their derivatives up to some finite order, where De is the covariant
derivative operator in Σ. Then the time evolution of the states in the phase space is governed by
the Hamiltonian, which has the form

H [K] =

∫

Σ

(

µN + jaN
a + CiN

i +DaZ
a
)

dΣ. (8)

Here dΣ is the induced volume element, the coefficients µ and ja are local functions of the canonical
variables and their derivatives up to some finite order, the N i’s are functions on Σ, and Za is a
local function of the canonical variables, the lapse, the shift, the functions N i, and their derivatives
up to some finite order. The part CiN

i of the Hamiltonian generates gauge motions in the phase
space, and the functions N i are interpreted as the freely specifiable ‘gauge generators’.

However, if we want to recover the field equations for φA (which are partial differential equa-
tions on the spacetime with smooth coefficients for the smooth field φA) on the phase space as
the Hamilton equations and not some of their distributional generalizations, then the functional
differentiability of H[K] must be required in the strong sense of [387]1. Nevertheless, the func-
tional differentiability (and, in the asymptotically flat case, also the existence) of H[K] requires
some boundary conditions on the field variables, and may yield restrictions on the form of Za. It
may happen that for a given Za only too restrictive boundary conditions would be able to ensure
the functional differentiability of the Hamiltonian, and hence the ‘quasi-local phase space’ defined
with these boundary conditions would contain only very few (or no) solutions of the field equa-
tions. In this case Za should be modified. In fact, the boundary conditions are connected to the
nature of the physical situations considered. For example, in electrodynamics different boundary
conditions must be imposed if the boundary is to represent a conducting or an insulating surface.

1Sometimes in the literature this requirement is introduced as some new principle in the Hamiltonian formulation
of the fields, but its real content is not more than to ensure that the Hamilton equations coincide with the field
equations.
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Unfortunately, no universal principle or ‘canonical’ way of finding the ‘correct’ boundary term and
the boundary conditions is known.

In the asymptotically flat case the value of the Hamiltonian on the constraint surface defines
the total energy-momentum and angular momentum, depending on the nature of Ka, in which
the total divergence DaZ

a corresponds to the ambiguity of the superpotential 2-form ∪[K]ab: An
identically conserved quantity can always be added to the Hamiltonian (provided its functional
differentiability is preserved). The energy density and the momentum density of the matter fields
can be recovered as the functional derivative of H[K] with respect to the lapse N and the shift Na,
respectively. In principle, the whole analysis can be repeated quasi-locally too. However, apart
from the promising achievements of [7, 8, 327] for the Klein–Gordon, Maxwell, and the Yang–
Mills–Higgs fields, as far as we know, such a systematic quasi-local Hamiltonian analysis of the
matter fields is still lacking.

2.2.3 Properties of the quasi-local quantities

Suppose that the matter fields satisfy the dominant energy condition. Then EΣ[ξa] is also non-
negative for any non-spacelike ξa, and, obviously, EΣ[ta] is zero precisely when T ab = 0 on Σ,
and hence, by the conservation laws (see for example Page 94 of [175]), on the whole domain
of dependence D(Σ). Obviously, MΣ = 0 if and only if La := T abtb is null on Σ. Then by
the dominant energy condition it is a future pointing vector field on Σ, and LaT

ab = 0 holds.
Therefore, T ab on Σ has a null eigenvector with zero eigenvalue, i.e. its algebraic type on Σ is pure
radiation.

The properties of the quasi-local quantities based on QS [K] in Minkowski spacetime are, how-
ever, more interesting. Namely, assuming that the dominant energy condition is satisfied, one can
prove [354, 358] that

1. P
a
S is a future directed nonspacelike vector, m2

S ≥ 0;

2. P
a
S = 0 if and only if Tab = 0 on D(Σ);

3. m2
S = 0 if and only if the algebraic type of the matter onD(Σ) is pure radiation, i.e. TabL

b = 0
holds for some constant null vector La. Then Tab = τLaLb for some non-negative function
τ , whenever P

a
S = eLa , where La := Laϑ

a
a and e :=

∫

Σ
τLa 1

3!εabcd;

4. For m2
S = 0 the angular momentum has the form J

a b
S = eaLb − ebLa , where ea :=

∫

Σ
xa τLa 1

3!εabcd. Thus, in particular, the Pauli–Lubanski spin is zero.

Therefore, the vanishing of the quasi-local energy-momentum characterizes the ‘vacuum state’ of
the classical matter fields completely, and the vanishing of the quasi-local mass is equivalent to
special configurations representing pure radiation.

Since EΣ[ta] and MΣ are integrals of functions on a hypersurface, they are obviously additive,
i.e. for example for any two hypersurfaces Σ1 and Σ2 (having common points at most on their
boundaries S1 and S2) one has EΣ1∪Σ2

[ta] = EΣ1
[ta] +EΣ2

[ta]. On the other hand, the additivity
of P

a
S is a slightly more delicate problem. Namely, P

a
S1

and P
a
S2

are elements of the dual space of
the translations, and hence we can add them and, as in the previous case, we obtain additivity.
However, this additivity comes from the absolute parallelism of the Minkowski spacetime: The
quasi-local energy-momenta of the different 2-surfaces belong to one and the same vector space.
If there were no natural connection between the Killing vectors on different 2-surfaces, then the
energy-momenta would belong to different vector spaces, and they could not be added. We will
see that the quasi-local quantities discussed in Sections 7, 8, and 9 belong to vector spaces dual
to their own ‘quasi-Killing vectors’, and there is no natural way of adding the energy-momenta of
different surfaces.
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2.2.4 Global energy-momenta and angular momenta

If Σ extends either to spatial or future null infinity, then, as is well known, the existence of the limit
of the quasi-local energy-momentum can be ensured by slightly faster than O(r−3) (for example by
O(r−4)) fall-off of the energy-momentum tensor, where r is any spatial radial distance. However,
the finiteness of the angular momentum and centre-of-mass is not ensured by the O(r−4) fall-off.
Since the typical fall-off of Tab – for example for the electromagnetic field – is O(r−4), we may
not impose faster than this, because otherwise we would exclude the electromagnetic field from
our investigations. Thus, in addition to the O(r−4) fall-off, six global integral conditions for the
leading terms of Tab must be imposed. At the spatial infinity these integral conditions can be
ensured by explicit parity conditions, and one can show that the ‘conservation equations’ T ab

;b = 0
(as evolution equations for the energy density and momentum density) preserve these fall-off and
parity conditions [364].

Although quasi-locally the vanishing of the mass does not imply the vanishing of the matter
fields themselves (the matter fields must be pure radiative field configurations with plane wave
fronts), the vanishing of the total mass alone does imply the vanishing of the fields. In fact, by
the vanishing of the mass the fields must be plane waves, furthermore by Tab = O(r−4) they
must be asymptotically vanishing at the same time. However, a plane wave configuration can be
asymptotically vanishing only if it is vanishing.

2.2.5 Quasi-local radiative modes and a classical version of the holography for matter
fields

By the results of the previous Section 2.2.4 the vanishing of the quasi-local mass, associated with
a closed spacelike 2-surface S, implies that the matter must be pure radiation on a 4-dimensional
globally hyperbolic domain D(Σ). Thus mS = 0 characterizes ‘simple’, ‘elementary’ states of the
matter fields. In the present section we review how these states on D(Σ) can be characterized
completely by data on the 2-surface S, and how these states can be used to formulate a classical
version of the holographic principle.

For the (real or complex) linear massless scalar field φ and the Yang–Mills fields, represented by
the symmetric spinor fields φα

AB , α = 1, . . . , N , where N is the dimension of the gauge group, the
vanishing of the quasi-local mass is equivalent [365] to plane waves and the pp-wave solutions of
Coleman [118], respectively. Then the condition TabL

b = 0 implies that these fields are completely
determined on the whole D(Σ) by their value on S (whenever the spinor fields φα

AB are necessarily
null: φα

AB = φαOAOB , where φα are complex functions and OA is a constant spinor field such
that La = OAŌA′). Similarly, the null linear zero-rest-mass fields φAB...E = φOAOB . . . OE on
D(Σ) with any spin and constant spinor OA are completely determined by their value on S.
Technically, these results are based on the unique complex analytic structure of the u = const.
2-surfaces foliating Σ, where La = ∇au, and by the field equations the complex functions φ and φα

turn out to be anti-holomorphic [358]. Assuming, for the sake of simplicity, that S is future and
past convex in the sense of Section 4.1.3 below, the independent boundary data for such a pure
radiative solution consist of a constant spinor field on S and a real function with one and another
with two variables. Therefore, the pure radiative modes on D(Σ) can be characterized completely
by appropriate data (the so-called holographic data) on the ‘screen’ S.

These ‘quasi-local radiative modes’ can be used to map any continuous spinor field on D(Σ)
to a collection of holographic data. Indeed, the special radiative solutions of the form φOA (with
fixed constant spinor field OA) together with their complex conjugate define a dense subspace in
the space of all continuous spinor fields on Σ. Thus every such spinor field can be expanded by
the special radiative solutions, and hence can also be represented by the corresponding family of
holographic data. Therefore, if we fix a foliation of D(Σ) by spacelike Cauchy surfaces Σt, then
every spinor field on D(Σ) can also be represented on S by a time dependent family of holographic
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data, too [365]. This fact may be a specific manifestation in the classical non-gravitational physics
of the holographic principle (see Section 13.4.2).
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3 On the Energy-Momentum and Angular Momentum of

Gravitating Systems

3.1 On the gravitational energy-momentum and angular momentum
density: The difficulties

3.1.1 The root of the difficulties

The action Im for the matter fields was a functional of both kinds of fields, thus one could take the
variational derivatives both with respect to ΦN

a...
b... and gab. The former gave the field equations,

while the latter defined the symmetric energy-momentum tensor. Moreover, gab provided a metri-
cal geometric background, in particular a covariant derivative, for carrying out the analysis of the
matter fields. The gravitational action Ig is, on the other hand, a functional of the metric alone,
and its variational derivative with respect to gab yields the gravitational field equations. The lack
of any further geometric background for describing the dynamics of gab can be traced back to the
principle of equivalence [22], and introduces a huge gauge freedom in the dynamics of gab because
that should be formulated on a bare manifold: The physical spacetime is not simply a manifold M
endowed with a Lorentzian metric gab, but the isomorphism class of such pairs, where (M, gab) and
(M,φ∗gab) are considered to be equivalent for any diffeomorphism φ of M onto itself2. Thus we do
not have, even in principle, any gravitational analog of the symmetric energy-momentum tensor of
the matter fields. In fact, by its very definition, Tab is the source-current for gravity, like the current
Ja
A := δIp/δA

A
a in Yang–Mills theories (defined by the variational derivative of the action functional

of the particles, e.g. of the fermions, interacting with a Yang–Mills field AA
a ), rather than energy-

momentum. The latter is represented by the Noether currents associated with special spacetime
displacements. Thus, in spite of the intimate relation between Tab and the Noether currents, the
proper interpretation of Tab is only the source density for gravity, and hence it is not the symmetric
energy-momentum tensor whose gravitational counterpart must be searched for. In particular, the
Bel–Robinson tensor Tabcd := ψABCDψ̄A′B′C′D′ , given in terms of the Weyl spinor, (and its gener-
alizations introduced by Senovilla [333, 332]), being a quadratic expression of the curvature (and
its derivatives), is (are) expected to represent only ‘higher order’ gravitational energy-momentum.
(Note that according to the original tensorial definition the Bel–Robinson tensor is one-fourth the
expression above. Our convention follows that of Penrose and Rindler [312].) In fact, the physical
dimension of the Bel–Robinson ‘energy-density’ Tabcdt

atbtctd is cm−4, and hence (in the traditional
units) there are no powers A and B such that cAGB Tabcdt

atbtctd would have energy-density di-
mension. Here c is the speed of light and G is Newton’s gravitational constant. As we will see,
the Bel–Robinson ‘energy-momentum density’ Tabcdt

btctd appears naturally in connection with the
quasi-local energy-momentum and spin-angular momentum expressions for small spheres only in
higher order terms. Therefore, if we want to associate energy-momentum and angular momentum
with the gravity itself in a Lagrangian framework, then it is the gravitational counterpart of the
canonical energy-momentum and spin tensors and the canonical Noether current built from them
that should be introduced. Hence it seems natural to apply the Lagrange–Belinfante–Rosenfeld
procedure, sketched in the previous section, to gravity too [56, 57, 323, 193, 194, 352].

2Since we do not have a third kind of device to specify the spatio-temporal location of the devices measuring
the spacetime geometry, we do not have any further operationally defined, maybe non-dynamical background, just
in accordance with the principle of equivalence. If there were some non-dynamical background metric g0

ab
on M ,

then by requiring g0

ab
= φ∗g0

ab
we could reduce the almost arbitrary diffeomorphism φ (essentially four arbitrary

functions of four variables) to a transformation depending on at most ten parameters.
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3.1.2 Pseudotensors

The lack of any background geometric structure in the gravitational action yields, first, that any
vector field Ka generates a symmetry of the matter plus gravity system. Its second consequence
is the need for an auxiliary derivative operator, e.g. the Levi-Civita covariant derivative coming
from an auxiliary, non-dynamical background metric (see for example [231, 316]), or a background
(usually torsion free, but not necessarily flat) connection (see for example [215]), or the partial
derivative coming from a local coordinate system (see for example [382]). Though the natural
expectation would be that the final results be independent of these background structures, as is
well known, the results do depend on them.

In particular [352], for Hilbert’s second order Lagrangian LH := R/16πG in a fixed local coor-
dinate system {xα} and derivative operator ∂µ instead of ∇e, Equation (4) gives precisely Møller’s
energy-momentum pseudotensor Mθ

α
β , which was defined originally through the superpotential

equation
√

|g|(8πGMθ
α

β − Gα
β) = ∂µM ∪β

αµ, where M ∪β
αµ :=

√

|g|gαρgµω(∂[ωgρ]β) is the
so-called Møller superpotential [270]. (For another simple and natural introduction of Møller’s
energy-momentum pseudotensor see [104].) For the spin pseudotensor Equation (2) gives

8πG
√

|g|Mσµα
β = −M ∪β

αµ + ∂ν

(

√

|g|δ[µβ gν]α
)

,

which is in fact only pseudotensorial. Similarly, the contravariant form of these pseudotensors and
the corresponding canonical Noether current are also pseudotensorial. We saw in Section 2.1.2
that a specific combination of the canonical energy-momentum and spin tensors gave the sym-
metric energy-momentum tensor, which is gauge invariant even if the matter fields have gauge
freedom, and one might hope that the analogous combination of the energy-momentum and spin
pseudotensors gives a reasonable tensorial energy-momentum density for the gravitational field.
The analogous expression is, in fact, tensorial, but unfortunately it is just minus the Einstein ten-
sor [352, 353]3. Therefore, to use the pseudotensors a ‘natural’ choice for a ‘preferred’ coordinate
system would be needed. This could be interpreted as a gauge choice, or reference configuration.

A further difficulty is that the different pseudotensors may have different (potential) signifi-

cance. For example, for any fixed k ∈ R Goldberg’s 2k-th symmetric pseudotensor tαβ
(2k) is defined

by 2 |g|k+1
(8πGtαβ

(2k) − Gαβ) := ∂µ∂ν [|g|k+1
(gαβgµν − gανgβµ)] (which, for k = 0, reduces to

the Landau–Lifshitz pseudotensor, the only symmetric pseudotensor which is a quadratic expres-
sion of the first derivatives of the metric) [162]. However, by Einstein’s equations this definition

implies that ∂α[|g|k+1
(tαβ

(2k) + Tαβ)] = 0. Hence what is (coordinate-)divergence-free (i.e. ‘pseudo-

conserved’) cannot be interpreted as the sum of the gravitational and matter energy-momentum

densities. Indeed, the latter is |g|1/2
Tαβ , while the second term in the divergence equation has an

extra weight |g|k+1/2
. Thus there is only one pseudotensor in this series, tαβ

(−1), which satisfies the

‘conservation law’ with the correct weight. In particular, the Landau–Lifshitz pseudotensor tαβ
(0)

also has this defect. On the other hand, the pseudotensors coming from some action (the ‘canonical
pseudotensors’) appear to be free of this kind of difficulties (see also [352, 353]). Classical excellent
reviews on these (and several other) pseudotensors are [382, 59, 9, 163], and for some recent ones
(using background geometric structures) see for example [137, 138, 79, 154, 155, 228, 316]. We
return to the discussion of pseudotensors in Sections 3.3.1 and 11.3.4.

3Since Einstein’s Lagrangian is only weakly diffeomorphism invariant, the situation would even be worse if we
used Einstein’s Lagrangian. The corresponding canonical quantities would still be coordinate dependent, though in
certain ‘natural’ coordinate system they yield reasonable results (see for example [2] and references therein).
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3.1.3 Strategies to avoid pseudotensors I: Background metrics/connections

One way of avoiding the use of the pseudotensorial quantities is to introduce an explicit background
connection [215] or background metric [322, 229, 233, 231, 230, 315, 135]. (The superpotential of
Katz, Bičák, and Lyndel-Bell [230] has been rediscovered recently by Chen and Nester [108] in a
completely different way. We return to the discussion of the latter in Section 11.3.2.) The advantage
of this approach would be that we could use the background not only to derive the canonical energy-
momentum and spin tensors, but to define the vector fields Ka as the symmetry generators of the
background. Then the resulting Noether currents are without doubt tensorial. However, they
depend explicitly on the choice of the background connection or metric not only through Ka: The
canonical energy-momentum and spin tensors themselves are explicitly background-dependent.
Thus, again, the resulting expressions would have to be supplemented by a ‘natural’ choice for the
background, and the main question is how to find such a ‘natural’ reference configuration from the
infinitely many possibilities.

3.1.4 Strategies to avoid pseudotensors II: The tetrad formalism

In the tetrad formulation of general relativity the gab-orthonormal frame fields {Ea
a }, a = 0, . . . , 3,

are chosen to be the gravitational field variables [386, 236]. Re-expressing the Hilbert Lagrangian
(i.e. the curvature scalar) in terms of the tetrad field and its partial derivatives in some local
coordinate system, one can calculate the canonical energy-momentum and spin by Equations (4)
and (2), respectively. Not surprisingly at all, we recover the pseudotensorial quantities that we
obtained in the metric formulation above. However, as realized by Møller [271], the use of the
tetrad fields as the field variables instead of the metric makes it possible to introduce a first order,
scalar Lagrangian for Einstein’s field equations: If γ

a
e b := Ee

e γ
a
eb := Ee

e ϑ
a
a ∇eE

a
b , the Ricci rotation

coefficients, then Møller’s tetrad Lagrangian is

L :=
1

16πG

[

R− 2∇a

(

Ea
a η

a b γ
c
c b

)]

=
1

16πG

(

Ea
aE

b
b − Eb

aE
a
b

)

γa
ac γ

c b
b . (9)

(Here {ϑa
a } is the 1-form basis dual to {Ea

a }.) Although L depends on the actual tetrad field {Ea
a },

it is weakly O(1, 3)-invariant. Møller’s Lagrangian has a nice uniqueness property [299]: Any first
order scalar Lagrangian built from the tetrad fields, whose Euler–Lagrange equations are the
Einstein equations, is Møller’s Lagrangian. Using Dirac spinor variables Nester and Tung found a
first order spinor Lagrangian [288], which turned out to be equivalent to Møller’s Lagrangian [383].
Another first order spinor Lagrangian, based on the use of the two-component spinors and the
anti-self-dual connection, was suggested by Tung and Jacobson [384]. Both Lagrangians yield a
well-defined Hamiltonian, reproducing the standard ADM energy-momentum in asymptotically flat
spacetimes. The canonical energy-momentum θα

β derived from Equation (9) using the components
of the tetrad fields in some coordinate system as the field variables is still pseudotensorial, but, as
Møller realized, it has a tensorial superpotential:

∨b
ae := 2

(

−γa
b c η

c e + γ
d
d c η

c s
(

δ
a
b δ

e
s − δa

s δ
e
b

))

ϑ
b
bE

a
aE

e
e = ∨b

[ae]. (10)

The canonical spin turns out to be essentially ∨b
ae, i.e. a tensor. The tensorial nature of the super-

potential makes it possible to introduce a canonical energy-momentum tensor for the gravitational
‘field’. Then the corresponding canonical Noether current Ca[K] will also be tensorial and satisfies

8πGCa[K] = GabKb + 1
2∇c

(

Kb∨b
ac
)

. (11)

Therefore, the canonical Noether current derived from Møller’s tetrad Lagrangian is independent
of the background structure (i.e. the coordinate system) that we used to do the calculations (see
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also [352]). However, Ca[K] depends on the actual tetrad field, and hence a preferred class of frame
fields, i.e. an O(1, 3)-gauge reduction, is needed. Thus the explicit background-dependence of the
final result of other approaches has been transformed into an internal O(1, 3)-gauge dependence.
It is important to realize that this difficulty always appears in connection with the gravitational
energy-momentum and angular momentum, at least in disguise. In particular, the Hamiltonian
approach in itself does not yield well-defined energy-momentum density for the gravitational ‘field’
(see for example [282, 263]). Thus in the tetrad approach the canonical Noether current should
be supplemented by a gauge condition for the tetrad field. Such a gauge condition could be some
spacetime version of Nester’s gauge conditions (in the form of certain partial differential equations)
for the orthonormal frames of Riemannian manifolds [281, 284]. Furthermore, since Ca[K]+T abKb

is conserved for any vector field Ka, in the absence of the familiar Killing symmetries of the
Minkowski spacetime it is not trivial to define the ‘translations’ and ‘rotations’, and hence the
energy-momentum and angular momentum. To make them well-defined additional ideas would be
needed.

3.1.5 Strategies to avoid pseudotensors III: Higher derivative currents

Giving up the paradigm that the Noether current should depend only on the vector field Ka

and its first derivative – i.e. if we allow a term Ḃa to be present in the Noether current (3)
even if the Lagrangian is diffeomorphism invariant – one naturally arrives at Komar’s tensorial
superpotential K∨ [K]ab := ∇[aKb] and the corresponding Noether current [242] (see also [59]).
Although its independence of any background structure (viz. its tensorial nature) and uniqueness
property (see Komar [242] quoting Sachs) is especially attractive, the vector field Ka is still to be
determined.

3.2 On the global energy-momentum and angular momentum of gravi-
tating systems: The successes

As is well known, in spite of the difficulties with the notion of the gravitational energy-momentum
density discussed above, reasonable total energy-momentum and angular momentum can be as-
sociated with the whole spacetime provided it is asymptotically flat. In the present section we
recall the various forms of them. As we will see, most of the quasi-local constructions are simply
‘quasi-localizations’ of the total quantities. Obviously, the technique used in the ‘quasi-localization’
does depend on the actual form of the total quantities, yielding mathematically inequivalent def-
initions for the quasi-local quantities. We return to the discussion of the tools needed in the
quasi-localization procedures in Sections 4.2 and 4.3. Classical, excellent reviews of global energy-
momentum and angular momentum are [151, 163, 15, 289, 394, 313], and a recent review of con-
formal infinity (with special emphasis on its applicability in numerical relativity) is [144]. Reviews
of the positive energy proofs from the first third of the eighties are [202, 314].

3.2.1 Spatial infinity: Energy-momentum

There are several mathematically inequivalent definitions of asymptotic flatness at spatial infin-
ity [151, 344, 23, 48, 148]. The traditional definition is based on the existence of a certain asymp-
totically flat spacelike hypersurface. Here we adopt this definition, which is probably the weakest
one in the sense that the spacetimes that are asymptotically flat in the sense of any reasonable
definition are asymptotically flat in the traditional sense too. A spacelike hypersurface Σ will be
called k-asymptotically flat if for some compact set K ⊂ Σ the complement Σ−K is diffeomorphic
to R

3 minus a solid ball, and there exists a (negative definite) metric 0hab on Σ, which is flat on
Σ − K, such that the components of the difference of the physical and the background metrics,
hij − 0hij, and of the extrinsic curvature χij in the 0hij-Cartesian coordinate system {xk} fall off
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as r−k and r−k−1, respectively, for some k > 0 and r2 := δijx
ixj [319, 47]. These conditions make

it possible to introduce the notion of asymptotic spacetime Killing vectors, and to speak about
asymptotic translations and asymptotic boost rotations. Σ − K together with the metric and
extrinsic curvature is called the asymptotic end of Σ. In a more general definition of asymptotic
flatness Σ is allowed to have finitely many such ends.

As is well known, finite and well-defined ADM energy-momentum [11, 13, 12, 14] can be asso-
ciated with any k-asymptotically flat spacelike hypersurface if k > 1

2 by taking the value on the
constraint surface of the Hamiltonian H[Ka], given for example in [319, 47], with the asymptotic
translations Ka (see [112, 37, 291, 113]). In its standard form this is the r → ∞ limit of a 2-surface
integral of the first derivatives of the induced 3-metric hab and of the extrinsic curvature χab for
spheres of large coordinate radius r. The ADM energy-momentum is an element of the space dual
to the space of the asymptotic translations, and transforms as a Lorentzian 4-vector with respect
to asymptotic Lorentz transformations of the asymptotic Cartesian coordinates.

The traditional ADM approach to the introduction of the conserved quantities and the Hamil-
tonian analysis of general relativity is based on the 3 + 1 decomposition of the fields and the
spacetime. Thus it is not a priori clear that the energy and spatial momentum form a Lorentz
vector (and the spatial angular momentum and centre-of-mass, discussed below, form an anti-
symmetric tensor). One had to check a posteriori that the conserved quantities obtained in the
3 + 1 form are, in fact, Lorentz-covariant. To obtain manifestly Lorentz-covariant quantities one
should not do the 3 + 1 decomposition. Such a manifestly Lorentz-covariant Hamiltonian analysis
was suggested first by Nester [280], and he was able to recover the ADM energy-momentum in a
natural way (see also Section 11.3 below).

Another form of the ADM energy-momentum is based on Møller’s tetrad superpotential [163]:
Taking the flux integral of the current Ca[K] + T abKb on the spacelike hypersurface Σ, by Equa-
tion (11) the flux can be rewritten as the r → ∞ limit of the 2-surface integral of Møller’s super-
potential on spheres of large r with the asymptotic translations Ka. Choosing the tetrad field Ea

a

to be adapted to the spacelike hypersurface and assuming that the frame Ea
a tends to a constant

Cartesian one as r−k, the integral reproduces the ADM energy-momentum. The same expression
can be obtained by following the familiar Hamiltonian analysis using the tetrad variables too: By
the standard scenario one can construct the basic Hamiltonian [282]. This Hamiltonian, evaluated
on the constraints, turns out to be precisely the flux integral of Ca[K] + T abKb on Σ.

A particularly interesting and useful expression for the ADM energy-momentum is possible
if the tetrad field is considered to be a frame field built from a normalized spinor dyad {λA

A },
A = 0, 1, on Σ which is asymptotically constant (see Section 4.2.3 below). (Thus underlined
capital Roman indices are concrete name spinor indices.) Then, for the components of the ADM
energy-momentum in the constant spinor basis at infinity, Møller’s expression yields the limit of

PA B ′

=
1

4πG

∮

S

i

2

(

λ̄
B ′

A′ ∇BB′λ
A
A − λ̄

B ′

B′ ∇AA′λ
A
B

)

(12)

as the 2-surface S is blown up to approach infinity. In fact, to recover the ADM energy-momentum
in the form (12), the spinor fields λ

A
A need not be required to form a normalized spinor dyad, it

is enough that they form an asymptotically constant normalized dyad, and we have to use the
fact that the generator vector field Ka has asymptotically constant components KA A ′

in the
asymptotically constant frame field λA

A λ̄
A′

A ′ . Thus Ka = KA A ′

λA
A λ̄

A′

A ′ can be interpreted as an

asymptotic translation. The complex-valued 2-form in the integrand of Equation (12) will be
denoted by u(λA , λ̄B ′

)ab, and is called the Nester–Witten 2-form. This is ‘essentially Hermitian’
and connected with Komar’s superpotential: For any two spinor fields αA and βA one has

u
(

α, β̄
)

ab
− u (β, ᾱ)ab = −i∇[aXb], (13)

u
(

α, β̄
)

ab
+ u (β, ᾱ)ab = 1

2∇cXdε
cd

ab + i
(

εA′B′α(A∇B)C′ β̄C′ − εABβ̄(A′∇B′)Cα
C
)

, (14)
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whereXa := αAβ̄A′ and overline denotes complex conjugation. Thus, apart from the terms in Equa-
tion (14) involving ∇A′Aα

A and ∇AA′ β̄A′

, the Nester–Witten 2-form u(α, β̄)ab is just − i
2 (∇[aXb] +

i∇[cXd]
1
2ε

cd
ab), i.e. the anti-self-dual part of the curl of − i

2Xa. (The original expressions by Wit-
ten and Nester were given using Dirac rather than two-component Weyl spinors [397, 279]. The
2-form u(α, β̄)ab in the present form using the two-component spinors appeared first probably
in [205].) Although many interesting and original proofs of the positivity of the ADM energy are
known even in the presence of black holes [328, 329, 397, 279, 202, 314, 224], the simplest and most
transparent ones are probably those based on the use of 2-component spinors: If the dominant
energy condition is satisfied on the k-asymptotically flat spacelike hypersurface Σ, where k > 1

2 ,
then the ADM energy-momentum is future pointing and non-spacelike (i.e. the Lorentzian length
of the energy-momentum vector, the ADM mass, is non-negative), and it is null if and only if the
domain of dependence D(Σ) of Σ is flat [205, 320, 159, 321, 70]. Its proof may be based on the
Sparling equation [345, 130, 313, 266]: ∇[au(λ, µ̄)bc] = − 1

2λEµ̄E′Gef 1
3!εfabc + Γ(λ, µ̄)abc. The sig-

nificance of this equation is that in the exterior derivative of the Nester–Witten 2-form the second
derivatives of the metric appear only through the Einstein tensor, thus its structure is similar to
that of the superpotential equations in the Lagrangian field theory, and Γ(λ, µ̄)abc, known as the
Sparling 3-form, is a quadratic expression of the first derivatives of the spinor fields. If the spinor
fields λA and µA solve the Witten equation on a spacelike hypersurface Σ, then the pull-back of
Γ(λ, µ̄)abc to Σ is positive definite. This theorem has been extended and refined in various ways,
in particular by allowing inner boundaries of Σ that represent future marginally trapped surfaces
in black holes [159, 202, 314, 200].

The ADM energy-momentum can also be written as the 2-sphere integral of certain parts of the
conformally rescaled spacetime curvature [15, 16, 28]. This expression is a special case of the more
general ‘Riemann tensor conserved quantities’ (see [163]): If S is any closed spacelike 2-surface
with area element dS, then for any tensor fields ωab = ω[ab] and µab = µ[ab] one can form the
integral

IS [ω, µ] :=

∮

S
ωabRabcdµ

cd dS. (15)

Since the fall-off of the curvature tensor near spatial infinity is r−k−2, the integral IS [ω, µ] at spatial
infinity can give finite value precisely when ωabµcd blows up like rk as r → ∞. In particular, for
the 1/r fall-off this condition can be satisfied by ωabµcd =

√

Area(S) ω̂abµ̂cd, where Area(S) is the
area of S and the hatted tensor fields are O(1).

If the spacetime is stationary, then the ADM energy can be recovered as the r → ∞ limit of
the 2-sphere integral of Komar’s superpotential with the Killing vector Ka of stationarity [163],
too. On the other hand, if the spacetime is not stationary then, without additional restriction
on the asymptotic time translation, the Komar expression does not reproduce the ADM energy.
However, by Equations (13, 14) such an additional restriction might be that Ka should be a
constant combination of four future pointing null vector fields of the form αAᾱA′

, where the spinor
fields αA are required to satisfy the Weyl neutrino equation ∇A′Aα

A = 0. This expression for the
ADM energy-momentum was used to give an alternative, ‘4-dimensional’ proof of the positivity of
the ADM energy [205].

3.2.2 Spatial infinity: Angular momentum

The value of the Hamiltonian of Beig and Ó Murchadha [47] together with the appropriately
defined asymptotic rotation-boost Killing vectors [364] define the spatial angular momentum and
centre-of-mass, provided k ≥ 1 and, in addition to the familiar fall-off conditions, certain global
integral conditions are also satisfied. These integral conditions can be ensured by the explicit
parity conditions of Regge and Teitelboim [319] on the leading nontrivial parts of the metric hab

and extrinsic curvature χab: The components in the Cartesian coordinates {xi} of the former must
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be even and the components of latter must be odd parity functions of xi/r (see also [47]). Thus
in what follows we assume that k = 1. Then the value of the Beig–Ó Murchadha Hamiltonian
parameterized by the asymptotic rotation Killing vectors is the spatial angular momentum of
Regge and Teitelboim [319], while that parameterized by the asymptotic boost Killing vectors
deviate from the centre-of-mass of Beig and Ó Murchadha [47] by a term which is the spatial
momentum times the coordinate time. (As Beig and Ó Murchadha pointed out [47], the centre-of-
mass of Regge and Teitelboim is not necessarily finite.) The spatial angular momentum and the
new centre-of-mass form an anti-symmetric Lorentz 4-tensor, which transforms in the correct way
under the 4-translation of the origin of the asymptotically Cartesian coordinate system, and it is
conserved by the evolution equations [364].

The centre-of-mass of Beig and Ó Murchadha was reexpressed recently [42] as the r → ∞ limit
of 2-surface integrals of the curvature in the form (15) with ωabµcd proportional to the lapse N
times qacqbd − qadqbc, where qab is the induced 2-metric on S (see Section 4.1.1 below).

A geometric notion of centre-of-mass was introduced by Huisken and Yau [209]. They foliate the
asymptotically flat hypersurface Σ by certain spheres with constant mean curvature. By showing
the global uniqueness of this foliation asymptotically, the origin of the leaves of this foliation in
some flat ambient Euclidean space R

3 defines the centre-of-mass (or rather ‘centre-of-gravity’) of
Huisken and Yau. However, no statement on its properties is proven. In particular, it would be
interesting to see whether or not this notion of centre-of-mass coincides, for example, with that of
Beig and Ó Murchadha.

The Ashtekar–Hansen definition for the angular momentum is introduced in their specific con-
formal model of the spatial infinity as a certain 2-surface integral near infinity. However, their
angular momentum expression is finite and unambiguously defined only if the magnetic part of
the spacetime curvature tensor (with respect to the Ω = const. timelike level hypersurfaces of the
conformal factor) falls off faster than would follow from the 1/r fall-off of the metric (but they do
not have to impose any global integral, e.g. a parity condition) [23, 15].

If the spacetime admits a Killing vector of axi-symmetry, then the usual interpretation of
the corresponding Komar integral is the appropriate component of the angular momentum (see for
example [387]). However, the value of the Komar integral is twice the expected angular momentum.
In particular, if the Komar integral is normalized such that for the Killing field of stationarity in
the Kerr solution the integral is m/G, for the Killing vector of axi-symmetry it is 2ma/G instead
of the expected ma/G (‘factor-of-two anomaly’) [229]. We return to the discussion of the Komar
integral in Section 12.1.

3.2.3 Null infinity: Energy-momentum

The study of the gravitational radiation of isolated sources led Bondi to the observation that the
2-sphere integral of a certain expansion coefficient m(u, θ, φ) of the line element of a radiative
spacetime in an asymptotically retarded spherical coordinate system (u, r, θ, φ) behaves as the
energy of the system at the retarded time u: This notion of energy is not constant in time, but
decreases with u, showing that gravitational radiation carries away positive energy (‘Bondi’s mass-
loss’) [71, 72]. The set of transformations leaving the asymptotic form of the metric invariant was
identified as a group, nowadays known as the BMS group, having a structure very similar to that
of the Poincaré group [325]. The only difference is that while the Poincaré group is a semidirect
product of the Lorentz group and a 4-dimensional commutative group (of translations), the BMS
group is the semidirect product of the Lorentz group and an infinite-dimensional commutative
group, called the group of the supertranslations. A 4-parameter subgroup in the latter can be
identified in a natural way as the group of the translations. Just at the same time the study of
asymptotic solutions of the field equations led Newman and Unti to another concept of energy at
null infinity [290]. However, this energy (nowadays known as the Newman–Unti energy) does not
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seem to have the same significance as the Bondi (or Bondi–Sachs [313] or Trautman–Bondi [115,
116, 114]) energy, because its monotonicity can be proven only between special, e.g. stationary,
states. The Bondi energy, which is the time component of a Lorentz vector, the so-called Bondi–
Sachs energy-momentum, has a remarkable uniqueness property [115, 116].

Without additional conditions on Ka, Komar’s expression does not reproduce the Bondi–Sachs
energy-momentum in non-stationary spacetimes either [395, 163]: For the ‘obvious’ choice for Ka

Komar’s expression yields the Newman–Unti energy. This anomalous behaviour in the radiative
regime could be corrected in, at least, two ways. The first is by modifying the Komar integral
according to

LS [K] :=
1

8πG

∮

S

(

∇[cKd] + α∇eK
e ⊥εcd

) 1

2
εcdab, (16)

where ⊥εcd is the area 2-form on the Lorentzian 2-planes orthogonal to S (see Section 4.1.1) and
α is some real constant. For α = 1 the integral LS [K], suggested by Winicour and Tamburino, is
called the linkage [395]. In addition, to define physical quantities by linkages associated to a cut
of the null infinity one should prescribe how the 2-surface S tends to the cut and how the vector
field Ka should be propagated from the spacetime to null infinity into a BMS generator [395, 394].
The other way is considering the original Komar integral (i.e. α = 0) on the cut of infinity in
the conformally rescaled spacetime and by requiring that Ka be divergence-free [153]. For such
asymptotic BMS translations both prescriptions give the correct expression for the Bondi–Sachs
energy-momentum.

The Bondi–Sachs energy-momentum can also be expressed by the integral of the Nester–Witten
2-form [214, 255, 256, 205]. However, in non-stationary spacetimes the spinor fields that are
asymptotically constant at null infinity are vanishing [83]. Thus the spinor fields in the Nester–
Witten 2-form must satisfy a weaker boundary condition at infinity such that the spinor fields
themselves be the spinor constituents of the BMS translations. The first such condition, suggested
by Bramson [83], was to require the spinor fields to be the solutions of the so-called asymptotic
twistor equation (see Section 4.2.4). One can impose several such inequivalent conditions, and
all these, based only on the linear first order differential operators coming from the two natural
connections on the cuts (see Section 4.1.2), are determined in [363].

The Bondi–Sachs energy-momentum has a Hamiltonian interpretation as well. Although the
fields on a spacelike hypersurface extending to null rather than spatial infinity do not form a closed
system, a suitable generalization of the standard Hamiltonian analysis could be developed [114]
and used to recover the Bondi–Sachs energy-momentum.

Similarly to the ADM case, the simplest proofs of the positivity of the Bondi energy [330] are
probably those that are based on the Nester–Witten 2-form [214] and, in particular, the use of two-
components spinors [255, 256, 205, 203, 321]: The Bondi–Sachs mass (i.e. the Lorentzian length
of the Bondi–Sachs energy-momentum) of a cut of future null infinity is non-negative if there is a
spacelike hypersurface Σ intersecting null infinity in the given cut such that the dominant energy
condition is satisfied on Σ, and the mass is zero iff the domain of dependence D(Σ) of Σ is flat.

3.2.4 Null infinity: Angular momentum

At null infinity there is no generally accepted definition for angular momentum, and there are
various, mathematically inequivalent suggestions for it. Here we review only some of those total
angular momentum definitions that can be considered as the null infinity limit of some quasi-local
expression, and will be discussed in the main part of the review, namely in Section 9.

In their classic paper Bergmann and Thomson [60] raise the idea that while the gravita-
tional energy-momentum is connected with the spacetime diffeomorphisms, the angular momentum
should be connected with its intrinsic O(1, 3) symmetry. Thus, the angular momentum should be
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analogous with the spin. Based on the tetrad formalism of general relativity and following the pre-
scription of constructing the Noether currents in Yang–Mills theories, Bramson suggested a super-
potential for the six conserved currents corresponding to the internal Lorentz-symmetry [84, 85, 86].

(For another derivation of this superpotential from Møller’s Lagrangian (9) see [363].) If {λA
A },

A = 0, 1, is a normalized spinor dyad corresponding to the orthonormal frame in Equation (9),
then the integral of the spinor form of the anti-self-dual part of this superpotential on a closed
orientable 2-surface S is

J
A B
S :=

1

8πG

∮

S
−iλ

A
(Aλ

B
B)εA′B′ , (17)

where εA′B′ is the symplectic metric on the bundle of primed spinors. We will denote its integrand
by w(λA , λB )ab, and we call it the Bramson superpotential. To define angular momentum on
a given cut of the null infinity by the formula (17) we should consider its limit when S tends
to the cut in question and we should specify the spinor dyad, at least asymptotically. Bramson’s
suggestion for the spinor fields was to take the solutions of the asymptotic twistor equation [83]. He
showed that this definition yields a well-defined expression, for stationary spacetimes this reduces
to the generally accepted formula (34), and the corresponding Pauli–Lubanski spin, constructed
from εA ′B ′

JA B +εA B J̄A ′B ′

and the Bondi–Sachs energy-momentum PA A ′

(given for example in
the Newman–Penrose formalism by Equation (33)), is invariant with respect to supertranslations
of the cut (‘active supertranslations’). Note that since Bramson’s expression is based on the
solutions of a system of partial differential equations on the cut in question, it is independent of
the parameterization of the BMS vector fields. Hence, in particular, it is invariant with respect to
the supertranslations of the origin cut (‘passive supertranslations’). Therefore, Bramson’s global
angular momentum behaves like the spin part of the total angular momentum.

The construction based on the Winicour–Tamburino linkage (16) can be associated with any
BMS vector field [395, 252, 30]. In the special case of translations it reproduces the Bondi–Sachs
energy-momentum. The quantities that it defines for the proper supertranslations are called the
super-momenta. For the boost-rotation vector fields they can be interpreted as angular momentum.
However, in addition to the factor-of-two anomaly, this notion of angular momentum contains a
huge ambiguity (‘supertranslation ambiguity’): The actual form of both the boost-rotation Killing
vector fields of Minkowski spacetime and the boost-rotation BMS vector fields at future null in-
finity depend on the choice of origin, a point in Minkowski spacetime and a cut of null infinity,
respectively. However, while the set of the origins of Minkowski spacetime is parameterized by four
numbers, the set of the origins at null infinity requires a smooth function of the form u : S2 → R.
Consequently, while the corresponding angular momentum in the Minkowski spacetime has the
familiar origin-dependence (containing four parameters), the analogous transformation of the an-
gular momentum defined by using the boost-rotation BMS vector fields depends on an arbitrary
smooth real valued function on the 2-sphere. This makes the angular momentum defined at null
infinity by the boost-rotation BMS vector fields ambiguous unless a natural selection rule for the
origins, making them form a four parameter family of cuts, is found. Such a selection rule could be
the suggestion by Dain and Moreschi [125] in the charge integral approach to angular momentum
of Moreschi [272, 273].

