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Quasi-Measures and Walsh Series

Mikhail G. Plotnikov

Abstract: Properties of quasi-measures on the dyadic groupG and on the product
groupGd are considered and applications of this properties to the theory of the unique-
ness of Walsh series are discussed.
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1 Preliminaries

L ET G be the dyadic group[1–3]. The dyadic group is a set of sequences
t = {ti}∞

i=0 whereti = 0 or 1. The mappingφ(t) = ∑∞
i=0 ti2−i−1 establishes

the one-one correspondence betweenG and the so-calledmodified segment J∗. The
modified segmentJ∗ = [0,1]∗ can be interpreted as the closed segment[0,1] in
which the dyadic rational points are counted twice: the ’left’ point p/2k−0 corre-
sponds to the infinite dyadic expansion and the ’right’ pointp/2k + 0 corresponds
to the finite expansion. The topology inG is defined by the system of neighbor-
hoodsVk = {t = {ti} : ti = ai , i ≤ k−1}. The corresponding neighborhoods inJ∗

are the segments[p/2k +0,(p+1)/2k−0]. We shall identifyG andJ∗.

Let {ωn(t)}∞
n=0 be theWalsh-Paley systemon G [2–4]. Fix naturald ≥ 1. If

n = (n1, . . . ,nd) ∈ Z+, and t = (t1, . . . , td) ∈ Gd, then thed-dimensional Walsh
functionωn(t) is defined by

ωn(t) =
d

∏
i=1

ωni (t
i).

Let
∞

∑
n=0

cnωn(t) (1)
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be a d-dimensional Walsh serieson Gd with real coefficientscn. For N =
(N1, . . . ,Nd) ∈ Z+ theN-th rectangular partial sum SN of the series(1) at a pointt
is

SN(t) =
N1−1

∑
n1=0

. . .
Nd−1

∑
nd=0

cnωn(t).

The series(1) rectangularly convergesto sumS(t) at a pointt if

SN(t) → S(t) as min
i
{Ni} → ∞.

Let ρ ∈ (0,1]; then the series(1) ρ-regularly convergesto sumS(t) at a pointt if

SN(t) → S(t) as min
i
{Ni}→ ∞ and min(Ni/Nj) ≥ ρ .

Consider intervals

∆ =

[

p1

2k1
+0,

p1 +1
2k1

−0

]

× . . .×

[

pd

2kd
+0,

pd +1
2kd

−0

]

⊂ (J∗)d (2)

whereks = 0,1, . . ., ps = 0, . . . ,2ks −1. We call those intervalsdyadic intervals of
rank k = (k1, . . . ,kd). If ∆ is a dyadic interval of rankk, then|∆| denotes its Haar
measure, i.e. 2−(k1+...+kd). By reg∆ we understand theparameter of a regularityof
the dyadic interval∆ [5], i.e.

reg∆ = min
i, j=1,...,d

2ki−kj .

Consider a pointt i ∈ J∗. We say that the sequence{∆ki} of one-dimensional
dyadic intervals is thebasic sequence convergent to ti [6] if t i ∈ ∆ki for all ki and
rank of∆ki equalski . Then thed-multiple sequence{∆k} of d-dimensional dyadic
intervals is thebasic sequence convergent tot = (t1, . . . , td) ∈ (J∗)d if

∆k = ∆k1 × . . .×∆kd (3)

where{∆ki} is the one-dimensional basic sequence convergent tot i.

2 Quasi-Measures onGd.

Let B denotes the family of all dyadic intervals(2). We consider some properties
of B-interval functionsτ : B → R. By a quasi-measure onGd we mean a finitely
additiveB-interval function [3]. Ifk = (k1, . . . ,kd), then we denote by 2k the vector
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(2k1, . . . ,2kd). For series(1) we defineB-interval functionψ associated with this
series via

ψ(∆) = S2k (t)|∆| (4)

where∆ denotes the dyadic interval of rankk such thatt ∈ ∆. It is known thatψ is a
quasi-measure. The correspondence established by formula(4) between series(1)
and quasi-measures is one-to-one (it is even a linear isomorphism if the set of the
series(1) and the set of quasi-measures are naturally endowed with thestructure of
a vector space). It is known that any series(1) is the Fourier-Stieltjes series for the
quasi-measure associated with this series. The next fact isalso well-known.

Theorem 1 Let f ∈ L1(Gd), (S) be a Fourier series of the function f , andψ be the
quasi-measure associated with this series. Then

ψ(∆) =

∫

∆
f (t)dt

for every diadic interval∆.

Recall some definition [5]. Letτ be a quasi-measure, andρ ∈ (0,1]. Upper
dyadicρ-regular derivativeof the quasi-measureτ at a pointt ∈ Gd is defined by

D
ρ
dτ(t)

de f
= lim

τ(∆)

|∆|
as |∆| → 0, reg∆ ≥ ρ , t ∈ ∆.

