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ABSTRACT
A new class of particle simulation models has been
developed which eliminates the high-frequency space ‘charge
" oscillations while keeping the low-ffequency ion-density
fluctuations unmodified. Physically, the quasineutrality is‘
maintained as the adiabatic electrons follow the ion-density
fluctuations so as to Debye shield the resultant electrostatic
potential. It is, therefore, possible to use the integration
titne step comparable to the characteristic time scale of the
low-frequency oscillations so that realiétic plasma parameters
_can be used in the present simulation model. Applications to
the ion sound wave propagation, ion-ion two-stream instability,
and the low-frequency flucfuation spectrum in a magnetic field
are given. How to include tl;e nonadiabatic electrons in the model

is also discussed.



I. INTRODUCTION

Particle code simulation of plasmas has become a well-
established branch of plasma physics ana controlled fusion
research during the recent years. Various nonlinear processes
inherent to plasma dynamics associated with plasma heating
and confinement have been studied successfully using the par-
ticle models. In the area ot tuslon research, neoclassical
diffusion and the heating associated with the neutral beam in-
jection are such examples{ Needless to say, there are many more
simulétion models being developed as the demand for numeri-
cal simulations in plasma physics and controlled'fusion research
increases rapidly along with the construction of large confine-
ment devices.

It is the purpose of this paper to describe a new class of
particle simulation models in which the quasineutral condition is
approximately satisfied so that the high-frequency oscillations
asséciated with . electron ineptia are eliminated. Ex-
amples of such oscillations are ion sound'wave , electrostatic
ion-cyclotron wave, low-frequency drift waves, trapped particle
modes in a toroidal system, and magnetohydrodynamic oscilla-
tions. Several examples are shown to test the model. They are
the propagation of ion sound waves, ion-ion two stream instabil-
ities, and the 1ow-frequencyvelectrosﬁatic fluctuations in a

magnetic field including the drift waves in an inhomogeneous

>
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plasma. Discussions are given as to how to include the nonadia-

batic electrons.

o ' II. MODEL

In.order to -develop a particle simulation model which elim-
inates the high-frequency oscillatiéns, let us consider the simplest
example first; namely, the one-dimensional ion sound wave in a
thermél plasma. Assume a low—frequenéy ion-density fluctua-

. L] . , ' . .
tion njy from its equilibrium state n, .

Associated with this density fluctuation is the low-frequency

‘electrostatic potential ¢ in which the electrons quickly reach

the well-known Boltzmann law

n, = n_ exp (e¢/Te) . (1)

The resultant pdtential is then determined from the Poisson

equation

32¢/Dx2 = - 4ne(ni-—ne) . | (2)

Ion-density fluctuation may be determined. from the cold .fluid

equations
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- Linearizing Egs. (1) and (3) and assuming a phaser exp (iwt -
ikx) for the linear quantities, density fluctuations for

the'electrons, the ions, and the dispersion relation are

n/n_ = e¢/Te | (4)

(x%/0°Y (e/m) 0 (5)

o

~
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and
2 2., '
(k= + ke)c,b = 41reni
(6)
2 2,2
= (k wpi/w )
where ke is the electron Debye wave number, ki = 4Trnoe2/Te.

Equation (6) gives the well-known.dispersion relation for the

ion wave
2 _ .2 2 2 ;
w” =k Cq = k Te/mi
2 2 . . . . .
for k <<ke . When the dispersion relation is used in Egs. (4)
and (5), it is easy to show that the quasineutrality né = ni

is satisfied automatically.
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It is clear in the preceding argument that the key assumption.‘
for the charge neutrality is given by Eq. (1) or Eg. (4) where
the massless electrons follow the ions adiabatically so as to
screen the resultant potential. Note that the quasineutrality

n, = né is the consequence of Eq. (4). The effect of electrons

i
can be seen more clearly from Eq. (6) where the potential due
to ion-density.fluctuation is Debye-screened by the electrons
and this is the physical interpretation of the quasineutrality;

In the usual particle simulation model, both ions and_elec—.
trons are pushed according to the equation of motion together
with fhe Poisson -equation to determine.the potential. In such a
model, it is clear that the charge neutrality, Eq. (4), is not
satisfied in general, since the electrons do not always follow
the ;ons because of their inertia. 1In fact, it is well known
that the electron and ion density fluctuations are predominantly :
out of phase, which generate very strong electrostatic space
charge oscillations at the plasma frequency. This high-frequency
oscillation is so strong in numerical simulations that it can
mask the wéak ion sound wave easily for many cases.