Another promising approach might be that of Chruściel, Jezierski, and Kijowski [114], which
is based on a Hamiltonian analysis of general relativity on asymptotically hyperbolic spacelike
hypersurfaces. They chose the six BMS vector fields tangent to the intersection of the spacelike
hypersurface and null infinity as the generators of their angular momentum. Since the motions that
their angular momentum generators define leave the domain of integration fixed, and apparently
there is no Lorentzian 4-space of origins, they appear to be the generators with respect to some
fixed ‘centre-of-the-cut’, and the corresponding angular momentum appears to be the intrinsic
angular momentum.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-4

http://www.livingreviews.org/lrr-2004-4
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3.3 The necessity of quasi-locality for the observables in general rela-
tivity

3.3.1 Non-locality of the gravitational energy-momentum and angular momentum

One reaction to the non-tensorial nature of the gravitational energy-momentum density expressions
was to consider the whole problem ill-defined and the gravitational energy-momentum meaningless.
However, the successes discussed in the previous Section 3.2.4 show that the global gravitational
energy-momenta and angular momenta are useful notions, and hence it could also be useful to
introduce them even if the spacetime is not asymptotically flat. Furthermore, the non-tensorial
nature of an object does not imply that it is meaningless. For example, the Christoffel symbols
are not tensorial, but they do have geometric, and hence physical content, namely the linear
connection. Indeed, the connection is a non-local geometric object, connecting the fibres of the
vector bundle over different points of the base manifold. Hence any expression of the connection
coefficients, in particular the gravitational energy-momentum or angular momentum, must also
be non-local. In fact, although the connection coefficients at a given point can be taken zero by
an appropriate coordinate/gauge transformation, they cannot be transformed to zero on an open
domain unless the connection is flat.

Furthermore, the superpotential of many of the classical pseudotensors (e.g. of the Einstein,
Bergmann, Møller’s tetrad, Landau–Lifshitz pseudotensors), being linear in the connection coef-
ficients, can be recovered as the pull-back to the spacetime manifold of various forms of a single
geometric object on the linear frame bundle, namely of the Nester–Witten 2-form, along various
local Sections [142, 266, 352, 353], and the expression of the pseudotensors by their superpoten-
tials are the pull-backs of the Sparling equation [345, 130, 266]. In addition, Chang, Nester, and
Chen [104] found a natural quasi-local Hamiltonian interpretation of each of the pseudotensorial
expressions in the metric formulation of the theory (see Section 11.3.4). Therefore, the pseudoten-
sors appear to have been ‘rehabilitated’, and the gravitational energy-momentum and angular
momentum are necessarily associated with extended subsets of the spacetime.

This fact is a particular consequence of a more general phenomenon [324, 213]: Since the
physical spacetime is the isomorphism class of the pairs (M, gab) instead of a single such pair, it is
meaningless to speak about the ‘value of a scalar or vector field at a point p ∈M ’. What could have
meaning are the quantities associated with curves (the length of a curve, or the holonomy along
a closed curve), 2-surfaces (e.g. the area of a closed 2-surface) etc. determined by some body or
physical fields. Thus, if we want to associate energy-momentum and angular momentum not only
to the whole (necessarily asymptotically flat) spacetime, then these quantities must be associated
with extended but finite subsets of the spacetime, i.e. must be quasi-local.

3.3.2 Domains for quasi-local quantities

The quasi-local quantities (usually the integral of some local expression of the field variables) are
associated with a certain type of subset of spacetime. In four dimensions there are three natural
candidates:

1. the globally hyperbolic domains D ⊂M with compact closure,

2. the compact spacelike hypersurfaces Σ with boundary (interpreted as Cauchy surfaces for
globally hyperbolic domains D), and

3. the closed, orientable spacelike 2-surfaces S (interpreted as the boundary ∂Σ of Cauchy
surfaces for globally hyperbolic domains).

A typical example fo Type 3 is any charge integral expression: The quasi-local quantity is the inte-
gral of some superpotential 2-form built from the data given on the 2-surface, as in Equation (12),
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or the expression QS [K] for the matter fields given by Equation (5). An example for Type 2 might
be the integral of the Bel–Robinson ‘momentum’ on the hypersurface Σ:

EΣ[ξa] :=

∫

Σ

ξdTdefgt
etf 1

3!ε
g
abc. (18)

This quantity is analogous to the integral EΣ[ξa] for the matter fields given by Equation (6)
(though, by the remarks on the Bel–Robinson ‘energy’ in Section 3.1.1, its physical dimension
cannot be of energy). If ξa is a future pointing nonspacelike vector then EΣ[ξa] ≥ 0. Obviously,
if such a quantity were independent of the actual hypersurface Σ, then it could also be rewritten
as a charge integral on the boundary ∂Σ. The gravitational Hamiltonian provides an interesting
example for the mixture of Type 2 and 3 expressions, because the form of the Hamiltonian is the
3-surface integral of the constraints on Σ and a charge integral on its boundary ∂Σ, thus if the
constraints are satisfied then the Hamiltonian reduces to a charge integral. Finally, an example
for Type 1 might be

ED := inf {EΣ[t] | Σ is a Cauchy surface for D} , (19)

the infimum of the ‘quasi-local Bel–Robinson energies’, where the infimum is taken on the set of
all the Cauchy surfaces Σ for D with given boundary ∂Σ. (The infimum always exists because the
Bel–Robinson ‘energy density’ Tabcdt

atbtctd is non-negative.) Quasi-locality in any of these three
senses agrees with the quasi-locality of Haag and Kastler [168, 169]. The specific quasi-local energy-
momentum constructions provide further examples both for charge-integral-type expressions and
those based on spacelike hypersurfaces.

3.3.3 Strategies to construct quasi-local quantities

There are two natural ways of finding the quasi-local energy-momentum and angular momentum.
The first is to follow some systematic procedure, while the second is the ‘quasi-localization’ of
the global energy-momentum and angular momentum expressions. One of the two systematic
procedures could be called the Lagrangian approach: The quasi-local quantities are integrals of
some superpotential derived from the Lagrangian via a Noether-type analysis. The advantage of
this approach could be its manifest Lorentz-covariance. On the other hand, since the Noether
current is determined only through the Noether identity, which contains only the divergence of the
current itself, the Noether current and its superpotential is not uniquely determined. In addition
(as in any approach), a gauge reduction (for example in the form of a background metric or
reference configuration) and a choice for the ‘translations’ and ‘boost-rotations’ should be made.

The other systematic procedure might be called the Hamiltonian approach: At the end of
a fully quasi-local (covariant or not) Hamiltonian analysis we would have a Hamiltonian, and
its value on the constraint surface in the phase space yields the expected quantities. Here the
main idea is that of Regge and Teitelboim [319] that the Hamiltonian must reproduce the correct
field equations as the flows of the Hamiltonian vector fields, and hence, in particular, the correct
Hamiltonian must be functionally differentiable with respect to the canonical variables. This
differentiability may restrict the possible ‘translations’ and ‘boost-rotations’ too. However, if we
are not interested in the structure of the quasi-local phase space, then, as a short-cut, we can
use the Hamilton–Jacobi method to define the quasi-local quantities. The resulting expression is
a 2-surface integral. Nevertheless, just as in the Lagrangian approach, this general expression is
not uniquely determined, because the action can be modified by adding an (almost freely chosen)
boundary term to it. Furthermore, the ‘translations’ and ‘boost-rotations’ are still to be specified.

On the other hand, at least from a pragmatic point of view, the most natural strategy to in-
troduce the quasi-local quantities would be some ‘quasi-localization’ of those expressions that gave
the global energy-momentum and angular momentum of asymptotically flat spacetimes. Therefore,
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respecting both strategies, it is also legitimate to consider the Winicour–Tamburino-type (linkage)
integrals and the charge integrals of the curvature.

Since the global energy-momentum and angular momentum of asymptotically flat spacetimes
can be written as 2-surface integrals at infinity (and, as we will see in Section 7.1.1, both the energy-
momentum and angular momentum of the source in the linear approximation and the gravitational
mass in the Newtonian theory of gravity can also be written as 2-surface integrals), the 2-surface
observables can be expected to have special significance. Thus, to summarize, if we want to define
reasonable quasi-local energy-momentum and angular momentum as 2-surface observables, then
three things must be specified:

1. an appropriate general 2-surface integral (e.g. the integral of a superpotential 2-form in the
Lagrangian approaches or a boundary term in the Hamiltonian approaches),

2. a gauge choice (in the form of a distinguished coordinate system in the pseudotensorial
approaches, or a background metric/connection in the background field approaches or a
distinguished tetrad field in the tetrad approach), and

3. a definition for the ‘quasi-symmetries’ of the 2-surface (i.e. the ‘generator vector fields’ of
the quasi-local quantities in the Lagrangian, and the lapse and the shift in the Hamiltonian
approaches, respectively, which, in the case of timelike ‘generator vector fields’, can also be
interpreted as a fleet of observers on the 2-surface).

In certain approaches the definition of the ‘quasi-symmetries’ is linked to the gauge choice, for
example by using the Killing symmetries of the flat background metric.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-4

http://www.livingreviews.org/lrr-2004-4


Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article 31

4 Tools to Construct and Analyze the Quasi-Local Quanti-

ties

Having accepted that the gravitational energy-momentum and angular momentum should be in-
troduced at the quasi-local level, we next need to discuss the special tools and concepts that are
needed in practice to construct (or even to understand the various special) quasi-local expressions.
Thus, first, in Section 4.1 we review the geometry of closed spacelike 2-surfaces, with special em-
phasis on the so-called 2-surface data. Then, in the remaining two Sections 4.2 and 4.3, we discuss
the special situations where there is a more or less generally accepted ‘standard’ definition for
the energy-momentum (or at least for the mass) and angular momentum. In these situations any
reasonable quasi-local quantity should reduce to them.

4.1 The geometry of spacelike 2-surfaces

The first systematic study of the geometry of spacelike 2-surfaces from the point of view of quasi-
local quantities is probably due to Tod [375, 380]. Essentially, his approach is based on the
GHP (Geroch–Held–Penrose) formalism [152]. Although this is a very effective and flexible for-
malism [152, 312, 313, 206, 347], its form is not spacetime covariant. Since in many cases the
covariance of a formalism itself already gives some hint how to treat and solve the problem at
hand, here we concentrate mainly on a spacetime-covariant description of the geometry of the
spacelike 2-surfaces, developed gradually in [355, 357, 358, 359, 147]. The emphasis will be on the
geometric structures rather than the technicalities. In the last paragraph, we comment on certain
objects appearing in connection with families of spacelike 2-surfaces.

4.1.1 The Lorentzian vector bundle

The restriction Va(S) to the closed, orientable spacelike 2-surface S of the tangent bundle TM
of the spacetime has a unique decomposition to the gab-orthogonal sum of the tangent bundle TS
of S and the bundle of the normals, denoted by NS. Then all the geometric structures of the
spacetime (metric, connection, curvature) can be decomposed in this way. If ta and va are timelike
and spacelike unit normals, respectively, being orthogonal to each other, then the projection to
TS and NS is Πa

b := δa
b − tatb + vavb and Oa

b := δa
b − Πa

b , respectively. The induced 2-metric and
the corresponding area 2-form on S will be denoted by qab = gab − tatb + vavb and εab = tcvdεcdab,
respectively, while the area 2-form on the normal bundle will be ⊥εab = tavb − tbva. The bundle
Va(S) together with the fibre metric gab and the projection Πa

b will be called the Lorentzian vector
bundle over S. For the discussion of the global topological properties of the closed orientable 2-
manifolds, see for example [5].

4.1.2 Connections

The spacetime covariant derivative operator ∇e defines two covariant derivatives on Va(S). The
first, denoted by δe, is analogous to the induced (intrinsic) covariant derivative on (one-codimensional)
hypersurfaces: δeX

a := Πa
b Πf

e∇f (Πb
cX

c) + Oa
b Πf

e∇f (Ob
cX

c) for any section Xa of Va(S). Obvi-
ously, δe annihilates both the fibre metric gab and the projection Πa

b . However, since for 2-surfaces
in four dimensions the normal is not uniquely determined, we have the ‘boost gauge freedom’
ta 7→ ta coshu+va sinhu, va 7→ ta sinhu+va coshu. The induced connection will have a nontrivial
part on the normal bundle, too. The corresponding (normal part of the) connection 1-form on
S can be characterized, for example, by Ae := Πf

e (∇f ta)va. Therefore, the connection δe can be
considered as a connection on Va(S) coming from a connection on the O(2) ⊗ O(1, 1)-principal
bundle of the gab-orthonormal frames adapted to S.
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The other connection, ∆e, is analogous to the Sen connection [331], and is defined simply
by ∆eX

a := Πf
e∇fX

a. This annihilates only the fibre metric, but not the projection. The
difference of the connections ∆e and δe turns out to be just the extrinsic curvature tensor: ∆eX

a =
δeX

a + Qa
ebX

b − XbQbe
a. Here Qa

eb := −Πa
c∆eΠc

b = τa
etb − νa

evb, and τab := Πc
aΠd

b∇ctd and
νab := Πc

aΠd
b∇cvd are the standard (symmetric) extrinsic curvatures corresponding to the individual

normals ta and va, respectively. The familiar expansion tensors of the future pointing outgoing
and ingoing null normals, la := ta + va and na := 1

2 (ta − va), respectively, are θab = Qabcl
c and

θ′ab = Qabcn
c, and the corresponding shear tensors σab and σ′

ab are defined by their trace-free
part. Obviously, τab and νab (and hence the expansion and shear tensors θab, θ

′
ab, σab, and σ′

ab) are
boost-gauge dependent quantities (and it is straightforward to derive their transformation from the
definitions), but their combination Qa

eb is boost-gauge invariant. In particular, it defines a natural
normal vector field to S by Qb := Qa

ab = τtb−νvb = θ′lb+θnb, where τ , ν, θ and θ′ are the relevant
traces. Qa is called the main extrinsic curvature vector of S. If Q̃b := νtb − τvb = −θ′la + θna,
then the norm of Qa and Q̃a is QaQbg

ab = −Q̃aQ̃bg
ab = τ2 − ν2 = 2θθ′, and they are orthogonal

to each other: QaQ̃bg
ab = 0. It is easy to show that ∆aQ̃

a = 0, i.e. Q̃a is the uniquely pointwise
determined direction orthogonal to the 2-surface in which the expansion of the surface is vanishing.
If Qa is not null, then {Qa, Q̃a} defines an orthonormal frame in the normal bundle (see for
example [8]). If Qa is non-zero but (e.g. future pointing) null, then there is a uniquely determined
null normal Sa to S such that QaS

a = 1, and hence {Qa, Sa} is a uniquely determined null frame.
Therefore, the 2-surface admits a natural gauge choice in the normal bundle unless Qa is vanishing.
Geometrically, ∆e is a connection coming from a connection on the O(1, 3)-principal fibre bundle
of the gab-orthonormal frames. The curvature of the connections δe and ∆e, respectively, are

fa
bcd = −⊥εa

b (δcAd − δdAc) + 1
2
SR (Πa

cqbd − Πa
dqbc) , (20)

F a
bcd = fa

bcd − δc (Qa
db −Qbd

a) + δd (Qa
cb −Qbc

a) +

+Qa
ceQbd

e +Qec
aQe

db −Qa
deQbc

e −Qed
aQe

cb, (21)

where SR is the curvature scalar of the familiar intrinsic Levi-Civita connection of (S, qab). The

curvature of ∆e is just the pull-back to S of the spacetime curvature 2-form: F a
bcd = Ra

bef Πe
cΠf

d .
Therefore, the well known Gauss, Codazzi–Mainardi, and Ricci equations for the embedding of S
in M are just the various projections of Equation (21).

4.1.3 Convexity conditions

To prove certain statements on quasi-local quantities various forms of the convexity of S must be
assumed. The convexity of S in a 3-geometry is defined by the positive definiteness of its extrinsic
curvature tensor. If the embedding space is flat, then by the Gauss equation this is equivalent
to the positivity of the scalar curvature of the intrinsic metric of S. If S is in a Lorentzian
spacetime then the weakest convexity conditions are conditions only on the mean null curvatures:
S will be called weakly future convex if the outgoing null normals la are expanding on S, i.e.
θ := qabθab > 0, and weakly past convex if θ′ := qabθ′ab < 0 [380]. S is called mean convex [182]

if θθ′ < 0 on S, or, equivalently, if Q̃a is timelike. To formulate stronger convexity conditions we
must consider the determinant of the null expansions D := det ‖θa

b‖ = 1
2 (θabθcd − θacθbd)qabqcd

and D′ := det ‖θ′ab‖ = 1
2 (θ′abθ

′
cd − θ′acθ

′
bd)qabqcd. Note that although the expansion tensors, and in

particular the functions θ, θ′, D, and D′ are gauge dependent, their sign is gauge invariant. Then
S will be called future convex if θ > 0 and D > 0, and past convex if θ′ < 0 and D′ > 0 [380, 358].
These are equivalent to the requirement that the two eigenvalues of θa

b be positive and those of
θ′ab be negative everywhere on S, respectively. A different kind of convexity condition, based on
global concepts, will be used in Section 6.1.3.
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4.1.4 The spinor bundle

The connections δe and ∆e determine connections on the pull-back SA(S) to S of the bundle of
unprimed spinors. The natural decomposition Va(S) = TS ⊕NS defines a chirality on the spinor
bundleSA(S) in the form of the spinor γA

B := 2tAA′

vBA′ , which is analogous to the γ5 matrix in
the theory of Dirac spinors. Then the extrinsic curvature tensor above is a simple expression of
QA

eB := 1
2 (∆eγ

A
C)γC

B and γA
B (and their complex conjugate), and the two covariant derivatives

on SA(S) are related to each other by ∆eλ
A = δeλ

A +QA
eBλ

B . The curvature FA
Bcd of ∆e can

be expressed by the curvature fA
Bcd of δe, the spinor QA

eB , and its δe-derivative. We can form
the scalar invariants of the curvatures according to

f := fabcd
1

2

(

εab − i ⊥εab
)

εcd = iγA
Bf

B
Acdε

cd = SR− 2iδc
(

εcdAd

)

, (22)

F := Fabcd
1

2

(

εab − i ⊥εab
)

εcd = iγA
BF

B
Acdε

cd = f + θθ′ − 2σ′
eaσ

e
b

(

qab + iεab
)

. (23)

f is four times the so-called complex Gauss curvature [312] of S, by means of which the whole
curvature fA

Bcd can be characterized: fA
Bcd = − i

4fγ
A

Bεcd. If the spacetime is space and time
orientable, at least on an open neighbourhood of S, then the normals ta and va can be chosen to
be globally well-defined, and hence NS is globally trivializable and the imaginary part of f is a
total divergence of a globally well-defined vector field.

An interesting decomposition of the SO(1, 1) connection 1-form Ae, i.e. the vertical part of
the connection δe, was given by Liu and Yau [253]: There are real functions α and γ, unique up
to additive constants, such that Ae = εe

fδfα + δeγ. α is globally defined on S, but in general
γ is defined only on the local trivialization domains of NS that are homeomorphic to R

2. It is
globally defined if H1(S) = 0. In this decomposition α is the boost-gauge invariant part of Ae,
while γ represents its gauge content. Since δeA

e = δeδ
eγ, the ‘Coulomb-gauge condition’ δeA

e = 0
uniquely fixes Ae (see also Section 10.4.1).

By the Gauss–Bonnet theorem
∮

S f dS =
∮

S
SRdS = 8π(1−g), where g is the genus of S. Thus

geometrically the connection δe is rather poor, and can be considered as a part of the ‘universal
structure of S’. On the other hand, the connection ∆e is much richer, and, in particular, the
invariant F carries information on the mass aspect of the gravitational ‘field’. The 2-surface data
for charge-type quasi-local quantities (i.e. for 2-surface observables) are the universal structure
(i.e. the intrinsic metric qab, the projection Πa

b and the connection δe) and the extrinsic curvature
tensor Qa

eb.

4.1.5 Curvature identities

The complete decomposition of ∆AA′λB into its irreducible parts gives ∆A′Aλ
A, the Dirac–Witten

operator, and TE′EA
BλB := ∆E′(EλA) + 1

2γEAγ
CD∆E′CλD, the 2-surface twistor operator. A

Sen–Witten-type identity for these irreducible parts can be derived. Taking its integral one has
∮

S
γ̄A′B′ [(

∆A′Aλ
A
) (

∆B′Bµ
B
)

+
(

TA′CD
EλE

) (

TB′
CDFµF

)]

dS = − i
2

∮

S
λAµBFABcd, (24)

where λA and µA are two arbitrary spinor fields on S, and the right hand side is just the charge
integral of the curvature FA

Bcd on S.

4.1.6 The GHP formalism

A GHP spin frame on the 2-surface S is a normalized spinor basis εA
A := {oA, ιA}, A = 0, 1, such

that the complex null vectors ma := oAῑA
′

and m̄a := ιAōA′

are tangent to S (or, equivalently, the
future pointing null vectors la := oAōA′

and na := ιAῑA
′

are orthogonal to S). Note, however, that
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in general a GHP spin frame can be specified only locally, but not globally on the whole S. This
fact is connected with the non-triviality of the tangent bundle TS of the 2-surface. For example,
on the 2-sphere every continuous tangent vector field must have a zero, and hence, in particular,
the vectors ma and m̄a cannot form a globally defined basis on S. Consequently, the GHP spin
frame cannot be globally defined either. The only closed orientable 2-surface with globally trivial
tangent bundle is the torus.

Fixing a GHP spin frame {εA
A} on some open U ⊂ S, the components of the spinor and tensor

fields on U will be local representatives of cross sections of appropriate complex line bundles E(p, q)
of scalars of type (p, q) [152, 312]: A scalar φ is said to be of type (p, q) if under the rescaling oA 7→
λoA, ιA 7→ λ−1ιA of the GHP spin frame with some nowhere vanishing complex function λ : U → C

the scalar transforms as φ 7→ λpλ̄qφ. For example ρ := θabm
am̄b = − 1

2θ, ρ
′ := θ′abm

am̄b = − 1
2θ

′,
σ := θabm

amb = σabm
amb, and σ′ := θ′abm̄

am̄b = σ′
abm̄

am̄b are of type (1, 1), (−1,−1), (3,−1),
and (−3, 1), respectively. The components of the Weyl and Ricci spinors, ψ0 := ψABCDo

AoBoCoD,
ψ1 := ψABCDo

AoBoCιD, ψ2 := ψABCDo
AoBιCιD, . . . , φ00 := φAB′oAōB′

, φ01 := φAB′oAῑB
′

, . . . ,
etc., also have definite (p, q)-type. In particular, Λ := R/24 has type (0, 0). A global section of
E(p, q) is a collection of local cross sections {(U, φ), (U ′, φ′), . . . } such that {U,U ′, . . . } forms a
covering of S and on the non-empty overlappings, e.g. on U ∩ U ′ the local sections are related to
each other by φ = ψpψ̄qφ′, where ψ : U ∩U ′ → C is the transition function between the GHP spin
frames: oA = ψo′A and ιA = ψ−1ι′A.

The connection δe defines a connection ke on the line bundles E(p, q) [152, 312]. The usual
edth operators, k and k′, are just the directional derivatives k := maka and k′ := m̄aka on the
domain U ⊂ S of the GHP spin frame {εA

A}. These locally defined operators yield globally defined
differential operators, denoted also by k and k′, on the global sections of E(p, q). It might be
worth emphasizing that the GHP spin coefficients β and β′, which do not have definite (p, q)-type,
play the role of the two components of the connection 1-form, and they are built both from the
connection 1-form for the intrinsic Riemannian geometry of (S, qab) and the connection 1-form Ae

in the normal bundle. k and k′ are elliptic differential operators, thus their global properties, e.g.
the dimension of their kernel, are connected with the global topology of the line bundle they act
on, and, in particular, with the global topology of S. These properties are discussed in [147] for
general, and in [132, 43, 356] for spherical topology.

4.1.7 Irreducible parts of the derivative operators

Using the projection operators π±A
B := 1

2 (δA
B±γA

B), the irreducible parts ∆A′Aλ
A and TE′EA

BλB

can be decomposed further into their right handed and left handed parts. In the GHP formalism
these chiral irreducible parts are

−∆−λ := kλ1 + ρ′λ0, ∆+λ := k′λ0 + ρλ1,

T −λ := kλ0 + σλ1, −T +λ := k′λ1 + σ′λ0,
(25)

where λ := (λ0, λ1) and the spinor components are defined by λA =: λ1oA − λ0ιA. The various
first order linear differential operators acting on spinor fields, e.g. the 2-surface twistor operator,
the holomorphy/anti-holomorphy operators or the operators whose kernel defines the asymptotic
spinors of Bramson [83], are appropriate direct sums of these elementary operators. Their global
properties under various circumstances are studied in [43, 356, 363].

4.1.8 SO(1, 1)-connection 1-form versus anholonomicity

Obviously, all the structures we have considered can be introduced on the individual surfaces of
one- or two-parameter families of surfaces, too. In particular [181], let the 2-surface S be considered
as the intersection N+ ∩ N− of the null hypersurfaces formed, respectively, by the outgoing and
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the ingoing light rays orthogonal to S, and let the spacetime (or at least a neighbourhood of S) be
foliated by two one-parameter families of smooth hypersurfaces {ν+ = const.} and {ν− = const.},
where ν± : M → R, such that N+ = {ν+ = 0} and N− = {ν− = 0}. One can form the two normals,
n±a := ∇aν±, which are null on N+ and N−, respectively. Then we can define β±e := (∆en±a)na

∓,
for which β+e +β−e = ∆en

2, where n2 := gabn
a
+n

b
−. (If n2 is chosen to be 1 on S, then β−e = −β+e

is precisely the SO(1, 1) connection 1-form Ae above.) Then the so-called anholonomicity is defined
by ωe := 1

2n2 [n−, n+]fqfe = 1
2n2 (β+e − β−e). Since ωe is invariant with respect to the rescalings

ν+ 7→ exp(A)ν+ and ν− 7→ exp(B)ν− of the functions defining the foliations by those functions
A,B : M → R which preserve ∇[an±b] = 0, it was claimed in [181] that ωe depends only on S.
However, this implies only that ωe is invariant with respect to a restricted class of the change of
the foliations, and that ωe is invariantly defined only by this class of the foliations rather than the
2-surface. In fact, ωe does depend on the foliation: Starting with a different foliation defined by
the functions ν̄+ := exp(α)ν+ and ν̄− := exp(β)ν− for some α, β : M → R, the corresponding
anholonomicity ω̄e would also be invariant with respect to the restricted changes of the foliations
above, but the two anholonomicities, ωe and ω̄e, would be different: ω̄e − ωe = 1

2∆e(α − β).
Therefore, the anholonomicity is still a gauge dependent quantity.

4.2 Standard situations to evaluate the quasi-local quantities

There are exact solutions to the Einstein equations and classes of special (e.g. asymptotically flat)
spacetimes in which there is a commonly accepted definition of energy-momentum (or at least
mass) and angular momentum. In this section we review these situations and recall the definition
of these ‘standard’ expressions.

4.2.1 Round spheres

If the spacetime is spherically symmetric, then a 2-sphere which is a transitivity surface of the
rotation group is called a round sphere. Then in a spherical coordinate system (t, r, θ, φ) the
spacetime metric takes the form gab = diag(exp(2γ),− exp(2α),−r2,−r2 sin2 θ), where γ and α
are functions of t and r. (Hence r is the so-called area-coordinate). Then with the notations of
Section 4.1, one obtains Rabcdε

abεcd = 4
r2 (1 − exp(−2α)). Based on the investigations of Misner,

Sharp, and Hernandez [268, 199], Cahill and McVitte [98] found

E(t, r) :=
1

8G
r3Rabcdε

abεcd =
r

2G

(

1 − e−2α
)

(26)

to be an appropriate (and hence suggested to be the general) notion of energy contained in
the 2-sphere S := {t = const., r = const.}. In particular, for the Reissner–Nordström solution
GE(t, r) = m − e2/2r, while for the isentropic fluid solutions E(t, r) = 4π

∫ r

0
r′2µ(t, r′) dr′, where

m and e are the usual parameters of the Reissner–Nordström solutions and µ is the energy density
of the fluid [268, 199] (for the static solution, see e.g. Appendix B of [175]). Using Einstein’s equa-
tions nice and simple equations can be derived for the derivatives ∂tE(t, r) and ∂rE(t, r), and if the
energy-momentum tensor satisfies the dominant energy condition then ∂rE(t, r) > 0. Thus E(t, r)
is a monotonic function of r provided r is the area-coordinate. Since by the spherical symmetry all
the quantities with non-zero spin weight, in particular the shears σ and σ′, are vanishing and ψ2

is real, by the GHP form of Equations (22, 23) the energy function E(t, r) can also be written as

E (S) =
1

G
r3
(

1

4
SR+ ρρ′

)

=
1

G
r3 (−ψ2 + φ11 + Λ) =

√

Area(S)

16πG2

(

1 +
1

2π

∮

S
ρρ′ dS

)

. (27)
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This expression is considered to be the ‘standard’ definition of the energy for round spheres4.
Its last expression does not depend on whether r is an area-coordinate or not. E(S) contains a
contribution from the gravitational ‘field’ too. In fact, for example for fluids it is not simply the
volume integral of the energy density µ of the fluid, because that would be 4π

∫ r

0
r′2 exp(α)µdr′.

This deviation can be interpreted as the contribution of the gravitational potential energy to the
total energy. Consequently, E(S) is not a globally monotonic function of r, even if µ ≥ 0. For
example, in the closed Friedmann–Robertson–Walker spacetime (where, to cover the whole space,
r cannot be chosen to be the area–radius and r ∈ [0, π]) E(S) is increasing for r ∈ [0, π/2), taking
its maximal value at r = π/2, and decreasing for r ∈ (π/2, π].

This example suggests a slightly more exotic spherically symmetric spacetime. Its spacelike
slice Σ will be assumed to be extrinsically flat, and its intrinsic geometry is the matching of
two conformally flat metrics. The first is a ‘large’ spherically symmetric part of a t = const.
hypersurface of the closed Friedmann–Robertson–Walker spacetime with the line element dl2 =

Ω2
FRWdl

2
0, where dl20 is the line element for the flat 3-space and Ω2

FRW := B(1 + r2

4T 2 )−2 with some
positive constants B and T 2, and the range of the Euclidean radial coordinate r is [0, r0], where
r0 ∈ (2T,∞). It contains a maximal 2-surface at r = 2T with round-sphere mass parameter
M := GE(2T ) = 1

2T
√
B. The scalar curvature is R = 6/BT 2, and hence, by the constraint parts

of the Einstein equations and by the vanishing of the extrinsic curvature, the dominant energy
condition is satisfied. The other metric is the metric of a piece of a t = const. hypersurface in the
Schwarzschild solution with mass parameter m (see [156]): dl̄2 = Ω2

S dl̄
2
0, where Ω2

S := (1 + m
2r̄ )4

and the Euclidean radial coordinate r̄ runs from r̄0 and ∞, where r̄0 ∈ (0,m/2). In this geometry
there is a minimal surface at r̄ = m/2, the scalar curvature is zero, and the round sphere energy is
E(r̄) = m/G. These two metrics can be matched to obtain a differentiable metric with Lipschitz-
continuous derivative at the 2-surface of the matching (where the scalar curvature has a jump)
with arbitrarily large ‘internal mass’ M/G and arbitrarily small ADM mass m/G. (Obviously, the
two metrics can be joined smoothly as well by an ‘intermediate’ domain between them.) Since this
space looks like a big spherical bubble on a nearly flat 3-plane – like the capital Greek letter Ω –
for later reference we call it an ‘ΩM,m-spacetime’.

Spherically symmetric spacetimes admit a special vector field, the so-called Kodama vector field
Ka, such that KaG

ab is divergence free [241]. In asymptotically flat spacetimes Ka is timelike in
the asymptotic region, in stationary spacetimes it reduces to the Killing symmetry of stationarity
(in fact, this is hypersurface-orthogonal), but in general it is not a Killing vector. However, by
∇a(GabKb) = 0 the vector field Sa := GabKb has a conserved flux on a spacelike hypersurface Σ. In
particular, in the coordinate system (t, r, θ, φ) and line element above Ka = exp[−(α+ γ)](∂/∂t)a.
If Σ is the solid ball of radius r, then the flux of Sa is precisely the standard round sphere
expression (26) for the 2-sphere ∂Σ [278].

An interesting characterization of the dynamics of the spherically symmetric gravitational fields
can be given in terms of the energy function E(t, r) above (see for example [408, 262, 185]). In
particular, criteria for the existence and the formation of trapped surfaces and the presence and
the nature of the central singularity can be given by E(t, r).

4.2.2 Small surfaces

In the literature there are two notions of small surfaces: The first is that of the small spheres (both
in the light cone of a point and in a spacelike hypersurface), introduced first by Horowitz and
Schmidt [204], and the other is the concept of the small ellipsoids in some spacelike hypersurface,
considered first by Woodhouse in [235]. A small sphere in the light cone is a cut of the future null

4E(S) can be thought of as the 0-component of some quasi-local energy-momentum 4-vector, but, just because
of the spherical symmetry, its spatial parts are vanishing. Thus E(S) can also be interpreted as the mass, the length
of this energy-momentum 4-vector.
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cone in the spacetime by a spacelike hypersurface, and the geometry of the sphere is characterized
by data at the vertex of the cone. The sphere in a hypersurface consists of those points of a
given spacelike hypersurface, whose geodesic distance in the hypersurface from a given point p,
the centre, is a small given value, and the geometry of this sphere is characterized by data at this
centre. Small ellipsoids are 2-surfaces in a spacelike hypersurface with a more general shape.

To define the first, let p ∈ M be a point, and ta a future directed unit timelike vector at
p. Let Np := ∂I+(p), the ‘future null cone of p in M ’ (i.e. the boundary of the chronological
future of p). Let la be the future pointing null tangent to the null geodesic generators of Np such
that, at the vertex p, lata = 1. With this condition we fix the scale of the affine parameter r on
the different generators, and hence by requiring r(p) = 0 we fix the parameterization completely.
Then, in an open neighbourhood of the vertex p, Np − {p} is a smooth null hypersurface, and
hence for sufficiently small r the set Sr := {q ∈M | r(q) = r} is a smooth spacelike 2-surface and
homeomorphic to S2. Sr is called a small sphere of radius r with vertex p. Note that the condition
lata = 1 fixes the boost gauge.

Completing la to a Newman–Penrose complex null tetrad {la, na,ma, m̄a} such that the complex
null vectors ma and m̄a are tangent to the 2-surfaces Sr, the components of the metric and the spin
coefficients with respect to this basis can be expanded as series in r 5. Then the GHP equations
can be solved with any prescribed accuracy for the expansion coefficients of the metric qab on Sr,
the GHP spin coefficients ρ, σ, τ , ρ′, σ′, and β, and the higher order expansion coefficients of the
curvature in terms of the lower order curvature components at p. Hence the expression of any
quasi-local quantity QSr

for the small sphere Sr can be expressed as a series of r,

QSr
=

∮

S

(

Q(0) + rQ(1) + 1
2r

2Q(2) + · · ·
)

dS,

where the expansion coefficients Q(k) are still functions of the coordinates, (ζ, ζ̄) or (θ, φ), on the
unit sphere S. If the quasi-local quantity Q is spacetime-covariant, then the unit sphere integrals
of the expansion coefficients Q(k) must be spacetime covariant expressions of the metric and its
derivatives up to some finite order at p and the ‘time axis’ ta. The necessary degree of the accuracy
of the solution of the GHP equations depends on the nature of QSr

and on whether the spacetime
is Ricci-flat in a neighbourhood of p or not6. These solutions of the GHP equations, with increasing
accuracy, are given in [204, 235, 94, 360].

Obviously, we can calculate the small sphere limit of various quasi-local quantities built from
the matter fields in the Minkowski spacetime, too. In particular [360], the small sphere expres-
sions for the quasi-local energy-momentum and the (anti-self-dual part of the) quasi-local angular
momentum of the matter fields based on QS [K], respectively, are

P
A B ′

Sr
=

4π

3
r3TAA′BB′

tAA′EA
B ĒB ′

B′ + O
(

r4
)

, (28)

J
A B
Sr

=
4π

3
r3TAA′BB′tAA′

(

rtB
′EεBFEA

(EE
B
F )

)

+ O
(

r5
)

, (29)

where {EA
A }, A = 0, 1, is the ‘Cartesian spin frame’ at p and the origin of the Cartesian coordinate

system is chosen to be the vertex p. Here K
A B ′

a = EA
A ĒB ′

A′ can be interpreted as the translation

1-forms, while K
A B
a = rtA′

EEA
(EE

B
A) is an average on the unit sphere of the boost-rotation Killing

1-forms that vanish at the vertex p. Thus P
A B ′

Sr
and J

A B
Sr

are the 3-volume times the energy-
momentum and angular momentum density with respect to p, respectively, that the observer with
4-velocity ta sees at p.

5If, in addition, the spinor constituent oA of la = oAōA
′

is required to be parallel propagated along la, then the
tetrad becomes completely fixed, yielding the vanishing of several (combinations of the) spin coefficients.

6As we will see soon, the leading term of the small sphere expression of the energy-momenta in non-vacuum is
of order r3, in vacuum it is r5, while that of the angular momentum is r4 and r6, respectively.
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Interestingly enough, a simple dimensional analysis already shows the structure of the leading
terms in a large class of quasi-local spacetime covariant energy-momentum and angular momentum
expressions. In fact, if QS is any coordinate-independent quasi-local quantity, built from the first
derivatives of the metric, i.e. QS =

∮

S(∂µgαβ) dS, then its expansion is

QSr
= [∂g] r2 +

[

∂2g, (∂g)
2
]

r3 +
[

∂3g,
(

∂2g
)

(∂g) , (∂g)
3
]

r4 +

+
[

∂4g,
(

∂3g
)

(∂g) ,
(

∂2g
)2
,
(

∂2g
)

(∂g)
2
, (∂g)

4
]

r5 + . . . ,

where [A,B, . . . ] is a scalar. It depends linearly on the tensors constructed from gαβ and linearly
from the coordinate dependent quantities A, B, . . . , and it is a polynomial expression of ta, gab

and εabcd at the vertex p. Since there is no non-trivial tensor built from the first derivative ∂µgαβ

and gαβ , the leading term is of order r3. Its coefficient [∂2g, (∂g)2] must be a linear expression of
Rab and Cabcd, and polynomial in ta, gab and εabcd. In particular, if QS is to represent energy-
momentum with generator Kc at p, then the leading term must be

QSr
[K] = r3

[

a
(

Gabt
atb
)

tc + bRtc + c
(

Gabt
aP b

c

)]

Kc + O
(

r4
)

(30)

for some unspecified constants a, b, and c, where P a
b := δa

b − tatb, the projection to the subspace
orthogonal to ta. If, in addition to the coordinate-independence of QS , it is Lorentz-covariant,
i.e. for example it does not depend on the choice for a normal to S (e.g. in the small sphere
approximation on ta) intrinsically, then the different terms in the above expression must depend
on the boost gauge of the external observer ta in the same way. Therefore, a = c, whenever the
first and the third terms can in fact be written as r3 a taGabK

b. Then, comparing Equation (30)
with Equation (28), we see that a = −1/(6G), and then the term r3 bRtaK

a would have to be
interpreted as the contribution of the gravitational ‘field’ to the quasi-local energy-momentum of
the matter + gravity system. However, this contributes only to energy but not to linear momentum
in any frame defined by the observer ta, even in a general spacetime. This seems to be quite
unreasonable. Furthermore, even if the matter fields satisfy the dominant energy condition, QSr

given by Equation (30) can be negative even for c = a unless b = 0. Thus, in the leading r3 order in
non-vacuum any coordinate and Lorentz-covariant quasi-local energy-momentum expression which
is non-spacelike and future pointing should be proportional to the energy-momentum density of the
matter fields seen by the observer ta times the Euclidean volume of the 3-ball of radius r.

If a neighbourhood of p is vacuum, then the r3 order term is vanishing, and the fourth order
term must be built from ∇eCabcd. However, the only scalar polynomial expression of ta, gab, εabcd,
∇eCabcd and the generator vector Ka, depending on the latter two linearly, is the zero. Thus the
r4 order term in vacuum is also vanishing. In the fifth order the only non-zero terms are quadratic
in the various parts of the Weyl tensor, yielding

QSr
[K] = r5

[(

aEabE
ab + bHabH

ab + cEabH
ab
)

tc + dEaeH
e
bε

ab
c

]

Kc + O
(

r6
)

(31)

for some constants a, b, c, and d, where Eab := Caebf t
etf is the electric and Hab := ∗Caebf t

etf :=
1
2εae

cdCcdbf t
etf is the magnetic part of the Weyl curvature, and εabc := εabcdt

d is the induced
volume 3-form. However, using the identities CabcdC

abcd = 8(EabE
ab −HabH

ab), Cabcd ∗ Cabcd =
16EabH

ab, 4Tabcdt
atbtctd = EabE

ab + HabH
ab and 2Tabcdt

atbtcP d
e = EabH

a
cε

bc
e, we can rewrite

the above formula to

QSr
[K] = r5

[(

2(a+ b)Tabcdt
atbtctd + 1

16 (a− b)CabcdC
abcd+

+ 1
16cCabcd ∗ Cabcd

)

te + 2dTabcdt
atbtcP d

e

]

Ke + O
(

r6
)

. (32)

Again, if QS does not depend on ta intrinsically, then d = (a + b), whenever the first and the
fourth terms together can be written into the Lorentz covariant form 2r5 d Tabcdt

atbtcKd. In a
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general expression the curvature invariants CabcdC
abcd and Cabcd ∗ Cabcd may be present. Since,

however, Eab and Hab at a given point are independent, these invariants can be arbitrarily large
positive or negative, and hence for a 6= b or c 6= 0 the quasi-local energy-momentum could not be
future pointing and non-spacelike. Therefore, in vacuum in the leading r5 order any coordinate
and Lorentz-covariant quasi-local energy-momentum expression which is non-spacelike and future
pointing must be proportional to the Bel–Robinson ‘momentum’ Tabcdt

atbtc.

Obviously, the same analysis can be repeated for any other quasi-local quantity. For quasi-local
angular momentum QS has the structure

∮

S(∂µgαβ)r dS, while the area of S is
∮

S dS. Then the
leading term in the expansion of the angular momentum is r4 and r6 order in non-vacuum and
vacuum, respectively, while the first non-trivial correction to the area 4πr2 is of order r4 and r6 in
non-vacuum and vacuum, respectively.

On the small geodesic sphere Sr of radius r in the given spacelike hypersurface Σ one can
introduce the complex null tangents ma and m̄a above, and if ta is the future pointing unit normal
of Σ and va the outward directed unit normal of Sr in Σ, then we can define la := ta + va and
2na := ta − va. Then {la, na,ma, m̄a} is a Newman–Penrose complex null tetrad, and the relevant
GHP equations can be solved for the spin coefficients in terms of the curvature components at p.

The small ellipsoids are defined as follows [235]. If f is any smooth function on Σ with a
non-degenerate minimum at p ∈ Σ with minimum value f(p) = 0, then, at least on an open
neighbourhood U of p in Σ the level surfaces Sr :=

{

q ∈ Σ | 2f(q) = r2
}

are smooth compact
2-surfaces homeomorphic to S2. Then, in the r → 0 limit, the surfaces Sr look like small nested
ellipsoids centred in p. The function f is usually ‘normalized’ so that habDaDbf |p = −3.

