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Abstract:

This paper is an attempt to motivate and justify quasi-Newton
methods as useful modifications of Newton's method for general and
gradient nonlinear systems of equations. References are given to
ample numerical justification; here we give an overview of many of
the important theoretical results and eaéh is accompanied by

sufficient discussion to_make the results and hence the methods

plausible.
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1.

INTRODUCTION

Nonlinear problems in finite dimensions are generally solved
by iteration. Davidon (1959), for the minimization problem, and
Broyden (1965), for systems of equations, introduced new methods
which although iterative in nature, were quite unlike any others‘

in use at the time. These papers together with the very important

| modification and clarification of Davidon's work by Fletcher and

Powell (1963) have sparked a large amount of research in the late
sixties and early seventies. This work has led to a new class of
algorithms whicg have‘been called by the names gquasi-Newton,
variable metric, vafianée, secant, update, or modification methods.
Whatever one calls them (we will use quasi-Newton), they have
proved themselves in dealing with practical problems of the two
types mentioned; that is, systems of n equations in n unknowns,
and the unconstrained minimization of functionals.

A predictable consequence of this research is that there has
been a proliferation of quasi-Newton methods for unconstrained
minimization. Moreover, the derivation and relationship between
these methods has usually been obscured by appealing to certain
idealized situations such as exact line searches and quadratic
functionals. This has not happened in nonlinear equations since
the only quasi-Newton method that has been seriously used is the

one proposed by Broyden (1965).



In this paper we show that it is possible to derive all of
the known practical quasi-Newton methods from very natural con-
siderations and in such a way that the relationship between these
methods is clear. In addition, this paper contains a survey of
the £heoretical results which vield insight into the behavior of
quasi-Newton methods, and in order to motivate these methods,
there is also some background material in Sections 2 and 6. 1In
either case, we have only given those proofs which are either new,
give insight, or are simpler than those previously published, but
references are always given.

In Sections 4 and 7 we derive the various quasi-Newton updates.
This is done by taking the point'of view that these updates are
methods for generating approximations to derivatives -- Jacobians
in nonlinear eqﬁations and Hessians in unconstrained minimization.
This point of view suggests - how to use quasi-Newton methods in
other areas such as least sqﬁares and constrained optimization.

The theoretical results are contained in Sections 5 and 8.
These results show, in particular, that there are four quasi-Newton
updates which are globally and superlinearly convergent for linear
problems (even in the absence of orthogonality assumptions or |
exact line searches), and locally and superlinearly convergent for
‘nonlinear problems. These updates are Broyden's 1965 update for
nonlinear egquations, Powell's symmetric form of Broyden's update,
the Davidon-Fletcher-Powell update, and the Broyden-Fletcher-
Goldfarb-Shanno update. The theoretical results quoted tend to
explain why these four updates are the ones most used in practical

work.
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In addition to the above material there are some rate of
convergence results in Section 3. In particular, we emphasize
superlinear convergence and its geometric interpretation.

We use R® to denote n-dimensional real Euclidean space with
the usual inner product <x,y> = xTy‘ while L(R®) is the linear
space of all real matrices of order n . Moreover, |]|+|| stands
for either the 2, vector norm A=l = <x,x>l/2, or for any
matrix norm which is consistent (or subordinate) to the 22 vector
norm in the sense that | |ax|] < ||a|| []|x]| for each x in R"
and A in L(R®). 1In particular, the 22 operator norm and the Fro-
benius norm are consistent with the 2é vector norm. For future

reference we note that the Frobenius norm can be computed by

n
(1,1) I 1a] |E2,_= z ||Avi| ]2 = trace (ATA)

i=1
where {Vl,...,vn} is any orthonormal set in R" , and that for

any pair A,B in L(R™),
(1.2) |128] |p < min{[{a[],][B]]p, [IA[]_l[BI];}

In addition to the above matrix norms, we also make use of the

weighted norms
(1.3) 1811y, = Ihanll, , 1Al o = |||,

where M 1is a nonsingular symmetric matrix in L(R"). These norms
do not satisfy the sub-multiplicative property |[aB||< ||al|| ||B]]
which is usually satisfied by matrix norms, but are very useful
because they can be used to measure the relative error of approxi-

mations to symmetric and positive definite matrices. To be



specific, suppose that A is symmetric and positive definite, and

1/2 1

let A~ be the symmetric positive definite square root of a ",

Since

IIB—AH < HA-l/z(B_A)A-l/zll
[all —

!
i
|

for either the 22 operator norm or the Frobemius norm,it is

. = a=L1/2 .
clear that if M = A then l]B—AIIM’Z and IIB-AIlM,F
measure the relative error of B as an approximation to A in
the 12 and Frobenius norms;respectively.

2. VARIATIONS ON NEWTON'S METHOD FOR NONLINEAR EQUATIONS

Let F:R® + R® be a mapping with domain and range in rR®
and consider the problem of finding a solution to the system of

n equations in n unknowns given by
fi(xl,...,xn) =0 , 1 < i<n,

where fl,...,fn are the component functions of F .

The best known method for attacking this problem is Newton's
method, but sometimes it is modified so as to improve its compu-
tational efficiency. In this section we examine some of these
variations and their corresponding advantages and disadvantages.

This will help to motivate the introduction of gquasi-Newton methods
as variations of Newton's method.