It is clear, from the preceding argument, that one way to
guarantee the quasineutrality in the simulation is to éssume that;>

the electrons form a Debye-shielding cloud around the ion-den-

sity fluctuations. The Poisson equation is then modified to

(k2 + ki)d) = 4meln, -n) (7)



together with the equation of motion for the ions

dt m,
dx
ac Vi

’

to determine the ion density. Note that in this formalism,

the contribution from the electrons is giveq totally by kZ ¢,
which is valid as'long-as'they'afe’aaiabatic. When the contri-
bution'of‘the nonadiabatic electrons ‘becomes important, then
Eq. (7) should be modified accordingly. This is' a more dif-
ficult problem and the solution appears to depend on the pro-
blems considered. Some considerations are éiven in Sec. 1IV.

Note also that there is no approximation made for the ion
dynamics in the model so that the model should be very useful
to study the nonlinear behavior of plasmas associated with ion
dynamics.

The linéarization of the electron Boltéﬁann distribution
used in Eq. (7) is valid as long as the density fluctuation
n'i/no is.a few percent. When ni/nb becomes larger, then the
linearization is not approprigte and one has to use the non-
linear Poisson equétion given by

"2 )
Vo = 41Teni -flneno exp (ed;/Te) .
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It is possible to solve thlS by 1terat10n for this case. First,
the solutlon for the potent1al ¢ , using the linearized density
fluctuatlons, is found from Eq. (7). Then the corrected poten-
tial ¢ is found by u51ng ¢ in‘the electrqn Boltzmann distri-
bution to solve for ¢ . One can iterate this procedure a few
times until the solution convergee. ‘

So far we have only con51dered the one-dimensional ion
sound wave. It 1s clear that the model can be extended to many
different cases in mult;-dlmen31onal 51mulathns as long as the
electron contribution is primarily ediebatic, which is the
charaetefistic property for low-frequency oscillations.

The electron density fluctuetion for the electrostatic waves

in a magnetic field may be written as, -in generall,

41ren = 2: exp( ;vi/ﬂé)l (kzvz/Q)
n==e (Sf
.{1; ‘”_wé,tz(w—nﬂ)]cb |
/2kzve V2 k Ve

where the magnetic field is in the z-direction, w* = k:Teky/elﬂ
(d£nn/dx) is the diamagnetic drift frequency due to plasma in-
homogeneity in the x-direction, Z is the plasma dispersion func-
tion,2 and the electron distribution function is aseumed to be an
isotropic Maxwellian. |

For low-frequency w << Wogr long-wavelength k /Q << 1

oscillations and kz # 0, Eq. (8) is reduced to
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4men, = [1 + VIR, v, 7z (m)]keq’; (9.)
For the small phase velocity w/v2 kZQe‘<<l,‘Eq. (9) reduces
to Egq. (4); and therefore, Eg. (7) should be valid as lbng as
the nonadiabatic effecf is ignorxed.

Needless to say, there are many cases where the small non-
adiabatic effect arising from the Landau or collisional damping
can cause instabilities, in which case, those nonédiabatic
electrons should be included in the simulation. Note also,
nowhere have-we assumed n, =‘ni'explicitly in the model, and
this is very important, since n, is not equal to n, for the un-

stable plasmas when ¢ grows to large amplitude. Such an example

is the case of anomalous diffusion due to drift instabilities.
III. APPLICATION OF THE MODEL

1.. Propagation of the Ion Sound Wave

In this first example, we have considered the propagation
’ . .
of ion sound waves in a thermal plasma and confirmed that the model
correctly produces the expected ion sound fluctuations. The

simulation is carried out in one dimension using an electro-

static dipole code. As described in the previous section, only
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the ions are pushed and the modified Poisson equation (7) is

used. .