4.2.3 Large spheres near the spatial infinity

Near spatial infinity we have the a priori 1/r and 1/r2 fall-off for the 3-metric hab and extrinsic
curvature χab, respectively, and both the evolution equations of general relativity and the con-
servation equation T ab

;b = 0 for the matter fields preserve these conditions. The spheres Sr of
coordinate radius r in Σ are called large spheres if the values of r are large enough such that the
asymptotic expansions of the metric and extrinsic curvature are legitimate7. Introducing some
coordinate system, e.g. the complex stereographic coordinates, on one sphere and then extending
that to the whole Σ along the normals va of the spheres, we obtain a coordinate system (r, ζ, ζ̄)
on Σ. Let εA

A = {oA, ιA}, A = 0, 1, be a GHP spinor dyad on Σ adapted to the large spheres in

such a way that ma := oAῑA
′

and m̄a = ιAōA′

are tangent to the spheres and ta = 1
2o

AōA′

+ ιAῑA
′

,
the future directed unit normal of Σ. These conditions fix the spinor dyad completely, and, in
particular, va = 1

2o
AōA′ − ιAῑA

′

, the outward directed unit normal to the spheres tangent to Σ.

The fall-off conditions yield that the spin coefficients tend to their flat spacetime value like 1/r2

and the curvature components to zero like 1/r3. Expanding the spin coefficients and curvature
components as power series of 1/r, one can solve the field equations asymptotically (see [48, 44] for
a different formalism). However, in most calculations of the large sphere limit of the quasi-local
quantities only the leading terms of the spin coefficients and curvature components appear. Thus
it is not necessary to solve the field equations for their second or higher order non-trivial expansion
coefficients.

Using the flat background metric 0hab and the corresponding derivative operator 0De we can
define a spinor field 0λA to be constant if 0De0λA = 0. Obviously, the constant spinors form a two
complex dimensional vector space. Then by the fall-off properties De0λA = O(r−2). Hence we can
define the asymptotically constant spinor fields to be those λA that satisfy DeλA = O(r−2), where
De is the intrinsic Levi-Civita derivative operator. Note that this implies that, with the notations

7Because of the fall-off, no essential ambiguity in the definition of the large spheres arises from the use of the
coordinate radius instead of the physical radial distance.
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of Equation (25), all the chiral irreducible parts, ∆+λ, ∆−λ, T +λ, and T −λ, of the derivative of
the asymptotically constant spinor field λA are O(r−2).

4.2.4 Large spheres near null infinity

Let the spacetime be asymptotically flat at future null infinity in the sense of Penrose [300, 301, 302,
313] (see also [151]), i.e. the physical spacetime can be conformally compactified by an appropriate
boundary I +. Then future null infinity I + will be a null hypersurface in the conformally rescaled
spacetime. Topologically it is R×S2, and the conformal factor can always be chosen such that the
induced metric on the compact spacelike slices of I + is the metric of the unit sphere. Fixing such
a slice S0 (called ‘the origin cut of I +’) the points of I + can be labeled by a null coordinate,
namely the affine parameter u ∈ R along the null geodesic generators of I + measured from S0

and, for example, the familiar complex stereographic coordinates (ζ, ζ̄) ∈ S2, defined first on the
unit sphere S0 and then extended in a natural way along the null generators to the whole I +.
Then any other cut S of I + can be specified by a function u = f(ζ, ζ̄). In particular, the cuts
Su := {u = const.} are obtained from S0 by a pure time translation.

The coordinates (u, ζ, ζ̄) can be extended to an open neighbourhood of I + in the spacetime in
the following way. Let Nu be the family of smooth outgoing null hypersurfaces in a neighbourhood
of I + such that they intersect the null infinity just in the cuts Su, i.e. Nu ∩ I + = Su. Then let
r be the affine parameter in the physical metric along the null geodesic generators of Nu. Then
(u, r, ζ, ζ̄) forms a coordinate system. The u = const., r = const. 2-surfaces Su,r (or simply Sr if no
confusion can arise) are spacelike topological 2-spheres, which are called large spheres of radius r
near future null infinity. Obviously, the affine parameter r is not unique, its origin can be changed
freely: r̄ := r + g(u, ζ, ζ̄) is an equally good affine parameter for any smooth g. Imposing certain
additional conditions to rule out such coordinate ambiguities we arrive at a ‘Bondi-type coordinate
system’8. In many of the large sphere calculations of the quasi-local quantities the large spheres
should be assumed to be large spheres not only in a general null, but in a Bondi-type coordinate
system. For the detailed discussion of the coordinate freedom left at the various stages in the
introduction of these coordinate systems, see for example [290, 289, 84].

In addition to the coordinate system we need a Newman–Penrose null tetrad, or rather a GHP
spinor dyad, εA

A = {oA, ιA}, A = 0, 1, on the hypersurfaces Nu. (Thus boldface indices are referring

to the GHP spin frame.) It is natural to choose oA such that la := oAōA′

be the tangent (∂/∂r)a

of the null geodesic generators of Nu, and oA itself be constant along la. Newman and Unti [290]
chose ιA to be parallel propagated along la. This choice yields the vanishing of a number of spin
coefficients (see for example the review [289]). The asymptotic solution of the Einstein–Maxwell
equations as a series of 1/r in this coordinate and tetrad system is given in [290, 134, 312], where
all the non-vanishing spin coefficients and metric and curvature components are listed. In this
formalism the gravitational waves are represented by the u-derivative σ̇0 of the asymptotic shear
of the null geodesic generators of the outgoing null hypersurfaces Nu.

From the point of view of the large sphere calculations of the quasi-local quantities the choice of
Newman and Unti for the spinor basis is not very convenient. It is more natural to adapt the GHP
spin frame to the family of the large spheres of constant ‘radius’ r, i.e. to require ma := oAῑA

′

and
m̄a = ιAōA′

to be tangents of the spheres. This can be achieved by an appropriate null rotation of
the Newman–Unti basis about the spinor oA. This rotation yields a change of the spin coefficients
and the metric and curvature components. As far as the present author is aware of, this rotation
with the highest accuracy was done for the solutions of the Einstein–Maxwell system by Shaw [338].

In contrast to the spatial infinity case, the ‘natural’ definition of the asymptotically constant
spinor fields yields identically zero spinors in general [83]. Nontrivial constant spinors in this

8In the so-called Bondi coordinate system the radial coordinate is the luminosity distance rD := −1/ρ, which
tends to the affine parameter r asymptotically.
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sense could exist only in the absence of the outgoing gravitational radiation, i.e. when σ̇0 = 0.
In the language of Section 4.1.7, this definition would be limr→∞ r∆+λ = 0, limr→∞ r∆−λ = 0,
limr→∞ rT +λ = 0 and limr→∞ rT −λ = 0. However, as Bramson showed [83], half of these
conditions can be imposed. Namely, at future null infinity C+λ := (∆+ ⊕ T −)λ = 0 (and at past
null infinity C−λ := (∆− ⊕ T +)λ = 0) can always be imposed asymptotically, and it has two

linearly independent solutions λ
A
A , A = 0, 1, on I + (or on I −, respectively). The space S

A
∞

of its solutions turns out to have a natural symplectic metric εA B , and we refer to (S
A
∞, εA B )

as future asymptotic spin space. Its elements are called asymptotic spinors, and the equations
limr→∞ rC±λ = 0 the future/past asymptotic twistor equations. At I + asymptotic spinors are
the spinor constituents of the BMS translations: Any such translation is of the form KA A ′

λA
A λ̄

A′

A ′ =

KA A ′

λ1
A λ̄

1′

A ′ιAῑA
′

for some constant Hermitian matrix KA A ′

. Similarly, (apart from the proper

supertranslation content) the components of the anti-self-dual part of the boost-rotation BMS

vector fields are −σA B
i λ1

A λ
1
B , where σ

A B
i are the standard SU(2) Pauli matrices (divided by√

2) [363]. Asymptotic spinors can be recovered as the elements of the kernel of several other
operators built from ∆+, ∆−, T +, and T −, too. In the present review we use only the fact that
asymptotic spinors can be introduced as anti-holomorphic spinors (see also Section 8.2.1), i.e. the
solutions of H−λ := (∆− ⊕ T −)λ = 0 (and at past null infinity as holomorphic spinors), and as
special solutions of the 2-surface twistor equation T λ := (T + ⊕T −)λ = 0 (see also Section 7.2.1).
These operators, together with others reproducing the asymptotic spinors, are discussed in [363].

The Bondi–Sachs energy-momentum given in the Newman–Penrose formalism has already be-
come its ‘standard’ form. It is the unit sphere integral on the cut S of a combination of the leading
term ψ0

2 of the Weyl spinor component ψ2, the asymptotic shear σ0 and its u-derivative, weighted
by the first four spherical harmonics (see for example [289, 313]):

P
A B ′

BS = − 1

4πG

∮

(

ψ0
2 + σ0 ˙̄σ0

)

λ
A
0 λ̄

B ′

0′ dS, (33)

where λ
A
0 := λ

A
A o

A, A = 0, 1, are the oA-component of the vectors of a spin frame in the space of
the asymptotic spinors. (For the various realizations of these spinors see for example [363].)

Similarly, the various definitions for angular momentum at null infinity could be rewritten in
this formalism. Although there is no generally accepted definition for angular momentum at null
infinity in general spacetimes, in stationary spacetimes there is. It is the unit sphere integral on
the cut S of the leading term of the Weyl spinor component ψ̄1′ , weighted by appropriate (spin
weighted) spherical harmonics:

JA B =
1

8πG

∮

ψ̄0
1′λ

A
0 λ

B
0 dS. (34)

In particular, Bramson’s expression also reduces to this ‘standard’ expression in the absence of the
outgoing gravitational radiation [86].

4.2.5 Other special situations

In the weak field approximation of general relativity [382, 22, 387, 313, 227] the gravitational field
is described by a symmetric tensor field hab on Minkowski spacetime (R4, g0

ab), and the dynamics
of the field hab is governed by the linearized Einstein equations, i.e. essentially the wave equa-
tion. Therefore, the tools and techniques of the Poincaré-invariant field theories, in particular the
Noether–Belinfante–Rosenfeld procedure outlined in Section 2.1 and the ten Killing vectors of the
background Minkowski spacetime, can be used to construct the conserved quantities. It turns out
that the symmetric energy-momentum tensor of the field hab is essentially the second order term
in the Einstein tensor of the metric gab := g0

ab +hab. Thus in the linear approximation the field hab
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does not contribute to the global energy-momentum and angular momentum of the matter + gravity
system, and hence these quantities have the form (5) with the linearized energy-momentum tensor
of the matter fields. However, as we will see in Section 7.1.1, this energy-momentum and angular
momentum can be re-expressed as a charge integral of the (linearized) curvature [349, 206, 313].

pp-waves spacetimes are defined to be those that admit a constant null vector field La, and they
are interpreted as describing pure plane-fronted gravitational waves with parallel rays. If matter
is present then it is necessarily pure radiation with wavevector La, i.e. T abLb = 0 holds [243]. A
remarkable feature of the pp-wave metrics is that, in the usual coordinate system, the Einstein
equations become a two dimensional linear equation for a single function. In contrast to the
approach adopted almost exclusively, Aichelburg [3] considered this field equation as an equation
for a boundary value problem. As we will see, from the point of view of the quasi-local observables
this is a particularly useful and natural standpoint. If a pp-wave spacetime admits an additional
spacelike Killing vector Ka with closed S1 orbits, i.e. it is cyclically symmetric too, then La and
Ka are necessarily commuting and are orthogonal to each other, because otherwise an additional
timelike Killing vector would also be admitted [351].

Since the final state of stellar evolution (the neutron star or the black hole state) is expected
to be described by an asymptotically flat stationary, axi-symmetric spacetime, the significance
of these spacetimes is obvious. It is conjectured that this final state is described by the Kerr–
Newman (either outer or black hole) solution with some well-defined mass, angular momentum
and electric charge parameters [387]. Thus axi-symmetric 2-surfaces in these solutions may provide
domains which are general enough but for which the quasi-local quantities are still computable.
According to a conjecture by Penrose [305], the (square root of the) area of the event horizon
provides a lower bound for the total ADM energy. For the Kerr–Newman black hole this area is
4π(2m2 − e2 + 2m

√
m2 − e2 − a2). Thus, particularly interesting 2-surfaces in these spacetimes

are the spacelike cross sections of the event horizon [62].

There is a well-defined notion of total energy-momentum not only in the asymptotically flat,
but even in the asymptotically anti-de-Sitter spacetimes too. This is the Abbott–Deser energy [1],
whose positivity has also been proven under similar conditions that we had to impose in the
positivity proof of the ADM energy [161]. (In the presence of matter fields, e.g. a self-interacting
scalar field, the fall-off properties of the metric can be weakened such that the ‘charges’ defined
at infinity and corresponding to the asymptotic symmetry generators remain finite [198].) The
conformal technique, initiated by Penrose, is used to give a precise definition of the asymptotically
anti-de-Sitter spacetimes and to study their general, basic properties in [27]. A comparison and
analysis of the various definitions of mass for asymptotically anti-de-Sitter metrics is given in [117].
Thus it is natural to ask whether a specific quasi-local energy-momentum expression is able to
reproduce the Abbott–Deser energy-momentum in this limit or not.

4.3 On lists of criteria of reasonableness of the quasi-local quantities

In the literature there are various, more or less ad hoc, ‘lists of criteria of reasonableness’ of the
quasi-local quantities (see for example [131, 111]). However, before discussing them, it seems useful
to formulate first some general principles that any quasi-local quantity should satisfy.

4.3.1 General expectations

In non-gravitational physics the notions of conserved quantities are connected with symmetries of
the system, and they are introduced through some systematic procedure in the Lagrangian and/or
Hamiltonian formalism. In general relativity the total energy-momentum and angular momentum
are 2-surface observables, thus we concentrate on them even at the quasi-local level. These facts
motivate our three a priori expectations:
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1. The quasi-local quantities that are 2-surface observables should depend only on the 2-surface
data, but they cannot depend e.g. on the way that the various geometric structures on S are
extended off the 2-surface. There seems to be no a priori reason why the 2-surface would have
to be restricted to have spherical topology. Thus, in the ideal case, the general construction
of the quasi-local energy-momentum and angular momentum should work for any closed
orientable spacelike 2-surface.

2. It is desirable to derive the quasi-local energy-momentum and angular momentum as the
charge integral (Lagrangian interpretation) and/or as the value of the Hamiltonian on the
constraint surface in the phase space (Hamiltonian interpretation). If they are introduced in
some other way, they should have a Lagrangian and/or Hamiltonian interpretation.

3. These quantities should correspond to the ‘quasi-symmetries’ of the 2-surface. In particular,
the quasi-local energy-momentum should be expected to be in the dual of the space of
the ‘quasi-translations’, and the angular momentum in the dual of the space of the ‘quasi-
rotations’.

To see that these conditions are non-trivial, let us consider the expressions based on the linkage
integral (16). LS [K] does not satisfy the first part of Requirement 1. In fact, it depends on the
derivative of the normal components of Ka in the direction orthogonal to S for any value of the
parameter α. Thus it depends not only on the geometry of S and the vector field Ka given on
the 2-surface, but on the way in which Ka is extended off the 2-surface. Therefore, LS [K] is ‘less
quasi-local’ than AS [ω] or HS [λ, µ̄] introduced in Sections 7.2.1 and 7.2.2, respectively.

We will see that the Hawking energy satisfies Requirement 1, but not Requirements 2 and 3.
The Komar integral (i.e. the linkage for α = 0) has the form of the charge integral of a superpo-
tential: 8πGKS [K] :=

∮

S ∇[aKb] 1
2εabcd, i.e. it has a Lagrangian interpretation. The corresponding

conserved Komar-current is defined by 8πGKC
a[K] := Ga

bK
b + ∇b∇[aKb]. However, its flux

integral on some compact spacelike hypersurface with boundary S := ∂Σ cannot be a Hamiltonian
on the ADM phase space in general. In fact, it is

KH [K] :=

∫

Σ
KC

a [K] ta dΣ =

=

∫

Σ

(cN + caN
a) dΣ +

1

8πG

∮

S
va

(

χa
bN

b −DaN +
1

2N
Ṅa

)

dS. (35)

Here c and ca are, respectively, the Hamiltonian and momentum constraints of the vacuum theory,
ta is the future directed unit normal to Σ, va is the outward directed unit normal to S in Σ,
and N and Na are the lapse and shift part of Ka, respectively, defined by Ka =: Nta + Na.
Thus KH[K] is a well-defined function of the configuration and velocity variables (N,Na, hab) and
(Ṅ , Ṅa, ḣab), respectively. However, since the velocity Ṅa cannot be expressed by the canonical
variables [396, 46], KH[K] can be written as a function on the ADM phase space only if the
boundary conditions at ∂Σ ensure the vanishing of the integral of vaṄ

a/N .

4.3.2 Pragmatic criteria

Since in certain special situations there are generally accepted definitions for the energy-momen-
tum and angular momentum, it seems reasonable to expect that in these situations the quasi-local
quantities reduce to them. One half of the pragmatic criteria is just this expectation, and the other
is a list of some a priori requirements on the behaviour of the quasi-local quantities.

One such list for the energy-momentum and mass, based mostly on [131, 111] and the properties
of the quasi-local energy-momentum of the matter fields of Section 2.2, might be the following:
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44 László B. Szabados

1.1 The quasi-local energy-momentum P
a
S must be a future pointing nonspacelike vector (as-

suming that the matter fields satisfy the dominant energy condition on some Σ for which
S = ∂Σ, and maybe some form of the convexity of S should be required) (‘positivity’).

1.2 P
a
S must be zero iff D(Σ) is flat, and null iff D(Σ) has a pp-wave geometry with pure

radiation (‘rigidity’).

1.3 P
a
S must give the correct weak field limit.

1.4 P
a
S must reproduce the ADM, Bondi–Sachs and Abbott–Deser energy-momenta in the

appropriate limits (‘correct large sphere behaviour’).

1.5 For small spheres P
a
S must give the expected results (‘correct small sphere behaviour’):

1. 4
3πr

3T abtb in non-vacuum and

2. kr5T abcdtbtctd in vacuum for some positive constant k and the Bel–Robinson tensor
T abcd.

1.6 For round spheres P
a
S must yield the ‘standard’ round sphere expression.

1.7 For marginally trapped surfaces the quasi-local mass mS must be the irreducible mass
√

Area(S)/16πG2.

Item 1.7 is motivated by the expectation that the quasi-local mass associated with the apparent
horizon of a black hole (i.e. the outermost marginally trapped surface in a spacelike slice) be just
the irreducible mass [131, 111]. Usually, mS is expected to be monotonic in some appropriate
sense [111]. For example, if S1 = ∂Σ for some achronal (and hence spacelike or null) hypersur-
face Σ in which S2 is a spacelike closed 2-surface and the dominant energy condition is satisfied
on Σ, then mS1

≥ mS2
seems to be a reasonable expectation [131]. (But see also the next Sec-

tion 4.3.3.) On the other hand, in contrast to the energy-momentum and angular momentum of
the matter fields on the Minkowski spacetime, the additivity of the energy-momentum (and an-
gular momentum) is not expected. In fact, if S1 and S2 are two connected 2-surfaces, then, for
example, the corresponding quasi-local energy-momenta would belong to different vector spaces,
namely to the dual of the space of the quasi-translations of the first and of the second 2-surface,
respectively. Thus, even if we consider the disjoint union S1 ∪ S2 to surround a single physical
system, then we can add the energy-momentum of the first to that of the second only if there
is some physically/geometrically distinguished rule defining an isomorphism between the different
vector spaces of the quasi-translations. Such an isomorphism would be provided for example by
some naturally chosen globally defined flat background. However, as we discussed in Section 3.1.1,
general relativity itself does not provide any background: The use of such a background contradicts
the complete diffeomorphism invariance of the theory. Nevertheless, the quasi-local mass and the
length of the quasi-local Pauli–Lubanski spin of different surfaces can be compared, because they
are scalar quantities.

Similarly, any reasonable quasi-local angular momentum expression J
a b
S may be expected to

satisfy the following:
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2.1 J
a b
S must give zero for round spheres.

2.2 For 2-surfaces with zero quasi-local mass the Pauli–Lubanski spin should be proportional
to the (null) energy-momentum 4-vector P

a
S .

2.3 J
a b
S must give the correct weak field limit.

2.4 J
a b
S must reproduce the generally accepted spatial angular momentum at the spatial infin-

ity, and in stationary spacetimes it should reduce to the ‘standard’ expression at the null
infinity as well (‘correct large sphere behaviour’).

2.5 For small spheres the anti-self-dual part of J
a b
S , defined with respect to the centre of the

small sphere (the ‘vertex’ in Section 4.2.2) is expected to give 4
3πr

3Tcdt
c(rεD(AtB)D′

) in

non-vacuum and Cr5Tcdef t
ctdte(rεF (AtB)F ′

) in vacuum for some constant C (‘correct small
sphere behaviour’).

Since there is no generally accepted definition for the angular momentum at null infinity, we cannot
expect anything definite there in non-stationary spacetimes. Similarly, there are inequivalent
suggestions for the centre-of-mass at the spatial infinity (see Sections 3.2.2 and 3.2.4).

4.3.3 Incompatibility of certain ‘natural’ expectations

As Eardley noted in [131], probably no quasi-local energy definition exists which would satisfy
all of his criteria. In fact, it is easy to see that this is the case. Namely, any quasi-local energy
definition which reduces to the ‘standard’ expression for round spheres cannot be monotonic, as the
closed Friedmann–Robertson–Walker or the ΩM,m spacetimes show explicitly. The points where
the monotonicity breaks down are the extremal (maximal or minimal) surfaces, which represent
event horizon in the spacetime. Thus one may argue that since the event horizon hides a portion of
spacetime, we cannot know the details of the physical state of the matter + gravity system behind
the horizon. Hence, in particular, the monotonicity of the quasi-local mass may be expected to
break down at the event horizon. However, although for stationary systems (or at the moment of
time symmetry of a time-symmetric system) the event horizon corresponds to an apparent horizon
(or to an extremal surface, respectively), for general non-stationary systems the concepts of the
event and apparent horizons deviate. Thus the causal argument above does not seem possible to
be formulated in the hypersurface Σ of Section 4.3.2. Actually, the root of the non-monotonicity
is the fact that the quasi-local energy is a 2-surface observable in the sense of Expectation 1
in Section 4.3.1 above. This does not mean, of course, that in certain restricted situations the
monotonicity (‘local monotonicity’) could not be proven. This local monotonicity may be based,
for example, on Lie dragging of the 2-surface along some special spacetime vector field.

On the other hand, in the literature sometimes the positivity and the monotonicity requirements
are confused, and there is an ‘argument’ that the quasi-local gravitational energy cannot be positive
definite, because the total energy of the closed universes must be zero. However, this argument
is based on the implicit assumption that the quasi-local energy is associated with a compact
three dimensional domain, which, together with the positive definiteness requirement would, in
fact, imply the monotonicity and a positive total energy for the closed universe. If, on the other
hand, the quasi-local energy-momentum is associated with 2-surfaces, then the energy may be
positive definite and not monotonic. The standard round sphere energy expression (26) in the
closed Friedmann–Robertson–Walker spacetime, or, more generally, the Dougan–Mason energy-
momentum (see Section 8.2.3) are such examples.
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5 The Bartnik Mass and its Modifications

5.1 The Bartnik mass

5.1.1 The main idea

One of the most natural ideas of quasi-localization of the familiar ADM mass is due to Bartnik [39,
38]. His idea is based on the positivity of the ADM energy, and, roughly, can be summarized as
follows. Let Σ be a compact, connected 3-manifold with connected boundary S, and let hab be a
(negative definite) metric and χab a symmetric tensor field on Σ such that they, as an initial data set,
satisfy the dominant energy condition: If 16πGµ := R+χ2−χabχ

ab and 8πGja := Db(χ
ab−χhab),

then µ ≥ (−jaja)1/2. For the sake of simplicity we denote the triple (Σ, hab, χab) by Σ. Then let us

consider all the possible asymptotically flat initial data sets (Σ̂, ĥab, χ̂ab) with a single asymptotic
end, denoted simply by Σ̂, which satisfy the dominant energy condition, have finite ADM energy
and are extensions of Σ above through its boundary S. The set of these extensions will be denoted
by E(Σ). By the positive energy theorem Σ̂ has non-negative ADM energy EADM(Σ̂), which is zero
precisely when Σ̂ is a data set for the flat spacetime. Then we can consider the infimum of the

ADM energies, inf
{

EADM(Σ̂) | Σ̂ ∈ E(Σ)
}

, where the infimum is taken on E(Σ). Obviously, by the

non-negativity of the ADM energies this infimum exists and is non-negative, and it is tempting to
define the quasi-local mass of Σ by this infimum9. However, it is easy to see that, without further
conditions on the extensions of (Σ, hab, χab), this infimum is zero. In fact, Σ can be extended to
an asymptotically flat initial data set Σ̂ with arbitrarily small ADM energy such that Σ̂ contains
a horizon (for example in the form of an apparent horizon) between the asymptotically flat end
and Σ. In particular, in the ‘ΩM,m-spacetime’, discussed in Section 4.2.1 on the round spheres, the
spherically symmetric domain bounded by the maximal surface (with arbitrarily large round-sphere
mass M/G) has an asymptotically flat extension, the ΩM,m-spacetime itself, with arbitrarily small
ADM mass m/G.

Obviously, the fact that the ADM energies of the extensions can be arbitrarily small is a
consequence of the presence of a horizon hiding Σ from the outside. This led Bartnik [39, 38] to
formulate his suggestion for the quasi-local mass of Σ. He concentrated on the time-symmetric
data sets (i.e. those for which the extrinsic curvature χab is vanishing), when the horizon appears
to be a minimal surface of topology S2 in Σ̂ (see for example [156]), and the dominant energy
condition is just the requirement of the non-negativity of the scalar curvature: R ≥ 0. Thus, if
E0(Σ) denotes the set of asymptotically flat Riemannian geometries Σ̂ = (Σ̂, ĥab) with non-negative
scalar curvature and finite ADM energy that contain no stable minimal surface, then Bartnik’s
mass is

mB (Σ) := inf
{

EADM(Σ̂) | Σ̂ ∈ E0 (Σ)
}

. (36)

The ‘no-horizon’ condition on Σ̂ implies that topologically Σ is a 3-ball. Furthermore, the definition
of E0(Σ) in its present form does not allow one to associate the Bartnik mass to those 3-geometries
(Σ, hab) that contain minimal surfaces inside Σ. Although formally the maximal 2-surfaces inside
Σ are not excluded, any asymptotically flat extension of such a Σ would contain a minimal surface.
In particular, the spherically symmetric 3-geometry with line element dl2 = −dr2 − sin2 r(dθ2 +
sin2 θ dφ2) with (θ, φ) ∈ S2 and r ∈ [0, r0], π/2 < r0 < π, has a maximal 2-surface at r = π/2, and
any of its asymptotically flat extensions necessarily contains a minimal surface of area not greater
than 4π sin2 r0. Thus the Bartnik mass (according to the original definition given in [39, 38]) cannot
be associated with every compact time-symmetric data set (Σ, hab) even if Σ is topologically trivial.
Since for 0 < r0 < π/2 this data set can be extended without any difficulty, this example shows that

9Since we take the infimum, we could equally take the ADM masses, which are the minimum values of the zero-th
component of the energy-momentum four-vectors in the different Lorentz frames, instead of the energies.
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mB is associated with the 3-dimensional data set Σ and not only to the 2-dimensional boundary
∂Σ.

Of course, to rule out this limitation, one can modify the original definition by considering the
set Ẽ0(S) of asymptotically flat Riemannian geometries Σ̂ = (Σ̂, ĥab) (with non-negative scalar
curvature, finite ADM energy and with no stable minimal surface) which contain (S, qab) as an
isometrically embedded Riemannian submanifold, and define m̃B(S) by Equation (36) with Ẽ0(S)
instead of E0(Σ). Obviously, this m̃B(S) could be associated with a larger class of 2-surfaces than
the original mB(Σ) to compact 3-manifolds, and 0 ≤ m̃B(∂Σ) ≤ mB(Σ) holds.

In [208, 41] the set E0(Σ) was allowed to include extensions Σ̂ of Σ having boundaries as compact
outermost horizons, whenever the corresponding ADM energies are still non-negative [159], and
hence mB(Σ) is still well-defined and non-negative. (For another definition for E0(Σ) allowing
horizons in the extensions but excluding them between Σ and the asymptotic end, see [87] and
Section 5.2 below.)

Bartnik suggested a definition for the quasi-local mass of a spacelike 2-surface S (together
with its induced metric and the two extrinsic curvatures), too [39]. He considered those glob-
ally hyperbolic spacetimes M̂ := (M̂, ĝab) that satisfy the dominant energy condition, admit an
asymptotically flat (metrically complete) Cauchy surface Σ̂ with finite ADM energy, have no event
horizon and in which S can be embedded with its first and second fundamental forms. Let E0(S)
denote the set of these spacetimes. Since the ADM energy EADM(M̂) is non-negative for any
M̂ ∈ E0(S) (and is zero precisely for flat M̂), the infimum

mB (S) := inf
{

EADM(M̂) | M̂ ∈ E0 (S)
}

(37)

exists and is non-negative. Although it seems plausible that mB(∂Σ) is only the ‘spacetime version’
of mB(Σ), without the precise form of the no-horizon conditions in E0(Σ) and that in E0(S) they
cannot be compared even if the extrinsic curvature were allowed in the extensions Σ̂ of Σ.

5.1.2 The main properties of mB(Σ)

The first immediate consequence of Equation (36) is the monotonicity of the Bartnik mass: If
Σ1 ⊂ Σ2, then E0(Σ2) ⊂ E0(Σ1), and hence mB(Σ1) ≤ mB(Σ2). Obviously, by definition (36) one
has mB(Σ) ≤ mADM(Σ̂) for any Σ̂ ∈ E0(Σ). Thus if m is any quasi-local mass functional which
is larger than mB (i.e. which assigns a non-negative real to any Σ such that m(Σ) ≥ mB(Σ) for
any allowed Σ), furthermore if m(Σ) ≤ mADM(Σ̂) for any Σ̂ ∈ E0(Σ), then by the definition of the
infimum in Equation (36) one has mB(Σ) ≥ m(Σ)−ε ≥ mB(Σ)−ε for any ε > 0. Therefore, mB is
the largest mass functional satisfying mB(Σ) ≤ mADM(Σ̂) for any Σ̂ ∈ E0(Σ). Another interesting
consequence of the definition of mB, due to W. Simon, is that if Σ̂ is any asymptotically flat, time
symmetric extension of Σ with non-negative scalar curvature satisfying mADM(Σ̂) < mB(Σ), then
there is a black hole in Σ̂ in the form of a minimal surface between Σ and the infinity of Σ̂ (see for
example [41]).

As we saw, the Bartnik mass is non-negative, and, obviously, if Σ is flat (and hence is a data
set for the flat spacetime), then mB(Σ) = 0. The converse of this statement is also true [208]: If

mB(Σ) = 0, then Σ is locally flat. The Bartnik mass tends to the ADM mass [208]: If (Σ̂, ĥab) is
an asymptotically flat Riemannian 3-geometry with non-negative scalar curvature and finite ADM
mass mADM(Σ̂), and if {Σn}, n ∈ N, is a sequence of solid balls of coordinate radius n in Σ̂, then
limn→∞mB(Σn) = mADM(Σ̂). The proof of these two results is based on the use of the Hawking
energy (see Section 6.1), by means of which a positive lower bound for mB(Σ) can be given near the
non-flat points of Σ. In the proof of the second statement one must use the fact that the Hawking
energy tends to the ADM energy, which, in the time-symmetric case, is just the ADM mass.

The proof that the Bartnik mass reduces to the ‘standard expression’ for round spheres is
a nice application of the Riemannian Penrose inequality [208]: Let Σ be a spherically symmetric
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Riemannian 3-geometry with spherically symmetric boundary S := ∂Σ. One can form its ‘standard’
round-sphere energy E(S) (see Section 4.2.1), and take its spherically symmetric asymptotically
flat vacuum extension Σ̂SS (see [39, 41]). By the Birkhoff theorem the exterior part of Σ̂SS is a
part of a t = const. hypersurface of the vacuum Schwarzschild solution, and its ADM mass is
just E(S). Then any asymptotically flat extension Σ̂ of Σ can also be considered as (a part of)
an asymptotically flat time-symmetric hypersurface with minimal surface, whose area is 16πG2

EADM(Σ̂SS). Thus by the Riemannian Penrose inequality [208] EADM(Σ̂) ≥ EADM(Σ̂SS) = E(S).
Therefore, the Bartnik mass of Σ is just the ‘standard’ round sphere expression E(S).

5.1.3 The computability of the Bartnik mass

Since for any given Σ the set E0(Σ) of its extensions is a huge set, it is almost hopeless to param-
eterize it. Thus, by the very definition, it seems very difficult to compute the Bartnik mass for a
given, specific (Σ, hab). Without some computational method the potentially useful properties of
mB(Σ) would be lost from the working relativist’s arsenal.

Such a computational method might be based on a conjecture of Bartnik [39, 41]: The infimum

in definition (36) of the mass mB(Σ) is realized by an extension (Σ̂, ĥab) of (Σ, hab) such that the

exterior region, (Σ̂ − Σ, ĥab|Σ̂−Σ), is static, the metric is Lipschitz-continuous across the 2-surface

∂Σ ⊂ Σ̂, and the mean curvatures of ∂Σ of the two sides are equal. Therefore, to compute mB

for a given (Σ, hab), one should find an asymptotically flat, static vacuum metric ĥab satisfying

the matching conditions on ∂Σ, and the Bartnik mass is the ADM mass of ĥab. As Corvino
showed [119], if there is an allowed extension Σ̂ of Σ for which mADM(Σ̂) = mB(Σ), then the
extension Σ̂ − Σ is static; furthermore, if Σ1 ⊂ Σ2, mB(Σ1) = mB(Σ2) and Σ2 has an allowed
extension Σ̂ for which mB(Σ2) = mADM(Σ̂), then Σ2 − Σ1 is static. Thus the proof of Bartnik’s
conjecture is equivalent to the proof of the existence of such an allowed extension. The existence of
such an extension is proven in [267] for geometries (Σ, hab) close enough to the Euclidean one and
satisfying a certain reflection symmetry, but the general existence proof is still lacking. Bartnik’s
conjecture is that (Σ, hab) determines this exterior metric uniquely [41]. He conjectures [39, 41]
that a similar computation method can be found for the mass mB(S), defined in Equation (37),
too, where the exterior metric should be stationary. This second conjecture is also supported by
partial results [120]: If (Σ, hab, χab) is any compact vacuum data set, then it has an asymptotically
flat vacuum extension which is a spacelike slice of a Kerr spacetime outside a large sphere near
spatial infinity.

To estimate mB(Σ) one can construct admissible extensions of (Σ, hab) in the form of the metrics
in quasi-spherical form [40]. If the boundary ∂Σ is a metric sphere of radius r with non-negative
mean curvature k, then mB(Σ) can be estimated from above in terms of r and k.

5.2 Bray’s modifications

Another, slightly modified definition for the quasi-local mass was suggested by Bray [87, 90]. Here
we summarize his ideas.

Let Σ = (Σ, hab, χab) be any asymptotically flat initial data set with finitely many asymptotic
ends and finite ADM masses, and suppose that the dominant energy condition is satisfied on Σ.
Let S be any fixed 2-surface in Σ which encloses all the asymptotic ends except one, say the i-th
(i.e. let S be homologous to a large sphere in the i-th asymptotic end). The outside region with
respect to S, denoted by O(S), will be the subset of Σ containing the i-th asymptotic end and
bounded by S, while the inside region, I(S), is the (closure of) Σ − O(S). Next Bray defines the
‘extension’ Σ̂e of S by replacing O(S) by a smooth asymptotically flat end of any data set satisfying
the dominant energy condition. Similarly, the ‘fill-in’ Σ̂f of S is obtained from Σ by replacing I(S)
by a smooth asymptotically flat end of any data set satisfying the dominant energy condition.
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Finally, the surface S will be called outer-minimizing if for any closed 2-surface S̃ enclosing S one
has Area(S) ≤ Area(S̃).

Let S be outer-minimizing, and let E(S) denote the set of extensions of S in which S is still
outer-minimizing, and F(S) denote the set of fill-ins of S. If Σ̂f ∈ F(S) and AΣ̂f

denotes the

infimum of the area of the 2-surfaces enclosing all the ends of Σ̂f except the outer one, then Bray
defines the outer and inner mass, mout(S) and min(S), respectively, by

mout (S) :=
{

mADM(Σ̂e) | Σ̂e ∈ E (S)
}

,

min (S) :=
{

AΣ̂f
| Σ̂f ∈ F (S)

}

.

mout(S) deviates slightly from Bartnik’s mass (36) even if the latter would be defined for non-time-
symmetric data sets, because Bartnik’s ‘no-horizon condition’ excludes apparent horizons from the
extensions, while Bray’s condition is that S be outer-minimizing.

A simple consequence of the definitions is the monotonicity of these masses: If S2 and S1 are
outer-minimizing 2-surfaces such that S2 encloses S1, then min(S2) ≥ min(S1) and mout(S2) ≥
mout(S1). Furthermore, if the Penrose inequality holds (for example in a time-symmetric data
set, for which the inequality has been proved), then for outer-minimizing surfaces mout(S) ≥
min(S) [87, 90]. Furthermore, if Σi is a sequence such that the boundaries ∂Σi shrink to a minimal
surface S, then the sequence mout(∂Σi) tends to the irreducible mass

√

Area(S)/(16πG2) [41].
Bray defines the quasi-local mass of a surface not simply to be a number, but the whole closed
interval [min(S),mout(S)]. If S encloses the horizon in the Schwarzschild data set, then the inner
and outer masses coincide, and Bray expects that the converse is also true: If min(S) = mout(S)
then S can be embedded into the Schwarzschild spacetime with the given 2-surface data on S [90].
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6 The Hawking Energy and its Modifications

6.1 The Hawking energy

6.1.1 The definition

Studying the perturbation of the dust-filled k = −1 Friedmann–Robertson–Walker spacetimes,
Hawking found that

EH (S) :=

√

Area(S)

16πG2

(

1 +
1

2π

∮

S
ρρ′ dS

)

=

=

√

Area(S)

16πG2

1

4π

∮

S

(

σσ′ + σ̄σ̄′ − ψ2 − ψ̄2′ + 2φ11 + 2Λ
)

dS (38)

behaves as an appropriate notion of energy surrounded by the spacelike topological 2-sphere S [171].
Here we used the Gauss–Bonnet theorem and the GHP form of Equations (22, 23) for F to express
ρρ′ by the curvature components and the shears. Thus the Hawking energy is genuinely quasi-local.

The Hawking energy has the following clear physical interpretation even in a general spacetime,
and, in fact, EH can be introduced in this way. Starting with the rough idea that the mass-energy
surrounded by a spacelike 2-sphere S should be the measure of bending of the ingoing and outgoing
light rays orthogonal to S, and recalling that under a boost gauge transformation la 7→ αla,
na 7→ α−1na the convergences ρ and ρ′ transform as ρ 7→ αρ and ρ′ 7→ α−1ρ′, respectively, the
energy must have the form C + D

∮

S ρρ
′ dS, where the unspecified parameters C and D can be

determined in some special situations. For metric 2-spheres of radius r in the Minkowski spacetime,
for which ρ = −1/r and ρ′ = 1/2r, we expect zero energy, thus D = C/2(π). For the event horizon
of a Schwarzschild black hole with mass parameter m, for which ρ = 0 = ρ′, we expect m/G,
which can be expressed by the area of S. Thus C2 = Area(S)/(16πG2), and hence we arrive at
Equation (38).

6.1.2 The Hawking energy for spheres

Obviously, for round spheres EH reduces to the standard expression (26). This implies, in partic-
ular, that the Hawking energy is not monotonic in general. Since for a Killing horizon (e.g. for a
stationary event horizon) ρ = 0, the Hawking energy of its spacelike spherical cross sections S is
√

Area(S)/(16πG2). In particular, for the event horizon of a Kerr–Newman black hole it is just

the familiar irreducible mass
√

2m2 − e2 + 2m
√
m2 − e2 − a2/(2G).

For a small sphere of radius r with centre p ∈ M in non-vacuum spacetimes it is 4π
3 r

3Tabt
atb,

while in vacuum it is 2
45Gr

5Tabcdt
atbtctd, where Tab is the energy-momentum tensor and Tabcd is

the Bel–Robinson tensor at p [204]. The first result shows that in the lowest order the gravitational
‘field’ does not have a contribution to the Hawking energy, that is due exclusively to the matter
fields. Thus in vacuum the leading order of EH must be higher than r3. Then even a simple
dimensional analysis shows that the number of the derivatives of the metric in the coefficient of
the rk order term in the power series expansion of EH is (k − 1). However, there are no tensorial
quantities built from the metric and its derivatives such that the total number of the derivatives
involved would be three. Therefore, in vacuum, the leading term is necessarily of order r5, and
its coefficient must be a quadratic expression of the curvature tensor. It is remarkable that for
small spheres EH is positive definite both in non-vacuum (provided the matter fields satisfy, for
example, the dominant energy condition) and vacuum. This shows, in particular, that EH should be
interpreted as energy rather than as mass: For small spheres in a pp-wave spacetime EH is positive,
while, as we saw this for the matter fields in Section 2.2.3, a mass expression could be expected to

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-4

http://www.livingreviews.org/lrr-2004-4


Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article 51

be zero. (We will see in Sections 8.2.3 and 13.5 that, for the Dougan–Mason energy-momentum,
the vanishing of the mass characterizes the pp-wave metrics completely.)

Using the second expression in Equation (38) it is easy to see that at future null infinity EH

tends to the Bondi–Sachs energy. A detailed discussion of the asymptotic properties of EH near null
infinity, both for radiative and stationary spacetimes is given in [338, 340]. Similarly, calculating
EH for large spheres near spatial infinity in an asymptotically flat spacelike hypersurface, one can
show that it tends to the ADM energy.

6.1.3 Positivity and monotonicity properties

In general the Hawking energy may be negative, even in the Minkowski spacetime. Geometrically
this should be clear, since for an appropriately general (e.g. concave) 2-surface S the integral
∮

S ρρ
′ dS could be less than −2π. Indeed, in flat spacetime EH is proportional to

∮

S(σσ′ + σ̄σ̄′) dS
by the Gauss equation. For topologically spherical 2-surfaces in the t = const. spacelike hyperplane
of Minkowski spacetime σσ′ is real and non-positive, and it is zero precisely for metric spheres,
while for 2-surfaces in the r = const. timelike cylinder σσ′ is real and non-negative, and it is
zero precisely for metric spheres10. If, however, S is ‘round enough’ (not to be confused with the
round spheres in Section 4.2.1), which is some form of a convexity condition, then EH behaves
nicely [111]: S will be called round enough if it is a submanifold of a spacelike hypersurface Σ,
and if among the 2-dimensional surfaces in Σ which enclose the same volume as S does, S has
the smallest area. Then it is proven by Christodoulou and Yau [111] that if S is round enough in
a maximal spacelike slice Σ on which the energy density of the matter fields is non-negative (for
example if the dominant energy condition is satisfied), then the Hawking energy is non-negative.