For the purpose of analyzing the algorithms for solving F(x) = 0,

the mapping F 1is assumed to have the following properties.
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(a) The mapping F is continuously differentiable in an
open convex set D .
(2.1)

(b) There is an x* in D such that F(x*) = 0 and

P'(x*) is nonsingular.

The notation F'(x) denotes the Jacobian matrix (ajfi(x))
evaluated at x so that (2.1) guarantees that x* is a locally
unique solution to the equations F(x) = 0.

In addition to (2.1) sometimes we will need the stronger
requirement that F' satisfies a Lipschitz condiﬁion at x* :

There is a constant «k such that

(2.2) [ |FP*(x) = P'(x*)|] < x||x-x*]|, =x e D.

Note that if D° is sufficiently small then (2.2) is satisfied if,
for example, F is twice differentiable at x* .

Newton's method for nonlinear equations can be derived by
assuming that we have an approximation X to x* and that in a

neighborhood of X the linear mapping
L(x) = F(x ) + F' (%) (x-%,)

is a good approximation to F . If this is the case, then a
presumably better épproximation Xt to x* can be obtained by
solving the linear system Lk(x) = 0 . Thus Newton's method proceeds
from an initial approximation x to x* , and attempts to

0
successively improve X by the iteration

1

Xepp = Xy - F'(xk)'_F(xk) , k=0,1,...



Actually, this is the form of Newton's method which is convenient
for analysis. The computational form consists of carrying out the
following steps for k = 0,1,...,m where m is the maximum number
of iterations allowed.

(a) Compute F(xk) and if Xy is acceptable, stop.
Otherwise, compute F'(xk).

(2.3)
(b) Solve the. linear system E'(xk)sk = -F(xk) for s and

k
set Xeel = % + sk;

The advantages of this algorithm are summarized in the following

well-known result.

Theorem 2.1: Let F:R® + R® satisfy assumptions (2.1). Then

there is an open set S which contains x* such that for any
X, € S the Newton iterates are well-defined, remain in S and
converge to x*. Moreover, there is a sequence {ak} which con-

verges to zero and with

(2.4) ka+1 - x*|| <o llx = x*[| , k=0,...

If, in addition, F satisfies (2.2) then there is a constant B8

such that

(2.5) | 1%y = ¥*1] < BlI% - x*||1%, k=o0,...

For a proof of this result see, for example, Ortega and
Rheinboldt (1970), page 312. However, in Section 5 we will show
that if F satisfies (2.2) then the convergence of Newton's
method follows from a much more general result. Moreover, (2.4)

and (2.5) will follow from results in Sectionb3.
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Two advantages of Newton's method are expressed by Theorem 2.1.
The first one is the existence of a domain of attraction S for
Newton's method. The existence of this domain of attraction im-
plies that if the Newton iterates ever land in S , then they will
remain in S and eventually converge to x* . This insures some
measure of stability for the iteration.

The other advantage is expressed by (2.4) and is known as
superlinear convergence. Moreover, if (2;2) holds then Theorem 2.1
shows that we obtain (at least) second order or quadratic con-

vergence; that is, (2.5) holds. However, the example

l l+a

f(x)=x + |x r @ € (0,1)

shows that in general (2.5) does not hold. If B8||x*|| 4is not
foo large, then an informal interpretation of (2.5) is that even-
tually each iteration doubles the number of significant digits in
X ‘as an approximation to x*.

The best known disadvantage of Newton's method is that a par-
ticular problem may require a very good initial approximation to
x* if the iteration is to converge. This is due to the fact that
the set S in Theorem 2.1 can be very small. To overcome this
disadvantagé, special techniques (e.g. Powell's (1970a)] are needed.

On the other hand, for many problems the most important dis-
advantage of Newton's method is the requirement that F'(xk) be
determined for each k . This involves the evaluation of n2
scalar functions at each step and for most functions this is a

very costly operation. It is usually taken to be equivalent to

n evaluations of F , but the exact cost varies from problem to



problem. If the Jacobian is relatively easy to obtain,'then
Newton's method is very attractive. If obtaining the Jacobian
is relatively expensive, then this problem can be circumvented in
some cases by using a finite difference approximation to ;he
Jacobian matrix.

For example, F%xk) could be replaced in (2.3) by the compu-

tation of A(Xk’hk) € L(R®) where
(2.6) [A(x'h)]i,j = [£;(x + ”jej) - fi(X)]/nj '

and h = (nl,...,nn) is some suitably chosen vector. Of course,

we now solve the system

(2.7) A(xk.hk)sk = -F(xk)

for Sy -
There is a significant amount of theoretical and computational
support for this approach. For example, if F satisfies assump-
Fions (2.1) and (2.2), and at each iteration ||hk1| < Y[lF(xk)||
for some constant Yy then all the conclusions of Theorem 2.1 also
hold for the finite-difference Newton's method. However the expense
of computing n2 scalar functions still remains. A popular tech-
nique for trying to reduce the overall cﬁmputational effort of
the Newton or the finite-difference Newton's method is to hold the
Jacobian fixed for a given number of iterations. This is par;
ticularly useful when the Jacobian is not changing very rapidly.

However, it is always difficult to decide how long the Jacobian

should be held fixed. Brent (1973) has shown that although this
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technique decreases the rate of convergence, it can increase a
certain measure of efficiency.

