
Quasi-Newton Methods and their Application
to Function Minimisation

By C. G. Broyden

1. Introduction.The solution of a set of n nonlinear simultaneous equations, which
may be written

(1.1) fjixi, xt, •••,xn)= 0,       j = 1, 2, ••-,%,
can in general only be found by an iterative process in which successively better,
in some sense, approximations to the solution are computed. Of the methods avail-
able most rely on evaluating at each stage of the calculation a set of residuals and
from these obtaining a correction to each element of the approximate solution. The
most common way of doing this is to take each correction to be a suitable linear
combination of the residuals. There is, of course, no reason in principle why more
elaborate schemes should not be used but they are difficult both to analyse the-
oretically and to implement in practice.

The minimisation of a function of n variables, for which it is possible to obtain
analytic expressions for the n first partial derivatives, is a particular example of
this type of problem. Any technique used to solve nonlinear equations may be ap-
plied to the expressions for the partial derivatives but, because it is known in this
case that the residuals form the gradient of some function, it is possible to introduce
refinements into the method of solution to take account of this extra information.
Since, in addition, the value of the function itself is known, further refinements are
possible.

The best-known method of solving a general set of simultaneous nonlinear equa-
tions, in which the corrections are computed as linear combinations of the residuals,
is the Newton-Raphson method. The principal disadvantage of this method lies in
the necessity of evaluating and inverting the Jacobian matrix at each stage of the
iteration and so a number of methods have arisen, e.g. [1], [2], [4] and [8] in which
the inverse Jacobian matrix is replaced by an approximation which is modified in
some simple manner at each iteration. Although each method has its own peculi-
arities certain properties are common to a large class of these methods, and several
of these are discussed here. In particular, if it is known that the functions to be
zeroed are the first partial derivatives of a function F, then it is possible, if F is
quadratic, to modify the approximating matrix in such a way that F is minimised
in a finite number of steps. This method of modification is not unique and leads to
a subclass of methods of which one example is the method of Davidon [3] as amended
by Fletcher and Powell [4].

Since in the methods under discussion the corrections are computed as linear
combinations of the residuals, it is natural to introduce matrix notation. Thus a
function fj of the variables X\, x2, • ■ ■, x„, may be regarded as a function of the nth
order vector x, and each fj in turn may be treated as the jth element of the nth
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order vector f. In this notation the basic problem becomes that of finding a vector
x such that

(1.2) f(x) = 0 .

If the tth approximation to the solution of (1.2) is denoted by x¿ the notation
may be simplified by referring to f (x¿) as f ¿. This vector is the vector of residuals at
the ¿th stage of the process, and since the correction to x¿ is to be given as a linear
combination of the residuals it follows that the process may be defined by

(1.3) p¿= -H<ff)

(1.4) xi+i = Xi + Viti,

where H, and U are an nth order matrix and a scalar respectively. It is clear from
these equations that the inclusion of ¿< is not strictly necessary as it could well be
absorbed in the matrix Ht. It is convenient to treat it as a separate entity, however,
since in practice its value is often not known until after the correction vector p, has
been computed.

The class of algorithms defined by (1.3) and (1.4) is extremely general. If, for
instance, the functions f¡ are the first partial derivatives of a function F, H¿ is the
unit matrix, and i; is chosen to minimise F, then (1.3) and (1.4) define the classical
method of steepest descent. If H¿ is A,-1, where A, is the Jacobian matrix evaluated
at x„ and ¿» is unity then the method defined by the algorithm becomes that of
Newton. Finally, H¿ may be chosen to satisfy certain conditions discussed more
fully in Section 2 below. Since these conditions ensure that some properties of H¡
approximate to those of A¿-1 these methods may be regarded as variations of New-
ton's method. For this reason, and for brevity, they will be referred to in the sub-
sequent discussion as quasi-Newton methods.

