
Quasi-Newton methods for training neural

networks

B. Robitaille, B. Marcos, M. Veillette & G. Payre

Chemical Engineering Department, Universite de

Sherbrooke, Sherbrooke, Quebec, Canada, JlK 2R1

ABSTRACT

The backpropagation algorithm is the most popular procedure to train self-learning

feedforward neural networks. However, the rate of convergence of this algorithm

is slow because the backpropagation algorithm is mainly a steepest descent

method. Several researchers have proposed other approaches to improve the rate

of convergence: conjugate gradient methods, dynamic modification of learning

parameters, full quasi-Newton or Newton methods, stochastic methods, etc.

Quasi-Newton methods were criticized because they require significant

computation time and memory space to perform the update of the hessian matrix.

This paper proposes a modification to the classical approach of the quasi-Newton

method that takes into account the structure of the network. With this modification,

the size of the problem is not proportional to the total number of weights but

depends on the number of neurons of each level. The modified quasi-Newton

method is tested on two examples and is compared to classical approaches. The

numerical results show that this approach represents a clear gain in terms of

computational time without increasing the requirement of memory space.

INTRODUCTION

Self-learning feedforward neural nets require a learning process to map an output

set to an input set. The learning process consists in fixing a set of weights W that

characterizes the connections between neurons, making the link between input

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

324 Artificial Intelligence in Engineering

and output. The backpropagation algorithm as proposed by Rumelhart etal[l]

is the most popular procedure. This is a relatively efficient procedure to estimate

a set of weights and to get a satisfying relationship between input and output, as

long as high precision is not required. However, the converging speed of this

procedure is slow which is not surprising since the backpropagation algorithm is

essentially a steepest descent method; in the optimization domain, theoretical and

numerical works have shown that simple gradient methods have very slow

convergence.

Several accelerating techniques were proposed to speed up the converging

procedure. Fahlman [2], Jacobs [3], Tallenaere [4] proposed to modify

dynamically some parameters such as the learning speed or the momentum; Rigler

et al [5] suggested a scaling of the derivative as a function of successive levels.

Leonard et al [6] improved the backpropagation algorithm with conjugated

gradient techniques to adjust dynamically r| and a with a unidirectional search at

each optimization step. Van Ooyen et al [7] presented modifications in the error

function used to measure the global net performance.

Theoretical and numerical results proved that Quasi-Newton algorithms are

superior to gradient algorithms (Denis et al [8]). For this reason, several

researchers proposed these techniques to train neural nets. Watrous [9] employed

DFP and BFGS methods and compared them with the backpropagation algorithm;

this comparison showed that DFP and BFGS methods need fewer iterations but

each iteration requires the update of the hessian approximation and more

calculation time. Parker [10] derived a formula for the update of the inverse hessian

that suits a parallel implementation. Becker et al [11] and Kollias et al [12]

proposed simple hessian approximations which, however, led to no significant

time reduction in convergence. Because of these limitations, Barnard [13]

proposed a stochastic method and noticed that his method is better than

deterministic methods such as conjugated gradient and variable metrics. Bello

[14] used a nonlinear least squares optimization algorithm enhanced with a

Quasi-Newton algorithm for performing additional iterations of the "global-batch"

optimization problem.

Many authors stated that Quasi-Newton methods are limited to middle-sized

applications because of the computation time and the memory space needed to

perform the update of the hessian approximation. This paper proposes a

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 325

modification to the classical approach of the Quasi-Newton method. It consists

in a new hessian approximation that takes into account the structure of the network.

More specifically, the hessian dimension is not the total number of weights to be

calculated but is, instead, proportional to the number of neurons in each level.

Since it limits the hessian dimension, our approach performs the training phase

of a neural-net without the computation time and the memory space problem. The

paper begins with the presentation of the mathematical formulation used for three

classical approaches: the backpropagation, the steepest gradient and the

Quasi-Newton method. It continues by outlining the hessian approximation and

our two proposed modifications to this approximation. It compares our method

with the classical approaches, applying them to two testing nets. It concludes with

an analysis and discussion of results.

2 FORMULATION

2.1 Notation

The following models are developed for fully connected feedforward neural

networks with a single hidden layer. The purpose of using a single hidden layer

is for notation simplicity and the extension of each model to several layers is

straightforward.