Finally, note that all the modifications of Newton's method
mentioned in this section require the solution of a system of
linear equations and therefore O(n3)' arithmetic operations per
iteration. For some problems, the solution of these linear
systems is the most expensive part of the iteration, and in these
cases one should consider holding the Jacobian matrix fixed for a
given number of iterations since in each such iteration this

expense would be reduced to O(nz).

3. RATES OF CONVERGENCE

It is very important to understand something about the rate of
convergence of different.algorithms, since to a certain extent the
rate of convergence of a method is as important as the fact that
it converges; if it converges very slowly we may never be able to
see it converge. Therefore, in this section we will outline certain
results which give insight into rates of convergence. In particular
we emphasize the notion of superlinear convergence and its geo-
metrical interpretation.

A reasonable algorithm should at least be linearly convergent
in the sense that if {xk} is generated by the algorithm and
{x,} converges to x* , then for some norm |l+l|] there is an

o € (0,1) and k0 > 0 such that

% = x*[| 2 allx = x*|| , k 2k

k+1 0 °

This guarantees that eventually the error will be decreased by

the factor o < 1.
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To be competitive an algorithm should be superlinearly convergent
in the sense that (2.4) holds for some sequence {ak} which
converges to zero. As noted by Dennis and Moré (1974) one of the
properties of superlinearly convergent methods is that

(3.1) kiig | 1% 01 - xkll/llxk - x*|| =1

provided, of course, that X # x* for k > 0. The importance
of (3.1) stems from the fact that it provides a very convenient
stopping criterion. That (3.1) holds is quite easy to prove and

follows from (2.4) and the fact that

| IF %y = x5l = T = x*[ ] | < [ lxq = x*]

The following result of Dennis and Moré (1974) shows precisely

when an iteration is superlinearly convergent.

Theorem 3.1: Let F:R® + R" satisfy assumptions (2.1), and let

{Bk} in L(Rn) be a sequence of nonsingular matrices. Suppose

that for some X, in D the sequence

- L =
(3.2) Xl T X Bk F(xk) ' k=0,1,...,

remains in D , X, # x* for k > 0 , and converges to x* .

Then {xk} converges superlinearly to =x* if and only if

(3.3 1im 1B = FTON10 - xJ ]
K-+
ey = %l
Clearly, if {Bk} converges to F'(x*) then (3.3) holds and
thus Theorem 3.1 explains why Newton's method and the finite-dif-
ference Newton's method with Ilhkl[ = O(J}F(xk)}[ converges super-

linearly. However, (3.3)

TR R PN A T R RV T T T e
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only requires that {Bk} converge to F'(x*) along the directions
= X1 T X of the iterative method. As pointed out in Sections
5 and 8, this is the case for certain quasi-Newton methods, and
yet for these methods {Bk} does not, in general, converge to F'(x*).
An equivalént but more geometric formulation of (3.3) is that
it requires Sp = X1 T ¥ in the iterative method to astptotically
N

approach the Newton correction S = -F! (xk) F(x in both length

and direction. To see this note that since F(x,) = -B,.s, ,
*x x5k

-1

-— ] - ] -1 ' -
S, = S = Sy + F (xk) F(xk) =F (xk) [F (xk) Bk]sk ’

and thus (3.3) is equivalent with

N
- |lsk = Sy 'I

(3.4) lim =0,

kbo |5, ||

Equation (3.4) shows that the relative error of S, as an approxi-
mation to skN approaches zero, and it is fairly easy to prove that

approach s N in both

k k
length and direction. For future reference, we state this formally.

this is equivalent to requiring that s

T

Lemma 3.2: Let u,v Dbelong to R® with <u,v> # 0 and let
a € (0,1). If || u-v ||< al|u|| then <u,v> is positive and
Ilvl‘ <u,v> 2 2

(3.9 TIErT S e bt e <

Conversely, if <u,v> 1is positive and (3.5) holds then

| [u-v]||
Proof: Assume first that ||u-v|| < a||u}|. Then
Lall = 1vlly < Lluvl] <

| [af | | ful |
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and thus the first part of (3.5) holds. For the second part let

w = <u,v>/(||u]|] ||v]]) and note that
u=v[|2 = [lul1% = 2]1a]| [Ivlle + |Iv[]1% > |1u]]2@ - ?).

This proves (3.5). Now note that if w < 0 then the equality above
shows that ||u-v|| > [|u||. Hence, & < 1 implies that <u,v>

is positive. For the converse note that
2 _ 2, . - 2 2
[Hu=v| % = ([ |a][=]]v]])“+2(1=w) | |ua]| Hv]] £ a||ul|®[1+2(1+a)]

and since o < 1, it certainly follows that |[|u-v|| < 3a||u]|

as desired.

Lemma 3.2 shows that (3.4) is equivalent to

N
s

S
. . v k
lim T T = 1lim <%T——rr
k> sk k>0 sk

N

s
’ ok > =1,
| Is N | l

k
and thus an iterative method is superlinearly convergent if and
only if its directions asymptotically approach the Newton direction
in both length and direction.

We would also like to explore second order convergence and for

this we need the following estimate.

Lemma 3.3: Let F:R® » R" satisfy assumptions (2.1) and (2.2).