2. Quasi-Newton Methods. The quasi-Newton methods may be defined as those
methods for which the iteration matrix HI+i satisfies the equation

(2.1) H1+iy; = p<s,,

where

(2.2) y¿ = fi+i - f(xf+1 - piS.) ,

p, is identified with the p¿ of (1.3) and (1.4) and s< is some scalar whose choice is
discussed subsequently.

Assume now that f is differentiable at xi+i. It then follows that (see e.g. [6],
pp. 188-189)
(2.3) f(x,+1 - p¿Si) = f¿+i - Ai+ip¿Si -f r(p¿s¿) ,

where At+i is the Jacobian matrix evaluated at xi+i and where r(p,s,) is small in the
sense that

lim    ÜÍÍMM = o,
llpí.ill-O       llpiSill

the vertical bars indicating the Euclidean norm. Hence
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(2.4) ji = A¿+ip¿s¿ - r(ptSi)

so that, if A,+i is nonsingular, Eqs. (2.1) and (2.4) give

Hi+iyi = A7+i(y¿ 4- r(p¿s.)) •
Thus if s¿||p,-|| —> 0, as it does when x{ approaches the solution since then

| |p¡| | —>0, it follows that

(2.5) Ui+iYi^A~liyi
so that Hi+i will have at least one property of the inverse Jacobian matrix, justify-
ing to some extent the use of the term "quasi-Newton".

A somewhat more lengthy discussion of the derivation of (2.1) and its identifi-
cation with Newton's method is given by Broyden [2]. In that discussion, however,
the matrix H¿ is defined to be the negative of the H» defined here. The definition of
H,- in the present work follows that of Fletcher and Powell, and is more nearly
consistent with the usage of Traub [7] than was the definition in [2].

In the examples already published of this class of methods s¿ has nearly always
been taken to be ¿,-, and it will be so chosen in what follows. With this value of sf,
(2.1) and (2.2) become, from (1.4),

(2.6) H<+1yt- = pA-,
(2.7) y i = f i+i - U.

Eq. (2.6), although a little less general than (2.1), is still not sufficient to define
Hj+1 or even to give any indication of how it may be derived. Since, however, a
matrix H,- which possesses to some extent the properties of the inverse Jacobian
matrix is already available it would appear reasonable to obtain H,-+i by adding
some correction to Hi. Denote this correction by B¿. Then

H¡+i = H i 4- Bj-

and, from (2.6),

(2.8) Biyi = piii - H,yi.
The simplest (in the sense of least rank) matrix that Bi can be so that (2.8) is

satisfied is

(2.9a) Bi = (p¿íi - Hiyi)ZiT

where zt- is arbitrary except for the normalisation condition that

(2.9b) Ziryi = 1 .

This, however, is a little too restrictive and a more general alternative is

(2.10a) Bi = Piiiqir — H,yiZir

where both q, and z¡ are arbitrary but subject again to the condition that

(2.10b) qiTy¿ = Ziry¿ = 1 .

The remainder of this work is devoted to the discussion of methods where Bt is
given by Eq. (2.10), so that Hi+i is given by
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(2.11) Hi+1 = H,- - Ug*? + prf.qJ .

This equation includes as special cases the generalised secant method of solving
nonlinear simultaneous equations [1], [5], [7] and [8], a method due to Broyden of
solving nonlinear simultaneous equations [2], the modified Davidon method of func-
tion minimisation [4], and the generalisation of Davidon's method, discussed below,
of function minimisation.

3. Stability. A necessary condition that the algorithm defined by (1.3), (1.4) and
(2.11) will solve an arbitrary minimisation problem is that at no stage of the process,
i.e., for no i, will either q¡ or z¡ be orthogonal to y,-, since it then becomes impossible
to satisfy (2.10b). Another possible cause of the failure of the algorithm to converge
is the singularity of some H¿, and as a first step in investigating why this should
be so the following lemma is proved.