Figﬁre 1 shows the results from such run. We use Te/Ti==10 ’
mi/mé =100 , Whe At=2 (At is the integration tir'nev step),
A_=A=a (A is ‘the grid size and a is the particle size) and
6400 ions. Figure 1 (a) shows the time correlation function of
the fourth Fourier mode and Fig. 1 (b) is the power spectrum of
the same mode.3 We see a coherent wave at fhe expected fre-
quency of the ion sound wave. Néte.that there is . no electron plasma

oscillation. in the model ‘and ‘the electric field energy is

less than 10—4 of the particle energy. The two peaks in

Fig. 1 (b) correspond to the sound wave propagating both direc-

tions in space.
Figure 2 (a) shows the numerically determined dispersion

relation for the above exagmple. Note the agreement with the

theory
ke (1 +3T,/27T,) ,
Yg T 2 2 (10)
. (l+k2 >\2ek_ a )1/2
e
is excellent. Figure 2 (b) indicates . similar results from

the second run using wpe- At= lO (wpi At =1) and >‘e =0.2 A with

the other parameters unchahged, This run is to confirm that

large time step, such as wsz&tﬁ=0.2 and small Debye length

Ao <A , may be used in the model since there is no plasma oscilla-

tion in the model.
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It is clear. from these runs that the plasma oscillations
are completely eliminated and that one should be able to use
A t several orders of maénitude greater than that employed in
the conventional code when the realistic -parameters-.are -used.

4

Note that there was no grid instability -observed for small

Debye length. .

2. Ion-Ion Two Stream Instability

i
As the scoond cxample,; let '‘uc consider an ion-ion two-

stream instability excited by ‘the counterstreaming dions .in a

r
warm electron background.J

The instability ‘takes place only
for the short-wavelength mode, k 2 ke" since the electrons are
not able to neutralize the ion-density fluctuations completely.

The dispersion relation is given by

y W= kv vy wH kv
1+ 1 1 7 ( o)+ 1 7 ( o)
k22 4?2l 72kVi) 412 )0 72k vy
e i i
(11)
for two equal coﬁnterstreamipg ion beams. Growth rate is a

fraction of ion plasma frequency, and the most unstable wave-

1 th. ~ 3 .

eng corresponds to k Vo/wpl |
Fiqure 3 shows the electric field energy associated with

the instability, frequency spectrum, and the ion velocity dis-

tribution. The parameters of-the simulation are 64 grid, 12800‘

1ops, mi/me=2500, Té/Ti-=25, )\e=4A,‘v,o/cs= 0.4 and wpeAt=10 .
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After the exponential growth, the field energy saturates

at E2/4 erTi“ lO_3

and the initial well-defined two ion beams
are partially thermalized by this time. Note that the initial noise
is very low without using a quiet start. The frequency spectrum
indicates the instabili£y is of the purély growing type as pre-
dicted by the linear theory. .It is worth mention that this
calcﬁléﬁionixnk only a few miﬁutes on an IBM 360/91 using a
FORTRAN cddé. It would be very difficult to simulate this

instability using a conventional particle code because of noise

and computing time.
3. Fluctuations in a Magnetic Field

Let us consider the propagation of low-frequency ion
fluctuations in a magnetic field. When an external magnetic
field is imposed on a plasma, motions across the magnetic field are
prohibited and the quésineutrality is maintained as the electrons
foliow the ions along the field lines. It is clear then that
the flute—typé mode, kz==0 for example, may not be gquasineutral.
Furthermore, whether or not the plasma is quasineutral in a
magnetic field is not a trivial question in an inhomogeneous
plasma where the low-frequency turbulence generated by the
drift-type instabilities caﬁses the anomalous diffusion  of iohs '
and eleqtronsAwhich are in general not the same and, therefore,.

large charge separations are built ups.
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The electrostatic dispersion relation for small amplitude

ion oscillations in a magnetic field is given by

[}

w-w¥ -w=-nQ,
1 1 1] =
Lt >+ 573 _Z [l+eXP(*) ()7_zkv‘"z(72kv'.")J 0
k )‘e k )\i n=-o i
(12)
for’ k2 p2 <<1 and w/k_ Vv_<< 1 where A= kz v?/Q? . The interesting
T Ty Te z e y i77i | ‘
case is for kz/ky <<'1 and the solutions of Eq. (12) are well-

known electrostatic ion-cyclotron waves (ion Bernstein modes)

. -2
w=nQi(l+In()\)e ) n=1,2, ...

and the low-frequency ion acoustic mode
w=k_c
z
and the drift mode

w = *
e

in an inhomogeneous plasma. Note that the lower hybrid
oscillations u;'z‘.wpi and the oblique elect;on plasma oscillations
w=w pe kz/k a;e not the solutions of Eg. (12) since they are
shielded by the electrons.