Then

(3.6) | |F(y) = F(u) = F'(x*)(y=u) || < kmax{|]|v=x*||,|]|u-x*|]|}]||v=u]]

for all v and u in D .

P IR Bant RS T T
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The proof of this result follows immediately from Theorem 3.2.
of Ortega and Rheinboldt (1970); note that the assumption F(x*) =
is not necessary for Lemma 3.3 nor:is the invertibility cf F'(x*).

Using Lemma 3.3 it is not difficult to modify the proof of
Theorem 3.1 as given by Denni8 and Moré (1974) and show that if
the assumptions of Theorem 3.1 are satisfied and (2.2) holds then

there is a constant “1 such that

||xk+l-X*l|iulllxk-X*l‘p ’ k=20,1,...

for some p € (1,2] if and only if there is a constant uz such that

1B, = Fr(x®) 1 (xyy = )] 2 il - 5 1P, k=0,1,...

However, we have not found any use for this result. The following

well-known result is much easier to prove and is apparently just

as useful.

n

Theorem 3.4: Let F:R" + R satisfy assumptions (2.1l) and (2.2),

and let {Bk} be a sequence of nonsingular matrices. Assume that
for some Xq in D the sequence (3.2) remains in D and con-

verges to x* ., If
3.7 B = Frx) |l <nllx - x*[, x=0,1,...,
then {xk} converges quadratically to x* .

Proof: Since {xk} converges to x* , inequality (3.7) and the
Banach Lemma imply that there is a constant Y such that

IIBk-lll < Y for k sufficiently large. Since

xk+l-x* = -Bil{}F(xk)-F(x*)-F'(x*)(xk-x*)]+(F'(x*)—Bk)(xk-x*)} '

5
0
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Lemma 3.3 together with (3.7) show that
ey = x*11 < vlcl |, = x*[|? e, = x* |
X, ~ X S viellx - x*[]° + n||xk x*| [} ,
and it follows that {xk} converges quadratically to x* .

The most natural way to guarantee that (3.7) holds is to

require that

(3.8) ||13k - F'(x) || 2 anF(xk)ll r k>0
If this is the case then
IIBk - F'(x*) ]| i,nlllF(xk)II + Kllxk - x*|| ,
and Lemma 3.3 implies that (3.7) holds. Note that Newton's method

and the finite-difference Newton's method witn‘f[hkll = o([[F(xk)[[)
satisfy (3.8). '

4. BROYDEN'S METHOD

In Section 2 we saw that two disadvantages of'Newton'é method
were its need for n2 + n scalar function evaluations and its use
of O(n3) arithmetic operations at each iteration. We will now
derive Broyden's method (1965) and show how it effects an order
of magnitude reduction in each of these expenses. The price paid
is a reduction from second order to superlinear convergence.

The idea behind Broyden's’l965 proposal is that it is a
method for approximating Jacobian matrices. As pointed out in
Section 2, one of the major expenses of Newton's method is the
calculation of F'(xk) ; let us now show how Broyden derived an

approximation‘ Bk to F'(xk) such that B can be obtained

k+1

from Bk in O(nz) arithmetic operations per iteration and

R NI 43 £ AN 4 TR T Ry TN
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evaluating F at only Xy and Xl °

To derive his method, assume that F:R" + R is continuously
differentiable in an open convex set D and that for given x in
D and s # 0 , the vector X = x + 8 belongs to D . You should
associate x with % and x with Xe41 ¢ SO that what.we want
is a good approximation to P (X).

Since F' is continuous at X , given € > 0 there is a
§ > 0 such that

[IF(x) = F(R) - F* (R (x - D) |] < el|x - %|]

provided ||x - x|| < § . It follows that

F(x) = F(X)+ F' (%) (x - %)

the degree of approximation increasing as ||x - X|| decreases.
Hence, if B is to denote our approximation to F'(X), it seems

reasonable to require that B satisfy the equation
F(x = F(x) + B(x - x) .
This is generally written

(4.1) Bs =y = F(x) - F(x)

where s = x - x.

In the case of n = 1 , equation (4.1) completely determines
B and the secant method would result from using this approximate
derivative in a Newton-like iteration. For n > 1 , we can still
argue that the only new information about F has been gained in
the direction determined by s . Now suppose we had aﬁ approximation

B to F'(x) . Broyden reasoned that there really is no justification
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for having B differ from B on the orthogonal complement of s.
This can be expressed as the requirement
(4.2) Bz = Bz if <z,s> = 0.
Clearly (4.1) and (4.2} uniquely determine B from B and in fact

- (y -‘Bs)sT
(4.3) . B=B + <s,s8> .

Equation (4.1) is central to the development of quasi-Newton

methods, and therefore it has often been called the quasi=Newton

equation. In fact, it also plays a role in a second derivation of
Broyden's update.

The second derivation again starts from the assumption that
any matrix that satisfies the quasi-Newton equation (4.1) is a
good candidate gor B . However, now it is argued that out of
all the matrices that satisfy the'quasi-Newton equation, B should
be the closest to B . The next result establishes that this
matrix is again given by (4.3) if “closést" is measured by the

Frobenius norm.

Theorem 4.1l: Given B € L(Rnl, y € R? and some nonzero s € R® ,

define B by (4.3). Then B is the unique solution to the problem
A
min{||B - B||g: Bs = y}.