Lemma. For an algorithm defined by (1.3), (1.4) and (2.11), xI+r, where r > 1, is
given by

(3.1) Xi+r = Xi — H¿v¿r

where v,> is some vector.
Proof. The proof is inductive. It follows from (1.3) and (2.11) that, if M¡ is

defined by

M¡ = (I - ynY - U^Y) ,
then

Hi+1 = H,M¿.

Hence

Hi+r = HiM¡Mi+i- • -Mi+r_i.

Assume now that xt+r is given by (3.1). Then from (1.3) and (1.4)

Xi'+r+l = Xi        Xl¿Vir        .H.t_|_rIi_|_rfi-|_r ,

(3.2) =  Xi - H¿(vír -t" M¿Mi+l- • -Nli+r-lii+rti+r)  ,

=  X¡ H¡Vi,r+l.

Since, from (1.3) and (1.4), (3.1) holds for r = 1, it holds for all r > 1, and this
proves the lemma. Now if the algorithm is to converge to a solution x,

lim xi+r = x
r—»co

and it follows from (3.1) that

(3.3) lim H/Vir = Xi — x .

Now if H, is nonsingular it is always possible that (3.3) will hold, but if not it will
hold only if the vector Xi — x satisfies certain conditions. Since these conditions in
general will not be fulfilled, it is desirable that during the course of the algorithm
Hi should never become singular. Quasi-Newton algorithms for which q¿ryi and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



372 C.   G.   BR0YDEN

z/y,- never become zero and Hi never becomes singular will be regarded as stable,
and it is shown subsequently that the modified Davidon method and its generalisa-
tion are both stable according to this definition.

It should perhaps be emphasised here that stability as defined above is not suf-
ficient to guarantee that a particular algorithm will converge. For, consider methods
1 and 2 for solving nonlinear simultaneous equations, defined and discussed by
Broyden, [2]. Of these, the second is stable and the first is not, since in the first
method it is possible that Ziryi = 0. However, in practice, the first method solves
equations and the second is unable to do so. Neither is it correct to infer that an
algorithm for function minimisation will converge to the solution merely because
the function is reduced at each step, for the sequence of function values F i obtained
by the algorithm may well have a lower bound that is greater than the minimum
value of F even for F strictly convex. The most that can be inferred from the fact
that Fi+i < F i is that the algorithm cannot diverge, a somewhat tautologous con-
clusion.

4. Linear Systems. If a quasi-Newton method is to solve effectively a general
set of nonlinear equations intuition would suggest that it would solve a general set
of linear equations in a finite number of steps, and indeed some investigators set
great store by this property. Although the present author is not convinced of its
desirability, it is relevant to examine sufficient conditions for its attainment, since
they do suggest the form that particular algorithms might take.

Let then k and s be two positive integers and define the matrices Yk,S) Zk,s,
Bjt,„, P,fc,s, Qk.s, Tk,s and Gk,s as follows, where all the vectors concerned are of
order n.

(4.1) Yk.s = [y*, y*+i, • • •, y*+8-i],

(4.2) Zk,s = [z/t, Zjfc+i, • • •, Zi+^i],

(4.3) BktS = (I - yizJHI - yfc+izj+1) • • • (I - y^-iz^^) ,

(4.4) Pi,s = [pt, pjfc+i, • • -, pi+s-i],

(4.5) Qk.s = [q*, q*+i, • • •, q*+«-d ,

(4.6) Tfc,8 = diag (<*, tk+i, • ■ •, i*+«-i) >

(4.7) Gi.s = [Bj:+i,s_iqt, B/t+2,s_2qit+i, ■ ■ •, BA+S_i,iqfc+S_2, qt+s_i] .