3 A Continuity of Quasi-Measures.

Consider different types of a continuity of quasi-measures. A quasi-measureτ is
calledcontinuous in the sense of Saks[7] if

lim τ(∆) → 0 as |∆| → 0. (5)

A B-interval functionτ is strongly continuous at a pointt ∈ Gd [5] if

lim τ(∆) → 0 as |∆| → 0, t ∈ ∆. (6)

Let ρ ∈ (0,1]; then we say that a functionτ is ρ-continuous at a pointt ∈ Gd if

lim τ(∆) → 0 as |∆| → 0, reg∆ ≥ ρ , t ∈ ∆. (7)

It is clear that in the one-dimensional case(6)⇔ (7). It is obviously that for all
ρ ∈ (0,1] andt ∈ Gd (5) ⇒ (6) ⇒ (7).
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4 Quasi-Measures and the Coefficients of Walsh Series

In the cased = 1 we consider the following conditions for coefficients and partial
sums of the series(1):

lim
n→∞

2−nS2n(t) = 0 (8)

(Crittenden-Shapiro condition [8]);

lim
n→∞

cn = 0. (9)

The next results follows from(4).

Proposition 1 Let (S) be a series of the form(1), ψ be the quasi-measure associ-
ated with this series, and t∈ G. If the partial sums S2n(t) of the series(S) satisfies
the condition(8), then the quasi-measureψ is strongly continuous at the point t. If
the coefficients of the series(S) satisfies the condition(9), then the quasi-measure
ψ is continuous in the sense of Saks. Assume that the series(S) converges to a finite
sum at some pointt0 ∈ G; then the quasi-measuresψ is continuous in the sense of
Saks.

The next statement was proved in [9].

Proposition 2 Assume that for d= 2 the series(1) rectangularly converges to a
finite sum at every point of a ’cross’({a}× [0,1])

⋃

([0,1]×{b}). Then the quasi-
measureψ associated with this series is continuous in the sense of Saks.

In the case ofρ-regular convergence the statements of the last theorems can
fail to hold even for everywhere convergence of the appropriate series. This fact
follows from the next theorem [10].

Theorem 2 For everyρ ∈ (0,1] there exists a double Walsh series which isρ-
regularly convergent to a finite sum everywhere on Gd, but the quasi-measureψ
associated with this series is notρ/4-continuous at some pointt ∈Gd. As corollary
this quasi-measure is not continuous in the sense of Saks.

The continuity in the sense of Saks was used for the solving the problem of
recovery the coefficients of rectangularly convergent multiple Walsh series [11,12].
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5 Σd-Continuity and Uniqueness Problems for Multiple
Walsh Series.

The next type of continuity was offered in [13,14]. Put

Σd = {σ = (σ1, . . . ,σd) : σi = 0 or 1 for all i = 1, . . . ,d}; |σ | =
d

∑
i=1

|σi |.

Let {∆k} be the basic sequence of the form(3) convergent to a pointt ∈ Gd. Put

∆0
ki

= ∆ki+1, ∆1
ki

= ∆ki \∆ki+1; if σ ∈ Σd, then ∆σ
k = ∆σ1

k1
× . . .×∆σd

kd
.

We say that a functionτ is Σd-continuous at a pointt if

lim
k1=...=kd→∞ ∑

σ∈Σd

(−1)|σ |τ(∆σ
k ) = 0. (10)

It can be proved that ifρ ≤ 1/2 then(7) ⇒ (10) at every pointt ∈ Gd.

Theorem 3 If d = 1 then(6) ⇔ (7) ⇔ (10).

Thus a study ofΣd-continuity is important only in the multidimensional case.
The next theorem [13] establishes the connection between this continuity and the
coefficients of series(1).

Theorem 4 Let (S) be a series of the form(1), ψ be the quasi-measure associated
with this series, andρ ∈ (0,1/2]. If the coefficients of the series(S) satisfies the
condition

lim cn1,...,nd = 0 as min{n1, . . . ,nd} → ∞, min
i, j=1,...,d

{ni/n j} ≥ ρ ,

then the quasi-measureψ is Σd-continuous at every point t∈ Gd. Assume that
the series(S) ρ-regularly converges to a finite sum at some pointt0 ∈ G; then the
quasi-measuresψ is Σd-continuous at every point t∈ Gd.

In the multidimensional caseΣd-continuity was used for a study of questions of
uniqueness forρ-regular convergent multiple Walsh series. The next ’monotonicity
theorem’ for quasi-measures was proved in [10].

Theorem 5 Suppose that the quasi-measureτ satisfies

D
1
dτ(t) ≥ 0 (11)

at every pointt ∈ Gd except possibly a countable set L. Let the functionτ be
Σ∗

d-continuous at every pointt ∈ Gd. Thenτ(∆) ≥ 0 for every dyadic interval∆.
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The theorem 5 may be used for the proof the following fact concerning sets of
uniqueness. Recall that a setL is called theset of uniqueness(or in short: aU -set)
for a system{ϕn} if from the convergence of a series∑n cnϕn to zero outside the
setL it follows thatcn = 0 for all n. The following statement ford-multiple Walsh
series was obtained.

Theorem 6 (See [10, 13]). Let a numberρ ∈ (0,1/2] be chosen. Then any finite
or countable set L⊂ Gd is a U-set for the multiple Walsh system withρ-regular
convergence.

The concept ofΣd-continuity also was used for the solving the problem of re-
covery the coefficients of multiple Walsh series [10]. This concept is also helpful
in the theory of the uniqueness of Haar series [14].
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