Figure 2.1 Schematic of a feedforward neural network

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

326 Artificial Intelligence in Engineering

The input, hidden and output layers are noted [X,H*O] respectively while the

output training patterns are noted Y. [xM.o] are the total number of neurons in

each layer [X,//,O]. W^ are the weights in level L and/̂ is the activation function

for that level. With one hidden layer, L is equal to (1) or (2). X° and if, the bias

for the corresponding layer, are always equal to one. The neurons //, and O* are

calculated via activation function of the forms:

*»=/'

The training is done by presenting p presentations of input-output vectors

pYp] to the neural network and by minimizing a function of Yand O of the form:

(3)

where Ep is an error function.

2.1.1 Gradient evaluation Let ij and k be the elements of the corresponding

layer [XJ1.O] and /', / be the element of two successive layers. Define an error

function as:

for one presentation />, so that:

£ = l£ (5)

Define

sum,, =

and

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 327

The gradient is then expressed for the final layer by:

p

and for the hidden layer by:

Rewriting the gradients in a compact notation with an iteration index (n) gives

for the gradient associated to one weight and for one presentation:

00)

and for the sum of gradients for one weight:

We define S(n) as the gradient vector whose elements Ŝ (n) are all

(the bold character refers to a vector).

m = -*

i'e [0,x]

m = (/"-I) (h

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

328 Artificial Intelligence in Engineering

2.2 The classical methods

2.2.1 Steepest descent The simplest minimizing technique, when the gradient is

available, is to select a descent direction opposed to the gradient and to apply a

unidirectional search along this direction. This steepest descent optimization

technique is defined by:

-AS(/i) (13)

where A, is a sufficient step for minimizing the function in the descent direction.

It has been shown that there is no advantage in finding the exact minimum on the

search direction at each iteration (Denis el al [8]).

2.2.2 Backpropagation The Backpropagation algorithm proposed by Werbos

[15] and popularized by Rumelhart et al [1] is based on a variation of the

steepest descent technique. There is no unidirectional search used but a fixed

descent step, t|, called learning rate which is added to a fraction of the last

variation, a, called momentum. This algorithm is defined by:

4- oA%(,,-l)

2.2.3 Quasi-Newton method By calculating the second derivative of the

objective function, there is a better understanding of the function topology,

which leads in turn to choosing a more efficient descent direction. Let:

(15)

where the descent direction G is defined by:

G(n) = -[

and where H (n) is the Hessian matrix. The main difficulty with this approach is

that finding the solution of this system at every iteration is very tedious. The

variable metric methods, also called quasi-newton methods, bypass this difficulty

by directly approximating the inverse Hessian matrix, [H(n)]~̂ from the first

derivative, 5 (n). These methods are the most popular unconstrained optimization

techniques and BFGS is the most widely used update method, which calculates

[#(*)]-' by:

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 329

(18)

3 A SIMPLIFIED FORM OF THE HESSIAN MATRIX

Our first approach neglects the second order interactions between weights of

different levels and considers a separate matrix H for each level. The second

approach assumes that only the weights connected to the same neuron have

important second order interaction and it associates a matrix H to every output

and hidden neuron. The major advantage in associating the Hessian matrix to

level or neuron is that it reduces considerably the total size of the matrix to be

calculated.

Figure 3. 1 shows the size of the matrix applied to a typical neural network that

solves the XOR problem for the following configurations: global, by level and by

&E
neuron. For example, the second derivative -̂ -̂ does not need to be calculated

in configuration b and c. For the illustrated network, the matrix H with the global

configuration (a) holds (9)* = 81 elements while the level configuration (b) holds

(6)2 + (3)2 = 45 and the neuron configuration (c) holds (3)* + (3)* + (3)* = 27

elements.