Then, from Eq. (2.11) with i = k, k -\- 1, • ■ ■ ,k + s — 1 and the above definitions
it follows that

(4.8) Hfc+S = HtB/c,,, 4- Pk.aTk.sGk.a ■

Consider now Eq. (4.8). The first term on the right-hand side consists of Hk
modified by post-multiplication by Bk,s and the second term consists solely of in-
formation derived from the last s steps of the process or injected during these steps
by the choice of qi and z,-, i = k, k -\- 1, • • -, k -\- s — 1. Now it is reasonable to
require of Hi+S that it should comprise the latest information derived from the
iteration so that the first term on the right-hand side of (4.8), which represents
essentially old information, should tend to the null matrix as s increases. Since H*
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is nonsingular, this is achieved if and only if B*,, tends to the null matrix as s —> <».
A more stringent requirement is that Bk,s becomes the null matrix after a finite
number of steps. If this occurs, then Ha+s will comprise information derived only
from a finite number of the most recent steps, old information having been com-
pletely purged. It will now be shown that Bk,s cannot be null for s < n, and neces-
sary and sufficient conditions for its nullity will be established.

Theorem 1. IfYk,n, Zk,n and Bk,n are as defined by Eqs. (4.1)-(4.3) then the neces-
sary and sufficient condition for Bk,n to be null is that the product Z\,n Yk,n is unit upper
triangular, i.e., that

(4.9a) Ziryi =1,       i=k,k+l, •■■,k + n— 1,

(4.9b) zYyj = 0,       k < j < i < k + n - 1.
Proof, (a) Sufficiency. Since both Y*,» and Zk,n are square, the condition that the

product Zt,BYjt,n is unit upper triangular implies that Y*,« is nonsingular. From
(4.3) and (4.9) it may be verified directly that B*,„ y< = 0, i = k, k + 1, • • •,
k -\- n — 1, so that Bk,n Yk,n = 0, and the result follows from the nonsingularity of
Y*,„.

(b) Necessity. Direct expansion of the right-hand side of (4.3) gives, from the
postulated nullity of Bk,n,

(4.10) 0   =   1-  Yk.rNnZln ,
where V„ is some n X n unit upper triangular matrix. Since, from (4.10), Yk,n can-
not be singular, it follows that

and since the inverse of the unit upper triangular matrix V„ is itself unit upper
triangular, the result follows.

Corollary. Bk,s cannot be null for s < n, since then a vector w could always be
found such that ■wTYk¡3 = 0, so that, since

Bk,s = I - Yk,,V.Zl,,       v/TBk,s = wr .
A quasi-Newton method that solves a set of linear equations in a finite number of

steps will be said to be exact, and we now show that the algorithm about to be de-
fined is exact according to this definition. Let Hk be arbitrary but nonsingular and
Xk he arbitrary, and let

(4.11a) p¿ = —Hifi,

(4.11b)       X.-+1 = x¿4- piii,
i = k, k -j- 1, • • •, k 4- r — 1,

(4.11c)        y, = f*+i-f,,
T(4.11d)      Hi+i = H, - H¡yiZ¿T 4- pM¿

where ti is arbitrary but nonzero and the otherwise arbitrary vectors z¿ and qi
satisfy

(4.lie) Zi^y,- = 1 ,       i = k, k + 1, • - •, k -\- r — 1,

(4.11f) ZiTyj = 0,        k<j<i<k + r-l,
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(4.11g) q<Tyi=l,       i = k,k + l, •■-,k + r- 1,
(4.11h) q¿ryy = 0,       k<j<i<k + r-l,

where 1 < r < n.
Theorem 2. If the algorithm defined by Eqs. (4.11) is applied to the linear function

(4.12) f = Ax - b

where A is an n X n matrix and b an nth-order vector then, with Y*,, as defined by
Eq. (4.1),

(AHfc+s - I)Y».. = 0 ,       1 < s < r, 1 < r < n.