Although the Hawking energy is not monotonic in general, it has interesting monotonicity
properties for special families of 2-surfaces. Hawking considered one-parameter families of spacelike
2-surfaces foliating the outgoing and the ingoing null hypersurfaces, and calculated the change of
EH [171]. These calculations were refined by Eardley [131]. Starting with a weakly future convex
2-surface S and using the boost gauge freedom, he introduced a special family Sr of spacelike
2-surfaces in the outgoing null hypersurface N , where r will be the luminosity distance along the
outgoing null generators. He showed that EH(Sr) is non-decreasing with r, provided the dominant
energy condition holds on N . Similarly, for weakly past convex S and the analogous family of
surfaces in the ingoing null hypersurface EH(Sr) is non-increasing. Eardley also considered a
special spacelike hypersurface, filled by a family of 2-surfaces, for which EH(Sr) is non-decreasing.
By relaxing the normalization condition lan

a = 1 for the two null normals to lan
a = exp(f) for

some f : S → R, Hayward obtained a flexible enough formalism to introduce a double-null foliation
(see Section 11.2 below) of a whole neighbourhood of a mean convex 2-surface by special mean
convex 2-surfaces [182]. (For the more general GHP formalism in which lan

a is not fixed, see [312].)
Assuming that the dominant energy condition holds, he showed that the Hawking energy of these
2-surfaces is non-decreasing in the outgoing, and non-increasing in the ingoing direction.

In contrast to the special foliations of the null hypersurfaces above, Frauendiener defined a
special spacelike vector field, the inverse mean curvature vector in the spacetime [145]. If S is a
weakly future and past convex 2-surface, then qa := 2Qa/(QbQ

b) = −[1/(2ρ)]la − [1/(2ρ′)]na is
an outward directed spacelike normal to S. Here Qb is the trace of the extrinsic curvature tensor:
Qb := Qa

ab (see Section 4.1.2). Starting with a single weakly future and past convex 2-surface,
Frauendiener gives an argument for the construction of a one-parameter family St of 2-surfaces
being Lie-dragged along its own inverse mean curvature vector qa. Hence this family of surfaces
would be analogous to the solution of the geodesic equation, where the initial point and direction
in that point specify the whole solution, at least locally. Assuming that such a family of surfaces
(and hence the vector field qa on the 3-submanifold swept by St) exists, Frauendiener showed that

10I thank Paul Tod for pointing this out to me.
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the Hawking energy is non-decreasing along the vector field qa if the dominant energy condition
is satisfied. However, no investigation has been made to prove the existence of such a family of
surfaces. Motivated by this result, Malec, Mars, and Simon [261] considered spacelike hypersurfaces
with an inverse mean curvature flow of Geroch thereon (see Section 6.2.2). They showed that if the
dominant energy condition and certain additional (essentially technical) assumptions hold, then
the Hawking energy is monotonic. These two results are the natural adaptations for the Hawking
energy of the corresponding results known for some time for the Geroch energy, aiming to prove
the Penrose inequality. We return to this latter issue in Section 13.2 only for a very brief summary.

6.1.4 Two generalizations

Hawking defined not only energy, but spatial momentum as well, completely analogously to how
the spatial components of the Bondi–Sachs energy-momentum are related to the Bondi energy:

P
a
H (S) =

√

Area(S)

16πG2

1

4π

∮

S

(

σσ′ + σ̄σ̄′ − ψ2 − ψ̄2′ + 2φ11 + 2Λ
)

W a dS, (39)

where W a , a = 0, . . . , 3, are essentially the first four spherical harmonics:

W 0 = 1, W 1 =
ζ + ζ̄

1 + ζζ̄
, W 2 =

1

i

ζ − ζ̄

1 + ζζ̄
, W 3 =

1 − ζζ̄

1 + ζζ̄
. (40)

Here ζ and ζ̄ are the standard complex stereographic coordinates on S ≈ S2.
Hawking considered the extension of the definition of EH(S) to higher genus 2-surfaces also

by the second expression in Equation (38). Then in the expression analogous to the first one in
Equation (38) the genus of S appears.

6.2 The Geroch energy

6.2.1 The definition

Suppose that the 2-surface S for which EH is defined is embedded in the spacelike hypersurface
Σ. Let χab be the extrinsic curvature of Σ in M and kab the extrinsic curvature of S in Σ. (In
Section 4.1.2 we denoted the latter by νab.) Then 8ρρ′ = (χabq

ab)2 − (kabq
ab)2, by means of which

EH (S) =

√

Area(S)

16πG2

(

1 − 1

16π

∮

S

(

kabq
ab
)2
dS +

1

16π

∮

S

(

χabq
ab
)2
dS
)

≥

≥
√

Area(S)

16πG2

(

1 − 1

16π

∮

S

(

kabq
ab
)2
dS
)

=

=
1

16π

√

Area(S)

16πG2

∮

S

(

2 SR−
(

kabq
ab
)2
)

dS =: EG (S) . (41)

In the last step we used the Gauss–Bonnet theorem for S ≈ S2. EG(S) is known as the Geroch
energy [150]. Thus it is not greater than the Hawking energy, and, in contrast to EH, it depends
not only on the 2-surface S, but the hypersurface Σ as well.

The calculation of the small sphere limit of the Geroch energy was saved by observing [204]
that, by Equation (41), the difference of the Hawking and the Geroch energies is proportional to
√

Area(S)×
∮

S(χabq
ab)2 dS. Since, however, χabq

ab – for the family of small spheres Sr – does
not tend to zero in the r → 0 limit, in general this difference is O(r3). It is zero if Σ is spanned
by spacelike geodesics orthogonal to ta at p. Thus, for general Σ, the Geroch energy does not
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give the expected 4π
3 r

3Tabt
atb result. Similarly, in vacuum the Geroch energy deviates from the

Bel–Robinson energy in r5 order even if Σ is geodesic at p.
Since EH(S) ≥ EG(S) and since the Hawking energy tends to the ADM energy, the large sphere

limit of EG(S) in an asymptotically flat Σ cannot be greater than the ADM energy. In fact, it is
also precisely the ADM energy [150].

6.2.2 Monotonicity properties

The Geroch energy has interesting positivity and monotonicity properties along a special flow in
Σ [150, 219]. This flow is the so-called inverse mean curvature flow defined as follows. Let t : Σ → R

be a smooth function such that

1. its level surfaces, St := {q ∈ Σ | t(q) = t}, are homeomorphic to S2,

2. there is a point p ∈ Σ such that the surfaces St are shrinking to p in the limit t→ −∞, and

3. they form a foliation of Σ − {p}.

Let n be the lapse function of this foliation, i.e. if va is the outward directed unit normal to St

in Σ, then nvaDat = 1. Denoting the integral on the right hand side in Equation (41) by Wt, we
can calculate its derivative with respect to t. In general this derivative does not seem to have any
remarkable property. If, however, the foliation is chosen in a special way, namely if the lapse is just
the inverse mean curvature of the foliation, n = 1/k where k := kabq

ab, furthermore Σ is maximal
(i.e. χ = 0) and the energy density of the matter is non-negative, then, as shown by Geroch [150],
Wt ≥ 0 holds. Jang and Wald [219] modified the foliation slightly such that t ∈ [0,∞), and the
surface S0 was assumed to be future marginally trapped (i.e. ρ = 0 and ρ′ ≥ 0). Then they
showed that, under the conditions above,

√

Area(S0)W0 ≤
√

Area(St)Wt. Since EG(St) tends
to the ADM energy as t→ ∞, these considerations were intended to argue that the ADM energy
should be non-negative (at least for maximal Σ) and not less than

√

Area(S0)/(16πG2) (at least
for time-symmetric Σ), respectively. Later Jang [217] showed that if a certain quasi-linear elliptic
differential equation for a function w on a hypersurface Σ admits a solution (with given asymptotic
behaviour), then w defines a mapping between the data set (Σ, hab, χab) on Σ and a maximal data
set (Σ, h̄ab, χ̄ab) (i.e. for which χ̄abh̄

ab = 0) such that the corresponding ADM energies coincide.
Then Jang shows that a slightly modified version of the Geroch energy is monotonic (and tends to
the ADM energy) with respect to a new, modified version of the inverse mean curvature foliation
of (Σ, h̄ab).

The existence and the properties of the original inverse mean curvature foliation of (Σ, hab)
above were proven and clarified by Huisken and Ilmanen [207, 208], giving the first complete proof
of the Riemannian Penrose inequality, and, as proved by Schoen and Yau [328], Jang’s quasi-linear
elliptic equation admits a global solution.

6.3 The Hayward energy

We saw that EH can be non-zero even in the Minkowski spacetime. This may motivate considering
the following expression

I (S) :=

√

Area(S)

16πG2

(

1 +
1

4π

∮

S
(2ρρ′ − σσ′ − σ̄σ̄′) dS

)

=

=

√

Area(S)

16πG2

1

4π

∮

S

(

−ψ2 − ψ̄2′ + 2φ11 + 2Λ
)

dS.

(Thus the integrand is 1
4 (F + F̄ ), where F is given by Equation (23).) By the Gauss equation this

is zero in flat spacetime, furthermore, it is not difficult to see that its limit at the spatial infinity

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-4

http://www.livingreviews.org/lrr-2004-4
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is still the ADM energy. However, using the second expression of I(S), one can see that its limit
at the future null infinity is the Newman–Unti rather than the Bondi–Sachs energy.

In the literature there is another modification of the Hawking energy, due to Hayward [183].
His suggestion is essentially I(S) with the only difference that the integrands above contain an
additional term, namely the square of the anholonomicity −ωaω

a (see Sections 4.1.8 and 11.2.1).
However, we saw that ωa is a boost gauge dependent quantity, thus the physical significance of
this suggestion is questionable unless a natural boost gauge choice, e.g. in the form of a preferred
foliation, is made. (Such a boost gauge might be that given by the main extrinsic curvature vector
Qa and Q̃a discussed in Section 4.1.2.) Although the expression for the Hayward energy in terms of
the GHP spin coefficients given in [63, 65] seems to be gauge invariant, this is due only to an implicit
gauge choice. The correct, general GHP form of the extra term is −ωaω

a = 2(β − β̄′)(β̄ − β′). If,
however, the GHP spinor dyad is fixed as in the large sphere or in the small sphere calculations,
then β − β̄′ = τ = −τ̄ ′, and hence the extra term is, in fact, 2τ τ̄ .

Taking into account that τ = O(r−2) near the future null infinity (see for example [338]), it is
immediate from the remark on the asymptotic behaviour of I(S) above that the Hayward energy
tends to the Newman–Unti instead of the Bondi–Sachs energy at the future null infinity. The
Hayward energy has been calculated for small spheres both in non-vacuum and vacuum [63]. In
non-vacuum it gives the expected value 4π

3 r
3Tabt

atb. However, in vacuum it is − 8
45Gr

5Tabcdt
atbtctd,

which is negative.
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7 Penrose’s Quasi-Local Energy-Momentum and Angular

Momentum

The construction of Penrose is based on twistor-theoretical ideas, and motivated by the linearized
gravity integrals for energy-momentum and angular momentum. Since, however, twistor-theore-
tical ideas and basic notions are still considered to be some ‘special knowledge’, the review of the
basic idea behind the Penrose construction is slightly more detailed than that of the others. The
basic references of the field are the volumes [312, 313] by Penrose and Rindler on ‘Spinors and
Spacetime’, especially volume 2, the very well readable book by Hugget and Tod [206] and the
comprehensive review article [377] by Tod.

7.1 Motivations

7.1.1 How do the twistors emerge?

In the Newtonian theory of gravity the mass contained in some finite 3-volume Σ can be expressed
as the flux integral of the gravitational field strength on the boundary S := ∂Σ:

mΣ =
1

4πG

∮

S
va (Daφ) dS, (42)

where φ is the gravitational potential and va is the outward directed unit normal to S. If S is
deformed in Σ through a source-free region, then the mass does not change. Thus the mass mΣ is
analogous to charge in electrostatics.

In the weak field (linear) approximation of general relativity on Minkowski spacetime the source
of the gravitational field, i.e. the linearized energy-momentum tensor, is still analogous to charge.
In fact, the total energy-momentum and angular momentum of the source can be expressed as
appropriate 2-surface integrals of the curvature at infinity [349]. Thus it is natural to expect that
the energy-momentum and angular momentum of the source in a finite 3-volume Σ, given by
Equation (5), can also be expressed as the charge integral of the curvature on the 2-surface S.
However, the curvature tensor can be integrated on S only if at least one pair of its indices is
annihilated by some tensor via contraction, i.e. according to Equation (15) if some ωab = ω[ab] is
chosen and µab = εab. To simplify the subsequent analysis ωab will be chosen to be anti-self-dual:
ωab = εA′B′

ωAB with ωAB = ω(AB) 11. Thus our claim is to find an appropriate spinor field ωAB

on S such that

QS [K] :=

∫

Σ

KaT
ab 1

3!
εbcde =

1

8πG

∮

S
ωABRABcd =: AS [ω] . (43)

Since the dual of the exterior derivative of the integrand on the right, and, by Einstein’s equations,
the dual of the 8πG times the integrand on the left, respectively, is

εecdf∇e(ωABRABcd) = −2iψF
ABC∇F ′(AωBC) + 2φABE′

F ′

i∇E′FωAB + 4Λi∇F ′

A ωFA, (44)

−8πGKaT
af = 2φFAF ′A′

KAA′ + 6ΛKFF ′

, (45)

Equations (44) and (45) are equal if ωAB satisfies

∇A′AωBC = −iεA(BKC)A′

. (46)

This equation in its symmetrized form, ∇A′(AωBC) = 0, is the valence 2 twistor equation, a specific
example for the general twistor equation ∇A′(AωBC...E) = 0 for ωBC...E = ω(BC...E). Thus, as could

11The analogous calculations using tensor methods and the real ωab instead of spinors and the anti-self-dual (or,
shortly, a.s.d.) part of ωab would be technically more complicated [307, 308, 313, 164].
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be expected, ωAB depends on the Killing vector Ka, and, in fact, Ka can be recovered from ωAB as
KA′A = 2

3 i∇A′

B ωAB . Thus ωAB plays the role of a potential for the Killing vector KA′A. However,
as a consequence of Equation (46), Ka is a self-dual Killing 1-form in the sense that its derivative
is a self-dual (or s.d.) 2-form: In fact, the general solution of equation (46) and the corresponding
Killing vector are

ωAB = −ixAA′

xBB′

M̄A′B′ + ix(A
A′TB)A′

+ ΩAB ,

KAA′

= TAA′

+ 2xAB′

M̄A′

B′ ,
(47)

where M̄A′B′ , TAA′

, and ΩAB are constant spinors, using the notation xAA′

:= xa σ
A A ′

a EA
A ĒA′

A ′ ,

where {EA
A } is a constant spin frame (the ‘Cartesian spin frame’) and σ

A A ′

a are the standard

SL(2,C) Pauli matrices (divided by
√

2). These yield that Ka is, in fact, self-dual, ∇AA′KBB′ =
εABM̄A′B′ , and TAA′

is a translation and M̄A′B′ generates self-dual rotations. Then QS [K] =
TAA′PAA′

+2M̄A′B′ J̄A′B′

, implying that the charges corresponding to ΩAB are vanishing; the four
components of the quasi-local energy-momentum correspond to the real TAA′

s, and the spatial
angular momentum and centre-of-mass are combined into the three complex components of the
self-dual angular momentum J̄A′B′

, generated by M̄A′B′ .

7.1.2 Twistor space and the kinematical twistor

Recall that the space of the contravariant valence 1 twistors of Minkowski spacetime is the set
of the pairs Zα := (λA, πA′) of spinor fields, which solve the so-called valence 1 twistor equation
∇A′AλB = −iεABπA′

. If Zα is a solution of this equation, then Ẑα := (λA, πA′ + iΥA′Aλ
A)

is a solution of the corresponding equation in the conformally rescaled spacetime, where Υa :=
Ω−1∇aΩ and Ω is the conformal factor. In general the twistor equation has only the trivial
solution, but in the (conformal) Minkowski spacetime it has a four complex parameter family of
solutions. Its general solution in the Minkowski spacetime is λA = ΛA − ixAA′

πA′ , where ΛA and
πA′ are constant spinors. Thus the space Tα of valence 1 twistors, the so-called twistor-space, is 4-
complex-dimensional, and hence has the structure Tα = SA⊕ S̄A′ . Tα admits a natural Hermitian
scalar product : If W β = (ωB , σB′) is another twistor, then Hαβ′ZαW̄ β′

:= λAσ̄A + πA′ ω̄A′

. Its

signature is (+,+,−,−), it is conformally invariant, Hαβ′Ẑα ¯̂
W β′

= Hαβ′ZαW̄ β′

, and it is constant
on Minkowski spacetime. The metric Hαβ′ defines a natural isomorphism between the complex

conjugate twistor space, T̄α′

, and the dual twistor space, Tβ := SB⊕S̄B′

, by (λ̄A′

, π̄A) 7→ (π̄A, λ̄
A′

).
This makes it possible to use only twistors with unprimed indices. In particular, the complex
conjugate Āα′β′ of the covariant valence 2 twistor Aαβ can be represented by the so-called conjugate

twistor Āαβ := Āα′β′Hα′αHβ′β . We should mention two special, higher valence twistors. The first
is the so-called infinity twistor. This and its conjugate are given explicitly by

Iαβ :=

(

εAB 0
0 0

)

, Iαβ := Īα′β′

Hα′αHβ′β =

(

0 0

0 εA′B′

)

. (48)

The other is the completely anti-symmetric twistor εαβγδ, whose component ε0123 in an Hαβ′ -
orthonormal basis is required to be one. The only non-vanishing spinor parts of εαβγδ are those

with two primed and two unprimed spinor indices: εA′B′

CD = εA′B′

εCD, εA′

B
C′

D′ = −εA′C′

εBD,
εAB

C′D′

= εABεC′D′ , . . . . Thus for any four twistors Zα
i = (λA

i , π
i
A′), i = 1, . . . , 4, the determinant

of the 4×4 matrix whose i-th column is (λ0
i , λ

1
i , π

i
0′ , πi

1′), where the λ0
i , . . . , πi

1′ are the components
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of the spinors λA
i and πi

A′ in some spin frame, is

ν := det













λ0
1 λ0

2 λ0
3 λ0

4

λ1
1 λ1

2 λ1
3 λ1

4

π1
0′ π2

0′ π3
0′ π4

0′

π1
1′ π2

1′ π3
1′ π4

1′













= 1
4ǫ

ij
klλ

A
i λ

B
j π

k
A′πl

B′εABε
A′B′

= 1
4εαβγδZ

α
1 Z

β
2 Z

γ
3Z

δ
4 , (49)

where ǫijkl is the totally antisymmetric Levi-Civita symbol. Then Iαβ and Iαβ are dual to each
other in the sense that Iαβ = 1

2ε
αβγδIγδ, and by the simplicity of Iαβ one has εαβγδI

αβIγδ = 0.

The solution ωAB of the valence 2 twistor equation, given by Equation (47), can always be writ-
ten as a linear combination of the symmetrized product λ(AωB) of the solutions λA and ωA of the
valence 1 twistor equation. ωAB defines uniquely a symmetric twistor ωαβ (see for example [313]).
Its spinor parts are

ωαβ =

(

ωAB − 1
2K

A
B′

− 1
2KA′

B −iM̄A′B′

)

.

However, Equation (43) can be interpreted as a C-linear mapping of ωαβ into C, i.e. Equation (43)
defines a dual twistor, the (symmetric) kinematical twistor Aαβ , which therefore has the structure

Aαβ =

(

0 PA
B′

PA′

B 2iJ̄A′B′

)

. (50)

Thus the quasi-local energy-momentum and self-dual angular momentum of the source are certain
spinor parts of the kinematical twistor. In contrast to the ten complex components of a general
symmetric twistor, it has only ten real components as a consequence of its structure (its spinor
part AAB is identically zero) and the reality of PAA′

. These properties can be reformulated by the
infinity twistor and the Hermitian metric as conditions on Aαβ : The vanishing of the spinor part

AAB is equivalent to AαβI
αγIβδ = 0 and the energy momentum is the AαβZ

αIβγHγγ′Z̄γ′

part of
the kinematical twistor, while the whole reality condition (ensuring both AAB = 0 and the reality
of the energy-momentum) is equivalent to

AαβI
βγHγδ′ = Āδ′β′ Īβ′γ′

Hγ′α. (51)

Using the conjugate twistors this can be rewritten (and, in fact, usually it is written) as AαβI
βγ =

(Hγα′

Āα′β′Hβ′δ) (Hδδ′ Īδ′γ′

Hγ′α) = ĀγδIδα. Finally, the quasi-local mass can also be expressed
by the kinematical twistor as its Hermitian norm [307] or as its determinant [371]:

m2 = −PA
A′

PA
A′ = − 1

2AαβĀα′β′Hαα′

Hββ′

= − 1
2AαβĀ

αβ , (52)

m4 = 4 detAαβ = 1
3!ε

αβγδεµνρσAαµAβνAγρAδσ. (53)

Thus, to summarize, the various spinor parts of the kinematical twistor Aαβ are the energy-
momentum and s.d. angular momentum. However, additional structures, namely the infinity
twistor and the Hermitian scalar product, were needed to be able to ‘isolate’ its energy-momentum
and angular momentum parts, and, in particular, to define the mass. Furthermore, the Hermiticity
condition ensuring Aαβ to have the correct number of components (ten reals) were also formulated
in terms of these additional structures.
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7.2 The original construction for curved spacetimes

7.2.1 2-surface twistors and the kinematical twistor

In general spacetimes the twistor equations have only the trivial solution. Thus to be able to
associate a kinematical twistor to a closed orientable spacelike 2-surface S in general, the conditions
on the spinor field ωAB had to be relaxed. Penrose’s suggestion [307, 308] is to consider ωAB

in Equation (43) to be the symmetrized product λ(AωB) of spinor fields that are solutions of
the ‘tangential projection to S’ of the valence 1 twistor equation, the so-called 2-surface twistor
equation. (The equation obtained as the ‘tangential projection to S’ of the valence 2 twistor
equation (46) would be under-determined [308].) Thus the quasi-local quantities are searched for
in the form of a charge integral of the curvature:

AS [λ, ω] :=
i

8πG

∮

S
λAωBRABcd = (54)

=
1

4πG

∮

S

[

λ0ω0 (φ01 − ψ1) +
(

λ0ω1 + λ1ω0
)

(φ11 + Λ − ψ2) + λ1ω1 (φ21 − ψ3)
]

dS,

where the second expression is given in the GHP formalism with respect to some GHP spin frame
adapted to the 2-surface S. Since the indices c and d on the right of the first expression are
tangential to S, this is just the charge integral of FABcd in the spinor identity (24) of Section 4.1.5.

The 2-surface twistor equation that the spinor fields should satisfy is just the covariant spinor
equation TE′EA

BλB = 0. By Equation (25) its GHP form is T λ := (T + ⊕ T −)λ = 0, which is
a first order elliptic system, and its index is 4(1 − g), where g is the genus of S [43]. Thus there
are at least four (and in the generic case precisely four) linearly independent solutions to T λ = 0
on topological 2-spheres. However, there are ‘exceptional’ 2-spheres for which there exist at least
five linearly independent solutions [221]. For such ‘exceptional’ 2-spheres (and for higher genus
2-surfaces for which the twistor equation has only the trivial solution in general) the subsequent
construction does not work. (The concept of quasi-local charges in Yang–Mills theory can also be
introduced in an analogous way [370]). The space Tα

S of the solutions to TE′EA
BλB = 0 is called

the 2-surface twistor space. In fact, in the generic case this space is 4-complex-dimensional, and
under conformal rescaling the pair Zα = (λA, i∆A′Aλ

A) transforms like a valence 1 contravariant
twistor. Zα is called a 2-surface twistor determined by λA. If S ′ is another generic 2-surface with
the corresponding 2-surface twistor space Tα

S′ , then although Tα
S and Tα

S′ are isomorphic as vector
spaces, there is no canonical isomorphism between them. The kinematical twistor Aαβ is defined
to be the symmetric twistor determined by AαβZ

αW β := AS [λ, ω] for any Zα = (λA, i∆A′Aλ
A)

and Wα = (ωA, i∆A′Aω
A) from Tα

S . Note that AS [λ, ω] is constructed only from the 2-surface
data on S.

7.2.2 The Hamiltonian interpretation of the kinematical twistor

For the solutions λA and ωA of the 2-surface twistor equation, the spinor identity (24) reduces
to Tod’s expression [307, 313, 377] for the kinematical twistor, making it possible to re-express
AS [λ, ω] by the integral of the Nester–Witten 2-form [356]. Indeed, if

HS [λ, µ̄] :=
1

4πG

∮

S
u(λ, µ̄)ab = − 1

4πG

∮

S
γ̄A′B′

µ̄A′∆B′Bλ
B dS, (55)

then with the choice µ̄A′ := ∆A′Aω
A this gives Penrose’s charge integral by Equation (24):

AS [λ, ω] = HS [λ, µ̄]. Then, extending the spinor fields λA and ωA from S to a spacelike hy-
persurface Σ with boundary S in an arbitrary way, by the Sparling equation it is straightforward
to rewrite AS [λ, ω] in the form of the integral of the energy-momentum tensor of the matter fields
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and the Sparling form on Σ. Since such an integral of the Sparling form can be interpreted as the
Hamiltonian of general relativity, this is a quick re-derivation of Mason’s [265, 266] Hamiltonian
interpretation of Penrose’s kinematical twistor: AS [λ, ω] is just the boundary term in the total
Hamiltonian of the matter + gravity system, and the spinor fields λA and ωA (together with their
‘projection parts’ i∆A′Aλ

A and i∆A′Aω
A) on S are interpreted as the spinor constituents of the

special lapse and shift, the so-called ‘quasi-translations’ and ‘quasi-rotations’ of the 2-surface, on
the 2-surface itself.

7.2.3 The Hermitian scalar product and the infinity twistor

In general the natural pointwise Hermitian scalar product, defined by 〈Z, W̄ 〉 := −i(λA∆AA′ ω̄A′ −
ω̄A′

∆AA′λA), is not constant on S, thus it does not define a Hermitian scalar product on the 2-
surface twistor space. As is shown in [220, 223, 375], 〈Z, W̄ 〉 is constant on S for any two 2-surface
twistors if and only if S can be embedded, at least locally, into some conformal Minkowski spacetime
with its intrinsic metric and extrinsic curvatures. Such 2-surfaces are called non-contorted, while
those that cannot be embedded are called contorted. One natural candidate for the Hermitian
metric could be the average of 〈Z, W̄ 〉 on S [307]: Hαβ′ZαW̄ β′

:= [Area(S)]−
1
2

∮

S〈Z, W̄ 〉 dS, which
reduces to 〈Z, W̄ 〉 on non-contorted 2-surfaces. Interestingly enough,

∮

S〈Z, W̄ 〉 dS can also be re-
expressed by the integral (55) of the Nester–Witten 2-form [356]. Unfortunately, however, neither
this metric nor the other suggestions appearing in the literature are conformally invariant. Thus,
for contorted 2-surfaces, the definition of the quasi-local mass as the norm of the kinematical
twistor (cf. Equation (52)) is ambiguous unless a natural Hαβ′ is found.

If S is non-contorted, then the scalar product 〈Z, W̄ 〉 defines the totally anti-symmetric twistor

εαβγδ, and for the four independent 2-surface twistors Zα
1 , . . . ,Zα

4 the contraction εαβγδZ
α
1 Z

β
2 Z

γ
3Z

δ
4 ,

and hence by Equation (49) the determinant ν, is constant on S. Nevertheless, ν can be constant
even for contorted 2-surfaces for which 〈Z, W̄ 〉 is not. Thus, the totally anti-symmetric twistor
εαβγδ can exist even for certain contorted 2-surfaces. Therefore, an alternative definition of the
quasi-local mass might be based on Equation (53) [371]. However, although the two mass definitions
are equivalent in the linearized theory, they are different invariants of the kinematical twistor even
in de Sitter or anti-de-Sitter spacetimes. Thus, if needed, the former notion of mass will be called
the norm-mass, the latter the determinant-mass (denoted by mD).

If we want to have not only the notion of the mass but its reality is also expected, then
we should ensure the Hermiticity of the kinematical twistor. But to formulate the Hermiticity
condition (51), one also needs the infinity twistor. However, −εA′B′

∆A′Aλ
A∆B′Bω

B is not constant
on S even if it is non-contorted, thus in general it does not define any twistor on Tα

S . One might
take its average on S (which can also be re-expressed by the integral of the Nester–Witten 2-
form [356]), but the resulting twistor would not be simple. In fact, even on 2-surfaces in de Sitter
and anti-de Sitter spacetimes with cosmological constant λ the natural definition for Iαβ is Iαβ :=

diag(λεAB , ε
A′B′

) [313, 311, 371], while on round spheres in spherically symmetric spacetimes it
is IαβZ

αW β := 1
2r2 (1 + 2r2ρρ′)εABλ

AωB − εA′B′

∆A′Aλ
A∆B′Bω

B [363]. Thus no natural simple
infinity twistor has been found in curved spacetime. Indeed, Helfer claims that no such infinity
twistor can exist [197]: Even if the spacetime is conformally flat (whenever the Hermitian metric
exists) the Hermiticity condition would be fifteen algebraic equations for the (at most) twelve real
components of the ‘would be’ infinity twistor. Then, since the possible kinematical twistors form
an open set in the space of symmetric twistors, the Hermiticity condition cannot be satisfied even
for non-simple Iαβs. However, in contrast to the linearized gravity case, the infinity twistor should
not be given once and for all on some ‘universal’ twistor space, that may depend on the actual
gravitational field. In fact, the 2-surface twistor space itself depends on the geometry of S, and
hence all the structures thereon also.

Since in the Hermiticity condition (51) only the special combination Hα
β′ := IαβHββ′ of the
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infinity and metric twistors (the so-called ‘bar-hook’ combination) appears, it might still be hoped
that an appropriate Hα

β′ could be found for a class of 2-surfaces in a natural way [377]. However,
as far as the present author is aware of, no real progress has been achieved in this way.

7.2.4 The various limits

Obviously, the kinematical twistor vanishes in flat spacetime and, since the basic idea came from the
linearized gravity, the construction gives the correct results in the weak field approximation. The
nonrelativistic weak field approximation, i.e. the Newtonian limit, was clarified by Jeffryes [222].
He considers a 1-parameter family of spacetimes with perfect fluid source such that in the λ → 0
limit of the parameter λ one gets a Newtonian spacetime, and, in the same limit, the 2-surface S
lies in a t = const. hypersurface of the Newtonian time t. In this limit the pointwise Hermitian
scalar product is constant, and the norm-mass can be calculated. As could be expected, for the
leading λ2 order term in the expansion of m as a series of λ he obtained the conserved Newtonian
mass. The Newtonian energy, including the kinetic and the Newtonian potential energy, appears
as a λ4 order correction.

The Penrose definition for the energy-momentum and angular momentum can be applied to
the cuts S of the future null infinity I + of an asymptotically flat spacetime [307, 313]. Then
every element of the construction is built from conformally rescaled quantities of the non-physical
spacetime. Since I + is shear-free, the 2-surface twistor equations on S decouple, and hence the
solution space admits a natural infinity twistor Iαβ . It singles out precisely those solutions whose
primary spinor parts span the asymptotic spin space of Bramson (see Section 4.2.4), and they
will be the generators of the energy-momentum. Although S is contorted, and hence there is no
natural Hermitian scalar product, there is a twistor Hα

β′ with respect to which Aαβ is Hermitian.
Furthermore, the determinant ν is constant on S, and hence it defines a volume 4-form on the
2-surface twistor space [377]. The energy-momentum coming from Aαβ is just that of Bondi and
Sachs. The angular momentum defined by Aαβ is, however, new. It has a number of attractive
properties. First, in contrast to definitions based on the Komar expression, it does not have the
‘factor-of-two anomaly’ between the angular momentum and the energy-momentum. Since its
definition is based on the solutions of the 2-surface twistor equations (which can be interpreted as
the spinor constituents of certain BMS vector fields generating boost-rotations) instead of the BMS
vector fields themselves, it is free of supertranslation ambiguities. In fact, the 2-surface twistor
space on S reduces the BMS Lie algebra to one of its Poincaré subalgebras. Thus the concept of the
‘translation of the origin’ is moved from null infinity to the twistor space (appearing in the form of
a 4-parameter family of ambiguities in the potential for the shear σ), and the angular momentum
transforms just in the expected way under such a ‘translation of the origin’. As was shown in [129],
Penrose’s angular momentum can be considered as a supertranslation of previous definitions. The
corresponding angular momentum flux through a portion of the null infinity between two cuts
was calculated in [129, 196] and it was shown that this is precisely that given by Ashtekar and
Streubel [29] (see also [336, 337, 128]).

The other way of determining the null infinity limit of the energy-momentum and angular
momentum is to calculate them for the large spheres from the physical data, instead of the spheres
at null infinity from the conformally rescaled data. These calculations were done by Shaw [338, 340].
At this point it should be noted that the r → ∞ limit of Aαβ vanishes, and it is

√

Area(Sr)Aαβ

that yields the energy-momentum and angular momentum at infinity (see the remarks following
Equation (15)). The specific radiative solution for which the Penrose mass has been calculated
is that of Robinson and Trautman [371]. The 2-surfaces for which the mass was calculated are
the r = const. cuts of the geometrically distinguished outgoing null hypersurfaces u = const. Tod
found that, for given u, the mass m is independent of r, as could be expected because of the lack
of the incoming radiation.
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The large sphere limit of the 2-surface twistor space and the Penrose construction were investi-
gated by Shaw in the Sommers [344], the Ashtekar–Hansen [23], and the Beig–Schmidt [48] models
of spatial infinity in [334, 335, 337]. Since no gravitational radiation is present near the spatial
infinity, the large spheres are (asymptotically) non-contorted, and both the Hermitian scalar prod-
uct and the infinity twistor are well-defined. Thus the energy-momentum and angular momentum
(and, in particular, the mass) can be calculated. In vacuum he recovered the Ashtekar–Hansen
expression for the energy-momentum and angular momentum, and proved their conservation if the
Weyl curvature is asymptotically purely electric. In the presence of matter the conservation of the
angular momentum was investigated in [339].

The Penrose mass in asymptotically anti-de-Sitter spacetimes was studied by Kelly [234]. He
calculated the kinematical twistor for spacelike cuts S of the infinity I , which is now a timelike
3-manifold in the non-physical spacetime. Since I admits global 3-surface twistors (see the next
Section 7.2.5), S is non-contorted. In addition to the Hermitian scalar product there is a natural
infinity twistor, and the kinematical twistor satisfies the corresponding Hermiticity condition. The
energy-momentum 4-vector coming from the Penrose definition is shown to coincide with that
of Ashtekar and Magnon [27]. Therefore, the energy-momentum 4-vector is future pointing and
timelike if there is a spacelike hypersurface extending to I on which the dominant energy condition
is satisfied. Consequently, m2 ≥ 0. Kelly showed that m2

D is also non-negative and in vacuum it
coincides with m2. In fact [377], m ≥ mD ≥ 0 holds.

7.2.5 The quasi-local mass of specific 2-surfaces

The Penrose mass has been calculated in a large number of specific situations. Round spheres are al-
ways non-contorted [375], thus the norm-mass can be calculated. (In fact, axi-symmetric 2-surfaces
in spacetimes with twist-free rotational Killing vector are non-contorted [223].) The Penrose mass
for round spheres reduces to the standard energy expression discussed in Section 4.2.1 [371]. Thus
every statement given in Section 4.2.1 for round spheres is valid for the Penrose mass, and we do
not repeat them. In particular, for round spheres in a t = const. slice of the Kantowski–Sachs
spacetime this mass is independent of the 2-surfaces [368]. Interestingly enough, although these
spheres cannot be shrunk to a point (thus the mass cannot be interpreted as ‘the 3-volume integral
of some mass density’), the time derivative of the Penrose mass looks like the mass conservation
equation: It is minus the pressure times the rate of change of the 3-volume of a sphere in flat space
with the same area as S [376]. In conformally flat spacetimes [371] the 2-surface twistors are just
the global twistors restricted to S, and the Hermitian scalar product is constant on S. Thus the
norm-mass is well-defined.

The construction works nicely even if global twistors exist only on a (say) spacelike hyper-
surface Σ containing S. These twistors are the so-called 3-surface twistors [371, 373], which are
solutions of certain (overdetermined) elliptic partial differential equations, the so-called 3-surface
twistor equations, on Σ. These equations are completely integrable (i.e. they admit the maximal
number of linearly independent solutions, namely four) if and only if Σ with its intrinsic metric and
extrinsic curvature can be embedded, at least locally, into some conformally flat spacetime [373].
Such hypersurfaces are called non-contorted. It might be interesting to note that the non-contorted
hypersurfaces can also be characterized as the critical points of the Chern–Simons functional built
from the real Sen connection on the Lorentzian vector bundle or from the 3-surface twistor con-
nection on the twistor bundle over Σ [49, 361]. Returning to the quasi-local mass calculations, Tod
showed that in vacuum the kinematical twistor for a 2-surface S in a non-contorted Σ depends only
on the homology class of S. In particular, if S can be shrunk to a point then the corresponding
kinematical twistor is vanishing. Since Σ is non-contorted, S is also non-contorted, and hence the
norm-mass is well-defined. This implies that the Penrose mass in the Schwarzschild solution is the
Schwarzschild mass for any non-contorted 2-surface that can be deformed into a round sphere, and
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it is zero for those that do not link the black hole [375]. Thus, in particular, the Penrose mass can
be zero even in curved spacetimes.

A particularly interesting class of non-contorted hypersurfaces is that of the conformally flat
time-symmetric initial data sets. Tod considered Wheeler’s solution of the time-symmetric vacuum
constraints describing n ‘points at infinity’ (or, in other words, n− 1 black holes) and 2-surfaces in
such a hypersurface [371]. He found that the mass is zero if S does not link any black hole, it is the
mass Mi of the i-th black hole if S links precisely the i-th hole, it is Mi+Mj−MiMj/dij +O(1/d2

ij)
if S links precisely the i-th and the j-th holes, where dij is some appropriate measure of the distance
of the holes, . . . , etc. Thus, the mass of the i-th and j-th holes as a single object is less than the
sum of the individual masses, in complete agreement with our physical intuition that the potential
energy of the composite system should contribute to the total energy with negative sign.

Beig studied the general conformally flat time-symmetric initial data sets describing n ‘points
at infinity’ [45]. He found a symmetric trace-free and divergence-free tensor field T ab and, for any
conformal Killing vector ξa of the data set, defined the 2-surface flux integral P (ξ) of T abξb on S.
He showed that P (ξ) is conformally invariant, depends only on the homology class of S, and, apart
from numerical coefficients, for the ten (locally existing) conformal Killing vectors these are just
the components of the kinematical twistor derived by Tod in [371] (and discussed in the previous
paragraph). In particular, Penrose’s mass in Beig’s approach is proportional to the length of the
P ’s with respect to the Cartan–Killing metric of the conformal group of the hypersurface.

Tod calculated the quasi-local mass for a large class of axi-symmetric 2-surfaces (cylinders)
in various LRS Bianchi and Kantowski–Sachs cosmological models [376] and more general cylin-
drically symmetric spacetimes [378]. In all these cases the 2-surfaces are non-contorted, and the
construction works. A technically interesting feature of these calculations is that the 2-surfaces
have edges, i.e. they are not smooth submanifolds. The twistor equation is solved on the three
smooth pieces of the cylinder separately, and the resulting spinor fields are required to be continu-
ous at the edges. This matching reduces the number of linearly independent solutions to four. The
projection parts of the resulting twistors, the i∆A′Aλ

As, are not continuous at the edges. It turns
out that the cylinders can be classified invariantly to be hyperbolic, parabolic, or elliptic. Then
the structure of the quasi-local mass expressions is not simply ‘density’× ‘volume’, but they are
proportional to a ‘type factor’ f(L) as well, where L is the coordinate length of the cylinder. In the
hyperbolic, parabolic, and elliptic cases this factor is sinhωL/(ωL), 1, and sinωL/(ωL), respec-
tively, where ω is an invariant of the cylinder. The various types are interpreted as the presence of
a positive, zero, or negative potential energy. In the elliptic case the mass may be zero for finite
cylinders. On the other hand, for static perfect fluid spacetimes (hyperbolic case) the quasi-local
mass is positive. A particularly interesting spacetime is that describing cylindrical gravitational
waves, whose presence is detected by the Penrose mass. In all these cases the determinant-mass
has also been calculated and found to coincide with the norm-mass. A numerical investigation of
the axi-symmetric Brill waves on the Schwarzschild background was presented in [69]. It was found
that the quasi-local mass is positive, and it is very sensitive to the presence of the gravitational
waves.

Another interesting issue is the Penrose inequality for black holes (see Section 13.2.1). Tod
showed [374, 375] that for static black holes the Penrose inequality holds if the mass of the hole
is defined to be the Penrose quasi-local mass of the spacelike cross section S of the event horizon.
The trick here is that S is totally geodesic and conformal to the unit sphere, and hence it is non-
contorted and the Penrose mass is well-defined. Then the Penrose inequality will be a Sobolev-type
inequality for a non-negative function on the unit sphere. This inequality was tested numerically
in [69].

Apart from the cuts of I + in radiative spacetimes, all the 2-surfaces discussed so far were
non-contorted. The spacelike cross section of the event horizon of the Kerr black hole provides a
contorted 2-surface [377]. Thus although the kinematical twistor can be calculated for this, the
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construction in its original form cannot yield any mass expression. The original construction has
to be modified.

7.2.6 Small surfaces

The properties of the Penrose construction that we have discussed are very remarkable and promis-
ing. However, the small surface calculations showed clearly some unwanted feature of the original
construction [372, 235, 398], and forced its modification.

First, although the small spheres are contorted in general, the leading term of the pointwise
Hermitian scalar product is constant: λA∆AA′ ω̄A′ − ω̄A′

∆A′Aλ
A = const.+O(r) for any 2-surface

twistors Zα = (λA, i∆A′Aλ
A) and Wα = (ωA, i∆A′Aω

A) [372, 235]. Since in non-vacuum space-
times the kinematical twistor has only the ‘4-momentum part’ in the leading O(r3) order with
Pa = 4π

3 r
3Tabt

b, the Penrose mass, calculated with the norm above, is just the expected mass in
the leading O(r3) order. Thus it is positive if the dominant energy condition is satisfied. On the
other hand, in vacuum the structure of the kinematical twistor is

Aαβ =

(

2iλAB PA
B′

PA′

B 0

)

+ O
(

r6
)

, (56)

where λAB = O(r5) and PAA′ = 2
45Gr

5ψABCD χ̄A′B′C′D′tBB′

tCC′

tDD′

with χABCD := ψABCD −
4ψ̄A′B′C′D′tA

′

At
B′

B tC
′

Ct
D′

D. In particular, in terms of the familiar conformal electric and
magnetic parts of the curvature the leading term in the time component of the 4-momentum
is PAA′tAA′

= 1
45GHab(H

ab − iEab). Then the corresponding norm-mass, in the leading order,
can even be complex! For an Sr in the t = const. hypersurface of the Schwarzschild spacetime
this is zero (as it must be in the light of the results of the previous Section 7.2.5, because this
is a non-contorted spacelike hypersurface), but for a general small 2-sphere not lying in such a
hypersurface PAA′ is real and spacelike, and hence m2 < 0. In the Kerr spacetime PAA′ itself is
complex [372, 235].

7.3 The modified constructions

Independently of the results of the small sphere calculations, Penrose claimed that in the Schwarz-
schild spacetime the quasi-local mass expression should yield the same zero value on 2-surfaces,
contorted or not, which do not surround the black hole. (For the motivations and the arguments,
see [309].) Thus the original construction should be modified, and the negative results for the small
spheres above strengthened this need. A much more detailed review of the various modifications
is given by Tod in [377].