Proof: To show that B is a solution note that if y = Bs then

T
SS I l <
<g§,s>"'F -~

1B - Bllp=IIB -5 |18 - Bl

F

That B is the unique solution follows from the fact that the

A
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mapping £:L(R®) + R defined by £(A) |18 - A||F is strictly

o>

convex in L(R®) and that the set of € L(R®) such that Bs =
is convex. .

By now it should be clear how (4,3) can be used in an itera-
tive method. For example, in its most basic form Broyden's method

is defined by:

. -1 o
(4.4) Xep1 = ¥ " Bk F(xk) , k=20,1,...

where the matrices Bk € L(R®) are generated by
T

(y, - B, s,)s
(4.5) B = B, + k k“k' "k k=20,1,...
k+1 k S ree ’

_ <SprSk

with

(4.6) Yy = F&xk+l) - F(xk), and S = Xpp1 T Xy oo

As it stands, it is clear that given Xy and B0 , Broyden's
method can be carried out with n scalar function evaluations per
iteration. However, (4.4) and (4.5) seem to indicate that the
solution of the linear system Bksk = -F(xk) is reguired. One

way to overcome this difficulty requires the following result

which is due to Sherman and Morrison (1948).

Lemma 4.2: Let u,v € R and assume that A € L(Rn) is non-

singular. Then A + uvT is nonsingular if and only if

1

o=1+<v,Au> #£0. If o # 0 then

1 -1

(4.7) A %*ul)"l=a Tp-1

- (l/c)A-luv A

Proof: That A + uv?  is nonsingular if and only if o # 0

4
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follows from Lemma 4.4 which will be proved later. It is easy to

verify (4.7) because if the matrix on the right hand side is

T

multiplied by A + uv then the result is the identity matrix.

-1

From Lemma 4.2 it follows that if Hk = Bk , then Hk+l =

Bk:i is defined by

T
(s, - H, Y,)s Hk
= k k*k’'“k
(4.8) Hk+1 B + <sk’HkYk>

provided <Sk’Hkyk> # 0. Therefore, Broyden's method can also be

implemented as

Xeel = % T BFO)
where {Hk} is generated by (4.8), and in this form Broyden's

method only requires n scalar function evaluations .and O(nz)

arithmetic operations per iteration.

PR T
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It is also possible to implement (4.5) and use only 0(n2)
arithmetic operations per iteration. For example, Gill and Murray
(1972) describe a method by which if Bk =.QkRk where Qk is
orthogonal and Rk is upper triangular, then the corresponding
factorization of B, , can be obtained in O(nz) operations. Of
course, if Bk = QkRk is given-then the solution of the linear
system Bksk = -F(xk) only involves O(nz) operations. One reason
why this approach would be preferable over (4.8) is because in
(4.5) there are no matrix-vector multiplications; the term Bksk
is just -F(xk) . Another reason is that the analysis of Section 5
shows that (4.5) is more stable.

Note that we don't need to choose 'sk = X1 T X in either

(4.5) or (4.8). It is entirely reasonable to choose s to be

k

any vector such that F 1is defined at xk+sk and then set
Yy = F(xk+sk) - F(xk). For example, if we set S, = neJ for some
scalar n , then (4.5) shows that Bk+l only differs from Bk

in the j=th column, and that this column is now
[F(x+nel) - F(x)1/n

Of course, if Sk # Xy T X then each iteration requires two
function evaluations instead of one.

As theoretical justification for his method, Broyden only of-
fered the fact that for affine functions it is norm-reducing with
respect to the 22 operator norm. The following result shows

that a slightly stronger result holds in the Frobenius norm.

Theorem 4.3: Let A€ L(Rn) satisfy y = As for some nonzero
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s € R® and y € R®. Moreover, given B € L(R™) define B by (4.3).

Then
1B - ajjp < |[B = Al[

with equality if and only if y = Bs .
Proof: Let {s/||s|]| . Vz,...,Vn} be an orthonormal set. Since

(B - A)s =0,

[IE - A[I; = ;—[[g - A)V&llz .
i=2 .

Moreover, Evi = Bvi for 22 ¢ i < n and therefore,
= 12 2 2
[1B = Al|g = [|B - Al[g = ([|{B = A)s||/]]s]|)" .

The result follows from this relationship.
If {xk} is any sequence, and Sy rYy are defined by (4.6),
then Y = Ask for

1
A =S F'(xk + esk)de .
0

Thus, Theorem 4.3 guarantees that in the Frobenius norm, Bk+l is

a better approximation than B, to the average of F' on the line
. n n .

segment from X to X .. - Of course, if F:R 4+ R is

affine then A 1is the coefficient matrix, and therefore for

affine functions Broyden's method is norm-reducing in the Frobenius

norm.

To conclude this section we point out that Broyden's method is

sometimes implemented in the form

v - Bs) s T
<s,s>

(4.9) B =B+ 6 <



where 0 is chosen SO0 as to avoid singularity in 3§ - The follow-
ing result can be used to decide how to choose g .

Lemma 4.4: Let v,w in gR be given. Then
= %.4

(4.10) det(I + va) =1+ <v,w>

Proof: rLet p = I+ vw? and assume that v # 0 for Otherwise

the result is trivial. Then any eigenvector of P is either or-
thogonal to Or a multiple of v « If the eigenvector is or-
thogonal to w then the eigenvalue ig unity while if it is paralile]

to v then the eigenvalue is 1+ <v,w> , Equation (4.10) follows.