Proof. It follows from Eqs. (4.1), (4.3) and (4.11e, f) that

(4.13a) Bi.yYt.y = 0 ,

(4.13b) Bk+j,s-jYk,j = Yk.j,       1 < j < s, 1< s < r ,

(4.13c) Bk+j,t-]Yk+j,t—i = 0 ,

so that, from Eqs. (4.7), (4.11g, h) and (4.13),

(4.14) G¡:,sYk,a = 1,        1 < s < r ,

where the unit matrix is of order s. Thus, from (4.8), (4.13a) and (4.14),

(4.15) Ht+.Y*,, = Pfc./T*,.,        1 < s < r .

Now for the linear system (4.14) it is easy to verify that

(4.16) AP*,,T*., = Y*,.
so that, from (4.15),

(4.17) (AH*.. - I)Y,,S = 0 ,        1 < s < r, 1 < r < n,

and the theorem is proved.
Corollary. Eqs. (4. lie, f, g, h) can be satisfied for r = n only if A is nonsingular

since they imply that Yk.n is nonsingular, and hence, from Eq. (4.17), that

AHk+n = I.

Thus not only is A nonsingular but Hk+n = A-1, and the algorithm is thus exact,
since a further step must lead to the correct solution.

We now consider some existing algorithms in the light of the two theorems. The
only quasi-Newton method for which (4.lie, f, g, h) hold for r = n and all k is the
generalised secant method, [1], [5], [7], [8]. It follows from Theorem 1 that Bk+n is
null for all k, so that (4.8) becomes

Hk+n   —  ~Pk,nTk,,Sjk,„

and this, from (4.14), may be written

(4.18) Hj-+„   =   Pk,nTk,nYk,n , K   >    1   .
Eq. (4.18), which is frequently taken as defining the generalised secant method,

does not specify H„ 1 < i < n, and Barnes [1] suggests a possible way of doing
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this. A minor disadvantage of the method is that every step requires the solution
of a set of linear equations, although this may be overcome at the cost of storing
an additional n X n matrix. A more serious disadvantage is that, without some
modification, it does not appear to work. Although it is an exact method it tends
to be unstable for strongly nonlinear problems, since either Yk,n or Pt,n may be ef-
fectively singular for some k. Then either Hi+„ is not defined, or it becomes singular
giving rise to subsequent convergence problems as discussed in Section 3 above.
Barnes gives a method of overcoming this difficulty but at the cost of complicating
the algorithm.

In Broyden's method [2] for solving nonlinear simultaneous equations the
vectors qir and zY are given by

qY = zY = (pi^Hiy^-ip/Hi.
The method is not exact, although when applied to the linear function (4.12) it can
be shown that

llHTix-A|! < IIH71-AH ,
for the spectral norms of the matrices concerned. Neither is the method stable for
although H» can become singular only after a zero step, it is theoretically possible,
with the choice of U given in [2], that p¡THiyi = 0. This contingency never occurred
when solving the admittedly limited number of problems described in [2] and could
be overcome, if necessary, merely by changing the somewhat permissive criterion for
determining t,.

If q¿r and z,r are given by

(4.19a) q¿r = ivYjiYW,
(4.19b) z/ = (y/Hiy<)-1yirH<)

the algorithm becomes that of Davidon [3] as subsequently modified by Fletcher
and Powell [4]. When this algorithm is applied to a nonlinear system, Eqs. (4.1 If,
h) are not in general satisfied, but if applied to the linear system (4.12) they are
satisfied provided that A is symmetric and each t, is precisely chosen. If, moreover,
A is positive definite the algorithm is completely stable, and this feature, coupled
with the fact that it is exact, makes it very suitable for function minimisation.

In Section 6 below we discuss algorithms where q,r and z<r are chosen in a more
sophisticated manner than (4.19), and it is shown that these algorithms, of which
that of Fletcher and Powell appears as a special case, are also stable and exact.
Since they involve an arbitrary parameter, it is hoped that a suitable choice of this
would lead to an improved algorithm for function minimisation.