The formulation of the variation of weights as a function of our simplified

approach is very similar to the formulation of Quasi-Ne wton methods. They differ

in the elements selected to form the vector gradient. In particular, for the weight

variation by level, let Ŝ \n) be the vectors whose elements are all the Ŝ \n) of

a single level where:

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

330 Artificial Intelligence in Engineering

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Figure 3.1 Schematic of second order interaction. The gray zones
represent the dimensions of the Hessian matrix for different
configurations: a) global, b) by level and c) by neuron.

and where S^ holds (x+l)h elements and SP holds (h+l)o elements. The weight

variation for each level will then be defined by:

&̂ \n) = UP\n) (20)

with a descent direction for each level defined by:

In the same way, we rewrite the weight variation as a function of neurons. Let

S?jV(n) be the vector whose elements are all the S$(n) connected to the same

neuron and where:

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 331

c(D _ rod) cO> c(D cdh (22)
O - IPl >^2 ' •••>^y" ' •••»^ft J

c(2) __ r<-<2) <-(2) o<2) rK2h (23)
3 — Ipj ,^2 > • • •9*Jj' > • "»^o J

5^ holds (jc+1) elements and Sf holds (A+l) elements. The weight variation is

then defined by:

(24)

4 CASE STUDY

The performance of each of five algorithms is compared through two examples.

The five algorithms are backpropagation (BP), steepest descent (SD),

Quasi-Newton with BFGS update, BFGS-L which is the update proposed as a

function of level in the network and BFGS-N, the update proposed as a function

of neuron. For BP, the values of TI and a are fixed to 0.7 and 0.9 respectively.

For all the other algorithms, A, is evaluated by a unidirectional search method,

which multiplies or divide the steps by two and is bounded by [lxlO"",64]. A

sigmoid function is used as an activation function throughout the algorithms.

Minimization stops when the objective function (equation 4) is smaller than 1x10"*.

Both tests underwent 10 trials according to each of the five methods, in each trial

different random initial weights were used; for each method, the initial weights

used were the same.

The first test is the standard XOR test with 2 input, 2 neurons on the hidden

layer and one output. The training set has four presentations where the input

values, X are 0 or 1 and the output values, Y, are 0. 1 or 0.9.

The second test is the simulation of the reaction dynamics of three CSTR

reactors in series with a second order reaction of the type 2A => 2B The three

input variables are the initial concentrations of reactant A, the temperature of the

reactors and the volume flow rate, while the output variable is the residual

concentration of reactant A at the outlet of the reactors. The network layout is

made of an input layer with three neurons, a hidden layer with ten neurons and an

output layer with one neuron. The three CSTR reactors in series are a highly

non-linear system, particularly regarding temperature, and, for the modeling of

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

332 Artificial Intelligence in Engineering

the reactor dynamics, it is necessary to have a training set of 45 presentations made

up with the combination of three initial concentrations, three volume flow rates

and five reactor temperatures.

5 RESULTS AND DISCUSSION

The comparison is done by considering the number of iterations and the time

required to reach a solution. The number of cases reaching a solution is also

indicated. For BP, the number of iterations is calculated at the end of the

presentation of the entire training set. Table 5.1 presents the results for the XOR

test problem. Cases where the method failed to converge in less than 2000

iterations were excluded from the statistics.

The two proposed methods, BFGS-L and BFGS-N, need much fewer iterations

than the other algorithms. One may find it surprising that these two methods

require less iteration than the standard BFGS algorithm. We have to note, however,

that all the BFGS algorithms programmed here do not apply any correction to the

Hessian matrix when these are non-definite positive, a process that is very time

consuming. Instead, the Hessian matrix is replaced with the identity matrix and

the method is then identical to the SD method for that iteration. For the XOR test

problem, the Hessian matrix of the BFGS method is almost always non-definite

positive, which is translated into a number of iterations very similar to the SD

method. The BP method is last in terms of iterations required but comes second

in terms of time and it reached a solution in every case. The BFGS-N method is

the fastest of all and reached a solution in seven cases.

Table 5.2 presents the results for the three CSTR reactor problem. For this

test, the maximum number of iterations to reach a solution was set at 10*. This

large number of iterations is comparable to the number used by Bello [14]. The

SD and BFGS methods were incapable of meeting the stopping criterion in that

number of iterations and the values of the error function at the end of calculations

were around 1x10"**. The comparison between BP and BFGS-N shows that

BFGS-N requires one tenth of the iterations and is twice as fast, the number of

converged solutions being similar for both methods.

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering

Table 5.1 Result of the XOR test problem

333

XOR

BP

SD

BFGS

BFGS-L

BFGS-N

Iterations

Ave.

305

245

244

66

32

Std.Dev.

59.2

611

62.1

26.6

8.1

Min.

237

153

152

47

18

Max.

409

319

318

105

40

Time

Ave.

6.34

10.61

15.54

9.07

4.59

Std.Dev.