5. LOCAL CONVERGENCE RESULTS

We now would like to Present a local convergence result that

is available for Broyden's method and some of jtg variations. The

In this analysis it ig assumed that Xy and B0 are suffi-
ciently close to x* ang F'(x*) , respectively, where F satis-
fies assumptions (2.1) and (2.2). ©The convergence follows from a
Very general theorem due to Broyden, Dennis, and More (1973). ©This
result was developed to extend, to other quasi-Newton methods, the
analysis given by Dennis (1971) for Broyden's method.

To describe the algorithms that this result handles, we wi1il
need the concept of an update function. 1If F:R"? & RM is defined

on a Set D, an update function U for F _on D is a set-valued

mapping from p x D into DM c L(rY . Thus if the domain of

M
U 1is denoted by domU then U(x,B) is a nonempty subset of DM
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for each (x,B) € domu .

Update functions are only a means to denote the varioﬁs
Jacobian approximations which might be used in an iterative pro-
cess; D and domU depend on the particular algorithm. For

M
the iteration

(5.1)  x ., =x - B]:]'F(xk)
Bk+l e U(Xk,l?k) ’ k = O,l’o-t f ;

it is convenient to define domU as the set of ail (x,B) in
D » D, such that B is nonsingular and X =x - B-lF(x) belongs

to D and differs from x . Moreover, usually 'DM = L(Rn) .
Therefore, (5.1) is well-defined if (xk,Bk) € domU for k =0,1,...
Of course, if x = x then F(x) = 0 and the algorithm stops.

To illustrate these concepts note that for Newton's method
U(x,B) = {F'(x)}, while for Broyden's method U(x,B) = {B} where
B is defined by (4.3) with y = F(X) - F(x) and s =x - x .
Also note that the finite difference form of Newton's method de-
fined by (2.4) and (2.5) can be described by. U(x,B) = {A(x,h):

0 < ||n]| < y||F(x)||} where Y 4is a fixed non-negative constant.
This description has the advantage of not requiring a precise
specification of the choice of h . Another illustration of the
ease of description furnished by update functions is the following.
Let U be given and for (x,B) € domU , set G(x,B) = U(x,B) U {B}.
Then U defines the modification to (5.1) in which Bk is not

necessarily changed at each iteration.

Update functions also apply to the minimization algorithms
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.of Sections 6 and 7. These algorithms are of the form (5.1), at

least in a neighborhood of a local minimizer, where U is an update

function for a gradient mapping. In this case Dy is usually the

- set of all symmetric matrices in L(RY).

For the following result recall that if U is an update func-
tion for (5.1) then domU is the set of all (x,B) in D x DM
such that B is nonsingular and x = x - B-lF(x) belongs to D

and differs from x .

n

Theorem 5.1: Let F:R® + R satisfy assumptions (2.1) and (2.2),

. and let U be an update function for F such that for all

(x,B) € domU. and. B e u(x,B) ,

(5.2) [|B = F'(x*)|]| < .[1 + alc(x,i)]i B = F'(x*) || + a,0(x,%)
for some consta;ts ay and @, where X=x - B—lF(x) and
(5.3) o(x,x) = max{|[x = x*||,||x - x*|]|} .

Then there are positive constants € and § such that if x, € D

0

and B, € D, satisfy ||x0 - x*|| < e and lIB0 - F'(x*)|] < &

then iteration (5.1) is well-defined and converges linearly to x*.

By definition iteration (5.1) is locally convergent at x¥*

if there is an € > 0 and a & >0 such that whenever x0 €D

and B, € D, satisfy ||x0 - x*|| < ¢ and IIBO - F'(x*)]|] < &

then {xk} is well-defined and converges to x* . Thus Theorem
5.1 guarantees the local and linear convergence of (5.1) . Note

that local convergence depends on DM but since Dy is usually

L(Rn) or the set of symmetric matrices, Dy .is large enough to

make Theorem 5.1 meaningful. Also note that since all matrix norms

are equivalent there is no restriction on the matrix norm (5.2).
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Now obviously Theorem 5.1 cannot guarantee better than linear
convergence since the staticnary iteration U(x,B) = {B} satisfies

(5.2) with a, = a, = 0 . The usual procedure is to use this

1 2
theorem to prove the existence and convergence of {xk} and then
apply Theorem 3.1 or Theorem 3.4 to make a more precise statement
about the rate of convergence. We illustrate this below.

If F satisfies (2.2) then for Newton's method, U(x,B) =

{F'(i)} satisfies (5.2) with a, = 0, a, = Kk and D, = L(RP).

M
This proves the local convergence of Newton's method. The
quadratic convergence follows from Theorem 3.4..

The proof of Theorem 2.1 that we have just given generalizes
quite readily to the finite difference Newton's method defined by
T where Sy satisfies (2.6) and (2.7) with

[1h]] < Y[]F(x)]| for some constant Y . We now turn to the

application of Theorem 5.1 to Broyden's method.

Theorem 5.2: Let F:R® » RO satisfy assumptions (2.1l) and (2.2),

and consider Broyden's method as defined by equations (4.4), (4.5)
and (4.6). Then Broyden's method is locally and superlinearly
convergent at x* .