5. Linear Systems with Symmetric Matrices. Although of the methods discussed
here the generalised secant method is the only one that is exact for a general linear
system it is possible, if the matrix concerned is symmetric, to construct a number
of exact methods. In these the vectors q, and z, are not chosen specifically to satisfy
Eqs. (4.1 If, h) as they are in the secant method but are chosen in such a way that
these equations are satisfied automatically when the algorithm is applied to a linear
system having a symmetric matrix. The algorithms are thus exact but not neces-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



376 C.   G.   BR0YDEN

sarily stable, and it is seen in Section 6 below that stability is to be associated with
the positive-definiteness of the matrix concerned or, when the algorithm is used to
minimise some nonquadratic function, with the convexity of this function. In this
section we derive some further properties of the general algorithm (4.11) when ap-
plied to a linear system with symmetric matrix as a preliminary to the discussion
of the particular algorithms in the following section. In order to simplify the nota-
tion k is subsequently assumed to be unity and those matrices, e.g. Y*,„ requiring
a double subscript are written with the first subscript, which is always unity,
omitted, i.e., Ys.

Theorem 3. If the algorithm defined by Eqs. (4.11) is applied to the linear function

(5.1) f = Ax - b ,

where A is symmetric, then

tiVYjj = tjPjTji

for 1 < i < r and all j.
Proof. From Theorem 2 and the postulated symmetry of A it follows that

Yf(HlnA - I)v = 0 ,        l<s<r,
for any arbitrary vector v. Putting v = p^ then gives, since

Ap,i, = y, for all j,

(5.2) Yf (Hlny, - pA) = 0 ,        1 < s < r ,
and this, from (4.15), becomes

TJ>,*yy = YYvfj,       1 <s<r,
proving the theorem.

Since this result is true for all j it is true for j = s -\- 1, and with this value of j
transposition of the last equation gives

(5.3) yf+iPsTs = i,+ipf+iY, ,        1 < s < r .
Theorem 4. // the algorithm defined by (4.11) is applied to the linear function

(5.1) and both A and Hs+i are symmetric, 1 < s < r, then

pi+2y; = (««+1 4- /3s+i¿s+i)psr+iy; ,       1 < j < s ,

where

as+i = 1 — ¿s+i(l 4- qs+ifs+i)

and

ßs+l   =   Zs+ifs+l .

Proof. From Eqs. (1.3), (2.6), (2.7) and (2.11) it follows that

(5.4) ps+2 = ps+ias+i 4- Hs+iys+i/3s+i .

Thus, from (5.4) and the postulated symmetry of H,+i,

Ps+2YS = as+ips+iYs 4" /3s+iys+iHs+iYs
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and this, from (4.15) and (5.3), becomes

ps+2Ys = (a,+i -f- /3s+i¿s+i)ps+iYs

proving the theorem.
Corollary. //p^+iym = 0, where 1 < m < r — 1, and Hj+i is symmetric for

j = m, m 4- 1, ■ • -, r — 1, ¿/ien p;+2ym = 0, j = m, m + 1, •••,»■— 1.
Proof. Repeated application of Theorem 4 with s = m, m -\- 1, ■ ■ ■, r — 1, and

j = m gives the result directly.
Theorem 5. // the algorithm defined by (4.11) is applied to the linear function

(5.1), where A is symmetric and nonsingular, and moreover Hs+i is symmetric and
pi+iys = 0/or s = 1,2, • • • ,r — 1, then

(5.5a) p¿ryy = 0 ,

(5.5b) Yi^r+iYj = 0,
1 < i < r, 1 < J < r, i 9e ] .

(5.5c) jYA-tjj = 0 ,

(5.5d) P¿rAp3 = 0 ,

Proof. From the corollary to Theorem 4 it follows that

TßYjj = 0 ,       1 < j < i < r ,

and (5.5a) follows by applying Theorem 3 to this result. Now Eq. (5.5a) may be
written

where Dr is an rth-order diagonal matrix, and from (4.15) this becomes

(5.6) YrrHr+iYr = TrDr.