7.3.1 The ‘improved’ construction with the determinant

A careful analysis of the roots of the difficulties lead Penrose [309, 313] (see also [372, 235, 377])
to suggest the modified definition for the kinematical twistor

A′
αβZ

αW β :=
i

8πG

∮

S
η λAωBRABcd, (57)

where η is a constant multiple of the determinant ν in Equation (49). Since on non-contorted
2-surfaces the determinant ν is constant, for such surfaces A′

αβ reduces to Aαβ , and hence all
the nice properties proven for the original construction on non-contorted 2-surfaces are shared by
A′

αβ too. The quasi-local mass calculated from Equation (57) for small spheres (in fact, for small
ellipsoids [235]) in vacuum is vanishing in the fifth order. Thus, apparently, the difficulties have
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been resolved. However, as Woodhouse pointed out, there is an essential ambiguity in the (non-
vanishing, sixth order) quasi-local mass [398]. In fact, the structure of the modified kinematical
twistor has the form (56) with vanishing PA′

B and PA
B′

but with non-vanishing λAB in the fifth
order. Then in the quasi-local mass (in the leading sixth order) there will be a term coming from
the (presumably non-vanishing) sixth order part of PA′

B and PA
B′

and the constant part of the
Hermitian scalar product, and the fifth order λAB and the still ambiguous O(r) order part of the
Hermitian metric.

7.3.2 Modification through Tod’s expression

These anomalies lead Penrose to modify A′
αβ slightly [310]. This modified form is based on Tod’s

form of the kinematical twistor:

A′′
αβZ

αW β :=
1

4πG

∮

S
γ̄A′B′ [

i∆A′A

(√
ηλA

)] [

i∆B′B

(√
ηωB

)]

dS. (58)

The quasi-local mass on small spheres coming from A′′
αβ is positive [377].

7.3.3 Mason’s suggestions

A beautiful property of the original construction was its connection with the Hamiltonian for-
mulation of the theory [265]. Unfortunately, such a simple Hamiltonian interpretation is lacking
for the modified constructions. Although the form of Equation (58) is that of the integral of the
Nester–Witten 2-form, and the spinor fields

√
ηλA and i∆A′A(

√
ηλA) could still be considered as

the spinor constituents of the ‘quasi-Killing vectors’ of the 2-surface S, their structure is not so
simple because the factor η itself depends on all of the four independent solutions of the 2-surface
twistor equation in a rather complicated way.

To have a simple Hamiltonian interpretation Mason suggested further modifications [265, 266].
He considers the four solutions λA

i , i = 1, . . . , 4, of the 2-surface twistor equations, and uses
these solutions in the integral (55) of the Nester–Witten 2-form. Since HS is a Hermitian bilinear
form on the space of the spinor fields (see Section 8 below), he obtains 16 real quantities as the
components of the 4× 4 Hermitian matrix Eij := HS [λi, λ̄j ]. However, it is not clear how the four

‘quasi-translations’ of S should be found among the 16 vector fields λA
i λ̄

A′

j (called ‘quasi-conformal
Killing vectors’ of S) for which the corresponding quasi-local quantities could be considered as the
quasi-local energy-momentum. Nevertheless, this suggestion leads us to the next class of quasi-local
quantities.
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8 Approaches Based on the Nester–Witten 2-Form

We saw in Section 3.2 that

• both the ADM and Bondi–Sachs energy-momenta can be re-expressed by the integral of the
Nester–Witten 2-form u(λ, µ̄)ab,

• the proof of the positivity of the ADM and Bondi–Sachs masses is relatively simple in terms
of the 2-component spinors, and

• the integral of Møller’s tetrad superpotential for the energy-momentum, coming from his
tetrad Lagrangian (9), is just the integral of u(λA , λ̄B ′

)ab, where {λA
A } is a normalized

spinor dyad.

Thus, both from conceptual and pragmatic points of views, it seems natural to search for the
quasi-local energy-momentum in the form of the integral of the Nester–Witten 2-form. All the
quasi-local energy-momenta based on the integral of the Nester–Witten 2-form have a natural
Lagrangian interpretation [362]. Thus first let us discuss briefly the most important properties of
such integrals.

If S is any closed, orientable spacelike 2-surface and λA, µA are arbitrary spinor fields, then in
the integral HS [λ, µ̄], defined by Equation (55), only the tangential derivative of λA appears. (µA

is involved in HS [λ, µ̄] algebraically.) Thus, by Equation (13), HS : C∞(S,SA)×C∞(S,SA) → C

is a Hermitian scalar product on the (infinite-dimensional complex) vector space of smooth spinor
fields on S. Thus, in particular, the spinor fields in HS [λ, µ̄] need be defined only on S, and
HS [λ, µ̄] = HS [µ, λ̄] holds. A remarkable property of HS is that if λA is a constant spinor field
on S with respect to the covariant derivative ∆e, then HS [λ, µ̄] = 0 for any smooth spinor field

µA on S. Furthermore, if λ
A
A = (λ0

A, λ
1
A) is any pair of smooth spinor fields on S, then for any

constant SL(2,C) matrix ΛA
B one has HS [λC ΛC

A , λ̄D ′

Λ̄D ′
B ′

] = HS [λC , λ̄D ′

]ΛC
A Λ̄D ′

B ′

, i.e.

the integrals HS [λA , λ̄B ′

] transform as the spinor components of a real Lorentz vector over the
two-complex dimensional space spanned by λ0

A and λ1
A. Therefore, to have a well-defined quasi-

local energy-momentum vector we have to specify some 2-dimensional subspace SA of the infinite-
dimensional space C∞(S,SA) and a symplectic metric εA B thereon. Thus underlined capital
Roman indices will be referring to this space. The elements of this subspace would be interpreted
as the spinor constituents of the ‘quasi-translations’ of the surface S. Since in Møller’s tetrad
approach it is natural to choose the orthonormal vector basis to be a basis in which the translations
have constant components (just as the constant orthonormal bases in Minkowski spacetime which

are bases in the space of translations), the spinor fields λ
A
A could also be interpreted as the spinor

basis that should be used to construct the orthonormal vector basis in Møller’s superpotential (10).
In this sense the choice of the subspace SA and the metric εA B is just a gauge reduction, or a
choice for the ‘reference configuration’ of Section 3.3.3.

Once the spin space (SA , εA B ) is chosen, the quasi-local energy-momentum is defined to be

P
A B ′

S := HS [λA , λ̄B ′

] and the corresponding quasi-local massmS ism2
S := εA B εA ′B ′P

A A ′

S P
B B ′

S .

In particular, if one of the spinor fields λ
A
A , e.g. λ0

A, is constant on S (which means that the geometry

of S is considerably restricted), then P 00′

S = P 01′

S = P 10′

S = 0, and hence the corresponding mass
mS is zero. If both λ0

A and λ1
A are constant (in particular, when they are the restrictions to S of

the two constant spinor fields in the Minkowski spacetime), then P
A B ′

S itself is vanishing.

Therefore, to summarize, the only thing that needs to be specified is the spin space (SA , εA B ),
and the various suggestions for the quasi-local energy-momentum based on the integral of the
Nester–Witten 2-form correspond to the various choices for this spin space.
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8.1 The Ludvigsen–Vickers construction

8.1.1 The definition

Suppose that the spacetime is asymptotically flat at future null infinity, and the closed spacelike 2-
surface S can be joined to future null infinity by a smooth null hypersurface N . Let S∞ := N∩I +,
the cut defined by the intersection of N with the future null infinity. Then the null geodesic
generators of N define a smooth bijection between S and the cut S∞ (and hence, in particular,
S ≈ S2). We saw in Section 4.2.4 that on the cut S∞ at the future null infinity we have the

asymptotic spin space (S
A
∞, εA B ). The suggestion of Ludvigsen and Vickers [259] for the spin space

(SA , εA B ) on S is to import the two independent solutions of the asymptotic twistor equations, i.e.
the asymptotic spinors, from the future null infinity back to the 2-surface along the null geodesic
generators of the null hypersurface N . Their propagation equations, given both in terms of spinors
and in the GHP formalism, are

oAōA′

(∇AA′λB) oB = þλ0 = 0, (59)

ιAōA′

(∇AA′λB) oB = k′λ0 + ρλ1 = 0. (60)

Here εA
A = {oA, ιA} is the GHP spin frame introduced in Section 4.2.4, and by Equation (25) the

second half of these equations is just ∆+λ = 0. It should be noted that the choice (59, 60) for the
propagation law of the spinors is ‘natural’ in the sense that in flat spacetime (59, 60) reduce to the
condition of parallel propagation, and Equation (60) is just the appropriate part of the asymptotic
twistor equation of Bramson. We call the spinor fields obtained by using Equations (59, 60) the
Ludvigsen–Vickers spinors on S. Thus, given an asymptotic spinor at infinity, we propagate its
zero-th components (with respect to the basis εA

A) to S by Equation (59). This will be the zero-
th component of the Ludvigsen–Vickers spinor. Then its first component will be determined by
Equation (60), provided ρ is not vanishing on any open subset of S. If λ0

A and λ1
A are Ludvigsen–

Vickers spinors on S obtained by Equations (59, 60) from two asymptotic spinors that formed a
normalized spin frame, then, by considering λ0

A and λ1
A to be normalized in SA , we define the

symplectic metric εA B on SA to be that with respect to which λ0
A and λ1

A form a normalized spin
frame. Note, however, that this symplectic metric is not connected with the symplectic fibre metric
εAB of the spinor bundle SA(S) over S. Indeed, in general, λ

A
A λ

B
B ε

AB is not constant on S, and
hence εAB does not determine any symplectic metric on the space SA of the Ludvigsen–Vickers
spinors. In Minkowski spacetime the two Ludvigsen–Vickers spinors are just the restriction to S
of the two constant spinors.

8.1.2 Remarks on the validity of the construction

Before discussing the usual questions about the properties of the construction (positivity, mono-
tonicity, the various limits, etc.), we should make some general remarks. First, it is obvious that the
Ludvigsen–Vickers energy-momentum in its form above cannot be defined in a spacetime which is
not asymptotically flat at null infinity. Thus their construction is not genuinely quasi-local, because
it depends not only on the (intrinsic and extrinsic) geometry of S, but on the global structure of
the spacetime as well. In addition, the requirement of the smoothness of the null hypersurface N
connecting the 2-surface to the null infinity is a very strong restriction. In fact, for general (even for
convex) 2-surfaces in a general asymptotically flat spacetime conjugate points will develop along
the (outgoing) null geodesics orthogonal to the 2-surface [304, 175]. Thus either the 2-surface must
be near enough to the future null infinity (in the conformal picture), or the spacetime and the
2-surface must be nearly spherically symmetric (or the former cannot be ‘very much curved’ and
the latter cannot be ‘very much bent’).

This limitation yields that in general the original construction above does not have a small
sphere limit. However, using the same propagation equations (59, 60) one could define a quasi-
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local energy-momentum for small spheres [259, 66]. The basic idea is that there is a spin space at
the vertex p of the null cone in the spacetime whose spacelike cross section is the actual 2-surface,
and the Ludvigsen–Vickers spinors on S are defined by propagating these spinors from the vertex p
to S via Equations (59, 60). This definition works in arbitrary spacetime, but the 2-surface cannot
be extended to a large sphere near the null infinity, and it is still not genuinely quasi-local.

8.1.3 Monotonicity, mass-positivity and the various limits

Once the Ludvigsen–Vickers spinors are given on a spacelike 2-surface Sr of constant affine parame-
ter r in the outgoing null hypersurface N , then they are uniquely determined on any other spacelike
2-surface Sr′ in N , too, i.e. the propagation law (59, 60) defines a natural isomorphism between
the space of the Ludvigsen–Vickers spinors on different 2-surfaces of constant affine parameter
in the same N . (r need not be a Bondi-type coordinate.) This makes it possible to compare
the components of the Ludvigsen–Vickers energy-momenta on different surfaces. In fact [259],
if the dominant energy condition is satisfied (at least on N ), then for any Ludvigsen–Vickers
spinor λA and affine parameter values r1 ≤ r2 one has HSr1

[λ, λ̄] ≤ HSr2
[λ, λ̄], and the difference

HSr2
[λ, λ̄]−HSr1

[λ, λ̄] ≥ 0 can be interpreted as the energy flux of the matter and the gravitational

radiation through N between Sr1
and Sr2

. Thus both P 00′

Sr
and P 11′

Sr
are increasing with r (‘mass-

gain’). A similar monotonicity property (‘mass-loss’) can be proven on ingoing null hypersurfaces,
but then the propagation law (59, 60) should be replaced by þ′λ1 = 0 and −∆−λ := kλ1+ρ′λ0 = 0.
Using these equations the positivity of the Ludvigsen–Vickers mass was proven in various special
cases in [259].

Concerning the positivity properties of the Ludvigsen–Vickers mass and energy, first it is obvi-
ous by the remarks on the nature of the propagation law (59, 60) that in Minkowski spacetime the
Ludvigsen–Vickers energy-momentum is vanishing. However, in the proof of the non-negativity of
the Dougan–Mason energy (discussed in Section 8.2) only the λA ∈ ker ∆+ part of the propagation
equations is used. Therefore, as realized by Bergqvist [61], the Ludvigsen–Vickers energy-momenta
(both based on the asymptotic and the point spinors) are also future directed and nonspacelike if S
is the boundary of some compact spacelike hypersurface Σ on which the dominant energy condition
is satisfied and S is weakly future convex (or at least ρ ≤ 0). Similarly, the Ludvigsen–Vickers defi-
nitions share the rigidity properties proven for the Dougan–Mason energy-momentum [354]: Under
the same conditions the vanishing of the energy-momentum implies the flatness of the domain of
dependence D(Σ) of Σ.

In the weak field approximation [259] the difference HSr2
[λ, λ̄] −HSr1

[λ, λ̄] is just the integral

of 4πGTab l
aλBλ̄B′

on the portion of N between the two 2-surfaces, where Tab is the linearized
energy-momentum tensor: The increment of HSr

[λ, λ̄] on N is due only to the flux of the matter
energy-momentum.

Since the Bondi–Sachs energy-momentum can be written as the integral of the Nester–Witten
2-form on the cut in question at the null infinity with the asymptotic spinors, it is natural to
expect that the first version of the Ludvigsen–Vickers energy-momentum tends to that of Bondi
and Sachs. It was shown in [259, 340] that this expectation is, in fact, correct. The Ludvigsen–
Vickers mass was calculated for large spheres both for radiative and stationary spacetimes with
r−2 and r−3 accuracy, respectively, in [338, 340].

Finally, on a small sphere of radius r in non-vacuum the second definition gives [66] the expected
result (28), while in vacuum [66, 360] it is

P
A B ′

Sr
=

1

10G
r5T a

bcdt
btctdEA

A ĒB ′

A′ +
4

45G
r6te(∇eT

a
bcd)tbtctdEA

A ĒB ′

A′ + O(r7). (61)

Thus its leading term is the energy-momentum of the matter fields and the Bel–Robinson mo-
mentum, respectively, seen by the observer ta at the vertex p. Thus, assuming that the matter
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fields satisfy the dominant energy condition, for small spheres this is an explicit proof that the
Ludvigsen–Vickers quasi-local energy-momentum is future pointing and nonspacelike.

8.2 The Dougan–Mason constructions

8.2.1 Holomorphic/anti-holomorphic spinor fields

The original construction of Dougan and Mason [127] was introduced on the basis of sheaf-
theoretical arguments. Here we follow a slightly different, more ‘pedestrian’ approach, based
mostly on [354, 356].

Following Dougan and Mason we define the spinor field λA to be anti-holomorphic in case
me∇eλA = me∆eλA = 0, or holomorphic if m̄e∇eλA = m̄e∆eλA = 0. Thus, this notion of
holomorphicity/anti-holomorphicity is referring to the connection ∆e on S. While the notion of
the holomorphicity/anti-holomorphicity of a function on S does not depend on whether the ∆e or
the δe operator is used, for tensor or spinor fields it does. Although the vectors ma and m̄a are
not uniquely determined (because their phase is not fixed), the notion of the holomorphicity/anti-
holomorphicity is well-defined, because the defining equations are homogeneous in ma and m̄a.
Next suppose that there are at least two independent solutions of m̄e∆eλA = 0. If λA and
µA are any two such solutions, then m̄e∆e(λAµBε

AB) = 0, and hence by Liouville’s theorem
λAµBε

AB is constant on S. If this constant is not zero, then we call S generic, if it is zero
then S will be called exceptional. Obviously, holomorphic λA on a generic S cannot have any
zero, and any two holomorphic spinor fields, e.g. λ0

A and λ1
A, span the spin space at each point

of S (and they can be chosen to form a normalized spinor dyad with respect to εAB on the
whole of S). Expanding any holomorphic spinor field in this frame, the expanding coefficients
turn out to be holomorphic functions, and hence constant. Therefore, on generic 2-surfaces there
are precisely two independent holomorphic spinor fields. In the GHP formalism the condition
of the holomorphicity of the spinor field λA is that its components (λ0, λ1) be in the kernel of
H+ := ∆+ ⊕ T +. Thus for generic 2-surfaces kerH+ with the constant εA B would be a natural
candidate for the spin space (SA , εA B ) above. For exceptional 2-surfaces the kernel space kerH+

is either 2-dimensional but does not inherit a natural spin space structure, or it is higher than two
dimensional. Similarly, the symplectic inner product of any two anti-holomorphic spinor fields is
also constant, one can define generic and exceptional 2-surfaces as well, and on generic surfaces
there are precisely two anti-holomorphic spinor fields. The condition of the anti-holomorphicity of
λA is λ ∈ kerH− := ker(∆− ⊕ T −). Then SA = kerH− could also be a natural choice. Note that
since the spinor fields whose holomorphicity/anti-holomorphicity is defined are unprimed, and these
correspond to the anti-holomorphicity/holomorphicity, respectively, of the primed spinor fields of
Dougan and Mason. Thus the main question is whether there exist generic 2-surfaces, and if they
do, whether they are ‘really generic’, i.e. whether most of the physically important surfaces are
generic or not.

8.2.2 The genericity of the generic 2-surfaces

H± are first order elliptic differential operators on certain vector bundles over the compact 2-surface
S, and their index can be calculated: index(H±) = 2(1 − g), where g is the genus of S. There-
fore, for S ≈ S2 there are at least two linearly independent holomorphic and at least two linearly
independent anti-holomorphic spinor fields. The existence of the holomorphic/anti-holomorphic
spinor fields on higher genus 2-surfaces is not guaranteed by the index theorem. Similarly, the
index theorem does not guarantee that S ≈ S2 is generic either: If the geometry of S is very
special then the two holomorphic/anti-holomorphic spinor fields (which are independent as solu-
tions of H±λ = 0) might be proportional to each other. For example, future marginally trapped
surfaces (i.e. for which ρ = 0) are exceptional from the point of view of holomorphic, and past
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marginally trapped surfaces (ρ′ = 0) from the point of view of anti-holomorphic spinors. Further-
more, there are surfaces with at least three linearly independent holomorphic/anti-holomorphic
spinor fields. However, small generic perturbations of the geometry of an exceptional 2-surface S
with S2 topology make S generic.

Finally, we note that several first order differential operators can be constructed from the
chiral irreducible parts ∆± and T ± of ∆e, given explicitly by Equation (25). However, only four
of them, the Dirac–Witten operator ∆ := ∆+ ⊕∆−, the twistor operator T := T + ⊕T −, and the
holomorphy and anti-holomorphy operators H±, are elliptic (which ellipticity, together with the
compactness of S, would guarantee the finiteness of the dimension of their kernel), and it is only
H± that have 2-complex-dimensional kernel in the generic case. This purely mathematical result
gives some justification for the choices of Dougan and Mason: The spinor fields λ

A
A that should be

used in the Nester–Witten 2-form are either holomorphic or anti-holomorphic. The construction
does not work for exceptional 2-surfaces.

8.2.3 Positivity properties

One of the most important properties of the Dougan–Mason energy-momenta is that they are
future pointing nonspacelike vectors, i.e. the corresponding masses and energies are non-negative.
Explicitly [127], if S is the boundary of some compact spacelike hypersurface Σ on which the
dominant energy condition holds, furthermore if S is weakly future convex (in fact, ρ ≤ 0 is enough),
then the holomorphic Dougan–Mason energy-momentum is a future pointing non-spacelike vector,
and, analogously, the anti-holomorphic energy-momentum is future pointing and non-spacelike if
ρ′ ≥ 0. As Bergqvist [61] stressed (and we noted in Section 8.1.3), Dougan and Mason used only
the ∆+λ = 0 (and in the anti-holomorphic construction the ∆−λ = 0) half of the ‘propagation
law’ in their positivity proof. The other half is needed only to ensure the existence of two spinor
fields. Thus that might be Equation (59) of the Ludvigsen–Vickers construction, or T +λ = 0
in the holomorphic Dougan–Mason construction, or even T +λ = kσ′ψ′

2λ0 for some constant k, a
‘deformation’ of the holomorphicity considered by Bergqvist [61]. In fact, the propagation law may
even be m̄a∆aλB = f̃B

CλC for any spinor field f̃B
C satisfying π−B

Af̃B
C = f̃A

Bπ+C
B = 0. This

ensures the positivity of the energy under the same conditions and that εABλAµB is still constant
on S for any two solutions λA and µA, making it possible to define the norm of the resulting
energy-momentum, i.e. the mass.

In the asymptotically flat spacetimes the positive energy theorems have a rigidity part too,
namely the vanishing of the energy-momentum (and, in fact, even the vanishing of the mass) implies
flatness. There are analogous theorems for the Dougan–Mason energy-momenta too [354, 356].
Namely, under the conditions of the positivity proof

1. P
A B ′

S is zero iff D(Σ) is flat, which is also equivalent to the vanishing of the quasi-local

energy, ES := 1√
2
(P 00′

S + P 11′

S ) = 0, and

2. P
A B ′

S is null (i.e. the quasi-local mass is zero) iff D(Σ) is a pp-wave geometry and the matter
is pure radiation.

In particular [365], for a coupled Einstein–Yang–Mills system (with compact, semisimple gauge
groups) the zero quasi-local mass configurations are precisely the pp-wave solutions found by
Güven [167]. Therefore, in contrast to the asymptotically flat cases, the vanishing of the mass
does not imply the flatness of D(Σ). Since, as we will see below, the Dougan–Mason masses tend
to the ADM mass at spatial infinity, seemingly there is a contradiction between the rigidity part of
the positive mass theorems and the Result 2 above. However, this contradiction is only apparent.
In fact, according to one of the possible positive mass proofs [24], the vanishing of the ADM mass
implies the existence of a constant null vector field on D(Σ), and then the flatness follows from the
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incompatibility of the conditions of the asymptotic flatness and the existence of a constant null
vector field: The only asymptotically flat spacetime admitting a constant null vector field is the
flat spacetime.

These results show some sort of rigidity of the matter + gravity system (where the latter satisfies
the dominant energy condition) even at the quasi-local level, which is much more manifest from the
following equivalent form of Results 1 and 2: Under the same conditions D(Σ) is flat if and only
if there exist two linearly independent spinor fields on S which are constant with respect to ∆e,
and D(Σ) is a pp-wave geometry and the matter is pure radiation if and only if there exists a ∆e-
constant spinor field on S [356]. Thus the full information that D(Σ) is flat/pp-wave is completely
encoded not only in the usual initial data on Σ, but in the geometry of the boundary of Σ, too.
In Section 13.5 we return to the discussion of this phenomenon, where we will see that, assuming
that S is future and past convex, the whole line element of D(Σ) (and not only the information
that it is some pp-wave geometry) is determined by the 2-surface data on S.

Comparing Results 1 and 2 above with the properties of the quasi-local energy-momentum (and

angular momentum) listed in Section 2.2.3, the similarity is obvious: P
A B ′

S = 0 characterizes the
‘quasi-local vacuum state’ of general relativity, while mS = 0 is equivalent to ‘pure radiative quasi-
local states’. The equivalence of ES = 0 and the flatness of D(Σ) shows that curvature always
yields positive energy, or, in other words, with this notion of energy no classical symmetry breaking
can occur in general relativity: The ‘quasi-local ground states’ (defined by ES = 0) are just the
‘quasi-local vacuum states’ (defined by the trivial value of the field variables on D(Σ)) [354], in
contrast, for example, to the well known φ4 theories.

8.2.4 The various limits

Both definitions give the same standard expression for round spheres [126]. Although the limit of
the Dougan–Mason masses for round spheres in Reissner–Nordström spacetime gives the correct
irreducible mass of the Reissner–Nordström black hole on the horizon, the constructions do not
work on the surface of bifurcation itself, because that is an exceptional 2-surface. Unfortunately,
without additional restrictions (e.g. the spherical symmetry of the 2-surfaces in a spherically sym-
metric spacetime) the mass of the exceptional 2-surfaces cannot be defined in a limiting process,
because, in general, the limit depends on the family of generic 2-surfaces approaching the excep-
tional one [356].

Both definitions give the same, expected results in the weak field approximation and for large
spheres at spatial infinity: Both tend to the ADM energy-momentum [127]. In non-vacuum both
definitions give the same, expected expression (28) for small spheres, in vacuum they coincide in
the r5 order with that of Ludvigsen and Vickers, but in the r6 order they differ from each other:
The holomorphic definition gives Equation (61), but in the analogous expression for the anti-
holomorphic energy-momentum the numerical coefficient 4/(45G) is replaced by 1/(9G) [126]. The
Dougan–Mason energy-momenta have also been calculated for large spheres of constant Bondi-type
radial coordinate value r near future null infinity [126]. While the anti-holomorphic construction
tends to the Bondi–Sachs energy-momentum, the holomorphic one diverges in general. In station-
ary spacetimes they coincide and both give the Bondi–Sachs energy-momentum. At the past null
infinity it is the holomorphic construction which reproduces the Bondi–Sachs energy-momentum
and the anti-holomorphic diverges.

We close this section with some caution and general comments on a potential gauge ambiguity
in the calculation of the various limits. By the definition of the holomorphic and anti-holomorphic
spinor fields they are associated with the 2-surface S only. Thus if S ′ is another 2-surface, then
there is no natural isomorphism between the space – for example of the anti-holomorphic spinor
fields kerH−(S) on S – and kerH−(S ′) on S ′, even if both surfaces are generic and hence there are
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isomorphisms between them12. This (apparently ‘only theoretical’) fact has serious pragmatic con-
sequences. In particular, in the small or large sphere calculations we compare the energy-momenta,
and hence the holomorphic or anti-holomorphic spinor fields also, on different surfaces. For ex-
ample [360], in the small sphere approximation every spin coefficient and spinor component in the
GHP dyad and metric component in some fixed coordinate system (ζ, ζ̄) is expanded as a series

of r, like λA(r, ζ, ζ̄) = λA
(0)(ζ, ζ̄) + rλA

(1)(ζ, ζ̄) + · · · + rkλA
(k)(ζ, ζ̄) + O(rk+1). Substituting all

such expansions and the asymptotic solutions of the Bianchi identities for the spin coefficients and
metric functions into the differential equations defining the holomorphic/anti-holomorphic spinors,

we obtain a hierarchical system of differential equations for the expansion coefficients λA
(0), λA

(1),
. . . , etc. It turns out that the solutions of this system of equations with accuracy rk form a 2k
rather than the expected two complex dimensional space. 2(k−1) of these 2k solutions are ‘gauge’
solutions, and they correspond in the approximation with given accuracy to the unspecified isomor-
phism between the space of the holomorphic/anti-holomorphic spinor fields on surfaces of different
radii. Obviously, similar ‘gauge’ solutions appear in the large sphere expansions, too. Therefore,
without additional gauge fixing, in the expansion of a quasi-local quantity only the leading non-
trivial term will be gauge-independent. In particular, the r6 order correction in Equation (61)
for the Dougan–Mason energy-momenta is well-defined only as a consequence of a natural gauge
choice13. Similarly, the higher order corrections in the large sphere limit of the anti-holomorphic
Dougan–Mason energy-momentum are also ambiguous unless a ‘natural’ gauge choice is made.
Such a choice is possible in stationary spacetimes.

8.3 A specific construction for the Kerr spacetime

Logically, this specific construction perhaps would have to be presented only in Section 12, but the
technique that it is based on may justify its placing here.

By investigating the propagation law (59, 60) of Ludvigsen and Vickers, for the Kerr spacetimes
Bergqvist and Ludvigsen constructed a natural flat, (but non-symmetric) metric connection [67].
Writing the new covariant derivative in the form ∇̃AA′λB = ∇AA′λB +ΓAA′B

CλC , the ‘correction’
term ΓAA′B

C could be given explicitly in terms of the GHP spinor dyad (adapted to the two princi-
pal null directions), the spin coefficients ρ, τ and τ ′, and the curvature component ψ2. ΓAA′B

C ad-
mits a potential [68]: ΓAA′BC = −∇(C

B′

HB)AA′B′ , where HABA′B′ := 1
2ρ

−3(ρ+ ρ̄)ψ2oAoB ōA′ ōB′ .
However, this potential has the structure Hab = flalb appearing in the form of the metric
gab = g0

ab + flalb for the Kerr–Schild spacetimes, where g0
ab is the flat metric. In fact, the flat

connection ∇̃e above could be introduced for general Kerr–Schild metrics [170], and the corre-
sponding ‘correction term’ ΓAA′BC could be used to find easily the Lánczos potential for the Weyl
curvature [10].

Since the connection ∇̃AA′ is flat and annihilates the spinor metric εAB , there are precisely
two linearly independent spinor fields, say λ0

A and λ1
A, that are constant with respect to ∇̃AA′ and

form a normalized spinor dyad. These spinor fields are asymptotically constant. Thus it is natural
to choose the spin space (SA , εA B ) to be the space of the ∇̃a-constant spinor fields, independently
of the 2-surface S.

A remarkable property of these spinor fields is that the Nester–Witten 2-form built from them
is closed : du(λA , λ̄B ′

) = 0. This implies that the quasi-local energy-momentum depends only on
the homology class of S, i.e. if S1 and S2 are 2-surfaces such that they form the boundary of some

hypersurface in M , then P
A B ′

S1
= P

A B ′

S2
, and if S is the boundary of some hypersurface, then

12Recall that, similarly, we did not have any natural isomorphism between the 2-surface twistor spaces, discussed
in Section 7.2.1, on different 2-surfaces.

13Clearly, for the Ludvigsen–Vickers energy-momentum no such ambiguity is present, because the part (59) of
their propagation law defines a natural isomorphism between the space of the Ludvigsen–Vickers spinors on the
different 2-surfaces.
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72 László B. Szabados

P
A B ′

S = 0. In particular, for two-spheres that can be shrunk to a point the energy-momentum is
zero, but for those that can be deformed to a cut of the future null infinity the energy-momentum
is that of Bondi and Sachs.
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9 Quasi-Local Spin-Angular Momentum

In this section we review three specific quasi-local spin-angular momentum constructions that
are (more or less) ‘quasi-localizations’ of Bramson’s expression at null infinity. Thus the quasi-
local spin-angular momentum for the closed, orientable spacelike 2-surface S will be sought in
the form (17). Before considering the specific constructions themselves we summarize the most
important properties of the general expression of Equation (17). Since the most detailed discussion
of Equation (17) is given probably in [360, 363], the subsequent discussions will be based on them.

First, observe that the integral depends on the spinor dyad algebraically, thus it is enough to
specify the dyad only at the points of S. Obviously, J

A B
S transforms like a symmetric second

rank spinor under constant SL(2,C) transformations of the dyad {λA
A }. Second, suppose that

the spacetime is flat, and let {λA
A } be constant. Then the corresponding 1-form basis {ϑa

a } is the
constant Cartesian one, which consists of exact 1-forms. Then since the Bramson superpotential
w(λA , λB )ab is the anti-self-dual part (in the name indices) of ϑ

a
a ϑ

b
b −ϑ

a
b ϑ

b
a , which is also exact, for

such spinor bases Equation (17) gives zero. Therefore, the integral of Bramson’s superpotential (17)

measures the non-integrability of the 1-form basis ϑ
A A ′

a = λ
A
A λ̄

A ′

A′ , i.e. J
A B
S is a measure of how

much the actual 1-form basis is ‘distorted’ by the curvature relative to the constant basis of
Minkowski spacetime.

Thus the only question is how to specify a spin frame on S to be able to interpret J
A B
S as

angular momentum. It seems natural to choose those spinor fields that were used in the definition
of the quasi-local energy-momenta in the previous Section 8. At first sight this may appear to
be only an ad hoc idea, but, recalling that in Section 8 we interpreted the elements of the spin
spaces (SA , εA B ) as the ‘spinor constituents of the quasi-translations of S’, we can justify such a
choice. Based on our experience with the superpotentials for the various conserved quantities, the
quasi-local angular momentum can be expected to be the integral of something like ‘superpoten-
tial’× ‘quasi-rotation generator’, and the ‘superpotential’ is some expression in the first derivative
of the basic variables, actually the tetrad or spinor basis. Since, however, Bramson’s superpotential
is an algebraic expression of the basic variables, and the number of the derivatives in the expression
for the angular momentum should be one, the angular momentum expressions based on Bramson’s
superpotential must contain the derivative of the ‘quasi-rotations’, i.e. (possibly a combination of)
the ‘quasi-translations’. Since, however, such an expression cannot be sensitive to the ‘change of
the origin’, they can be expected to yield only the spin part of the angular momentum.

The following two specific constructions differ from each other only in the choice for the spin
space (SA , εA B ), and correspond to the energy-momentum constructions of the previous Section 8.
The third construction (valid only in the Kerr spacetimes) is based on the sum of two terms, where
one is Bramson’s expression, and uses the spinor fields of Section 8.3. Thus the present section is
not independent of Section 8, and for the discussion of the choice of the spin spaces (SA , εA B ) we
refer to that.

Another suggestion for the quasi-local spatial angular momentum, proposed by Liu and Yau [253],
will be introduced in Section 10.4.1.

9.1 The Ludvigsen–Vickers angular momentum

Under the conditions that ensured the Ludvigsen–Vickers construction for the energy-momentum
would work in Section 8.1, the definition of their angular momentum is straightforward [259]. Since
in Minkowski spacetime the Ludvigsen–Vickers spinors are just the restriction to S of the constant
spinor fields, by the general remark above the Ludvigsen–Vickers spin-angular momentum is zero
in Minkowski spacetime.

Using the asymptotic solution of the Einstein–Maxwell equations in a Bondi-type coordinate
system it has been shown in [259] that the Ludvigsen–Vickers spin-angular momentum tends to
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that of Bramson at future null infinity. For small spheres [360] in non-vacuum it reproduces
precisely the expected result (29), and in vacuum it is

J
A B
Sr

=
4

45G
r5TAA′BB′CC′DD′tAA′

tBB′

tCC′
(

rtD
′EεDFEA

(EE
B
F )

)

+ O
(

r7
)

. (62)

We stress that in both the vacuum and non-vacuum cases the factor rtD
′EεDF EA

(EE
B
F ), interpreted

in Section 4.2.2 as an average of the boost-rotation Killing fields that vanish at p, emerges naturally.
No (approximate) boost-rotation Killing field was put into the general formulae by hand.

9.2 Holomorphic/anti-holomorphic spin-angular momenta

Obviously, the spin-angular momentum expressions based on the holomorphic and anti-holomor-
phic spinor fields [358] on generic 2-surfaces are genuinely quasi-local. Since in Minkowski spacetime
the restriction of the two constant spinor fields to any 2-surface are constant, and hence holomorphic
and anti-holomorphic at the same time, both the holomorphic and anti-holomorphic spin-angular
momenta are vanishing. Similarly, for round spheres both definitions give zero [363], as it could be
expected in a spherically symmetric system. The anti-holomorphic spin-angular momentum has
already been calculated for axi-symmetric 2-surfaces S for which the anti-holomorphic Dougan–
Mason energy-momentum is null, i.e. for which the corresponding quasi-local mass is zero. (As
we saw in Section 8.2.3, this corresponds to a pp-wave geometry and pure radiative matter fields
on D(Σ) [354, 356].) This null energy-momentum vector turned out to be an eigenvector of the

anti-symmetric spin-angular momentum tensor J
a b
S , which, together with the vanishing of the

quasi-local mass, is equivalent to the proportionality of the (null) energy-momentum vector and
the Pauli–Lubanski spin [358], where the latter is defined by

S
a
S := 1

2ε
a

b c dP
b
S J

c d
S . (63)

This is a known property of the zero-rest-mass fields in Poincaré invariant quantum field theo-
ries [168].

Both the holomorphic and anti-holomorphic spin-angular momenta were calculated for small
spheres [360]. In non-vacuum the holomorphic spin-angular momentum reproduces the expected
result (29), and, apart from a minus sign, the anti-holomorphic construction does also. In vacuum
both definitions give exactly Equation (62).

In general the anti-holomorphic and the holomorphic spin-angular momenta are diverging near
the future null infinity of Einstein–Maxwell spacetimes as r and r2, respectively. However, the
coefficient of the diverging term in the anti-holomorphic expression is just the spatial part of
the Bondi–Sachs energy-momentum. Thus the anti-holomorphic spin-angular momentum is finite
in the centre-of-mass frame, and hence it seems to describe only the spin part of the gravita-
tional field. In fact, the Pauli–Lubanski spin (63) built from this spin-angular momentum and the
anti-holomorphic Dougan–Mason energy-momentum is always finite, free of ‘gauge’ ambiguities
discussed in Section 8.2.4, and is built only from the gravitational data even in the presence of
electromagnetic fields. In stationary spacetimes both constructions are finite and coincide with
the ‘standard’ expression (34). Thus the anti-holomorphic spin-angular momentum defines an in-
trinsic angular momentum at the future null infinity. Note that this angular momentum is free
of supertranslation ambiguities, because it is defined on the given cut in terms of the solutions
of elliptic differential equations. These solutions can be interpreted as the spinor constituents of
certain boost-rotation BMS vector fields, but the definition of this angular momentum is not based
on them [363].
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9.3 A specific construction for the Kerr spacetime

The angular momentum of Bergqvist and Ludvigsen [68] for the Kerr spacetime is based on their
special flat, non-symmetric but metric connection explained briefly in Section 8.3, but their idea is
not simply the use of the two ∇̃e-constant spinor fields in Bramson’s superpotential. Rather, in the
background of their approach there are twistor-theoretical ideas. (The twistor-theoretic aspects of
the analogous flat connection for the general Kerr–Schild class are discussed in [170].)

The main idea is that while the energy-momentum is a single four-vector in the dual of the
Hermitian subspace of SA ⊗ S̄B ′

, the angular momentum is not only an anti-symmetric tensor
over the same space, but should depend on the ‘origin’, a point in a 4-dimensional affine space M0

as well, and should transform in a specific way under the translation of the ‘origin’. Bergqvist and
Ludvigsen defined the affine space M0 to be the space of the solutions Xa of ∇̃aXb = gab −Hab,
and showed that M0 is, in fact, a real, four dimensional affine space. Then, for a given XAA′ , to
each ∇̃a-constant spinor field λA they associate a primed spinor field by µA′ := XA′Aλ

A. This µA′

turns out to satisfy the modified valence 1 twistor equation ∇̃A(A′µB′) = −HAA′BB′λB . Finally,
they form the 2-form

W
(

X,λA , λB
)

ab
:= i

[

λ
A
A ∇BB′

(

XA′Cε
CDλ

B
D

)

− λ
A
B ∇AA′

(

XB′Cε
CDλ

B
D

)

+ εA′B′λ
A
(Aλ

B
B)

]

,

(64)

and define the angular momentum J
A B
S (X) with respect to the origin Xa as 1/(8πG) times the

integral of W (X,λA , λB )ab on some closed, orientable spacelike 2-surface S. Since this Wab is

closed, ∇[aWbc] = 0 (similarly to the Nester–Witten 2-form in Section 8.3), the integral J
A B
S (X)

depends only on the homology class of S. Under the ‘translation’ Xe 7→ Xe +ae of the ‘origin’ by a

∇̃a-constant 1-form ae it transforms as J
A B
S (X̃) = J

A B
S (X)+a(A

B ′P
B )B ′

S , where the components

aA B ′ are taken with respect to the basis {λA
A } in the solution space. Unfortunately, no explicit

expression for the angular momentum in terms of the Kerr parameters m and a is given.
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10 The Hamilton–Jacobi Method

If one is concentrating only on the introduction and study of the properties of the quasi-local
quantities, but not interested in the detailed structure of the quasi-local (Hamiltonian) phase space,
then perhaps the most natural way to derive the general formulae is to follow the Hamilton–Jacobi
method. This was done by Brown and York in deriving their quasi-local energy expression [96, 97].
However, the Hamilton–Jacobi method in itself does not yield any specific construction. Rather,
the resulting general expression is similar to a superpotential in the Lagrangian approaches, which
should be completed by a choice for the reference configuration and for the generator vector field
of the physical quantity (see Section 3.3.3). In fact, the ‘Brown–York quasi-local energy’ is not
a single expression with a single well-defined prescription for the reference configuration. The
same general formula with several other, mathematically inequivalent definitions for the reference
configurations are still called the ‘Brown–York energy’. A slightly different general expression was
used by Kijowski [237], Epp [133], and Liu and Yau [253]. Although the former follows a different
route to derive his expression and the latter two are not connected directly to the canonical analysis
(and, in particular, to the Hamilton–Jacobi method), the formalism and techniques that are used
justify their presentation in this section.

The present section is based mostly on the original papers [96, 97] by Brown and York. Since,
however, this is the most popular approach to finding quasi-local quantities and is the subject
of very active investigations, especially from the point of view of the applications in black hole
physics, this section is perhaps less complete than the previous ones. The expressions of Kijowski,
Epp, and Liu and Yau will be treated in the formalism of Brown and York.

10.1 The Brown–York expression

10.1.1 The main idea

To motivate the main idea behind the Brown–York definition [96, 97], let us consider first a
classical mechanical system of n degrees of freedom with configuration manifold Q and Lagrangian
L : TQ×R → R (i.e. the Lagrangian is assumed to be first order and may depend on time explicitly).
For given initial and final configurations, (qa

1 , t1) and (qa
2 , t2), respectively, the corresponding action

functional is I1[q(t)] :=
∫ t2

t1
L(qa(t), q̇a(t), t) dt, where qa(t) is a smooth curve in Q from qa(t1) = qa

1

to qa(t2) = qa
2 with tangent q̇a(t) at t. (The pair (qa(t), t) may be called a history or world line in

the ‘spacetime’ Q×R.) Let (qa(u, t(u)), t(u)) be a smooth 1-parameter deformation of this history,
i.e. for which (qa(0, t(0)), t(0)) = (qa(t), t), and u ∈ (−ǫ, ǫ) for some ǫ > 0. Then, denoting the
derivative with respect to the deformation parameter u at u = 0 by δ, one has the well known
expression

δI1[q(t)] =

∫ t2

t1

(

∂L

∂qa
− d

dt

∂L

∂q̇a

)

(δqa − q̇aδt) dt+
∂L

∂q̇a
δqa|t2t1 −

(

∂L

∂q̇a
q̇a − L

)

δt|t2t1 . (65)

Therefore, introducing the Hamilton–Jacobi principal function S1(qa
1 , t1; qa

2 , t2) as the value of the
action on the solution qa(t) of the equations of motion from (qa

1 , t1) to (qa
2 , t2), the derivative of S1

with respect to qa
2 gives the canonical momenta p1

a := (∂L/∂q̇a), while its derivative with respect
to t2 gives minus the energy, −E1 = −(p1

aq̇
a − L), at t2. Obviously, neither the action I1 nor

the principal function S1 are unique: I[q(t)] := I1[q(t)] − I0[q(t)] for any I0[q(t)] of the form
∫ t2

t1
(dh/dt) dt with arbitrary smooth function h = h(qa(t), t) is an equally good action for the same

dynamics. Clearly, the subtraction term I0[q(t)] alters both the canonical momenta and the energy
according to p1

a 7→ pa = p1
a − (∂h/∂qa) and E1 7→ E = E1 + (∂h/∂t), respectively.
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10.1.2 The variation of the action and the surface stress-energy tensor

The main idea of Brown and York [96, 97] is to calculate the analogous variation of an appropriate
first order action of general relativity (or of the coupled matter + gravity system) and isolate the
boundary term that could be analogous to the energy E above. To formulate this idea mathe-
matically, they considered a compact spacetime domain D with topology Σ × [t1, t2] such that
Σ×{t} correspond to compact spacelike hypersurfaces Σt; these form a smooth foliation of D and
the 2-surfaces St := ∂Σt (corresponding to ∂Σ × {t}) form a foliation of the timelike 3-boundary
3B of D. Note that this D is not a globally hyperbolic domain14. To ensure the compatibility
of the dynamics with this boundary, the shift vector is usually chosen to be tangent to St on 3B.
The orientation of 3B is chosen to be outward pointing, while the normals both of Σ1 := Σt1

and Σ2 := Σt2 to be future pointing. The metric and extrinsic curvature on Σt will be denoted,
respectively, by hab and χab, those on 3B by γab and Θab.