1.05

2.62

186

186

.99

Conv.

710

10

9

9

4

7

Table 5.2 Result of the modeling of the three CSTR reactors.

CSTR

BP

SD

BFGS

BFGS-L

BFGS-N

Iterations

Ave.

206974

-

-

75827

24211

Std.Dev.

281787

-

-

34501

20459

Min.

61765

-

-

35193

6991

Max.

948382

-

-

127064

63212

Time

Ave.

2188

-

-

3875

1092

Std.Dev.

3397

-

-

1823

910

Conv.

710

9

0

0

8

8

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

334 Artificial Intelligence in Engineering

CONCLUSION

Two modifications to the classical approach of the Quasi-Newton method have

been presented. It was shown that the hypotheses supporting those methods are

relevant and desirable in terms of convergence properties. The BFGS-N method,

the proposed update as a function of neurons, is a very good alternative to the

standard backpropagation algorithm. It represents a clear gain in terms of

computational time without a major increase in memory space required, making

the approach suitable for large scale problems. There is also no need to adjust

parameters, as in the backpropagation algorithm, which makes our algorithm very

easy to use.

ACKNOWLEDGMENT

This research project was partially funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

REFERENCES

1. Rumelhart, D.E., Hinton, G.E., Williams, R.J. 'Learning Internal
Representation by Error Propagation' chapitre 8, Parallel Distributed Processing:
Explorations in the Micro structure of Cognition, Rumelhart, D.E. and
McClelland, J.L. editor, MIT Press, Cambridge, MA, 1986

2. Fahlman, S.E. 'An Empirical Study of Learning Speed in Back-Propagation
Networks' internal report: CMU-CS-88-162, Carnegie Mellon University,
Pittsburgh, Juin 1988

3. Jacob, R. A. 'Increased rates of convergences through learning rate adaptation'
Neural Networks, Vol. 1, 29 p., 1988

4. Tallaneare, T. 'SuperSAB: Fast Adaptive backpropagation with good scaling
properties' Neural Network, Vol. 3, pp. 561-573, 1990

5. Rigler, A.K., Irvine, J.M., Vogl, K. 'Rescalins of variables in backpropagation
learning' Neural Networks, Vol. 4, pp. 225-229, 1991

6. Leonard, J. A., Kramer. M. A. 'Improvement of the BackPropagation algorithm
for training neural networks' Computer chem. Engng., Vol. 14, No.3, pp. 337-341,
1990

7. Van Ooyen, A., Nienhuis, B. 'Improving the Convergence of the
Back-Propagation Algorithm' Neural Networks, Vol. 5, pp.465-471, 1992

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 335

8. Dennis, I.E., Schnabel, R.B. Numerical Methods for Unconstrained
Optimisation and Nonlinear Equations Prentice-Hall, 1983

9. Waltrous, R.L. 'Learning Algorithms for Connectionist Networks: Applied
Gradient Methods of Nonlinear Optimization' pp \\-6\9-621JEEEFirslnt. Conf.
Neural Networks, San Diego, 1987

10. Parker, D.B. 'Optimal algorithms for adaptive networks: second order back
propagation, second order direct propagation, and second order Hebbian learning'
pp 11-593-600, IEEE Firs Int. Conf. Neural Networks, San Diego, 1987

11. Becker, S., Le Cun, Y. 'Improving the convergence of back-propagation
learning with second order methods' (D. Touretzky, G. Hinton and T. Sejnowski,
Eds), pp. 29-37, Proc. Connectionist Model summer School, Morgan-Kaufman,
San Mateo, 1988

12. Kollias, S., Anastassiou, D. 'An adaptive least squares algorithm for the
efficient training of artificial neural networks' IEEE Transaction Circuits Systems,
Vol. 36, pp. 1092-1101, 1989

13. Barnard, E. 'Optimization for Training Neural Nets' IEEE Transaction on
Neural Networks, Vol. 3, No. 2, pp. 232-240, 1992

14. Bello, M.G. 'Enhanced Training Algorithms, and Integrated
Training/Architecture Selection for Multilayer Perceptron Networks' IEEE
Transaction on Neural Networks, Vol. 3, No. 6, pp. 864-875, 1992

15. Werbos, PJ. 'Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences', applied mathematic thesis. Harvard University, 1974

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