Since the product of two diagonal matrices is itself diagonal, this is equivalent to
(5.5b). Now Theorem 2 gives

Hr+1Yr = A-X

and this, with (5.6), gives

(5.7) Y/A-^r = TrDr,

establishing (5.5c). Now no it- is permitted to be zero, so that Tr cannot be singular
and Eqs. (4.16) and (5.7) thus yield

establishing (5.5d) and the theorem.

6. Algorithms for Function Minimisation. If the elements of the vector f are the
first partial derivatives of the scalar function Fix) and if they are differentiable, the
Jacobian matrix is symmetric. If F is in addition a quadratic function of x, then f is
given by

f = Ax - b

where A is symmetric and constant, and moreover if F is strictly convex, Aisposi-
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tive definite. The exact methods then will, provided that they are stable, minimise
a quadratic function in a finite number of steps. We examine now two further ways
of choosing q¿ and zt and show in each case that the algorithm obtained is exact
provided that A is symmetric. We further show that the second algorithm is stable.

Algorithm 1.

(6.1) qf = zf = (jYKiJi - ta>rryi)-1(yYB.i - tiVf)
and ti is arbitrary.

Algorithm 2.

(6.2a) q? = a,?? - ßiyfK,,

(6.2b) ZiT = yiyrH.i + ßitipf ,

where

(6.2c) a{ = (l + ßgm&t^/pYyi,
(6.2d) y i = (1 - ßitiV/ry/)/yYa.iyi,

ßi is arbitrary, ti is chosen to minimise F and Hi is symmetric.
Theorem 6. Algorithm 1 is exact if A is symmetric and nonsingular.
Proof. The proof is by induction. Assume that

(6.3a) qiTyi = z/y,- = 1 ,        1 < i < r ,

(6.3b) q.^y, = zfy¡ = 0 ,        1 < j < i < r .

It then follows from (5.2) with s = r and j = r + 1 that

(6.4) (yrr+iHr+1 - tr+iVÏ+i)Yr = 0

so that, if qr+i and zr+t are given by (6.1),

qr+iYr = zr+iYr = 0

and (6.3) holds with r replaced by r 4- 1. Now if qi and zx are given by (6.1) they
satisfy (4.lie, g) so that, putting s = r = 1, (4.17) becomes

(AH2 - I)Yl = 0 .

Since A is symmetric and

y i = Apyíy , j >  1 ,
it follows that
(6.5) (y2rH2 - ¿2p2r)yi = 0 ,

So that Eqs. (6.3) are valid for r = 2, and thus for all r, 1 < r < n. The theorem
then follows by appeal to Theorem 2 and its corollary.

Theorem 7. Algorithm 2 is exact if A is symmetric and nonsingular.
Proof. Again the proof is inductive. Let

(6.6a) q,ryi = z¿ryi = 1 ,        1 < i < r ,

(6.6b) qiTyj = zfyj = 0 ,        1 < j < i < r ,
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(6.6c) H¿+1 = HT+i,       í<i<r.
Now tj, 1 < j < r, is chosen specifically to minimise F and since f = grad F this
implies that fy+i, the value of f at the point where F is minimal, is orthogonal to
the step vector p;. Thus

iTj+iV]tj = 0,        l<j<r,
and this becomes, from (2.6), (1.3) and the postulated symmetry of Hy+i,

(6.7) pj+1yy = 0,        1 < j < r .

It then follows from (6.7) and the corollary to Theorem 4 that

(6.8) Pr+iYr = 0
and, since Eq. (6.4) is also valid,

(6.9) yrr+1Hr+1Yr = 0 .

Thus from Eqs. (4.lid), (6.8) and (6.9), if qr+i and zr+i are given by (6.2) then
Eqs. (6.6) are valid with r replaced by r + 1. Since, if qi and zx are given by (6.2)
Eq. (6.5) is also valid, it follows from (6.7) that provided Hi is symmetric, (6.6) is
valid for r = 2 and hence for all r, 1 < r < n. The theorem then follows from
Theorem 2 and its corollary.