The primary requirement of Brown and York on the action is to provide a well-defined varia-
tional principle for the Einstein theory. This claim leads them to choose for I1 the ‘trace K action’
(or, in the present notation, rather the ‘trace χ action’) for general relativity [405, 406, 387], and
the action for the matter fields may be included. (For the minimal, non-derivative couplings the
presence of the matter fields does not alter the subsequent expressions.) However, as Geoff Hay-
ward pointed out [178], to have a well-defined variational principle, the ‘trace χ action’ should
in fact be completed by two 2-surface integrals, one on S1 and the other on S2. Otherwise, as a
consequence of the edges S1 and S2, called the ‘joints’ (i.e. the non-smooth parts of the boundary
∂D), the variation of the metric at the points of the edges S1 and S2 could not be arbitrary. (See
also [177, 237, 77, 95], where the ‘orthogonal boundaries assumption’ is also relaxed.) Let η1 and η2
be the scalar product of the outward pointing normal of 3B and the future pointing normal of Σ1

and of Σ2, respectively. Then, varying the spacetime metric, for the variation of the corresponding
principal function S1 they obtained

δS1 =

∫

Σ2

1

16πG

√

|h|
(

χab − χhab
)

δhab d
3x−

−
∫

Σ1

1

16πG

√

|h|
(

χab − χhab
)

δhab d
3x−

−
∫

3B

1

16πG

√

|γ|
(

Θab − Θγab
)

δγab d
3x−

− 1

8πG

∮

S2

tanh−1 η2δ
√

|q|d2x+
1

8πG

∮

S1

tanh−1 η1δ
√

|q| d2x. (66)

The first two terms together correspond to the term p1
aδq

a|t2t1 of Equation (65), and, in fact, the

familiar ADM expression for the canonical momentum p̃ab is just 1
16πG

√

|h|(χab − χhab). The
last two terms give the effect of the presence of the non-differentiable ‘joints’. Therefore, it is the
third term that should be analogous to the third term of Equation (65). In fact, roughly, this
is proportional to the proper time separation of the ‘instants’ Σ1 and Σ2, and it is reasonable to
identify its coefficient as some (quasi-local) analog of the energy. However, just as in the case of
the mechanical system, the action (and the corresponding principal function) is not unique, and
the principal function should be written as S := S1 − S0, where S0 is assumed to be an arbitrary
function of the 3-metric on the boundary ∂D = Σ2 ∪ 3B ∪ Σ1. Then

τab := − 2
√

|γ|
δS

δγab
=

1

8πG

(

Θab − Θγab
)

+
2

√

|γ|
δS0

δγab
(67)

14In the original papers Brown and York assumed that the leaves Σt of the foliation of D were orthogonal to 3B
(‘orthogonal boundaries assumption’).
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defines a symmetric tensor field on the timelike boundary 3B, and is called the surface stress-
energy tensor. (Since our signature for γab on 3B is (+,−,−) rather than (−,+,+), we should
define τab with the extra minus sign, just according to Equation (1).) Its divergence with respect
to the connection 3De on 3B determined by γab is proportional to the part γabTbcv

c of the energy-
momentum tensor, and hence, in particular, τab is divergence-free in vacuum. Therefore, if (3B, γab)
admits a Killing vector, say Ka, then in vacuum

QS [K] :=

∮

S
Kaτ

abt̄b dS, (68)

the flux integral of τabKb on any spacelike cross section S of 3B, is independent of the cross section
itself, and hence defines a conserved charge. If Ka is timelike, then the corresponding charge is
called a conserved mass, while for spacelike Ka with closed orbits in S the charge is called angular
momentum. (Here S is not necessarily an element of the foliation St of 3B, and t̄a is the unit
normal to S tangent to 3B.)

Clearly, the trace-χ action cannot be recovered as the volume integral of some scalar La-
grangian, because it is the Hilbert action plus a boundary integral of the trace χ, and the latter
depends on the location of the boundary itself. Such a Lagrangian was found by Pons [317]. This
depends on the coordinate system adapted to the boundary of the domain D of integration. An
interesting feature of this Lagrangian is that it is second order in the derivatives of the metric, but
it depends only on the first time derivative. A detailed analysis of the variational principle, the
boundary conditions and the conserved charges is given. In particular, the asymptotic properties of
this Lagrangian is similar to that of the ΓΓ Lagrangian of Einstein, rather than to that of Hilbert’s.

10.1.3 The general form of the Brown–York quasi-local energy

The 3 + 1 decomposition of the spacetime metric yields a 2 + 1 decomposition of the metric γab,
too. Let N and Na be the lapse and the shift of this decomposition on 3B. Then the corresponding
decomposition of τab defines the energy, momentum, and spatial stress surface densities according
to

ε := tatbτ
ab = − 1

8πG
k +

1
√

|q|
δS0

δN
, (69)

ja := −qabtcτ
bc =

1

8πG
Aa +

1
√

|q|
δS0

δNa
, (70)

sab := Πa
cΠb

dτ
cd =

1

8πG

[

kab − kqab + qabte (∇etf ) vf
]

+
2
√

|q|
δS0

δqab
, (71)

where qab is the spacelike 2-metric, Ae is the SO(1, 1) vector potential on St and Πa
b is the projection

to St introduced in Section 4.1.2, and kab is the extrinsic curvature of St corresponding to the
normal va orthogonal to 3B, and k is its trace. The timelike boundary 3B defines a boost-gauge
on the 2-surfaces St (which coincides with that determined by the foliation Σt in the ‘orthogonal
boundaries’ case). The gauge potential Ae is taken in this gauge. Thus, although ε and ja on St

are built from the 2-surface data (in a particular boost-gauge), the spatial surface stress depends
on the part ta(∇atb)v

b of the acceleration of the foliation Σt too. Let ξa be any vector field on
3B tangent to 3B, and ξa = nta + na its 2 + 1 decomposition. Then we can form the charge
integral (68) for the leaves St of the foliation of 3B

Et [ξa, ta] :=

∮

St

ξaτ
abtb dSt =

∮

St

(nε− naja) dSt. (72)
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Obviously, in general Et[ξ
a, ta] is not conserved, and depends not only on the vector field ξa and

the 2-surface data on the particular St, but on the boost-gauge that 3B defines on St, i.e. the
timelike normal ta as well. Brown and York define the general form of their quasi-local energy on
S := St by

EBY (S, ta) := Et [ta, ta] , (73)

i.e. they link the ‘quasi-time-translation’ (i.e. the ‘generator of the energy’) to the preferred unit
normal ta of St. Since the preferred unit normals ta are usually interpreted as a fleet of observers
who are at rest with respect to St, in their spirit the Brown–York-type quasi-local energy expres-
sions are similar to EΣ[ta] given by Equation (6) for the matter fields or Equation (18) for the
gravitational ‘field’ rather than to the charges QS [K]. For vector fields ξa = na with closed integral
curved in St the quantity Et[ξ

a, ta] might be interpreted as angular momentum corresponding to
ξa.

The quasi-local energy is still not completely determined, because the ‘subtraction term’ S0

in the principal function has not been specified. This term is usually interpreted as our freedom
to shift the zero point of the energy. Thus the basic idea of fixing the subtraction term is to
choose a ‘reference configuration’, i.e. a spacetime in which we want to obtain zero quasi-local
quantities Et[ξ

a, ta] (in particular zero quasi-local energy), and identify S0 with the S1 of the
reference spacetime. Thus by Equation (69) and (70) we obtain that

ε = − 1

8πG

(

k − k0
)

, ja =
1

8πG

(

Aa −A0
a

)

, (74)

where k0 and A0
a are the reference values of the trace of the extrinsic curvature and SO(1, 1)-

gauge potential, respectively. Note that to ensure that k0 and A0
a really be the trace of the

extrinsic curvature and SO(1, 1)-gauge potential, respectively, in the reference spacetime, they
cannot depend on the lapse N and the shift Na. This can be ensured by requiring that S0 be a
linear functional of them. We return to the discussion of the reference term in the various specific
constructions below.

10.1.4 Further properties of the general expressions

As we noted, ε, ja, and sab depend on the boost-gauge that the timelike boundary defines on
St. Lau clarified how these quantities change under a boost gauge transformation, where the new
boost-gauge is defined by the timelike boundary 3B′ of another domain D′ such that the particular
2-surface St is a leaf of the foliation of 3B′ too [247]: If {Σ̄t} is another foliation of D such that
∂Σ̄t = St and Σ̄t is orthogonal to 3B, then the new ε′, j′a, and s′ab are built from the old ε, ja,
and sab and the 2 + 1 pieces on St of the canonical momentum ¯̃pab, defined on Σ̄t. Apart from the
contribution of S0, these latter quantities are

j⊢ :=
2

√

|h|
vavb

¯̃p
ab

=
1

8πG
l, (75)

ĵa :=
2

√

|h|
qabvc

¯̃p
bc

=
1

8πG
Aa, (76)

tab :=
2

√

|h|
qacqbd

¯̃p
cd

=
1

8πG
[lab − qab (l + ve(∇evf )te)] , (77)

where lab is the extrinsic curvature of St corresponding to its normal ta (we denoted this by τab

in Section 4.1.2), and l is its trace. (By Equation (76) ĵa is not an independent quantity, that is
just ja. These quantities were originally introduced as the variational derivatives of the principal
function with respect to the lapse, the shift and the 2-metric of the radial foliation of Σt [247, 95],
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which are, in fact, essentially the components of the canonical momentum.) Thus the required
transformation formulae for ε, ja, and sab follow from the definitions and those for the extrinsic
curvatures and the SO(1, 1) gauge potential of Section 4.1.2. The various boost-gauge invariant
quantities that can be built from ε, ja, sab, j⊢, and tab are also discussed in [247, 95].

Lau repeated the general analysis above using the tetrad (in fact, triad) variables and the
Ashtekar connection on the timelike boundary instead of the traditional ADM-type variables [245].
Here the energy and momentum surface densities are re-expressed by the superpotential ∨b

ae, given
by Equation (10), in a frame adapted to the 2-surface. (Lau called the corresponding superpotential
2-form the ‘Sparling 2-form’.) However, in contrast to the usual Ashtekar variables on a spacelike
hypersurface [17], the time gauge cannot be imposed globally on the boundary Ashtekar variables.
In fact, while every orientable 3-manifold Σ is parallelizable [297], and hence a globally defined
orthonormal triad can be given on Σ, the only parallelizable closed orientable 2-surface is the torus.
Thus, on 3B, we cannot impose the global time gauge condition with respect to any spacelike 2-
surface S in 3B unless S is a torus. Similarly, the global radial gauge condition in the spacelike
hypersurfaces Σt (even on a small open neighbourhood of the whole 2-surfaces St in Σt) can be
imposed on a triad field only if the 2-boundaries St = ∂Σt are all tori. Obviously, these gauge
conditions can be imposed on every local trivialization domain of the tangent bundle TSt of St.
However, since in Lau’s local expressions only geometrical objects (like the extrinsic curvature of
the 2-surface) appear, they are valid even globally (see also [246]). On the other hand, further
investigations are needed to clarify whether or not the quasi-local Hamiltonian, using the Ashtekar
variables in the radial–time gauge [247], is globally well-defined.

In general the Brown–York quasi-local energy does not have any positivity property even if the
matter fields satisfy the dominant energy conditions. However, as G. Hayward pointed out [179], for
the variations of the metric around the vacuum solutions that extremalize the Hamiltonian, called
the ‘ground states’, the quasi-local energy cannot decrease. On the other hand, the interpretation
of this result as a ‘quasi-local dominant energy condition’ depends on the choice of the time gauge
above, which does not exist globally on the whole 2-surface S.

Booth and Mann [77] shifted the emphasis from the foliation of the domain D to the foliation
of the boundary 3B. (These investigations were extended to include charged black holes in [78],
where the gauge dependence of the quasi-local quantities is also examined.) In fact, from the point
of view of the quasi-local quantities defined with respect to the observers with world lines in 3B and
orthogonal to S it is irrelevant how the spacetime domain D is foliated. In particular, the quasi-
local quantities cannot depend on whether or not the leaves Σt of the foliation of D are orthogonal
to 3B. As a result, they recovered the quasi-local charge and energy expressions of Brown and
York derived in the ‘orthogonal boundary’ case. However, they suggested a new prescription for the
definition of the reference configuration (see Section 10.1.8). Also, they calculated the quasi-local
energy for round spheres in the spherically symmetric spacetimes with respect to several moving
observers, i.e., in contrast to Equation (73), they did not link the generator vector field ξa to the
normal ta of St. In particular, the world lines of the observers are not integral curves of (∂/∂t) in
the coordinate basis given in Section 4.2.1 on the round spheres.

Using an explicit, non-dynamical background metric g0
ab, one can construct a covariant, first or-

der Lagrangian L(gab, g
0
ab) for general relativity [230], and one can use the action ID[gab, g

0
ab] based

on this Lagrangian instead of the trace χ action. Fatibene, Ferraris, Francaviglia, and Raiteri [135]
clarified the relationship between the two actions, ID[gab] and ID[gab, g

0
ab], and the corresponding

quasi-local quantities: Considering the reference term S0 in the Brown–York expression as the
action of the background metric g0

ab (which is assumed to be a solution of the field equations),
they found that the two first order actions coincide if the spacetime metrics gab and g0

ab coincide
on the boundary ∂D. Using L(gab, g

0
ab), they construct the conserved Noether current for any

vector field ξa and, by taking its flux integral, define charge integrals QS [ξa, gab, g
0
ab] on 2-surfaces
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S 15. Again, the Brown–York quasi-local quantity Et[ξ
a, ta] and QSt

[ξa, gab, g
0
ab] coincide if the

spacetime metrics coincide on the boundary ∂D and ξa has some special form. Therefore, although
the two approaches are basically equivalent under the boundary condition above, this boundary
condition is too strong both from the points of view of the variational principle and the quasi-local
quantities. We will see in Section 10.1.8 that even the weaker boundary condition that only the
induced 3-metrics on 3B from gab and from g0

ab be the same is still too strong.

10.1.5 The Hamiltonians

If we can write the action I[q(t)] of our mechanical system into the canonical form
∫ t2

t1
[paq̇

a −
H(qa, pa, t)] dt, then it is straightforward to read off the Hamiltonian of the system. Thus, having
accepted the trace χ action as the action for general relativity, it is natural to derive the corre-
sponding Hamiltonian in the analogous way. Following this route Brown and York derived the
Hamiltonian, corresponding to the ‘basic’ (or non-referenced) action I1 too [97]. They obtained
the familiar integral of the sum of the Hamiltonian and the momentum constraints, weighted by
the lapse N and the shift Na, respectively, plus Et[Nt

a + Na, ta], given by Equation (72), as a
boundary term. This result is in complete agreement with the expectations, as their general quasi-
local quantities can also be recovered as the value of the Hamiltonian on the constraint surface (see
also [77]). This Hamiltonian was investigated further in [95]. Here all the boundary terms that
appear in the variation of their Hamiltonian are determined and decomposed with respect to the
2-surface ∂Σ. It is shown that the change of the Hamiltonian under a boost of Σ yields precisely
the boosts of the energy and momentum surface density discussed above.

Hawking, Horowitz, and Hunter also derived the Hamiltonian from the trace χ action I1
D[gab]

both with the orthogonal [176] and non-orthogonal boundaries assumptions [177]. They allowed
matter fields ΦN , whose dynamics is governed by a first order action I1

mD[gab,ΦN ], to be present.
However, they treated the reference configuration in a different way. In the traditional canonical
analysis of the fields and the geometry based on a non-compact Σ (for example in the asymp-
totically flat case) one has to impose certain fall-off conditions that ensure the finiteness of the
action, the Hamiltonian, etc. This finiteness requirement excludes several potentially interesting
field + gravity configurations from our investigations. In fact, in the asymptotically flat case we
compare the actual matter + gravity configurations with the flat spacetime+vanishing matter fields
configuration. Hawking and Horowitz generalized this picture by choosing a static, but otherwise
arbitrary solution g0

ab, Φ0
N of the field equations, considered the timelike boundary 3B of D to be

a timelike cylinder ‘near the infinity’, and considered the action

ID [gab,ΦN ] := I1
D [gab] + I1

mD [gab,ΦN ] − I1
D

[

g0
ab

]

− I1
mD

[

g0
ab,Φ

0
N

]

and those matter + gravity configurations which induce the same value on 3B as Φ0
N and g0

ab.
Its limit as 3B is ‘pushed out to infinity’ can be finite even if the limit of the original (i.e. non-
referenced) action is infinite. Although in the non-orthogonal boundaries case the Hamiltonian
derived from the non-referenced action contains terms coming from the ‘joints’, by the boundary
conditions at 3B they are canceled from the referenced Hamiltonian. This latter Hamiltonian
coincides with that obtained in the orthogonal boundaries case. Both the ADM and the Abbott–
Deser energy can be recovered from this Hamiltonian [176], and the quasi-local energy for spheres
in domains with non-orthogonal boundaries in the Schwarzschild solution is also calculated [177].
A similar Hamiltonian, including the ‘joints’ or ‘corner’ terms, was obtained by Francaviglia and
Raiteri [141] for the vacuum Einstein theory (and for Einstein–Maxwell systems in [4]), using a
Noether charge approach. Their formalism, using the language of jet bundles, is, however, slightly
more sophisticated than that common in general relativity.

15The paper gives a clear, well readable summary of these earlier results.
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Booth and Fairhurst [73] reexamined the general form of the Brown–York energy and angular
momentum from a Hamiltonian point of view16. Their starting point is the observation that
the domain D is not isolated from its environment, thus the quasi-local Hamiltonian cannot be
time independent. Therefore, instead of the standard Hamiltonian formalism for the autonomous
systems, a more general formalism, based on the extended phase space, must be used. This phase
space consists of the usual bulk configuration and momentum variables (hab, p̃

ab) on the typical
3-manifold Σ and the time coordinate t, the space coordinates xA on the 2-boundary S = ∂Σ, and
their conjugate momenta π and πA, respectively.

Their second important observation is that the Brown–York boundary conditions are too re-
strictive: The 2-metric, the lapse, and the shift need not to be fixed but their variations corre-
sponding to diffeomorphisms on the boundary must be allowed. Otherwise diffeomorphisms that
are not isometries of the 3-metric γab on 3B cannot be generated by any Hamiltonian. Relaxing the
boundary conditions appropriately, they show that there is a Hamiltonian on the extended phase
space which generates the correct equations of motions, and the quasi-local energy and angular
momentum expression of Brown and York are just (minus) the momentum π conjugate to the time
coordinate t. The only difference between the present and the original Brown–York expressions is
the freedom in the functional form of the unspecified reference term: Because of the more restric-
tive boundary conditions of Brown and York their reference term is less restricted. Choosing the
same boundary conditions in both approaches the resulting expressions coincide completely.

10.1.6 The flat space and light cone references

The quasi-local quantities introduced above become well-defined only if the subtraction term S0

in the principal function is specified. The usual interpretation of a choice for S0 is the calibration
of the quasi-local quantities, i.e. fixing where to take their zero value.

The only restriction on S0 that we had is that it must be a functional of the metric γab on
the timelike boundary 3B. To specify S0, it seems natural to expect that the principal function
S be zero in Minkowski spacetime [158, 96]. Then S0 would be the integral of the trace Θ0 of
the extrinsic curvature of 3B if it were embedded in Minkowski spacetime with the given intrinsic
metric γab. However, a general Lorentzian 3-manifold (3B, γab) cannot be isometrically embedded,
even locally, into the Minkowski spacetime. (For a detailed discussion of this embeddability, see [96]
and Section 10.1.8.)

Another assumption on S0 might be the requirement of the vanishing of the quasi-local quan-
tities, or of the energy and momentum surface densities, or only of the energy surface density ε,
in some reference spacetime, e.g. in Minkowski or in anti-de-Sitter spacetime. Assuming that S0

depends on the lapse N and shift Na linearly, the functional derivatives (δS0/δN) and (δS0/δNa)
depend only on the 2-metric qab and on the boost-gauge that 3B defined on St. Therefore, ε and
ja take the form (74), and by the requirement of the vanishing of ε in the reference spacetime
it follows that k0 should be the trace of the extrinsic curvature of St in the reference spacetime.
Thus it would be natural to fix k0 as the trace of the extrinsic curvature of St when (St, qab) is
embedded isometrically into the reference spacetime. However, this embedding is far from being
unique (since, in particular, there are two independent normals of St in the spacetime and it would
not be fixed which normal should be used to calculate k0), and hence the construction would be
ambiguous. On the other hand, one could require (St, qab) to be embedded into flat Euclidean
3-space, i.e. into a spacelike hyperplane of Minkowski spacetime17. This is the choice of Brown and
York [96, 97]. In fact, at least for a large class of 2-surfaces (St, qab), such an embedding exists and

16Thus, in principle, we would have to report on their investigations in the next Section 11. Nevertheless, since
essentially they re-derive and justify the results of Brown and York following only a different route, we discuss their
results here.

17The problem to characterize this embeddability is known as the Weyl problem of differential geometry.
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is unique: If St ≈ S2 and the metric is C2 and has everywhere positive scalar curvature, then there
is an isometric embedding of (St, qab) into the flat Euclidean 3-space [195], and apart from rigid
motions this embedding is unique [346]. The requirement that the scalar curvature of the 2-surface
must be positive can be interpreted as some form of the convexity, as in the theory of surfaces in
the Euclidean space. However, there are counterexamples even to local isometric embeddability
when this convexity condition is violated [276]. A particularly interesting 2-surface that cannot
be isometrically embedded into the flat 3-space is the event horizon of the Kerr black hole if the
angular momentum parameter a exceeds the irreducible mass (but is still not greater than the
mass parameter m), i.e. if

√
3m < 2 |a| < 2m [343]. Thus, the construction works for a large class

of 2-surfaces, but certainly not for every potentially interesting 2-surface. The convexity condition
is essential.

It is known that the (local) isometric embeddability of (S, qab) into flat 3-space with extrinsic
curvature k0

ab is equivalent to the Gauss–Codazzi–Mainardi equations δa(k0a
b − δa

b k
0) = 0 and

SR − (k0)2 + k0
abk

0ab = 0. Here δa is the intrinsic Levi-Civita covariant derivative and SR is the
corresponding curvature scalar on S determined by qab. Thus, for given qab and (actually the flat)
embedding geometry, these are three equations for the three components of k0

ab, and hence, if the
embedding exists, qab determines k0. Therefore, the subtraction term k0 can also be interpreted
as a solution of an under-determined elliptic system which is constrained by a nonlinear algebraic
equation. In this form the definition of the reference term is technically analogous to the definition
of those in Sections 7, 8, and 9, but, by the non-linearity of the equations, in practice it is much
more difficult to find the reference term k0 than the spinor fields in the constructions of Sections 7,
8, and 9.

Accepting this choice for the reference configuration, the reference SO(1, 1) gauge potential
A0

a will be zero in the boost-gauge in which the timelike normal of St in the reference Minkowski
spacetime is orthogonal to the spacelike 3-plane, because this normal is constant. Thus, to sum-
marize, for convex 2-surfaces the flat space reference of Brown and York is uniquely determined,
k0 is determined by this embedding, and A0

a = 0. Then 8πGS0 = −
∫

St
Nk0 dSt, from which sab

can be calculated (if needed). The procedure is similar if, instead of a spacelike hyperplane of
Minkowski spacetime, a spacelike hypersurface of constant curvature (for example in the de-Sitter
or anti-de-Sitter spacetime) is used. The only difference is that extra (known) terms appear in the
Gauss–Codazzi–Mainardi equations.

Brown, Lau, and York considered another prescription for the reference configuration as well [94,
248, 249]. In this approach the 2-surface (St, qab) is embedded into the light cone of a point of the
Minkowski or anti-de Sitter spacetime instead of a spacelike hypersurface of constant curvature.
The essential difference between the new (‘light cone reference’) and the previous (‘flat space
reference’) prescriptions is that the embedding into the light cone is not unique, but the reference
term k0 may be given explicitly, in a closed form. The positivity of the Gauss curvature of
the intrinsic geometry of (S, qab) is not needed. In fact, by a result of Brinkmann [91], every
locally conformally flat Riemannian n-geometry is locally isometric to an appropriate cut of a light
cone of the n + 2 dimensional Minkowski spacetime (see also [133]). To achieve uniqueness some
extra condition must be imposed. This may be the requirement of the vanishing of the ‘normal
momentum density’ j0⊢ in the reference spacetime [248, 249], yielding k0 =

√

2SR+ 4/λ2, where
SR is the Ricci scalar of (S, qab) and λ is the cosmological constant of the reference spacetime.
The condition j0⊢ = 0 defines something like a ‘rest frame’ in the reference spacetime. Another,
considerably more complicated choice for the light cone reference term is used in [94].

10.1.7 Further properties and the various limits

Although the general, non-referenced expressions are additive, the prescription for the reference
term k0 destroys the additivity in general. In fact, if S ′ and S ′′ are 2-surfaces such that S ′ ∩ S ′′
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is connected and 2-dimensional (more precisely, it has a non-empty open interior for example in
S ′), then in general S ′ ∪ S ′′ − S ′ ∩ S ′′ (overline means topological closure) is not guaranteed to be
embeddable into the flat 3-space, and even if it is embeddable then the resulting reference term k0

differs from the reference terms k′0 and k′′0 determined from the individual embeddings.

As it is noted in [77], the Brown–York energy with the flat space reference configuration is not
zero in Minkowski spacetime in general. In fact, in the standard spherical polar coordinates let
Σ1 be the spacelike hyperboloid t = −

√

ρ2 + r2, Σ0 the hyperplane t = −T = const. < −ρ < 0

and S := Σ0 ∩ Σ1, the sphere of radius
√

T 2 − ρ2 in the t = −T hyperplane. Then the trace

of the extrinsic curvature of S in Σ0 and in Σ1 is 2/
√

T 2 − ρ2 and 2T/ρ
√

T 2 − ρ2, respectively.
Therefore, the Brown–York quasi-local energy (with the flat 3-space reference) associated with S
and the normals of Σ1 on S is −

√

(T + ρ)(T − ρ)3/(ρG). Similarly, the Brown–York quasi-local
energy with the light cone references in [248] and in [94] is also negative for such surfaces with the
boosted observers.

Recently, Shi, and Tam [341] proved interesting theorems in Riemannian 3-geometries, which
can be used to prove positivity of the Brown–York energy if the 2-surface S is a boundary of
some time-symmetric spacelike hypersurface on which the dominant energy condition holds. In
the time-symmetric case this energy condition is just the condition that the scalar curvature be
non-negative. The key theorem of Shi and Tam is the following: Let Σ be a compact, smooth
Riemannian 3-manifold with non-negative scalar curvature and smooth 2-boundary S such that
each connected component Si of S is homeomorphic to S2 and the scalar curvature of the induced
2-metric on Si is strictly positive. Then for each component

∮

Si
k dSi ≤

∮

Si
k0 dSi holds, where k

is the trace of the extrinsic curvature of S in Σ with respect to the outward directed normal, and
k0 is the trace of the extrinsic curvature of Si in the flat Euclidean 3-space when Si is isometrically
embedded. Furthermore, if in these inequalities the equality holds for at least one Si, then S itself
is connected and Σ is flat. This result is generalized in [342] by weakening the energy condition,
whenever lower estimates of the Brown–York energy can still be given.

The energy expression for round spheres in spherically symmetric spacetimes was calculated
in [97, 77]. In the spherically symmetric metric discussed in Section 4.2.1, on the round spheres the
Brown–York energy with the flat space reference and fleet of observers ∂/∂t on S isGEBY[Sr, (∂/∂t)

a] =
r(1 − exp(−α)). In particular, it is r[1 −

√

1 − (2m/r)] for the Schwarzschild solution. This de-
viates from the standard round sphere expression, and, for the horizon of the Schwarzschild black
hole it is 2m (instead of the expected m). (The energy has also been calculated explicitly for
boosted foliations of the Schwarzschild solution and for round spheres in isotropic cosmological
models [95].) The Newtonian limit can be derived from this by assuming that m is the mass of a
fluid ball of radius r and m/r is small: It is GEBY = m + (m2/2r) + O(r−2). The first term is
simply the mass defined at infinity, and the second term is minus the Newtonian potential energy
associated with building a spherical shell of mass m and radius r from individual particles, bring-
ing them together from infinity. However, taking into account that on the Schwarzschild horizon
GEBY = 2m while at the spatial infinity it is just m, the Brown–York energy is monotonically
decreasing with r. Also, the first law of black hole mechanics for spherically symmetric black holes
can be recovered by identifying EBY with the internal energy [96, 97]. The thermodynamics of
the Schwarzschild–anti-de-Sitter black holes was investigated in terms of the quasi-local quantities
in [92]. Still considering EBY to be the internal energy, the temperature, surface pressure, heat
capacity, etc. are calculated (see Section 13.3.1). The energy has also been calculated for the
Einstein–Rosen cylindrical waves [95].

The energy is explicitly calculated for three different kinds of 2-spheres in the t = const. slices
(in the Boyer–Lindquist coordinates) of the slow rotation limit of the Kerr black hole spacetime
with the flat space reference [264]. These surfaces are the r = const. surfaces (such as the outer
horizon), spheres whose intrinsic metric (in the given slow rotation approximation) is of a metric
sphere of radius R with surface area 4πR2, and the ergosurface (i.e. the outer boundary of the
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ergosphere). The slow rotation approximation is defined such that |a| /R ≪ 1, where R is the
typical spatial measure of the 2-surface. In the first two cases the angular momentum parameter
a enters the energy expression only in the m2a2/R3 order. In particular, the energy for the outer
horizon r+ := m +

√
m2 − a2 is 2m[1 − a2/(8m2) + O(a4/r4+)], which is twice the irreducible

mass of the black hole. An interesting feature of this calculation is that the energy cannot be
calculated for the horizon directly, because, as we noted in the previous point, the horizon itself
cannot be isometrically embedded into a flat 3-space if the angular momentum parameter exceeds
the irreducible mass [343]. The energy for the ergosurface is positive, as for the other two kinds of
surfaces.

The spacelike infinity limit of the charges interpreted as the energy, spatial momentum, and
spatial angular momentum are calculated in [95] (see also [176]). Here the flat space reference
configuration and the asymptotic Killing vectors of the spacetime are used, and the limits coincide
with the standard ADM energy, momentum, and spatial angular momentum. The analogous
calculation for the centre-of-mass is given in [42]. It is shown that the corresponding large sphere
limit is just the centre-of-mass expression of Beig and Ó Murchadha [47]. Here the centre-of-mass
integral in terms of a charge integral of the curvature is also given.

Although the prescription for the reference configuration by Hawking and Horowitz cannot
be imposed for a general timelike 3-boundary 3B (see Section 10.1.8), asymptotically, when 3B
is pushed out to infinity, this prescription can be used, and coincides with the prescription of
Brown and York. Choosing the background metric g0

ab to be the anti-de-Sitter one, Hawking
and Horowitz [176] calculated the limit of the quasi-local energy, and they found it to tend to
the Abbott–Deser energy. (For the spherically symmetric, Schwarzschild–anti-de-Sitter case see
also [92].) In [93] the null infinity limit of the integral of N(k0 − k)/(8πG) was calculated both
for the lapses N generating asymptotic time translations and supertranslations at the null infinity,
and the fleet of observers was chosen to tend to the BMS translation. In the former case the
Bondi–Sachs energy, in the latter case Geroch’s supermomenta are recovered. These calculations
are based directly on the Bondi form of the spacetime metric, and do not use the asymptotic
solution of the field equations. In a slightly different formulation Booth and Creighton calculated
the energy flux of outgoing gravitational radiation [76] (see also Section 13.1) and they recovered
the Bondi–Sachs mass-loss.

However, the calculation of the small sphere limit based on the flat space reference config-
uration gave strange results [249]. While in non-vacuum the quasi-local energy is the expected
(4π/3)r3Tabt

atb, in vacuum it is proportional to 4EabE
ab + HabH

ab instead of the Bel–Robinson
‘energy’ Tabcdt

atbtctd. (Here Eab and Hab are, respectively, the conformal electric and conformal
magnetic curvatures, and ta plays a double role: It defines the 2-sphere of radius r [as is usual in the
small sphere calculations], and defines the fleet of observers on the 2-sphere.) On the other hand,
the special light cone reference used in [94, 249] reproduces the expected result in non-vacuum,
and yields [1/(90G)]r5Tabcdt

atbtctd in vacuum.

The light cone reference k0 =
√

2 SR+ 4/λ2 was shown to work in the large sphere limit near
the null and spatial infinities of asymptotically flat, and near the infinity of asymptotically anti-
de-Sitter spacetimes [248]. Namely, the Brown–York quasi-local energy expression with this null
cone reference term tends to the Bondi–Sachs, the ADM, and Abbott–Deser energies, respectively.
The supermomenta of Geroch at null infinity can also be recovered in this way. The proof is
simply a demonstration of the fact that this light cone and the flat space prescriptions for the
subtraction term have the same asymptotic structure up to order O(r−3). This choice seems to
work properly only in the asymptotics, because for small ellipsoids in the Minkowski spacetime this
definition yields non-zero energy and for small spheres in vacuum it does not yield the Bel–Robinson
‘energy’ [250].
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10.1.8 Other prescriptions for the reference configuration

As we noted above, Hawking, Horowitz, and Hunter [176, 177] defined their reference configuration
by embedding the Lorentzian 3-manifold (3B, γab) isometrically into some given Lorentzian space-
time, e.g. into the Minkowski spacetime (see also [158]). However, for the given intrinsic 3-metric
γab and the embedding 4–geometry the corresponding Gauss and Codazzi–Mainardi equations form
a system of 6 + 8 = 14 equations for the six components of the extrinsic curvature Θab [96]. Thus,
in general, this is a highly overdetermined system, and hence it may be expected to have a solu-
tion only in exceptional cases. However, even if such an embedding existed, then even the small
perturbations of the intrinsic metric hab would break the conditions of embeddability. Therefore,
in general this prescription for the reference configuration can work only if the 3-surface 3B is
‘pushed out to infinity’ but does not work for finite 3-surfaces [96].

To rule out the possibility that the Brown–York energy can be non-zero even in Minkowski
spacetime (on 2-surfaces in the boosted flat data set), Booth and Mann [77] suggested to embed
(S, qab) isometrically into a reference spacetime (M0, g0

ab) (mostly into the Minkowski spacetime)
instead of a spacelike slice of it, and to map the evolution vector field ξa = Nta + Na of the
dynamics, tangent to 3B, to a vector field ξ0a in M0 such that  Lξqab = φ∗( Lξ0q0ab) and ξaξa =
φ∗(ξ0aξ0a). Here φ is a diffeomorphism mapping an open neighbourhood U of S in M into M0

such that φ|S , the restriction of φ to S, is an isometry, and  Lξqab denotes the Lie derivative of qab

along ξa. This condition might be interpreted as some local version of that of Hawking, Horowitz,
and Hunter. However, Booth and Mann did not investigate the existence or the uniqueness of this
choice.

10.2 Kijowski’s approach

10.2.1 The role of the boundary conditions

In the Brown–York approach the leading principle was the claim to have a well-defined variational
principle. This led them to modify the Hilbert action to the trace-χ-action and the boundary
condition that the induced 3-metric on the boundary of the domain D of the action is fixed.

However, as stressed by Kijowski [237, 239], the boundary conditions have much deeper content.
For example in thermodynamics the different definitions of the energy (internal energy, enthalpy,
free energy, etc.) are connected with different boundary conditions. Fixing the pressure corre-
sponds to enthalpy, but fixing the temperature to free energy. Thus the different boundary condi-
tions correspond to different physical situations, and, mathematically, to different phase spaces18.
Therefore, to relax the a priori boundary conditions, Kijowski abandoned the variational principle
and concentrated on the equations of motions. However, to treat all possible boundary conditions
on an equal footing he used the enlarged phase space of Tulczyjew (see for example [239])19. The
boundary condition of Brown and York is only one of the possible boundary conditions.

10.2.2 The analysis of the Hilbert action and the quasi-local internal and free energies

Starting with the variation of Hilbert’s Lagrangian (in fact, the corresponding Hamilton–Jacobi
principal function on a domain D above), and defining the Hamiltonian by the standard Legen-
dre transformation on the typical compact spacelike 3-manifold Σ and its boundary S = ∂Σ too,
Kijowski arrived at a variation formula involving the value on S of the variation of the canonical

18According to this view the quasi-local energy is similar to EΣ of Equation (6), rather than to the charges which
are connected somehow to some ‘absolute’ element of the spacetime structure.

19This phase space is essentially T ∗TQ, the cotangent bundle of the tangent bundle of the configuration man-
ifold Q, endowed with the natural symplectic structure, and can be interpreted as the collection of quadruples
(qa, q̇a, pa, ṗa). The usual Lagrangian (or velocity) phase space TQ and the Hamiltonian (or momentum) phase
space T ∗Q are special submanifolds of T ∗TQ.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-4

http://www.livingreviews.org/lrr-2004-4


Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article 87

momentum, π̃ab := − 1
16πG

√

|γ|(Θab − Θγab), conjugate to γab. (Apart from a numerical coef-
ficient and the subtraction term, this is essentially the surface stress-energy tensor τab given by
Equation (67).) Since, however, it is not clear whether or not the initial + boundary value problem
for the Einstein equations with fixed canonical momenta (i.e. extrinsic curvature) is well posed,
he did not consider the resulting Hamiltonian as the appropriate one, and made further Legendre
transformations on the boundary S.

The first Legendre transformation that he considered gave a Hamiltonian whose variation in-
volves the variation of the induced 2-metric qab on S and the parts π̃abtatb and π̃abtaΠc

b of the
canonical momentum above. Explicitly, with the notations of the previous Section 10.1, the latter
two are πabtatb = k/(16πG) and πabtaqbc = Ac/(16πG), respectively. (πab is the de-densitized
π̃ab.) Then, however, the lapse and the shift on the boundary S will not be independent: As
Kijowski shows they are determined by the boundary conditions for the 2-metric and the freely
specifiable parts k and Ac of the canonical momentum πab. Then, to define the ‘quasi-symmetries’
of the 2-surface, Kijowski suggests to embed first the 2-surface isometrically into an x0 = const.
hyperplane of the Minkowski spacetime, and then define a world tube by dragging this 2-surface
along the integral curves of the Killing vectors of the Minkowski spacetime. For example, to define
the ‘quasi time translation’ of the 2-surface in the physical spacetime we must consider the time
translation in the Minkowski spacetime of the 2-surface embedded in the x0 = const. hyperplane.
This world tube gives an extrinsic curvature k0

ab and vector potential A0
c . Finally, Kijowski’s choice

for k and Ac is just k0 and A0
c , respectively. In particular, to define the ‘quasi time translation’

he takes πabtatb = k0/(16πG) and πabtaΠc
b = 0, because this choice yields zero shift and constant

lapse with value 1. The corresponding quasi-local quantity, the Kijowski energy, is

EK (S) :=
1

16πG

∮

S

(k0)2 − (k2 − l2)

k0
dS. (78)

Here, as above, k and l are the trace of the extrinsic curvatures of S in the physical spacetime
corresponding to the outward pointing spacelike and the future pointing timelike unit normals to
S, which are orthogonal to each other. Obviously, EK(S) is invariant with respect to the boost
gauge transformations of the normals, because the ‘generator vector field’ of the energy is not
linked to one of the normals of S. A remarkable property of this procedure is that for round
spheres in the Schwarzschild solution the choice πabtatb = k0/(16πG), πabtaqbc = 0 (i.e. the flat
spacetime values) reproduces the lapse of the correct Schwarzschild time [237]. For round spheres
(see Section 4.2.1) Equation (78) gives r

2G [1 − exp(−2α)], which is precisely the standard round
sphere expression (27). In particular [237], for the event horizon of the Schwarzschild solution
it gives the expected value m/G. However, there exist spacelike topological 2-spheres S in the
Minkowski spacetime for which EK(S) is positive [292].

Kijowski considered another Legendre transformation on the 2-surface too, and in the variation
of the resulting Hamiltonian only the value on S of the variation of the metric γab appears. Thus
in this phase space the components of γab can be specified freely on S, and Kijowski calls the value
of the resulting Hamiltonian the ‘free energy’. Its form is

FK (S) :=
1

8πG

∮

S

(

k0 −
√

k2 − l2
)

dS. (79)

In the special boost-gauge when l = 0 the ‘free energy’ FK(S) reduces to the Brown–York expres-
sion EBY(S) given by Equation (73). FK(S) appears to have been re-discovered recently by Liu
and Yau [253], and we discuss the properties of FK(S) further in Section 10.4. A more detailed
discussion of the possible quasi-local Hamiltonians and the strategies to define the appropriate
‘quasi-symmetries’ of S are given in [238].
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10.3 The expression of Epp

10.3.1 The general form of Epp’s expression

The Brown–York energy expression, based on the original flat space reference, has the highly
undesirable property that it gives non-zero energy even in the Minkowski spacetime if the fleet
of observers on the spherical S is chosen to be radially accelerating (see the second paragraph in
Section 10.1.7). Thus it would be a legitimate aim to reduce this extreme dependence of the quasi-
local energy on the choice of the observers. One way of doing this is to formulate the quasi-local
quantities in terms of boost-gauge invariant objects. Such a boost-gauge invariant geometric object
is the length of the mean extrinsic curvature vector Qa of Section 4.1.2, which, in the notations of
the present section, is

√
k2 − l2. If Qa is spacelike or null, then this square root is real, and (apart

from the reference term k0 in Equation (73)) in the special case l = 0 it reduces to −8πG times
the surface energy density of Brown and York. This observation lead Epp to suggest

EE (S) :=
1

8πG

∮

S

(

√

(k0)2 − (l0)2 −
√

k2 − l2
)

dS (80)

as the general definition of the so-called ‘invariant quasi-local energy’ [133]. Here, as in the Brown–
York definition, k0 and l0 give the ‘reference term’ that should be fixed in a separate procedure.
Note that it is EE(S) that is referenced and not the mean curvatures k and l, i.e. EE(S) is not the
integral of

√

ε2 − j2⊢. Apart from the fact that MΣ of Equation (7) is associated with a 3-surface,
Epp’s invariant quasi-local energy expression appears to be analogous to MΣ rather than to EΣ[ξa]
of Equation (6) or to QS [K] of Equation (5). However, although at first sight EE(S) appears to
be a quasi-local mass, it turns out in special situations that it behaves as an energy expression. In
the so-called ‘quasi-local rest frame’, i.e. in which l = 0, it reduces to the Brown–York expression
provided k is positive. Note that Qa must be spacelike to have a quasi-local rest frame. This
condition can be interpreted as some very weak convexity condition on S. In particular, k is not
needed to be positive, only k2 > l2 is required. While EBY is sensitive to the sign of k, EE is not.
Hence EE(S) is not simply the value of the Brown–York expression in the quasi-local rest frame.