Proof: We will prove that Broyden's method is locallf convergent
at x* by showing that (5.2) is satisfied with DM = L(R™) } For
this note that (4.5) implies that

(y = F'(x*)s)s”
<s,s>

T
Ss
<s,s>

(5.4) B - F'(x*) = [B- F'(x*)][I - ]+

In particular,

1B - Pr(x*) || < ||B - F'(x%)|]| + Ly = E (x)s]]

s

o T R A
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where the matrix norm is either the £, oOperator norm or the
Frobenius norm. Therefore Lemma 3.3 implies that (5.2) is

satisfied with a, = 0 and
vergence of Broyden's method.

a, =K . This proves the linear con-

Like Newtbn's method, the more precise rate of convergence

requires further work.. In fact, we will show that (3.3) holds.

For this, note that direct computation using ||A||§ = trace (ATA)
shows that
| ss’ 2 2 Es 2
(5.5) [|[E(T - 2§T§;]IIF = llEllp = (5T
for any E € L(R") , and since (a® - 852 <o - (207182,
ssT -1, !lEs]],2
e - 531 < Bl - @lIEllp “ T -
Now define n, = IIBk - F'(x*)HF and use the above inequality and

Iemma 3.3 in (5.4) to obtain that

2,-1,2
My S (1 - (an) wk]nk + Koy

where o, = max{|[|x , - x*[1,]]% = x*||} and
|[[ B, = E'(x*)]s, ||
¥ s, 1]

Since M+l < Ny + ch and {xk} is linearly convergent, it fol-

lows that {nk} is bounded, and if n is an upper bound then
-1.2
(2n) Yy < My = My F KT

Thus
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forcing {¢,} to converge to zero. Hence, (3.3) holds and this
k

concludes the proof.

There are several interesting points about the proof of
Theorem 5.2. The first is that although (3.3) holds, it does not

necessarily follow that {Bk} converges to F'(x*).

Example 5.3: Let F:Rz - R2 be ‘defined by x = (61,52)T and

F(x) = (£,,8, + £,0)7
X, = (0,£)T and

0
(1 + 6 0
B =
o 0 1

It is easy to verify that the (1,1) element of Bk is always

» and consider Broyden's method with

1 + 6§ and thus- {Bk} does not converge to F'(x*) .

Another point of interest about this proof is that it general-

izes to the modification of Broyden's method given by (4.9). Thus

Moré and Trangenstein (1974) prove that a parameter ek can be

chosen so that if (4.5) is replaced by

T
(y,, = B, s, )s
_ k k°k’ %k
(5.6) (a) Beyp = B * O oo
A A
(b) B, ,] nonsingular, |ek -1/ <86 and 8 € (0,1) ,

then Theorem 5.2 holds. They also noted that if F is affine
then for this modification the € and ¢ in Theorem 5.1 are
infinite.

n

Theorem 5.4: Let F:R® + R be defined by F(x) = Ax - b where

A€ L(Rn) is nonsingular and b € Rn, and consider Broyden's
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method as defined by equations (4.4), (4.6) and (5.6). Then
Broyden's method is globally and superlinearly convergent to A_lb.
There are other variations of Broyden's method for which
Theorem 5.2 holds. For example, if we decide that Spe T X1 T ¥
is not a suitable direction, we can use (4.4), (4.5) but replace

(4.6) by yk'= F(xk + sk) - F(Xk) where - Sy is any nonzero vector

. such thét

s |1 < nomaxt|]x ., = x*[],]|x, = x*[]}

for some constant n . For example, the choice s, = l]F(xk+l)||ej

is suitable for each j . Of course, if Sy # Xl ~ X then the
computation of Yy involves two evaluations of F .

There is a variation of Broyden's method which is of interest
in the case that F'(x) is spaise. In this variation equations
(4.4), (4.5) and (4.6) are used to define 'Bk+1 from B, but
before it is used, Bk+l is forced to have the same sparsity pat-
tern as F'(x). That Theorem 5.2 holds follows from the observation
that forcing Bk to have the same sparsity pattern as F'(x) de-
creases |]Bk - F'(x*)||. Schubert (1970) has proposed an algorithm
along these lines and Broyden (1971a) has shown that it is locally
convergent. However, it is not known whether Schubert's algorithm
is superlinearly convergent.

We conclude this section by discussing two important variations
of Theorem 5.2. The following variation arises because for some
algorithms it is more natural to think of them as generating

approximations to the inverse of the Jacobian. 1In this case
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domU will be the set of all (x,H) in D x Dy such that

X = x - HF(x) belongs to D and differs from x .

Theorem 5.5: Let F:R® - RO satisfy assumptions (2.1) and (2.2) ,

and let U be an update function for F such that for all

(x,H) € domU and H e Uu(x,H) ,

(5.7) |[& - F*(x*) L] < M1+ agotx,x)1| |8 - F'(x*) L] + a0 (%,X)

for some constants ay and a, where x = x - HF(x) and c(x,i)
is defined by (5.3). Then there are € > 0 and & > 0 such that
. . -

if x, €D and H, € D, satisfy Hx0 x*|| < € and

IIHO - E}(x*)-lll < § then the iteration

el T X T HF ()
(5.8) ' .
B € U(x/H) , k=0,1,...
is well-defined and converges linearly to x* .