To test the dispersion relation,a frequéncy spectrum for the
fluctuat'ions, is measured using a 2. 1/2-dimensional model7 with

the modified Poisson equation (7). The parameters for the simula-

tions are: -64 x 64 grid, 128 x 128 ions, mi/me = 2500, Qe/»wpe =5,.

_ _ _ . 172 |
Te/.Ti—4, )\e/A =1, w__At-= 50 énd kz/ky —(me/mi) = 0.02. Note that

pe

(V)
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the choice of tﬁe time step gives QiAt1=0.l, which is small
enough.to resolve cyclotron harmonics. Note also the large
mass ratio and the time step in the present simulation.
Flgure 4 shows the power spectrum for the propagation of
different values of k /k and ky.in a homogeneous plasma. It

is clearly seen that several ion- cyclotron harmonics are

~generated slightly above the cyclotron frequency and its har-

monics. For k; p; <1, the maximum peak of the spectrum is at
the cyclotron frequency-and it suifts to higher harmonics for

k, Py > 1. There is also one low-frequency oscillation well
below‘the ion-cyclotron freguency representing the low-frequency
ion sound branch. These frequencies agree well with the linear
theory. The field energy was only 0.1% of the ion kinetic
energy in spite of the use of only four particles per cell.
Since the electrostatic ion-cyclotron harmonics are correctly_

simulated in this model, one can use the model, for example,

to study the ion beam-induced cyclotron instabilities associated

with the neutral injection into a tokamak®

Flgure 5 shows the power spectrum of the fluctuations in
an inhomogeneous plasma using the 2 1/2-dimensional model. 1In
addition to.the ion-cyclotron hafmonics, low-frequency drift
oscillations canmbe‘seen‘clearly in the flgure. The observed
frequency is larger than the ion sound frequency in homogeneous
plasma shown in:fig.’4 and is close to w==w; B/(2- B) as pre-

A

dicted from the linear theory wheref=e" I, (A) . The parameters

i
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of the simulation are the same as before except for the inhomo-
geneous density profile in the x-direction, which is taken as a

hyperbolic tangentj

Therbservation of low-frequency drift
osciilationsw<<9i using realistic plasma paramefers'is quite
encouraging and the model may serve as an important tool for the
study of nonlinear development and the -anomalous diffusion due
to drift instabilities in three-dimensional cylindrical and
toroidal simulations.? These calculations using the 2 1/2-
dimensional model took 1/2 hour ér so on 'IBM 360/91 for each

case.

IV. DISCUSSIONS ON THE NONADIABATIC ELECTRONS

We have shown that the quasineutral simulation model dis-
cussed previously 1s very useful for the low-fréquency oscillations
associafed.with the ion dynamics and makes it possible to use
realistic parameters in the simulation. Let us consider in this
section the possibilitié§ of including ' nonadiabatic clectrons
in order to model the Landau or collisiohal damping in the
simulation. While we have ndt solved this problem completely,
two different methods have been tried.

.. The‘first model, which may be called a quasilinear model,
is to include the linear Landau.damping in the Poisson equation.

For the case of one-dimensional ion sound wave, the electron
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Landau damping may be given by

172 c

= (%) 62 exp (-ci[}véz) e o (13)

€=

1

for a Maxwellian velocity distribution where w = kcs . The Poisson

equation (7) is now modified to

2

2 .
(k™ + ke

+ i/ k(e v exp(-c2/2v2)] ¢ = ame(ng -n)  (14)
Which gives the correct electron-Landau damping when the linear
respohse for the ion~density<flﬁctuation Eq. (5) is used. The Landau
damping given by Eq. (13) must be determined from the instantaneous
electron velocity distribution: Therefore, in this model, elec-
trons must be pushed in the simulation oﬁly for determining the
dietribution to calculate the instantaneous Landau damping rate.
Furthermore, only the quasilinear diffusion is included for the
 electron nonlinearity. This method may be used. for collisional
plasmas.