10.3.2 The definition of the reference configuration

The subtraction term in Equation (80) is defined through an isometric embedding of (S, qab) into
some reference spacetime instead of a 3-space. This spacetime is usually Minkowski or anti-de-
Sitter spacetime. Since the 2-surface data consist of the metric, the two extrinsic curvatures and
the SO(1, 1)-gauge potential, for given (S, qab) and ambient spacetime (M0, g0

ab) the conditions of
the isometric embedding form a system of six equations for eight quantities, namely for the two
extrinsic curvatures and the gauge potential Ae (see Section 4.1.2, and especially Equations (20,
21)). Therefore, even a naive function counting argument suggests that the embedding exists, but
is not unique. To have uniqueness, additional conditions must be imposed. However, since Ae is
a gauge field, one condition might be a gauge fixing in the normal bundle, and Epp’s suggestion
is to require that the curvature of the connection 1-form Ae in the reference spacetime and in the
physical spacetime be the same [133]. Or, in other words, not only the intrinsic metric qab of S is
required to be preserved in the embedding, but the whole curvature fa

bcd of the connection δe as
well. In fact, in the connection δe on the spinor bundle SA(S) both the Levi-Civita and the SO(1, 1)
connection coefficients appear on an equal footing. (Recall that we interpreted the connection δe
to be a part of the universal structure of S.) With this choice of the reference configuration EE(S)
depends not only on the intrinsic 2-metric qab of S, but on the connection δe on the normal bundle
as well.

Suppose that S is a 2-surface in M such that k2 > l2 with k > 0, and, in addition, (S, qab)
can be embedded into the flat 3-space with k0 ≥ 0. Then there is a boost gauge (the ‘quasi-local
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rest frame’) in which EE(S) coincides with the Brown–York energy EBY(S, ta) in the particular
boost-gauge ta for which taQa = 0. Consequently, every statement stated for the latter is valid
for EE(S), and every example calculated for EBY(S, ta) is an example for EE(S) as well [133]. A
clear and careful discussion of the potential alternative choices for the reference term, especially
their potential connection with the angular momentum, is also given there.

10.3.3 The various limits

First, it should be noted that Epp’s quasi-local energy is vanishing in Minkowski spacetime for
any 2-surface, independently of any fleet of observers. In fact, if S is a 2-surface in Minkowski
spacetime, then the same physical Minkowski spacetime defines the reference spacetime as well, and
hence EE(S) = 0. For round spheres in the Schwarzschild spacetime it yields the result that EBY

gave. In particular, for the horizon it is 2m/G (instead of m/G), and at infinity it is m/G [133].
Thus, in particular, EE is also monotonically decreasing with r in Schwarzschild spacetime.

Epp calculated the various limits of his expression too [133]. In the large sphere limit near
spatial infinity he recovered the Ashtekar–Hansen form of the ADM energy, at future null infinity
the Bondi–Sachs energy. The technique that is used in the latter calculations is similar to that
of [93]. In non-vacuum in the small sphere limit EE(S) reproduces the standard 4π

3 r
3Tabt

atb result,
but the calculations for the vacuum case are not completed. The leading term is still probably of
order r5, but its coefficient has not been calculated. Although in these calculations ta plays the role
only of fixing the 2-surfaces, as a result we got energy seen by the observer ta instead of mass. It is
this reason why EE(S) is considered to be energy rather than mass. In the asymptotically anti-de-
Sitter spacetime (with the anti-de-Sitter spacetime as the reference spacetime) EE gives zero. This
motivated Epp to modify his expression to recover the mass parameter of the Schwarzschild–anti-
de-Sitter spacetime at the infinity. The modified expression is, however, not boost-gauge invariant.
Here the potential connection with the AdS/CFT correspondence is also discussed (see also [33]).

10.4 The expression of Liu and Yau

10.4.1 The Liu–Yau definition

Let (S, qab) be a spacelike topological 2-sphere in spacetime such that the metric has positive scalar
curvature. Then by the embedding theorem there is a unique isometric embedding of (S, qab) into
the flat 3-space, and this embedding is unique. Let k0 be the trace of the extrinsic curvature of
S in this embedding, which is completely determined by qab and is necessarily positive. Let k
and l be the trace of the extrinsic curvatures of S in the physical spacetime corresponding to the
outward pointing unit spacelike and future pointing timelike normals, respectively. Then Liu and
Yau define their quasi-local energy in [253] by

ELY (S) :=
1

8πG

∮

S

(

k0 −
√

k2 − l2
)

dS. (81)

However, this is precisely Kijowski’s ‘free energy’ given by Equation (79), ELY(S) = FK(S), and
hence we denote this by EKLY(S). Obviously, this is well-defined only if, in addition to the usual
convexity condition R > 0 for the intrinsic metric, k2 ≥ l2 also holds, i.e. the mean curvature
vector Qa is spacelike or null. If k ≥ 0 then EKLY(S) ≥ EBY(S, ta), where the equality holds
for ta corresponding to the quasi-local rest frame (in the sense that it is orthogonal to the mean
curvature vector of the 2-surface: taQa = 0).

Isolating the gauge invariant part of the SO(1, 1) connection 1-form Liu and Yau defined a
quasi-local angular momentum as follows [253]. Let α be the solution of the Poisson equation
2qabδaδbα = Im(f) on S, whose source is just the field strength of Aa (see Equation (22)). This α is
globally well-defined on S and is unique up to addition of a constant. Then define γa := Aa−εa

bδbα
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on the domain of the connection 1-form Aa, which is easily seen to be closed. Assuming the space
and time orientability of the spacetime, Aa is globally defined on S ≈ S2, and hence by H1(S2) = 0
the 1-form γa is exact: γa = δaγ for some globally defined real function γ on S. This function is
unique up to an additive constant. Therefore, Aa = εa

bδbα + δaγ, where the first term is gauge
invariant, while the second represents the gauge content of Aa. Then for any rotation Killing vector
K0i of the flat 3-space Liu and Yau define the quasi-local angular momentum by

JLY

(

S,K0i
)

:=
1

8πG

∮

S
ϕ−1
∗
(

K0iΠ0a
i

)

εa
b (δbα) dS. (82)

Here ϕ : S → R
3 is the embedding and Π0a

i is the projection to the tangent planes of ϕ(S) in R
3.

Thus, in contrast to the Brown–York definition for the angular momentum (see Equations (68, 69,
70, 71, 72)), in JLY(S,K0i) only the gauge invariant part δaα of the gauge potential Aa is used,
and its generator vector field is the pull-back to S of the rotation Killing vector of the flat 3-space.

10.4.2 The main properties of EKLY(S)

The most important property of the quasi-local energy definition (81) is its positivity. Namely [253],
let Σ be a compact spacelike hypersurface with smooth boundary ∂Σ, consisting of finitely many
connected components S1, . . . , Sk such that each of them has positive intrinsic curvature. Sup-
pose that the matter fields satisfy the dominant energy condition on Σ. Then EKLY(∂Σ) :=
∑k

i=1EKLY(Si) is strictly positive unless the spacetime is flat along Σ. In this case ∂Σ is neces-
sarily connected. The proof is based on the use of Jang’s equation [217], by means of which the
general case can be reduced to the results of Shi and Tam in the time-symmetric case [341], stated
in Section 10.1.7 (see also [399]). This positivity result is generalized in [254]: It is shown that
EKLY(Si) is non-negative for all i = 1, . . . , k, and if EKLY(Si) = 0 for some i then the spacetime is
flat along Σ and ∂Σ is connected. (In fact, since EKLY(∂Σ) depends only on ∂Σ but is indepen-
dent of the actual Σ, if the energy condition is satisfied on the domain of dependence D(Σ) then
EKLY(∂Σ) = 0 implies the flatness of the spacetime along every Cauchy surface for D(Σ), i.e. the
flatness of the whole domain of dependence too.)

If S is an apparent horizon, i.e. l = ±k, then EKLY(S) is just the integral of k0/(8πG). Then
by the Minkowski inequality for the convex surfaces in the flat 3-space (see for example [380]) one
has

EKLY (S) =
1

8πG

∮

S
k0 dS ≥ 1

8πG

√

16πArea(S) = 2

√

Area(S)

16πG2
,

i.e. it is not less than twice the irreducible mass of the horizon. For round spheres EKLY(S)
coincides with EE(S), and hence it does not reduce to the standard round sphere expression (27).
In particular, for the event horizon of the Schwarzschild black hole it is 2m/G. Although the strict
mathematical analysis is still lacking, EKLY probably reproduces the correct large sphere limits in
asymptotically flat spacetime (ADM and Bondi–Sachs energies), because the difference between
the Brown–York, Epp, and Kijowski–Liu–Yau definitions disappear asymptotically.

However, EKLY(S) can be positive even if S is in the Minkowski spacetime. In fact, for given
intrinsic metric qab on S (with positive scalar curvature) S can be embedded into the flat R

3; this
embedding is unique, and the trace of the extrinsic curvature k0 is determined by qab. On the other
hand, the isometric embedding of S in the Minkowski spacetime is not unique: The equations of
the embedding (i.e. the Gauss, the Codazzi–Mainardi, and the Ricci equations) form a system
of six equations for the six components of the two extrinsic curvatures kab and lab and the two
components of the SO(1, 1) gauge potential Ae. Thus, even if we impose a gauge condition for
the connection 1-form Ae, we have only six equations for the seven unknown quantities, leaving
enough freedom to deform S (with given, fixed intrinsic metric) in the Minkowski spacetime to
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get positive Kijowski–Liu–Yau energy. Indeed, specific 2-surfaces in the Minkowski spacetime are
given in [292] for which EKLY(S) > 0.
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11 Towards a Full Hamiltonian Approach

The Hamilton–Jacobi method is only one possible strategy to define the quasi-local quantities
in a large class of approaches, called the Hamiltonian or canonical approaches. Thus there is a
considerable overlap between the various canonical methods, and hence the cutting of the material
into two parts (Section 10 and Section 11) is, in some sense, artifical. In the previous Section 10
we reviewed those approaches that are based on the analysis of the action, while in the present
we discuss those that are based primarily of the analysis of the Hamiltonian in the spirit of Regge
and Teitelboim [319]20.

By a full Hamiltonian analysis we mean a detailed study of the structure of the quasi-local phase
space, including the constraints, the smearing fields, the symplectic structure and the Hamiltonian
itself, according to the standard or some generalized Hamiltonian scenarios, in the traditional 3 + 1
or in the fully Lorentz-covariant form, or even in the 2 + 2 form, using the metric or triad/tetrad
variables (or even the Weyl or Dirac spinors). In the literature of canonical general relativity
(at least in the asymptotically flat context) there are examples for all these possibilities, and we
report on the quasi-local investigations on the basis of the decomposition they use. Since the 2 + 2
decomposition of the spacetime is less known, we also summarize its basic idea.

11.1 The 3 +1 approaches

There is a lot of literature on the canonical formulation of general relativity both in the traditional
ADM and the Møller tetrad (or, recently, the closely related complex Ashtekar) variables. Thus
it is quite surprising how little effort has been spent to systematically quasi-localize them. One
motivation for the quasi-localization of the ADM–Regge–Teitelboim analysis came from the need
for the microscopic understanding of black hole entropy [32, 31, 99]: What are the microscopic
degrees of freedom behind the phenomenological notion of black hole entropy? Since the aim of
the present paper is to review the construction of the quasi-local quantities in classical general
relativity, we discuss only the classical 2-surface observables by means of which the ‘quantum edge
states’ on the black hole event horizons were intended to be constructed.

11.1.1 The 2-surface observables

If Σ, the 3-manifold on which the ADM canonical variables hab, p̃
ab are defined, has a boundary

S := ∂Σ, then the usual vacuum constraints

C [ν, νa] := −
∫

Σ

{

ν

[

1

16πG
3R
√

|h| +
16πG
√

|h|

(

1

2

(

p̃abhab

)2 − p̃abp̃ab

)

]

+ 2νaDbp̃
ab

}

d3x (83)

are differentiable with respect to the canonical variables only if the smearing fields ν and νa and the
derivative Daν are vanishing on S 21. However, as Balachandran, Chandar, and Momen [32, 31]
and Carlip [99] realized, the boundary conditions for the smearing fields can be relaxed by adding
appropriate boundary terms to the constraints. Namely, for any vector field V a and function T

20In fact, Kijowski’s results could have been presented here, but the technique that he uses may justify their
inclusion in the previous Section 10.

21Here we concentrate only on the genuine, finite boundary of Σ. The analysis is straightforward even in the
presence of ‘boundaries at infinity’ at the asymptotic ‘ends’ of asymptotically flat Σ.
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they define

OM [V a] :=

∫

Σ

p̃ab  LVhabd
3x = C [0, V a] − 2

∮

S
vaVbp

ab dS, (84)

OH [T ] := −
∫

Σ

T

[

1

16πG
3R+

16πG

|h|

(

1

2

(

p̃abhab

)2 − p̃abp̃ab

)]

dΣ − 1

8πG

∮

S
Tk dS =

= C [T, 0] − 1

8πG

∮

S
Tk dS, (85)

where k is the trace of the extrinsic curvature of S in Σ and qab is the induced metric on S. Then
OM[V a] is functionally differentiable if V a is tangent to S, and OH[T ] is functionally differentiable
if DaT is vanishing on S (and hence, in particular, T is a [not necessarily zero] constant on S)
and hab is fixed on S. Furthermore, for any two such V a and V ′a coinciding on S, the difference
OM[V a]−OM[V ′a] is just a momentum constraint, and, similarly, OH[T ]−OH[T ′] is a Hamiltonian
constraint. Thus, on the constraint surface, OM[V a] and OH[T ] depend only on the value of
V a and T on S. A direct calculation shows that their Poisson bracket with the constraints is a
constraint, i.e. vanishing on the constraint surface. Therefore, OM[V a] and OH[T ] are well-defined
2-surface observables corresponding to the momentum and the Hamiltonian constraint, respectively.
Moreover, the observables OM[V a] form an infinite-dimensional Lie algebra with respect to the
Poisson bracket. In this Lie algebra the momentum constraints form an ideal, and the quotient of
the algebra of the observables OM[V a] and the constraint ideal is still infinite-dimensional. (In the
asymptotically flat case, cf. [47, 364].) In fact, OM defines a homomorphism of the Lie algebra of the
2-surface vector fields into the quotient algebra of these observables modulo constraints [32, 31, 99].

To understand the meaning of these observables, recall that any vector field V a on Σ gener-
ates a diffeomorphism, which is an exact (gauge) symmetry of general relativity, and the role of
the momentum constraint C[0, V a] is just to generate this gauge symmetry in the phase space.
However, the boundary S breaks the diffeomorphism invariance of the system, and hence on the
boundary the diffeomorphism gauge motions yield the observables OM[V a] and the gauge degrees
of freedom give raise to physical degrees of freedom, making it possible to introduce the so-called
edge states [32, 31, 99]. Evaluating OM[V a] and OH[T ] on the constraint surface we obtain

OM [V a] = − 1

8πG

∮

S
V aAa dS, OH [T ] = − 1

8πG

∮

S
Tk dS, (86)

i.e. these are just the integrals of the (unreferenced) Brown–York energy surface density weighted
by the constant T and momentum surface density contracted with V a, respectively (see Equa-
tion (74)).

Analogous investigations were done by Husain and Major in [210]. Using Ashtekar’s complex
variables [17] they determined all the local boundary conditions for the canonical variables Ai

a,
Ẽa

i and for the lapse N , the shift Na, and the internal gauge generator N i on S that ensure
the functional differentiability of the Gauss, the diffeomorphism, and the Hamiltonian constraints.
Although there are several possibilities, they discussed the two most significant cases. In the first
case the generators N , Na, and N i are vanishing on S, whenever there are infinitely many 2-
surface observables both from the diffeomorphism and the Gauss constraints, but no observable
from the Hamiltonian constraint. The structure of these observables is similar to that of those
coming from the ADM diffeomorphism constraint above. The other case considered is when the
canonical momentum Ẽa

i (and hence, in particular, the 3-metric) is fixed on the 2-boundary. Then
the quasi-local energy could be an observable, as in the ADM analysis above.

All of the papers [32, 31, 99, 210] discuss the analogous phenomenon of how the gauge freedoms
are getting to be true physical degrees of freedom in the presence of 2-surfaces on the 2-surfaces
themselves in the Chern–Simons and BF theories. Weakening the boundary conditions further
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(allowing certain boundary terms in the variation of the constraints) a more general algebra of
‘observables’ can be obtained [101, 296]: They form the Virasoro algebra with a central charge.
(In fact, Carlip’s analysis in [101] is based on the so-called covariant Noether charge formalism
below.) Since this algebra is well known in conformal field theories, this approach might be a
basis of understanding the microscopic origin of the black hole entropy [100, 101, 102, 296, 103].
However, this quantum issue is beyond the scope of the present review.

11.2 Approaches based on the double-null foliations

11.2.1 The 2 + 2 decomposition

The decomposition of the spacetime in a 2 + 2 way with respect to two families of null hypersurfaces
is as old as the study of gravitational radiation and the concept of the characteristic initial value
problem (see for example [326, 306]). The basic idea is that we foliate an open subset U of
the spacetime by a 2-parameter family of (e.g. closed) spacelike 2-surfaces: If S is the typical
2-surface, then this foliation is defined by a smooth embedding φ : S × (−ǫ, ǫ) × (−ǫ, ǫ) → U :
(p, ν+, ν−) 7→ φ(p, ν+, ν−). Then, keeping ν+ fixed and varying ν−, or keeping ν− fixed and varying
ν+, respectively, Sν+,ν−

:= φ(S, ν+, ν−) defines two 1-parameter families of hypersurfaces Σν+
and

Σν−
. Requiring one (or both) of the hypersurfaces Σν±

to be null, we get a so-called null (or
double-null, respectively) foliation of U . (In Section 4.1.8 we required the hypersurfaces Σν±

to
be null only for the special value ν± = 0 of the parameters.) As is well known, because of the
conjugate points, in the null or double null cases the foliation can be well-defined only locally. For
fixed ν+ and p ∈ S the prescription ν− 7→ φ(p, ν+, ν−) defines a curve through φ(p, ν+, 0) ∈ Sν+,0

in Σν+
, and hence a vector field ξa

+ := (∂/∂ν−)a tangent everywhere to Σ+ on U . The Lie bracket
of ξa

+ and the analogously defined ξa
− is zero. There are several inequivalent ways of introducing

coordinates or rigid frame fields on U , which are fit naturally to the null or double null foliation
{Sν+,ν−

}, in which the (vacuum) Einstein equations and Bianchi identities take a relatively simple
form [326, 152, 123, 348, 381, 180, 165, 82, 189].

Defining the ‘time derivative’ to be the Lie derivative, for example, along the vector field ξa
+,

the Hilbert action can be rewritten according to the 2 + 2 decomposition. Then the 2 + 2 form
of the Einstein equations can be derived from the corresponding action as the Euler–Lagrange
equations provided the fact that the foliation is null is imposed only after the variation has made.
(Otherwise, the variation of the action with respect to the less than ten nontrivial components
of the metric would not yield all the 10 Einstein equations.) One can form the corresponding
Hamiltonian, in which the null character of the foliation should appear as a constraint. Then the
formal Hamilton equations are just the Einstein equations in their 2 + 2 form [123, 381, 180, 189].
However, neither the boundary terms in this Hamiltonian nor the boundary conditions that could
ensure its functional differentiability were considered. Therefore, this Hamiltonian can be ‘correct’
only up to boundary terms. Such a Hamiltonian was used by Hayward [180, 183] as the basis of
his quasi-local energy expression discussed already in Section 6.3. (A similar energy expression
was derived by Ikumi and Shiromizi [211], starting with the idea of the ‘freely falling 2-surfaces’.)

11.2.2 The 2 + 2 quasi-localization of the Bondi–Sachs mass-loss

As we mentioned in Section 6.1.3, this double-null foliation was used by Hayward [182] to quasi-
localize the Bondi–Sachs mass-loss (and mass-gain) by using the Hawking energy. Thus we do not
repeat the review of his results here.

Yoon investigated the vacuum field equations in a coordinate system based on a null 2 + 2
foliation. Thus one family of hypersurfaces was (outgoing) null, e.g. Nu, but the other was timelike,
say Bv. The former defined a foliation of the latter in terms of the spacelike 2-surfaces Su,v :=

Nu ∩Bv. Yoon found [400, 401] a certain 2-surface integral on Su,v, denoted by Ẽ(u, v), for which
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the difference Ẽ(u2, v) − Ẽ(u1, v), u1 < u2, could be expressed as a flux integral on the portion
of the timelike hypersurface Bv between Su1,v and Su2,v. In general this flux does not have a
definite sign, but Yoon showed that asymptotically, when Bv is ‘pushed out to null infinity’ (i.e.
in the v → ∞ limit in an asymptotically flat spacetime), it becomes negative definite. In fact,
‘renormalizing’ Ẽ(u, v) by a subtraction term, E(u, v) := Ẽ(u, v) −

√

Area(S0,v)/(16πG2) tends
to the Bondi energy, and the flux integral tends to the Bondi mass-loss between the cuts u = u1

and u = u2 [400, 401]. These investigations were extended for other integrals in [402, 403, 404],
which are analogous to spatial momentum and angular momentum. However, all these integrals,
including Ẽ(u, v) above, depend not only on the geometry of the spacelike 2-surface Su,v but on
the 2 + 2 foliation on an open neighbourhood of Su,v too.

11.3 The covariant approach

11.3.1 The covariant phase space methods

The traditional ADM approach to conserved quantities and the Hamiltonian analysis of general
relativity is based on the 3 + 1 decomposition of fields and geometry. Although the results and the
content of a theory may be covariant even if their form is not, the manifest spacetime covariance
of a formalism may help to find the (spacetime covariant) observables and conserved quantities,
boundary conditions, etc. easily. No a posteriori spacetime interpretation of the results is needed.
Such a spacetime-covariant Hamiltonian formalism was initiated by Nester [280, 283].

His basic idea is to use (tensor or Dirac spinor valued) differential forms as the basic field
variables on the spacetime manifold M . Thus his phase space is the collection of fields on the 4-
manifold M , endowed with the (generalized) symplectic structure of Kijowski and Tulczyjew [239].
He derives the field equations from the Lagrangian 4-form, and for a fixed spacetime vector field
Ka finds a Hamiltonian 3-form H(K)abc whose integral on a spacelike hypersurface takes the form

H [K] =
1

8πG

∫

Σ

KaGab
1

3!
εb

cde +

∮

∂Σ

B (Ka)cd , (87)

the sum of the familiar ADM constraints and a boundary term. The Hamiltonian is determined
from the requirement of the functional differentiability of H[K], i.e. that the variation δH[K] with
respect to the canonical variables should not contain any boundary term on an asymptotically
flat Σ (see Sections 2.2.2, 3.2.1, and 3.2.2). For asymptotic translations the boundary term in the
Hamiltonian gives the ADM energy-momentum 4-vector. In tetrad variables H(K)abc is essentially
Sparling’s 3-form [345], and the 2-component spinor version of B(Ka)cd is essentially the Nester–
Witten 2-form contracted in the name index with the components of Ka (see also Section 3.2.1).

The spirit of the first systematic investigations of the covariant phase space of the classical field
theories [122, 20, 146, 251] is similar to that of Nester’s. These ideas were recast into the systematic
formalism by Wald and Iyer [389, 215, 216], the so-called covariant Noether charge formalism (see
also [388, 251]). This formalism generalizes many of the previous approaches: The Lagrangian
4-form may be any diffeomorphism invariant local expression of any finite order derivatives of the
field variables. It gives a systematic prescription for the Noether currents, the symplectic structure,
the Hamiltonian etc. In particular, the entropy of the stationary black holes turned out to be just
a Noether charge derived from Hilbert’s Lagrangian.

11.3.2 Covariant quasi-local Hamiltonians with explicit reference configurations

The quasi-local Hamiltonian for a large class of geometric theories, allowing torsion and non-
metricity of the connection, was investigated by Chen, Nester, and Tung [109, 107, 285] in the
covariant approach of Nester above [280, 283]. Starting with a Lagrangian 4-form for a first order
formulation of the theory and an arbitrary vector field Ka, they determine the general form of the
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Hamiltonian 3-form H(K)abc, including the boundary 2-form B(Ka)cd. However, in the variation
of the corresponding Hamiltonian there will be boundary terms in general. To cancel them, the
boundary 2-form has to be modified. Introducing an explicit reference field φ0A and canonical
momentum π0

A (which are solutions of the field equations), Chen, Nester, and Tung suggest (in
the differential form notation) either of the two 4-covariant boundary 2-forms

Bφ(Ka) := ιKφ
A ∧

(

πA − π0
A

)

− (−)k
(

φA − φ0A
)

∧ ιKπ0
A, (88)

Bπ(Ka) := ιKφ
0A ∧

(

πA − π0
A

)

− (−)k
(

φA − φ0A
)

∧ ιKπA, (89)

where the configuration variable φA is some (tensor valued) k-form and ιKφ
a is the interior

product of the k-form φA
a1...ak

and the vector field Ka, i.e. in the abstract index formalism
(ιKφ

A)a2...ak
= kKaφA

aa2...ak
. Then the boundary term in the variation δH[K] of the Hamilto-

nian is the 2-surface integral on ∂Σ of ιK(δφA ∧ (πA − π0
A)) and ιK(−(φA − φ0A) ∧ δπA), respec-

tively. Therefore, the Hamiltonian is functionally differentiable with the boundary 2-form Bφ(Ka)
if the configuration variable φA is fixed on ∂Σ, but Bπ(Ka) should be used if πA is fixed on ∂Σ.
Thus the first boundary 2-form corresponds to a 4-covariant Dirichlet-type, while the second to a
4-covariant Neumann-type boundary condition. Obviously, the Hamiltonian evaluated in the ref-
erence configuration (φ0A, π0

A) gives zero. Chen and Nester show [107] that Bφ(Ka) and Bπ(Ka)
are the only boundary 2-forms for which the resulting boundary 2-form C(Ka)bc in the variation
δH(Ka)bcd of the Hamiltonian 3-form vanishes on ∂Σ, reflects the type of the boundary conditions
(i.e. which fields are fixed on the boundary), and is built from the configuration and momentum
variables 4-covariantly (‘uniqueness’). A further remarkable property of Bφ(Ka) and Bπ(Ka) is
that the corresponding Hamiltonian 3-form can be derived directly from appropriate Lagrangians.
One possible choice for the vector field Ka is to be a Killing vector of the reference geometry.

These general ideas were applied to general relativity in the tetrad formalism (and also in the
Dirac spinor formulation of the theory [109, 105], yielding a Hamiltonian which is slightly different
from Equation (87)) as well as in the usual metric formalism [105, 108]. In the latter it is the
appropriate projections to ∂Σ of φαβ := 1

8πG

√

|g|gαβ or πα
µβ := Γα

µβ in some coordinate system
{xα} that is chosen to be fixed on ∂Σ. Then the dual of the corresponding Dirichlet and Neumann
boundary 2-forms, respectively, will be

Bab
φ (Ke) := δabc

def

(

Γd
gc − Γ0d

gc

)

φgeKf + δab
ef∇0

cK
e
(

φcf − φ0cf
)

, (90)

Bab
π (Ka) := δabc

def

(

Γd
gc − Γ0d

gc

)

φ0geKf + δab
ef∇cK

e
(

φcf − φ0cf
)

. (91)

The first terms are analogous to Freud’s superpotential, while the second ones are analogous to
Komar’s superpotential. (Since the boundary 2-form contains Γα

µβ only in the form Γα
µβ − Γ0α

µβ ,

this is always tensorial. If Γ0α
µβ is chosen to be vanishing, then the first term reduces to Freud’s

superpotential.) Because of the Komar-like term, the quasi-local quantities depend not only on the
2-surface data (both in the physical spacetime and the reference configuration), but on the nor-
mal directional derivative of Ka as well. The connection between the present expressions and the
similar previous results (pseudotensorial, tensorial, and quasi-local) is also discussed in [107, 105].
In particular, the expression based on the Dirichlet-type boundary 2-form (90) gives precisely the
Katz–Bicak–Lynden-Bell superpotential [230]. In the spinor formulation of these ideas the vector
field Ka would be built from a Dirac spinor (or a pair of Weyl spinors). The main difficulty is, how-
ever, to find spinor fields representing both translational and boost-rotational displacements [110].
In the absence of a prescription for the reference configuration (even though that should be defined
only on an open neighbourhood of the 2-surface) the construction is still not complete, even if the
vector field Ka is chosen to be a Killing vector of the reference spacetime.

A nice application of the covariant expression is a derivation of the first law of black hole
thermodynamics [107]. The quasi-local energy expressions have been evaluated for several specific
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2-surfaces. For round spheres in the Schwarzschild spacetime both the 4-covariant Dirichlet and
Neumann boundary terms (with the Minkowski reference spacetime and Ka as the timelike Killing
vector (∂/∂t)a) give m/G at infinity, but at the horizon the former gives 2m/G and the latter is
infinite [107]. The Dirichlet boundary term gives at the spatial infinity in the Kerr–anti-de-Sitter
solution the standard m/G and ma/G values for the energy and angular momentum, respec-
tively [191]. Also, the center-of-mass is calculated both in the metric and the tetrad formulation
of general relativity for the eccentric Schwarzschild solution at the spatial infinity [286, 287], and
it was found that the ‘Komar-like term’ is needed to recover the correct, expected value. At the
future null infinity of asymptotically flat spacetimes it gives the Bondi–Sachs energy-momentum
and the expression of Katz [229, 233] for the angular momentum [192]. The general formulae are
evaluated for the Kerr–Vaidya solution too.

11.3.3 Covariant quasi-local Hamiltonians with general reference terms

Anco and Tung investigated the possible boundary conditions and boundary terms in the quasi-
local Hamiltonian using the covariant Noether charge formalism both of general relativity (with the
Hilbert Lagrangian and tetrad variables) and of Yang–Mills–Higgs systems [7, 8]. (Some formulae
of the journal versions were recently corrected in the latest arXiv-versions.) They considered the
world tube of a compact spacelike hypersurface Σ with boundary S := ∂Σ. Thus the spacetime do-
main they considered is the same as in the Brown–York approach: D ≈ Σ× [t1, t2]. Their evolution
vector field Ka is assumed to be tangent to the timelike boundary 3B ≈ ∂Σ× [t1, t2] of the domain
D. They derived a criterion for the existence of a well-defined quasi-local Hamiltonian. Dirichlet
and Neumann-type boundary conditions are imposed (i.e., in general relativity, the variations of
the tetrad fields are restricted on 3B by requiring the induced metric γab to be fixed and the
adaptation of the tetrad field to the boundary to be preserved, and the tetrad components ΘabE

b
a

of the extrinsic curvature of 3B to be fixed, respectively). Then the general allowed boundary con-
dition was shown to be just a mixed Dirichlet–Neumann boundary condition. The corresponding
boundary terms of the Hamiltonian, written in the form

∮

S K
aPa dS, were also determined [7].

The properties of the co-vectors PD
a and PN

a (called the Dirichlet and Neumann symplectic vec-
tors, respectively) were investigated further in [8]. Their part tangential to S is not boost gauge
invariant, and to evaluate them the boost gauge determined by the mean extrinsic curvature vec-
tor Qa is used (see Section 4.1.2). Both PD

a and PN
a are calculated for various spheres in several

special spacetimes. In particular, for the round spheres of radius r in the t = const. hypersurface
in the Reissner–Nordström solution PD

a = 2
r (1 − 2m/r + e2/r2)δ0a and PN

a = −(m/r2 − e2/r3)δ0a,
and hence the Dirichlet and Neumann ‘energies’ with respect to the static observer Ka = (∂/∂t)a

are
∮

Sr
KaPD

a dSr = 8πr − 16π[m − e2/(2r)] and
∮

Sr
KaPN

a dSr = −4π(m − e2/r), respectively.

Thus PN
a does not reproduce the standard round sphere expression, while PD

a gives the standard
round sphere and correct ADM energies only if it is ‘renormalized’ by its own value in Minkowski
spacetime [8].

Anco continued the investigation of the Dirichlet Hamiltonian in [6], which takes the form

H [K] =
1

8πG

∫

Σ

KaGab
1

3!
εb

cde −
1

8πG

∮

∂Σ

Ka
(

Q̃a +Aa +Ba

)

dS. (92)

Here the 2-surface ∂Σ is assumed to be mean convex, whenever the boost gauge freedom in the
SO(1, 1) gauge potential Aa can be, and, indeed, is fixed by using the globally defined orthonormal
vector basis {ea

0 , e
a
1} in the normal bundle obtained by normalizing the mean curvature basis

{Q̃a, Qa}. The vector field Ka is still arbitrary, and Ba is an arbitrary function of the metric
qab on the 2-boundary ∂Σ, i.e. of the boundary data. This Ba is actually assumed to have the
structure Ba = ea

0B for B as an arbitrary function of qab. This Hamiltonian is functionally
differentiable, gives the correct Einstein equations and, for solutions, its value e.g. with Ka = ea

0
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is the general expression of the quasi-local energy of Brown and York. (Compare Equation (92)
with Equation (86), or rather with Equations (72, 73, 74).)

However, to rule out the dependence of this notion of quasi-local energy on the completely freely
specifiable vector field Ka (i.e. on three arbitrary functions on S), Anco makes Ka dynamical by

linking it to the vector field Q̃a. Namely, let Ka := c0[Area(S)]
n
2

∣

∣

∣Q̃eQ̃
e
∣

∣

∣

n−1

2

Q̃a, where c0 and n

are constant, Area(S) is the area of S, and extend this Ka from S to Σ in a smooth way. Then
Anco proves that, keeping the 2-metric qab and Ka fixed on S,

H [K] =
1

8πG

∫

Σ

KaGab
1

3!
εb

cde +
c0

8πG(n+ 1)
[Area(S)]

n
2

∮

∂Σ

(

B −
∣

∣

∣Q̃eQ̃
e
∣

∣

∣

n+1

2

)

dS (93)

is a correct Hamiltonian for the Einstein equations, where B is an arbitrary function of qab. For
n = 1 with the choice B = 2SR the boundary term reduces to the Hawking energy, and for n = 0
it is the Epp and Kijowski–Liu–Yau energies depending on the choice of B (i.e. the definition of
the reference term). For general n choosing the reference term B appropriately Anco gives a 1-
parameter generalization of the Hawking and the Epp–Kijowski–Liu–Yau-type quasi-local energies
(called the ‘mean curvature masses’). Also, he defines a family of quasi-local angular momenta.
Using the positivity of the Kijowski–Liu–Yau energy (n = 0) it is shown that the higher power
(n > 0) mean curvature masses are bounded from below. Although these masses seem to have the
correct large sphere limit at spatial infinity, for general convex 2-surfaces in Minkowski spacetime
they do not vanish.

11.3.4 Pseudotensors and quasi-local quantities

As we discussed briefly in Section 3.3.1, many, apparently different pseudotensors and SO(1, 3)-
gauge dependent energy-momentum density expressions can be recovered from a single differential
form defined on the bundle L(M) of linear frames over the spacetime manifold: The corresponding

superpotentials are the pull-backs to M of the various forms of the Nester–Witten 2-from u
k
ab

from L(M) along the various local sections of the bundle [142, 266, 352, 353]. Thus the differ-
ent pseudotensors are simply the gauge dependent manifestations of the same geometric object
on the bundle L(M) in the different gauges. Since, however, u

k
ab is the unique extension of the

Nester–Witten 2-form u(εK , ε̄K ′

)ab on the principal bundle of normalized spin frames {εK
A } (given

in Equation (12)), and the latter has been proven to be connected naturally to the gravitational
energy-momentum, the pseudotensors appear to describe the same physics as the spinorial expres-
sions, though in a slightly old fashioned form. That this is indeed the case was demonstrated
clearly by Chang, Nester, and Chen [104, 108, 285], by showing an intimate connection between
the covariant quasi-local Hamiltonian expressions and the pseudotensors. Writing the Hamiltonian
H[K] in the form of the sum of the constraints and a boundary term, in a given coordinate system
the integrand of this boundary term may be the superpotential of any of the pseudotensors. Then
the requirement of the functional differentiability of H[K] gives the boundary conditions for the
basic variables at ∂Σ. For example, for the Freud superpotential (for Einstein’s pseudotensor)
what is fixed on the boundary ∂Σ is a certain piece of

√

|g|gαβ .
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12 Constructions for Special Spacetimes

12.1 The Komar integral for spacetimes with Killing vectors

Although the Komar integral (and, in general, the linkage (16) for some α) does not satisfy our
general requirements discussed in Section 4.3.1, and it does not always give the standard values
in specific situations (see for example the ‘factor-of-two anomaly’ or the examples below), in the
presence of a Killing vector the Komar integral, built from the Killing field, could be a very useful
tool in practice. (For Killing fields the linkage LS [K] reduces to the Komar integral for any α.) One
of its most important properties is that in vacuum LS [K] depends only on the homology class of
the 2-surface (see for example [387]): If S and S ′ are any two 2-surfaces such that S −S ′ = ∂Σ for
some compact 3-dimensional hypersurface Σ on which the energy-momentum tensor of the matter
fields is vanishing, then LS [K] = LS′ [K]. In particular, the Komar integral for the static Killing
field in the Schwarzschild spacetime is the mass parameter m of the solution for any 2-surface S
surrounding the black hole, but it is zero if S does not.

On the other hand [371], the analogous integral in the Reissner–Nordström spacetime on a
metric 2-sphere of radius r is m− e2/r, which deviates from the generally accepted round-sphere
value m− e2/(2r). Similarly, in Einstein’s static universe for the spheres of radius r in a t = const.
hypersurface LS [K] is zero instead of the round sphere result 4π

3 r
3[µ + λ/8πG], where µ is the

energy density of the matter and λ is the cosmological constant.

12.2 The effective mass of Kulkarni, Chellathurai, and Dadhich for the
Kerr spacetime

The Kulkarni–Chellathurai–Dadhich [244] effective mass for the Kerr spacetime is obtained from
the Komar integral (i.e. the linkage with α = 0) using a hypersurface orthogonal vector field Xa

instead of the Killing vector T a of stationarity. The vector field Xa is defined to be T a + ωΦa,
where Φa is the Killing vector of axi-symmetry and the function ω is −g(T,Φ)/g(Φ,Φ). This is
timelike outside the horizon, it is the asymptotic time translation at infinity, and coincides with the
null tangent on the event horizon. On the event horizon r = r+ it yields MKCD =

√
m2 − a2, while

in the limit r → ∞ it is the mass parameter m of the solution. The effective mass is computed for
the Kerr–Newman spacetime in [106].

12.3 The Katz–Lynden-Bell–Israel energy for static spacetimes

Let Ka be a hypersurface-orthogonal timelike Killing vector field, Σ a spacelike hypersurface to
which Ka is orthogonal, and K2 := KaK

a. Let SK be the set of those points of Σ where the length
of the Killing field is the value K, i.e. SK are the equipotential surfaces in Σ, and let DK ⊂ Σ be
the set of those points where the magnitude of Ka is not greater than K. Suppose that DK is
compact and connected. Katz, Lynden-Bell, and Israel [232] associate a quasi-local energy to the
2-surfaces SK as follows. Suppose that the matter fields can be removed from intDK and can be
concentrated into a thin shell on SK in such a way that the space inside be flat but the geometry
outside remain the same. Then, denoting the (necessarily distributional) energy-momentum tensor
of the shell by T ab

s and assuming that it satisfies the weak energy condition, the total energy of the
shell,

∫

DK
KaT

ab
s tb dΣ, is positive. Here ta is the future directed unit normal to Σ. Then, using

the Einstein equations, the energy of the shell can be rewritten in terms of geometric objects on
the 2-surface as

EKLI (SK) :=
1

8πG
K

∮

SK

[k] dSK, (94)

where [k] is the jump across the 2-surface of the trace of the extrinsic curvatures of the 2-
surface itself in Σ. Remarkably enough, the Katz–Lynden-Bell–Israel quasi-local energy EKLI in
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the form (94), associated with the equipotential surface SK, is independent of any distributional
matter field, and it can also be interpreted as follows. Let hab be the metric on Σ, kab the extrinsic
curvature of SK in (Σ, hab) and k := habkab. Then suppose that there is a flat metric h0

ab on Σ such
that the induced metric from h0

ab on SK coincides with that induced from hab, and h0
ab matches

continuously to hab on SK. (Thus, in particular, the induced area element dSK determined on SK

by hab, and h0
ab coincide.) Let the extrinsic curvature of SK in h0

ab be 0kab, and k0 := habk0
ab. Then

EKLI(SK) is the integral on SK of K times the difference k− k0. Apart from the overall factor K,
this is essentially the Brown–York energy.

In asymptotically flat spacetimes EKLI(SK) tends to the ADM energy [232]. However, it does
not reduce to the round-sphere energy in spherically symmetric spacetimes [277], and, in particular,
gives zero for the event horizon of a Schwarzschild black hole.
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13 Applications in General Relativity

In this part we give a very short review of some of the potential applications of the paradigm of
quasi-locality in general relativity. This part of the review is far from being complete, and our claim
here is not to discuss the problems considered in detail, but rather to give a collection of problems
that are (effectively or potentially) related to quasi-local ideas, tools, notions, etc. In some of these
problems the various quasi-local expressions and techniques have been used successfully, but others
may provide new and promising areas of their application.

13.1 Calculation of tidal heating

According to astronomical observations, there is an intensive volcanism on the moon Io of Jupiter.
One possible explanation of this phenomenon is that Jupiter is heating Io via the gravitational
tidal forces (like the Moon, whose gravitational tidal forces raise the ocean’s tides on the Earth).
To check whether this could be really the case, one must be able to calculate how much energy is
pumped into Io. However, gravitational energy (both in Newtonian theory and in general relativity)
is only ambiguously defined (and hence cannot be localized), while the phenomena mentioned above
cannot depend on the mathematics that we use to describe them. The first investigations intended
to calculate the tidal work (or heating) of a compact massive body were based on the use of
the various gravitational pseudotensors [318, 136]. It has been shown that although in the given
(slow motion and isolated body) approximation the interaction energy between the body and its
companion is ambiguous, the tidal work that the companion does on the body via the tidal forces is
not. This is independent both of the gauge conditions [318] and the actual pseudotensor (Einstein,
Møller, Bergmann, or Landau–Lifshitz) [136].