Theorem 8. Algorithm 2 is stable when used to minimise a convex function pro-
vided that Hi is positive definite and ßi > 0.

Proof. The only denominators occurring in (6.2) are y/Hiy, and p/y., and it
follows from (4.11a, c) and (6.7) that
(6.10) Piry¿ = Um fi.

Hence it is sufficient for stability that H, is positive definite for all i since in
that case no denominator can become zero and no H¡ can become singular. The
proof is by induction. Assume that Hi is positive definite. Then some real non-
singular matrix L can be found such that

LLr = Hi.

Define now Qi+i by

(6.11) Qi+i = xmi+ix
where x is an arbitrary nonzero vector, and define u, v, w by

u = Lrfi,       v = Lrx ,       w = Lryi,

where neither u, v nor w is null. Then, from (6.10), it follows that

(6.12) p/yi = uru

and hence, from (4.lid), (6.2) and (6.11),

,„„>       n T (Vrw)2 íi(urv)2 ßjtj .    T       T . T        T    N2
(6.13) Qi+i = v v —      T     4-       T      4-   Y   t    (u uv w 4- w wv u) .

w w u u u uw w

Denote now F(x¿ 4- p,-Aí) by Fi + AF. Then, since f = grad F, for Ai sufficiently
small it follows that
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AF ~ f trPiA¿

and since p» = — H¿f ,■ and H, is positive definite by hypothesis AF will be negative,
and F reduced, for a positive At. It is thus always possible to choose í¿ > 0 when
minimising the function during each iteration so that, if ßi > 0, it follows that

(/3¿¿i/uruwrw)(uruvrw 4- wrwvru)2 > 0 .

Thus, if

(6.14) Çi+i>0,       /3, = 0
then, a fortiori, Q¿+i > 0, ßi > 0.
Now

vrv - (vrw)Vwrw > 0

by Cauchy's inequality, equality occurring only if v = wk, where k is an arbitrary
scalar multiplier. Furthermore, since U > 0,

i,(urv)2/uru > 0,

equality occurring only if u and v are orthogonal. Thus if /3¿ = 0, Qi+i = 0 only if
urw = 0. But

urw = firH,yi

and this becomes, from (4.11a), (6.12) and the symmetry of H„

urw = —uru 9^ 0

establishing (6.14). Thus if ßi > 0, Hi+i is positive definite if H, is positive definite,
and since Hi is positive definite by hypothesis, Theorem 8 follows.

The stability of Algorithm 1, about which no theorems are proved, depends on
the choice of i< and if this is chosen to minimise F the algorithm can be unstable.
The algorithm has not been tested experimentally but as its exactness is inde-
pendent of the choice of ¿, it is possible that, if a good criterion for choosing this
parameter could be found, it might prove to be competitive. Neither has Algorithm
2, in its most general form, been extensively tested. If ß{ = 0, however, the algo-
rithm becomes the modified Davidon algorithm [4] and in this form has achieved
considerable success.

Although the Davidon algorithm is theoretically stable, experiments carried out
by the author indicate that this stability depends critically upon the accuracy to
which each successive value of i,- is obtained, and indeed for one problem, solved in
eighteen iterations, U was negative on twelve occasions, indicating some violation
of the conditions on which Theorem 8 is based. The number of iterations required
to obtain the solution also depends on the accuracy of í¿ and for the problem quoted
varied between fourteen and twenty-three, the lower number corresponding to the
least accurate determination of ¿,. This wide variation of behaviour, which makes
it difficult to determine the optimum tolerance to be imposed on <,-, makes com-
parison between different methods very risky and it would appear that a thorough
experimental study of Algorithms 1 and 2 would be in the nature of a major under-
taking.
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