‘The second model is more general and can be fully nonlinear.
In thie model,' the resonant electrone are‘separated from the
adiabatic electrons and are followed.as the discrete particles
in the simulation. The phase velocity of the ion sound or
drift waves is, 'in general, much gmaller than the electfon |
thermal velocity, w/kz << Vear and therefore resonant electrons
are low-energy partieles. The ffaetion of the resonant electrons

is small as lcng as e¢/Te is small.



-16-
The Poisson equation is modified to
2 2y . B r R
(k™ + ke,) ¢ = 4Tteni 47rene | (15)

where kéz‘is the effective Debye wavenumﬁer of the adiabatic

electrons and n: is the density of the resonant electrons, -which
are followed in time as discrete particles. A resonant particle
may be defined as a particle whose velocity aionq‘the field line

v.; lies
5l
| '1/2
|vjII - w/kHI < (e¢/me)

where w/ﬁl = ics for the case of ion séund. In the simulation,
one has to follow all the electrons, not just the resonant elec-
tfons, to calculate the charge density for the resonant electrons
in the Poisson equation.  The reason for this is that the
resonant electrons are low-energy particles which have very
large diffusion coefficients in velocity space. Therefore an
electron Which is in the resonah£ region can move to the non-
resonant region in a very short time. Of course, the inverse
process can take place just :as often. Only those particles’ whose
velocity along the field line satisfies the resonant .condition
do contribute to the charge density in tﬁe Poisson equation.

Note those low-energy resonant electrons do not Cerenkov-emit

the high-frequency plasma oscillations.
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Simulations of the ion sound instability excited by the
electron drift through the ions. have been performed using a one-

dimensional model. The paramefers of the simulation are 64 grid,

m,/m_ = 2500, 12800 -ions and electrons, A_/A = 1, T_/T, = 25,
Vo/Ve = 1/2, and wpe At = 4. Figure 6 shows the development

of the total field energy due to the instability and the distri-
bution function. There are more than 15 modes unstable in the
system. The instability is found to saturate at quite a low
level-of E2/41rnTe < 1074 ana we. find the formation of a Qelocity
space plateau at around the phase speed of the wave which is the
séund'speed in this case. The growth of each Fourier mode
roughly agrees with theflinear theory; however, considerable
fluctuations in the energy of each. Fourier mode are also found.

. Whether or not éne can extend this method to more complex
problems such as drift wave instabilities in toroidal devices
remaiﬁs to be seen. The problém of separating the resonant and
non-resonaht electrons is rather subtlelo and it appears one

has to try and see if this method works for the problems considered.
V.. CONCLUSIONS

A quasineutral particle simulation model has been developed
by assuming the adiabatlc -electrons form a Debye shielding cloud
around the ion-density fluctuations. The model correctly pro-
duces the low-frequency ion oscillations while eliminating the

high-frequency fluctuations. The noise level in the simulation
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is quite low compared with particle energy because of the
quasineutrality. .Very large time steps can be taken so that

the multi-dimensional simulations using realistic .parameters may

be easily - carried out using tﬁe present model. A very important:fea-'
ture of;the model is that n, = n; is not aséumed anywhere in the.

code and in fact the model can follow n, # n, ﬁhenever a. strong
electric field and therefore space charge separations are gen- ¢ .
erated due to plasma instabilities. How to include the non-

adiabatic electrons in general is a subtle problem and appears.

to depend on the case.
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Fig. 1. Correlation function of the electric field for the
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Fig. 3(c). Ion-ion two-stream instability. The develop-
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Fig. 5. Frequency spectrum in an inhomogeneous plasma.

kyk,, = 0.02 and kypi = 0.5 (a) and kypi‘= 1.5 (b).
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Fig. 6. Ion Sound instability due to electron drift through

ions. Total field energy (a), and the electron velocity distri-
bution (b).