Recently, these calculations were repeated using quasi-local concepts by Booth and Creighton [76].
They calculated the time derivative of the Brown–York energy, given by Equations (72, 73). As-
suming the form of the metric used in the pseudotensorial calculations, for the tidal work they
recovered the gauge invariant expressions obtained in [318, 136]. In these approximate calculations
the precise form of the boundary conditions (or reference configurations) is not essential, because
the results obtained by using different boundary conditions deviate from each other only in higher
order.

13.2 Geometric inequalities for black holes

13.2.1 On the Penrose inequality

To rule out a certain class of potential counterexamples to the (weak) cosmic censorship hypothe-
sis [303], Penrose derived an inequality that any asymptotically flat initial data set with (outermost)
apparent horizon S must satisfy [305]: The ADM mass mADM of the data set cannot be less than
the so-called irreducible mass of the horizon, M :=

√

Area(S)/(16πG2) (see also [156], and for a
recent review of the problem and the relevant literature see [90]). However, as stressed by Ben-
Dov [58], the more careful formulation of the inequality, due to Horowitz [202], is needed: Assuming
that the dominant energy condition is satisfied, the ADM mass of the data set cannot be less than
the irreducible mass of the 2-surface Smin, where Smin has the minimum area among the 2-surfaces
enclosing the apparent horizon S. In [58] a spherically symmetric asymptotically flat data set with
future apparent horizon is given which violates the first, but not the second version of the Penrose
inequality.

The inequality has been proven for the outermost future apparent horizons outside the outer-
most past apparent horizon in maximal data sets in spherically symmetric spacetimes [262] (see
also [408, 185, 186]), for static black holes (using the Penrose mass, as we mentioned in Sec-
tion 7.2.5) [374, 375], and for the perturbed Reissner–Nordström spacetimes [225] (see also [226]).
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Although the original specific potential counterexample has been shown not to violate the Penrose
inequality [157], the inequality has not been proven for a general data set. (For the limitations of
the proof of the Penrose inequality for the area of trapped surface and the Bondi mass at past null
infinity [258], see [64].) If the inequality were true, then this would be a strengthened version of
the positive mass theorem, providing a positive lower bound for the ADM mass.

On the other hand, for time-symmetric data sets the Penrose inequality has been proven, even in
the presence of more than one black hole. The proof is based on the use of some quasi-local energy
expression, mostly of Geroch or of Hawking. First it is shown that these expressions are monotonic
along the normal vector field of a special foliation of the time-symmetric initial hypersurface (see
Sections 6.1.3 and 6.2, and also [143]), and then the global existence of such a foliation between
the apparent horizon and the 2-sphere at infinity is proven. The first complete proof of the latter
was given by Huisken and Ilmanen [207, 208]. (Recently Bray used a conformal technique to give
an alternative proof [87, 88, 89].)

A more general form of the conjecture, containing the electric charge e of the black hole, was
formulated by Gibbons [156]: The ADM mass is claimed not to be exceeded by M + e2/(4G2M).
Although the weaker form of the inequality, the so-called Bogomolny inequality mADM ≥ |e| /G,
has been proven (under assumptions on the matter content, see for example [160, 369, 257, 159, 274,
156]), Gibbons’ inequality for the electric charge has been proven for special cases (for spherically
symmetric spacetimes see for example [186]), and for time-symmetric initial data sets using Ge-
roch’s inverse mean curvature flow [218]. As a consequence of the results of [207, 208] the latter has
become a complete proof. However, this inequality does not seem to work in the presence of more
than one black hole: For a time-symmetric data set describing n > 1 nearly extremal Reissner–
Nodström black holes, M + e2/(4G2M) can be greater than the ADM mass, where 16πGM2 is
either the area of the outermost marginally trapped surface [393], or the sum of the areas of the
individual black hole horizons [124]. On the other hand, the weaker inequality derived from the
cosmic censorship assumption, does not seem to be violated even in the presence of more than one
black hole22.

If in the final state of gravitational collapse the black hole has not only electric charge but
angular momentum as well, then the geometry is described by the Kerr–Newman solution. Ex-
pressing the mass parameter m of the solution (which is just G times the ADM mass) in terms of
the irreducible mass M of the horizon, the electric charge q = e/

√
G and the angular momentum

J = ma/G, we arrive at the more general form

mADM ≥
√

(

M +
q2

4GM

)2

+

(

J

2GM

)2

(95)

of the Gibbons–Penrose inequality for asymptotically flat spacetimes with a single black hole.
However, while mADM, M , and q are well-defined even in a general asymptotically flat data set,
it is not clear what the angular momentum J should be: Is it the magnitude of the angular
momentum defined at spatial infinity (which is already well-defined) or the (as yet not defined)
quasi-local angular momentum of the horizon? Or should J be the length of the spatial angular
momentum, or of the Pauli–Lubanski spin (or should the whole relativistic angular momentum
contribute to J)? In the presence of more than one black hole only an inequality weaker than
Equation (95) is expected to hold.

13.2.2 On the hoop conjecture

In connection with the formation of black holes and the weak cosmic censorship hypothesis another
geometric inequality has also been formulated. This is the hoop conjecture of Thorne [367, 269],

22I am grateful to Sergio Dain for pointing out this to me.
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saying that ‘black holes with horizons form when and only when a mass m gets compacted into
a region whose circumference C in every direction is C ≤ 4πGm’ (see also [139, 391]). Math-
ematically, this conjecture is not precisely formulated: Neither the mass nor the notion of the
circumference is well-defined. In certain situations the mass might be the ADM or the Bondi
mass, but might be the integral of some locally defined ‘mass density’ as well [139, 35, 260, 240].
The most natural formulation of the hoop conjecture would be based on some spacelike 2-surface
S and some reasonable notion of the quasi-local mass, and the trapped nature of the surface would
be characterized by the mass and the ‘circumference’ of S. In fact, for round spheres outside the
outermost trapped surface and the standard round sphere definition of the quasi-local energy (26)
one has 4πGE = 2πr[1 − exp(−2α)] < 2πr = C, where we used the fact that r is an areal radius
(see Section 4.2.1). If, however, S is not axi-symmetric then there is no natural definition (or, there
are several inequivalent ‘natural’ definitions) of the circumference of S. Interesting necessary and
also sufficient conditions for the existence of averaged trapped surfaces in non-spherically symmet-
ric cases, both in special asymptotically flat and cosmological spacetimes, are found in [260, 240].
For the investigations of the hoop conjecture in the Gibbons–Penrose spacetime of the collapsing
thin matter shell see [36, 35, 379, 298], and for colliding black holes see [407].

13.3 Quasi-local laws of black hole dynamics

13.3.1 Quasi-local thermodynamics of black holes

Black holes are usually introduced in asymptotically flat spacetimes [172, 173, 175, 387], and
hence it was natural to derive the formal laws of black hole mechanics/thermodynamics in the
asymptotically flat context (see for example [34, 50, 51], and for a recent review see [392]). The
discovery of the Hawking radiation [174] showed that the laws of black hole thermodynamics are
not only analogous to the laws of thermodynamics, but black holes are genuine thermodynamical
objects: The black hole temperature is a physical temperature, that is ~c/(2πk) times the surface
gravity, and the entropy is a physical entropy, kc3/(4G~) times the area of the horizon (in the
traditional units with the Boltzmann constant k, speed of light c, Newton’s gravitational constant
G, and Planck’s constant ~) (see also [390]). Apparently, the detailed microscopic (quantum) theory
of gravity is not needed to derive the black hole entropy, and it can be derived even from the general
principles of a conformal field theory on the horizon of the black holes [100, 101, 102, 296, 103].

However, black holes are localized objects, thus one must be able to describe their properties and
dynamics even at the quasi-local level. Nevertheless, beyond this rather theoretic claim, there are
pragmatic reasons that force us to quasi-localize the laws of black hole dynamics. In particular, it
is well known that the Schwarzschild black hole, fixing its temperature at infinity, has negative heat
capacity. Similarly, in an asymptotically anti-de-Sitter spacetime fixing the black hole temperature
via the normalization of the timelike Killing vector at infinity is not justified because there is no
such physically distinguished Killing field (see [92]). These difficulties lead to the need of a quasi-
local formulation of black hole thermodynamics. In [92] Brown, Creighton, and Mann investigated
the thermal properties of the Schwarzschild–anti-de-Sitter black hole. They used the quasi-local
approach of Brown and York to define the energy of the black hole on a spherical 2-surface S
outside the horizon. Identifying the Brown–York energy with the internal (thermodynamical)
energy and (in the k = ~ = c = 1 units) 1/(4G) times the area of the event horizon with the
entropy, they calculated the temperature, surface pressure, and heat capacity. They found that
these quantities do depend on the location of the surface S. In particular, there is a critical value T0

such that for temperatures T greater than T0 there are two black hole solutions, one with positive
and one with negative heat capacity, but there are no Schwarzschild–anti-de-Sitter black holes
with temperature T less than T0. In [121] the Brown–York analysis is extended to include dilaton
and Yang–Mills fields, and the results are applied to stationary black holes to derive the first law
of black hole thermodynamics. The so-called Noether charge formalism of Wald [389], and Iyer
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and Wald [215] can be interpreted as a generalization of the Brown–York approach from general
relativity to any diffeomorphism invariant theory to derive quasi-local quantities [216]. However,
this formalism gave a general expression for the black hole entropy as well: That is the Noether
charge derived from the Hilbert Lagrangian corresponding to the null normal of the horizon, and
explicitly this is still 1/(4G) times the area of the horizon. (For some recent related works see for
example [149, 188]).

There is an extensive literature of the quasi-local formulation of the black hole dynamics and
relativistic thermodynamics in the spherically symmetric context (see for example [185, 187, 186,
190] and for non-spherically symmetric cases [275, 189, 74]). However, one should see clearly
that while the laws of black hole thermodynamics above refer to the event horizon, which is a
global concept in the spacetime, the subject of the recent quasi-local formulations is to describe
the properties and the evolution of the so-called trapping horizon, which is a quasi-locally defined
notion. (On the other hand, the investigations of [183, 181, 184] are based on energy and angular
momentum definitions that are gauge dependent; see also Sections 4.1.8 and 6.3.)

13.3.2 On the isolated horizons

The idea of the isolated horizons (more precisely, the gradually more restrictive notions of the
non-expanding, the weakly isolated and isolated horizons, and the special weakly isolated horizon
called the rigidly rotating horizons) is to generalize the notion of Killing horizons by keeping their
basic properties without the existence of any Killing vector in general. (For a recent review see [19]
and references therein, especially [21, 18].) The phase space for asymptotically flat spacetimes
containing an isolated horizon is based on a 3-manifold with an asymptotic end (or finitely many
such ends) and an inner boundary. The boundary conditions on the inner boundary are determined
by the precise definition of the isolated horizon. Then, obviously, the Hamiltonian will be the sum
of the constraints and boundary terms, corresponding both to the ends and the horizon. Thus,
by the appearance of the boundary term on the inner boundary makes the Hamiltonian partly
quasi-local. It is shown that the condition of the Hamiltonian evolution of the states on the inner
boundary along the evolution vector field is precisely the first law of black hole mechanics [21, 18].

Booth [75] applied the general idea of Brown and York to a domain D whose boundary consists
not only of two spacelike submanifolds Σ1 and Σ2 and a timelike one 3B, but a further, internal
boundary ∆ as well, which is null. Thus he made the investigations of the isolated horizons fully
quasi-local. Therefore, the topology of Σ1 and Σ2 is S2 × [a, b], and the inner (null) boundary
is interpreted as (a part of) a non-expanding horizon. Then to have a well-defined variational
principle on D, the Hilbert action had to be modified by appropriate boundary terms. However,
requiring ∆ to be a so-called rigidly rotating horizon, the boundary term corresponding to ∆ and
the allowed variations are considerably restricted. This made it possible to derive the ‘first law of
rigidly rotating horizon mechanics’ quasi-locally, an analog of the first law of black hole mechanics.
The first law for rigidly rotating horizons was also derived by Allemandi, Francaviglia, and Raiteri
in the Einstein–Maxwell theory [4] using their Regge–Teitelboim-like approach [141].

Another concept is the notion of a dynamical horizon [25, 26]. This is a smooth spacelike
hypersurface that can be foliated by a preferred family of marginally trapped 2-spheres. By an
appropriate definition of the energy and angular momentum balance equations for these quantities,
carried by gravitational waves, are derived. Isolated horizons are the asymptotic state of dynamical
horizons.
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13.4 Entropy bounds

13.4.1 On Bekenstein’s bounds for the entropy

Having associated the entropy Sbh := [kc3/(4G~)] Area(S) to the (spacelike cross section S of the)
event horizon, it is natural to expect the generalized second law (GSL) of thermodynamics to hold,
i.e. the sum Sm + Sbh of the entropy of the matter and the black holes cannot decrease in any
process. However, as Bekenstein pointed out, it is possible to construct thought experiments (e.g.
the so-called Geroch process) in which the GSL is violated, unless a universal upper bound for
the entropy-to-energy ratio for bounded systems exists [52, 53]. (For another resolution of the
apparent contradiction to the GSL, based on the calculation of the buoyancy force in the thermal
atmosphere of the black hole, see [385, 390].) In traditional units this upper bound is given by
Sm/E ≤ [2πk/(~c)]R, where E and Sm are, respectively, the total energy and entropy of the
system, and R is the radius of the sphere that encloses the system. It is remarkable that this
inequality does not contain Newton’s constant, and hence it can be expected to be applicable even
for non-gravitating systems. Although this bound is violated for several model systems, for a wide
class of systems in Minkowski spacetime the bound does hold [294, 295, 293, 54] (see also [81]).
The Bekenstein bound has been extended for systems with electric charge by Zaslavskii [409], and
for rotating systems by Hod [201] (see also [55, 166]). Although these bounds were derived for
test bodies falling into black holes, interestingly enough these Bekenstein bounds hold for the black
holes themselves provided the generalized Gibbons–Penrose inequality (95) holds: Identifying E
with mADMc

2 and letting R be a radius for which 4πR2 is not less than the area of the event
horizon of the black hole, Equation (95) can be rewritten in the traditional units as

2π

√

(RE)
2 − J2 ≥ ~c

k
Sbh + πq2. (96)

Obviously, the Kerr–Newman solution saturates this inequality, and in the q = 0 = J , J =
0, and q = 0 special cases (96) reduces to the upper bound given, respectively, by Bekenstein,
Zaslavskii, and Hod. One should stress, however, that in general curved spacetimes the notion
of energy, angular momentum, and radial distance appearing in Equation (96) are not yet well-
defined. Perhaps it is just the quasi-local ideas that should be used to make them well-defined,
and there is a deep connection between the Gibbons–Penrose inequality and the Bekenstein bound:
The former is the geometric manifestation of the latter for black holes.

13.4.2 On the holographic hypothesis

In the literature there is another kind of upper bound for the entropy for a localized system, the
so-called holographic bound. The holographic principle [366, 350, 81] says that, at the fundamental
(quantum) level, one should be able to characterize the state of any physical system located in a
compact spatial domain by degrees of freedom on the surface of the domain too, analogously to the
holography by means of which a three dimensional image is encoded into a 2-dimensional surface.
Consequently, the number of physical degrees of freedom in the domain is bounded from above by
the area of the boundary of the domain instead of its volume, and the number of physical degrees
of freedom on the 2-surface is not greater one-fourth of the area of the surface measured in Planck-
area units L2

P := G~/c3. This expectation is formulated in the (spacelike) holographic entropy
bound [81]: Let Σ be a compact spacelike hypersurface with boundary S. Then the entropy S(Σ)
of the system in Σ should satisfy S(Σ) ≤ kArea(S)/(4L2

P). Formally, this bound can be obtained
from the Bekenstein bound with the assumption that 2E ≤ Rc4/G, i.e. that R is not less than the
Schwarzschild radius of E. Also, as with the Bekenstein bounds, this inequality can be violated in
specific situations (see also [392, 81]).

On the other hand, there is another formulation of the holographic entropy bound, due to
Bousso [80, 81]. Bousso’s so-called covariant entropy bound is much more quasi-local than the
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previous formulations, and is based on spacelike 2-surfaces and the null hypersurfaces determined
by the 2-surfaces in the spacetime. Its classical version has been proved by Flanagan, Marolf,
and Wald [140]: If N is an everywhere non-contracting (or non-expanding) null hypersurface with
spacelike cuts S1 and S2, then, assuming that the local entropy density of the matter is bounded
by its energy density, the entropy flux SN through N between the cuts S1 and S2 is bounded:
SN ≤ k |Area(S2) − Area(S1)| /(4L2

P). For a detailed discussion see [392, 81]. For still another,
quasi-local formulation of the holographic principle see Section 2.2.5 and [365].

13.5 Quasi-local radiative modes of GR

In Section 8.2.3 we discussed the properties of the Dougan–Mason energy-momenta, and we saw
that, under the conditions explained there, the energy-momentum is vanishing iff D(Σ) is flat, and
it is null iff D(Σ) is a pp-wave geometry with pure radiative matter, and that these properties
of the domain of dependence D(Σ) are completely encoded into the geometry of the 2-surface S.
However, there is an important difference between these two statements: While in the former case
we know the metric of D(Σ), that is flat, in the second we know only that the geometry admits a
constant null vector field, but we do not know the line element itself. Thus the question arises as
whether the metric of D(Σ) is also determined by the geometry of S even in the zero quasi-local
mass case.

In [358] it was shown that under the condition above there is a complex valued function Φ on
S, describing the deviation of the anti-holomorphic and the holomorphic spinor dyads from each
other, which plays the role of a potential for the curvature FA

Bcd on S. Then, assuming that S
is future and past convex and the matter is an N-type zero-rest-mass field, Φ and the value φ of
the matter field on S determine the curvature of D(Σ). Since the field equations for the metric
of D(Σ) reduce to Poisson-like equations with the curvature as the source, the metric of D(Σ) is
also determined by Φ and φ on S. Therefore, the (purely radiative) pp-wave geometry and matter
field on D(Σ) are completely encoded in the geometry of S and complex functions defined on S,
respectively, in complete agreement with the holographic principle of the previous Section 13.4.

As we saw in Section 2.2.5, the radiative modes of the zero-rest-mass-fields in Minkowski space-
time, defined by their Fourier expansion, can be characterized quasi-locally on the globally hy-
perbolic subset D(Σ) of the spacetime by the value of the Fourier modes on the appropriately
convex spacelike 2-surface S = ∂Σ. Thus the two transversal radiative modes of them are encoded
in certain fields on S. On the other hand, because of the non-linearity of the Einstein equations
it is difficult to define the radiative modes of general relativity. It could be done when the field
equations become linear, i.e. near the null infinity, in the linear approximation and for pp-waves.
In the first case the gravitational radiation is characterized on a cut S∞ of the null infinity I +

by the u-derivative σ̇0 of the asymptotic shear of the outgoing null hypersurface N for which
S∞ = N ∩I +, i.e. by a complex function on S∞. It is remarkable that it is precisely this complex
function which yields the deviation of the holomorphic and anti-holomorphic spin frames at the
null infinity (see for example [363]). The linear approximation of Einstein’s theory is covered by
the analysis of Section 2.2.5, thus those radiative modes can be characterized quasi-locally, while
for the pp-waves the result of [358], reported above, gives such a quasi-local characterization in
terms of a complex function measuring the deviation of the holomorphic and anti-holomorphic spin
frames. However, the deviation of the holomorphic and anti-holomorphic structures on S can be
defined even for generic 2-surfaces in generic spacetimes too, which might yield the possibility of
introducing the radiative modes quasi-locally in general.
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14 Summary: Achievements, Difficulties, and Open Issues

In the previous sections we tried to give an objective review of the present state of the art. This
section is, however, less positivistic: We close the present review by a critical discussion, evaluating
those strategies, approaches etc. that are explicitly and unambiguously given and (at least in
principle) applicable in any generic spacetime.

14.1 On the Bartnik mass and the Hawking energy

Although in the literature the notions mass and energy are used almost synonymously, in the
present review we have made a distinction between them. By energy we meant the time compo-
nent of the energy-momentum four-vector, i.e. a reference frame dependent quantity, while by mass
the length of the energy-momentum, i.e. an invariant. In fact, these two have different properties:
The quasi-local energy (both for the matter fields and for gravity according to the Dougan–Mason
definition) is vanishing precisely for the ‘ground state’ of the theory (i.e. for vanishing energy-
momentum tensor in the domain of dependence D(Σ) and flatness of D(Σ), respectively, see Sec-
tions 2.2.5 and 8.2.3). In particular, for configurations describing pure radiation (purely radiative
matter fields and pp-waves, respectively) the energy is positive. On the other hand, the vanishing
of the quasi-local mass does not characterize the ‘ground state’, rather that is equivalent just to
these purely radiative configurations.

The Bartnik mass is a natural quasi-localization of the ADM mass, and its monotonicity and
positivity makes it a potentially very useful tool in proving various statements on the spacetime,
because it fully characterizes the non-triviality of the finite Cauchy data by a single scalar. However,
our personal opinion is that, just by its strict positivity for non-flat 3-dimensional domains, it
overestimates the ‘physical’ quasi-local mass. In fact, if (Σ, hab, χab) is a finite data set for a
pp-wave geometry (i.e. a compact subset of the data set for a pp-wave metric), then it probably

has an asymptotically flat extension (Σ̂, ĥab, χ̂ab) satisfying the dominant energy condition with
bounded ADM energy and no apparent horizon between ∂Σ and infinity. Thus while the Dougan–
Mason mass of ∂Σ is zero, the Bartnik mass mB(Σ) is strictly positive unless (Σ, hab, χab) is
trivial. Thus, this example shows that it is the procedure of taking the asymptotically flat extension
that gives strictly positive mass. Indeed, one possible proof of the rigidity part of the positive
energy theorem [24] (see also [354]) is to prove first that the vanishing of the ADM mass implies,
through the Witten equation, that the spacetime admits a constant spinor field, i.e. it is a pp-
wave spacetime, and then that the only asymptotically flat spacetime that admits a constant null
vector field is the Minkowski spacetime. Therefore, it is just the global condition of the asymptotic
flatness that rules out the possibility of non-trivial spacetimes with zero ADM mass. Hence it
would be instructive to calculate the Bartnik mass for a compact part of a pp-wave data set. It
might also be interesting to calculate its small surface limit to see its connection with the local
fields (energy-momentum tensor and probably the Bel–Robinson tensor).

The other very useful definition is the Hawking energy (and its slightly modified version, the
Geroch energy). Its advantage is its simplicity, calculability, and monotonicity for special families
of 2-surfaces, and it has turned out to be a very effective tool in practice in proving for example
the Penrose inequality. The small sphere limit calculation shows that it is energy rather than
mass, so in principle one should be able to complete this to an energy-momentum 4-vector. One
possibility is Equation (39, 40), but, as far as we are aware, its properties have not been investigated.
Unfortunately, although the energy can be defined for 2-surfaces with nonzero genus, it is not clear
how the 4-momentum could be extended for such surfaces. Although the Hawking energy is a well-
defined 2-surface observable, it has not been linked to any systematic (Lagrangian or Hamiltonian)
scenario. Perhaps it does not have any such interpretation, and it is simply a natural (but in
general spacetimes for quite general 2-surfaces not quite viable) generalization of the standard
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round sphere expression (27). This view appears to be supported by the fact that the Hawking
energy has strange properties for non-spherical surfaces, e.g. for 2-surfaces in Minkowski spacetime
which are not metric spheres.

14.2 On the Penrose mass

Penrose’s suggestion for the quasi-local mass (or, more generally, energy-momentum and angular
momentum) was based on a promising and far-reaching strategy to use twistors at the fundamental
level. The basic object of the construction, the so-called kinematical twistor, is intended to comprise
both the energy-momentum and angular momentum, and is a well-defined quasi-local quantity on
generic spacelike surfaces homeomorphic to S2. It can be interpreted as the value of a quasi-local
Hamiltonian, and the four independent 2-surface twistors play the role of the quasi-translations
and quasi-rotations. The kinematical twistor was calculated for a large class of special 2-surfaces
and gave acceptable results.

However, the construction is not complete. First, the construction does not work for 2-surfaces
whose topology is different from S2, and does not work even for certain topological 2-spheres for
which the 2-surface twistor equation admits more than four independent solutions (‘exceptional
2-surfaces’). Second, two additional objects, the so-called infinity twistor and a Hermitian inner
product on the space of 2-surface twistors, are needed to get the energy-momentum and angular
momentum from the kinematical twistor and to ensure their reality. The latter is needed if we want
to define the quasi-local mass as a norm of the kinematical twistor. However, no natural infinity
twistor has been found, and no natural Hermitian scalar product can exist if the 2-surface cannot
be embedded into a conformally flat spacetime. In addition, in the small surface calculations the
quasi-local mass may be complex. If, however, we do not want to form invariants of the kinematical
twistor (e.g. the mass), but we want to extract the energy-momentum and angular momentum from
the kinematical twistor and we want them to be real, then only a special combination of the infinity
twistor and the Hermitian scalar product, the so-called ‘bar-hook combination’ (see Equation (51)),
would be needed.

To save the main body of the construction, the definition of the kinematical twistor was modi-
fied. Nevertheless, the mass in the modified constructions encountered an inherent ambiguity in the
small surface approximation. One can still hope to find an appropriate ‘bar-hook’, and hence real
energy-momentum and angular momentum, but invariants, such as norms, could not be formed.

14.3 On the Dougan–Mason energy-momenta and the holomorphic/anti-
holomorphic spin angular momenta

From pragmatic points of view the Dougan–Mason energy-momenta (see Section 8.2) are certainly
among the most successful definitions: The energy-positivity and the rigidity (zero energy implies
flatness), and the intimate connection between the pp-waves and the vanishing of the masses
make these definitions potentially useful quasi-local tools as the ADM and Bondi–Sachs energy-
momenta in the asymptotically flat context. Similar properties are proven for the quasi-local
energy-momentum of the matter fields, in particular for the non-Abelian Yang–Mills fields, too.
They depend only on the 2-surface data on S, they have a clear Lagrangian interpretation, and
the spinor fields that they are based on can be considered as the spinor constituents of the quasi-
translations of the 2-surface. In fact, in the Minkowski spacetime the corresponding spacetime
vectors are precisely the restriction to S of the constant Killing vectors. These notions of energy-
momentum are linked completely to the geometry of S, and are independent of any ad hoc choice
for the ‘fleet of observers’ on it. On the other hand, the holomorphic/anti-holomorphic spinor fields
determine a six real parameter family of orthonormal frame fields on S, which can be interpreted as
some distinguished class of observers. In addition, they reproduce the expected, correct limits in a
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number of special situations. In particular, these energy-momenta appear to have been completed
by spin-angular momenta (see Section 9.2) in a natural way.

However, in spite of their successes, the Dougan–Mason energy-momenta and the spin-angular
momenta based on Bramson’s superpotential and the holomorphic/anti-holomorphic spinor fields
have some unsatisfactory properties, too (see the lists of our expectations in Section 4.3). First,
they are defined only for topological 2-spheres (but not for other topologies, e.g. for the torus
S1 ×S1), and they are not well-defined even for certain topological 2-spheres either. Such surfaces
are, for example, past marginally trapped surfaces in the anti-holomorphic (and future marginally
trapped surfaces in the holomorphic) case. Although the quasi-local mass associated with a
marginally trapped surface S is expected to be its irreducible mass

√

Area(S)/(16πG2), neither of
the Dougan–Mason masses is well-defined for the bifurcation surfaces of the Kerr–Newman (or even
Schwarzschild) black hole. Second, the role and the physical content of the holomorphicity/anti-
holomorphicity of the spinor fields is not clear. The use of the complex structure is justified a
posteriori by the nice physical properties of the constructions and the pure mathematical fact
that it is only the holomorphy and anti-holomorphy operators in a large class of potentially ac-
ceptable first order linear differential operators acting on spinor fields that have a 2-dimensional
kernel. Furthermore, since the holomorphic and anti-holomorphic constructions are not equivalent,
we have two constructions instead of one, and it is not clear why we should prefer for example
holomorphicity instead of anti-holomorphicity even at the quasi-local level.

The angular momentum based on Bramson’s superpotential and the anti-holomorphic spinors
together with the anti-holomorphic Dougan–Mason energy-momentum give acceptable Pauli–Lubanski
spin for axi-symmetric zero-mass Cauchy developments, for small spheres, and at future null infin-
ity, but the global angular momentum at the future null infinity is finite and well-defined only if
the spatial 3-momentum part of the Bondi–Sachs 4-momentum is vanishing, i.e. only in the centre-
of-mass frame. (The spatial infinity limit of the spin-angular momenta has not been calculated.)

Thus the Nester–Witten 2-form appears to serve as an appropriate framework for defining the
energy-momentum, and it is the two spinor fields which should probably be changed and a new
choice would be needed. The holomorphic/anti-holomorphic spinor fields appears to be ‘too rigid’.
In fact, it is the topology of S, namely the zero genus of S, that restricts the solution space to
two complex dimensions, instead of the local properties of the differential equations. (Thus, the
situation is the same as in the twistorial construction of Penrose.) On the other hand, Bramson’s
superpotential is based on the idea of Bergmann and Thomson that the angular momentum of
gravity is analogous to the spin. Thus the question arises as to whether this picture is correct, or
the gravitational angular momentum also has an orbital part, whenever Bramson’s superpotential
describes only (the general form of) its spin part. The fact that our anti-holomorphic construction
gives the correct, expected results for small spheres but unacceptable ones for large spheres near
future null infinity in frames that are not centre-of-mass frames may indicate the lack of such an
orbital term. This term could be neglected for small spheres, but certainly not for large spheres.
For example, in the special quasi-local angular momentum of Bergqvist and Ludvigsen for the
Kerr spacetime (see Section 9.3) it is the sum of Bramson’s expression and a term that can be
interpreted as the orbital angular momentum.

14.4 On the Brown–York-type expressions

The idea of Brown and York that the quasi-local conserved quantities should be introduced via
the canonical formulation of the theory is quite natural. In fact, as we saw, one could arrive
at their general formulae from different points of departure (functional differentiability of the
Hamiltonian, 2-surface observables). If the a priori requirement that we should have a well-defined
action principle for the trace-χ-action yielded undoubtedly well behaving quasi-local expressions,
then the results would a posteriori justify this basic requirement (like the holomorphicity or anti-
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110 László B. Szabados

holomorphicity of the spinor fields in the Dougan–Mason definitions). However, if not, then that
might be considered as an unnecessarily restrictive assumption, and the question arises whether
the present framework is wide enough to construct reasonable quasi-local energy-momentum and
angular momentum.

Indeed, the basic requirement automatically yields the boundary condition that the 3-metric
γab should be fixed on the boundary S, and that the boundary term in the Hamiltonian should
be built only from the surface stress tensor τab. Since the boundary conditions are given, no
Legendre transformation of the canonical variables on the 2-surface is allowed (see the derivation
of Kijowski’s expression in Section 10.2). The use of τab has important consequences. First, the
quasi-local quantities depend not only on the geometry of the 2-surface S, but on an arbitrarily
chosen boost gauge, interpreted as a ‘fleet of observers ta being at rest with respect to S’, too. This
leaves a huge ambiguity in the Brown–York energy (three arbitrary functions of two variables,
corresponding to the three boost parameters at each point of S) unless a natural gauge choice is
prescribed23. Second, since τab does not contain the extrinsic curvature of S in the direction ta,
which is a part of the 2-surface data, this extrinsic curvature is ‘lost’ from the point of view of the
quasi-local quantities. Moreover, since τab is a tensor only on the 3-manifold 3B, the integral of
Kaτabt

b on S is not sensitive to the component of Ka normal to 3B. The normal piece vavbK
b of

the generator Ka is ‘lost’ from the point of view of the quasi-local quantities.
The other important ingredient of the Brown–York construction is the prescription of the

subtraction term. Considering the Gauss–Codazzi–Mainardi equations of the isometric embed-
ding of the 2-surface into the flat 3-space (or rather into a spacelike hyperplane of Minkowski
spacetime) only as a system of differential equations for the reference extrinsic curvature, this
prescription – contrary to frequently appearing opinions – is as explicit as the condition of the
holomorphicity/anti-holomorphicity of the spinor fields in the Dougan–Mason definition. (One
essential, and from pragmatic points of view important, difference is that the Gauss–Codazzi–
Mainardi equations form an underdetermined elliptic system constrained by a nonlinear algebraic
equation.) Similarly to the Dougan–Mason definitions, the general Brown–York formulae are valid
for arbitrary spacelike 2-surfaces, but solutions to the equations defining the reference configura-
tion exist certainly only for topological 2-spheres with strictly positive intrinsic scalar curvature.
Thus there are exceptional 2-surfaces here, too. On the other hand, the Brown–York expressions
(both for the flat 3-space and the light cone references) work properly for large spheres.

At first sight, this choice for the definition of the subtraction term seems quite natural. How-
ever, we do not share this view. If the physical spacetime is the Minkowski one, then we expect
that the geometry of the 2-surface in the reference Minkowski spacetime be the same as in the
physical Minkowski spacetime. In particular, if S – in the physical Minkowski spacetime – does
not lie in any spacelike hyperplane, then we think that it would be un-natural to require the em-
bedding of S into a hyperplane of the reference Minkowski spacetime. Since in the two Minkowski
spacetimes the extrinsic curvatures can be quite different, the quasi-local energy expressions based
on this prescription of the reference term can be expected to yield a nonzero value even in flat
spacetime. Indeed, there are explicit examples showing this defect. (Epp’s definition is free of
this difficulty, because he embeds the 2-surface into the Minkowski spacetime by preserving its
‘universal structure’; see Section 4.1.4.)

Another objection against the embedding into flat 3-space is that it is not Lorentz covariant.
As we discussed in Section 4.2.2, Lorentz covariance (together with the positivity requirement) was
used to show that the quasi-local energy expression for small spheres in vacuum is of order r5 with
the Bel–Robinson ‘energy’ as the factor of proportionality. The Brown–York expression (even with

the light cone reference k0 =
√

2 SR ) fails to give the Bel–Robinson ‘energy’24.

23It could be interesting to clarify the consequences of the boost gauge choice that is based on the main extrinsic
curvature vector Qa, discussed in Section 4.1.2. This would rule out the arbitrary element of the construction.

24It might be interesting to see the small sphere expansion of the Kijowski and Kijowski–Liu–Yau expressions in
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Finally, in contrast to the Dougan–Mason definitions, the Brown–York type expressions are well-
defined on marginally trapped surfaces. However, they yield just twice the expected irreducible
mass, and they do not reproduce the standard round sphere expression, which, for non-trapped
surfaces, comes out from all the other expressions discussed in the present section (including
Kijowski’s definition). It is remarkable that the derivation of the first law of black hole thermody-
namics, based on the identification of the thermodynamical internal energy with the Brown–York
energy, is independent of the definition of the subtraction term.

vacuum.
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128 László B. Szabados

[217] Jang, P.S., “On the positivity of energy in general relativity”, J. Math. Phys., 19, 1152–1155,
(1978). Erratum: J. Math. Phys. 20 217 (1979). 6.2.2, 10.4.2

[218] Jang, P.S., “Note on cosmic censorship”, Phys. Rev. D, 20, 834–837, (1979). 13.2.1

[219] Jang, P.S., and Wald, R.M., “The positive energy conjecture and the cosmic censor hypoth-
esis”, J. Math. Phys., 17, 41–44, (1977). 6.2.2, 6.2.2

[220] Jeffryes, B.P., “Two-surface twistors and conformal embedding”, in Flaherty, F.J., ed.,
Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held
at Oregon State University, Corvallis, Oregon, USA, October 17–21, 1983, vol. 202 of Lecture
Notes in Physics, 177–184, (Springer, Berlin, Germany; New York, U.S.A., 1984). 7.2.3

[221] Jeffryes, B.P., “‘Extra’ solutions to the 2-surface twistor equations”, Class. Quantum Grav.,
3, L9–L12, (1986). 7.2.1

[222] Jeffryes, B.P., “The Newtonian limit of Penrose’s quasi-local mass”, Class. Quantum Grav.,
3, 841–852, (1986). 7.2.4

[223] Jeffryes, B.P., “2-Surface twistors, embeddings and symmetries”, Proc. R. Soc. London, Ser.
A, 411, 59–83, (1987). 7.2.3, 7.2.5

[224] Jezierski, J., “Positivity of mass for spacetimes with horizons”, Class. Quantum Grav., 6,
1535–1539, (1989). 3.2.1

[225] Jezierski, J., “Perturbation of initial data for spherically symmetric charged black hole and
Penrose conjecture”, Acta Phys. Pol. B, 25, 1413–1417, (1994). 13.2.1

[226] Jezierski, J., “Stability of Reissner–Nordström solution with respect to small perturbations
of initial data”, Class. Quantum Grav., 11, 1055–1068, (1994). 13.2.1

[227] Jezierski, J., and Kijowski, J., “The localization of energy in gauge field theories and in linear
gravitation”, Gen. Relativ. Gravit., 22, 1283–1307, (1990). 4.2.5

[228] Julia, B., and Silva, S., “Currents and superpotentials in classical gauge invariant theories
I. Local results with applications to perfect fluids and general relativity”, Class. Quantum
Grav., 15, 2173–2215, (1998). Related online version (cited on 29 January 2004):
http://arXiv.org/abs/gr-qc/9804029v2. 2.1.2, 3

[229] Katz, J., “A note on Komar’s anomalous factor”, Class. Quantum Grav., 2, 423–425, (1985).
3.1.3, 3.2.2, 11.3.2

[230] Katz, J., Bicak, J., and Lynden-Bell, D., “Relativistic conservation laws and integral con-
straints for large cosmological perturbations”, Phys. Rev. D, 55, 5957–5969, (1997). 3.1.3,
10.1.4, 11.3.2

[231] Katz, J., and Lerer, D., “On global conservation laws at null infinity”, Class. Quantum Grav.,
14, 2249–66, (1997). Related online version (cited on 29 January 2004):
http://arXiv.org/abs/gr-qc/9612025. 3.1.2, 3.1.3

[232] Katz, J., Lynden-Bell, D., and Israel, W., “Quasilocal energy in static gravitational fields”,
Class. Quantum Grav., 5, 971–987, (1988). 12.3, 12.3

[233] Katz, J., and Ori, A., “Localisation of field energy”, Class. Quantum Grav., 7, 787–802,
(1990). 3.1.3, 11.3.2

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-4

http://arXiv.org/abs/gr-qc/9804029v2
http://arXiv.org/abs/gr-qc/9612025
http://www.livingreviews.org/lrr-2004-4


Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article 129

[234] Kelly, R.M., “Asymptotically anti de Sitter space-times”, Twistor Newsletter, 1985(20),
11–23, (1985). 7.2.4

[235] Kelly, R.M., Tod, K.P., and Woodhouse, N.M.J., “Quasi-local mass for small surfaces”, Class.
Quantum Grav., 3, 1151–1167, (1986). 4.2.2, 6, 6, 7.2.6, 7.2.6, 7.3.1, 7.3.1

[236] Kibble, T.W.B., “Lorentz invariance and the gravitational field”, J. Math. Phys., 2, 212–221,
(1961). 3.1.4

[237] Kijowski, J., “A simple derivation of canonical structure and quasi-local Hamiltonians in
general relativity”, Gen. Relativ. Gravit., 29, 307–343, (1997). 10, 14, 10.2.1, 10.2.2

[238] Kijowski, J., “A consistent canonical approach to gravitational energy”, in Ferrarese, G., ed.,
Advances in General Relativity and Cosmology, Proceedings of the International Conference
in Memory of A. Lichnerowicz, Isola d’Elba, Italy, 12–15 Jun 2002, 129–145, (Pitagora,
Bologna, Italy, 2002). 10.2.2

[239] Kijowski, J., and Tulczyjew, W.M., A Symplectic Framework for Field Theories, vol. 107 of
Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 1979). 10.2.1,
18, 11.3.1

[240] Koc, P., and Malec, E., “Trapped surfaces in nonspherical open universes”, Acta Phys. Pol.
B, 23, 123–133, (1992). 13.2.2

[241] Kodama, H., “Conserved energy flux for the spherically symmetric system and the backre-
action problem in the black hole evaporation”, Prog. Theor. Phys., 63, 1217–1228, (1980).
4

[242] Komar, A., “Covariant conservation laws in general relativity”, Phys. Rev., 113, 934–936,
(1959). 3.1.5

[243] Kramer, D., Stephani, H., MacCallum, M.A.H., and Herlt, E., Exact Solutions of Einstein’s
Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University
Press, Cambridge, U.K.; New York, U.S.A., 1980). 4.2.5

[244] Kulkarni, R., Chellathurai, V., and Dadhich, N., “The effective mass of the Kerr spacetime”,
Class. Quantum Grav., 5, 1443–1445, (1988). 12.2

[245] Lau, S.R., “Canonical variables and quasi-local energy in general relativity”, Class. Quantum
Grav., 10, 2379–2399, (1993). Related online version (cited on 29 January 2004):
http://arXiv.org/abs/gr-qc/9307026v3. file corrupt. 10.1.4

[246] Lau, S.R., “Spinors and the reference point of quasi-local energy”, Class. Quantum Grav.,
12, 1063–1079, (1995). Related online version (cited on 29 January 2004):
http://arXiv.org/abs/gr-qc/9409022v2. 10.1.4

[247] Lau, S.R., “New variables, the gravitational action and boosted quasilocal stress-energy-
momentum”, Class. Quantum Grav., 13, 1509–1540, (1996). Related online version (cited on
29 January 2004):
http://arXiv.org/abs/gr-qc/9504026v3. 10.1.4, 10.1.4

[248] Lau, S.R., “Lightcone reference for total gravitational energy”, Phys. Rev. D, 60, 104034–1–
4, (1999). Related online version (cited on 29 January 2004):
http://arXiv.org/abs/gr-qc/9903038. 17, 10.1.7

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-4

http://arXiv.org/abs/gr-qc/9307026v3
http://arXiv.org/abs/gr-qc/9409022v2
http://arXiv.org/abs/gr-qc/9504026v3
http://arXiv.org/abs/gr-qc/9903038
http://www.livingreviews.org/lrr-2004-4
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134 László B. Szabados

[312] Penrose, R., and Rindler, W., Spinors and space-time. Vol.1: Two-spinor calculus and rel-
ativistic fields, Cambridge Monographs on Mathematical Physics, (Cambridge University
Press, Cambridge, U.K.; New York, U.S.A., 1984). 2, 4.1, 4.1.4, 4.1.6, 8, 10, 7

[313] Penrose, R., and Rindler, W., Spinors and space-time. Vol.2: Spinor and twistor methods in
space-time geometry, Cambridge Monographs on Mathematical Physics, (Cambridge Univer-
sity Press, Cambridge, U.K.; New York, U.S.A., 1986). 3.2, 3.2.1, 3.2.3, 4.1, 4.2.4, 8, 4.2.5,
7, 11, 7.1.2, 7.2.2, 7.2.3, 7.2.4, 7.3.1

[314] Perry, M.J., “The positive energy theorem and black holes”, in Flaherty, F.J., ed., Asymptotic
Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon
State University, Corvallis, Oregon, USA, October 17–21, 1983, vol. 202 of Lecture Notes in
Physics, 31–40, (Springer, Berlin, Germany; New York, U.S.A., 1984). 3.2, 3.2.1

[315] Petrov, A.N., and Katz, J., “Conservation laws for large perturbations on curved back-
grounds”, in Frere, J.M., Henneaux, M., Servin, A., and Spindel, P., eds., Fundamental
Interactions: From Symmetries to Black Holes, Proceedings of the conference held 24–27
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