The same remarks that we made after Theorem 5.2 for iteration
(5.1) also apply, with suitable modifications, to (5.8). 1In
particular, if (5.8) satisfies the conclusions of Theorem 5.5, then
by definition (5.8) is locally and,of course, linearly convergentb
at x* .

We also note that although Theorems 5.1 and 5.5 as well as
their proofs are very similar, the two results are independent of
each other. 1In fact, in Secﬁion 8 we will discuss two important
algorithms and show that the local convergence of one of these

algorithms follows from Theorem 5.1 while the other needs Theorem 5.5.

HRES %
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Finally we note that it is possible to generalize both these
theorems by shewing that the conclusions still hold if instead of

(5.1) and (5.8) we consider the sequence

= -1 = -
Xepl = K T BT 2 ox = A HF()
A
provided the sequence {Ak} satisfies Ikk - 1| < A for some

”~
A € (0,1).

6. VARIATIONS OF NEWTON'S METHOD FOR UNCONSTRAINED MINIMIZATION

Let £:R® - R be a functional defined on an open set D and
consider the problem of finding a 2z in D such that £(z) < £(x)

for each x in D . In this case 2z is a global minimizer of

f and even if it is known to exist, finding it is usually an
intractable task. Generally, one seeks 2z among the local

minimizers of f ; that is, find x* in D such that for some § > 0,

(6.1) Cf(x*) < £(x), ||x - x*|| <8§ , x €D.

In this section we provide . some background material and outline
some of the methods that are used to solve (6.1). 1In particular,
we stress the differences and analogies between the methods con-
sidered her; and those in previous sections. This will help to
motivate the introduction of quasi-Newton methods for unconstrained
minimization.

We only consider the solution of (6.1) if £ is differentiable.
In this case (6.1l) is usually attacked by trying to find a zero of
vf - the gradient of £ . This approach is based on the fact that

if x* is a local minimizer of £ in the open set D and f is
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differentiable at x* then vf(x*) = 0. Moreover, in this section
only déscent methods are considered.

A descent method for solving (6.l) generates for each iterate

X 2 direction Py of. local descent in the sense that there is
a”‘xk such that £(x + Apy) < f(x) for X € (O,Xk). The next
iterate is of the form X, = X + AP, where the parameter Ak
is chosen so that f(xk+l) 3 f(xk). The girections Py and the
parameters should be chosen in such a way that fvf(xk)} converges
to zero. If Ilvf(xk)ll is small then usually x, is near a
zero of wf while the fact that {f(xk)} is decreasing indicates
that th%s zero of vf is probably a local minimizer of £ .

The siﬁplest example of a descent method is the method of
steepest descent. In this method we ask for the vector P of

unit length (in'the lz norm) such that for some 3> 0,

A A
f(x + Ap) < £(x + Ap) , 2 € (0,2)

for all ||p|| = 1 . It is not difficult to show that if v£(x) # 0
then P = -vf(x)/||of(x)|]. Therefore, the method of steepest

descent 1s given by

(6.2) X =

k+l xk k = 0,1,.0.,

where the parameter Ak is needed to guarantee that f(xk+l) < f(xk);
that such a parameter exists is a consequence of the following

simple result.

Lemma 6.1: Let f£f:R® + R be defined in an open set D and

differentiable at x in D . If <yf(x),p> < 0 for some p in
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R® then there is a A* = A*(x,p) such that A* > 0 and
f(x + Ap) < £(x) , A € (0,A*) .,

The proof of this result is quite easy and follows from the
fact that
lim [f(x + Ap) - £(xX)1/X = <vE(x),p> .
A+0* .
Lemma 6.1 guarantees, in particular, that the parameter lk
in the steepest descent method can be cbosen so that f(xk+l) < f(xk).
This is not sufficient to show that {xk} gets close to a zero of
VvEf since A may be arbitrarily small. - In fact, ’ lk >0

k
. k
can be chosen so that |[|x.,; - x || < e/2° and therefore {x}
converges to a point x* with leo - x*|| < 2. If vE(x,) # 0
and v£f is continucus at X v then ¢ can be chosen so that
VE(x*) #0 . At the end of this section we discuss a specific

method for choosing lk which avoids this problem, and note that

if kk is chosen appropriately, then the following result holds.

Theorem 6.2: Let f£:R® - R be continuously differentiable and bounded

n . . ,
below on R°, and assume that x is such that ¢£f is uniformly

0
continuous on the level set

L(xg) = {x € & £(x) < £(x,)}.

Then there is a sequence {Ak} such that the steepest descent

sequence (6.2) is well defined, {f(xk)} is decreasing, and

{vf(x, )} converges to zero.
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If £ is continuously differentiable on R? and L(xo) is
compact, then the rest of the assumptions of Theorem 6.2 are auto-
matically satisfied and in addition, £ has a global minimizer
and {vf(xk)} converges to zero. However, not even in this case
is the steepest descent sequence guaranteed to converge to a local
minimizer of £ . An example reported by Wolfe (1971) shows that
the steepest descent sequence may converge to a saddle point of f
Nevertheless, Theorem 6.2 is quite a strong convergence result.
The fact that ﬁvf(xk)} converges to zero implies that any limit
point of {xk} is a zero of ¥f and that for any ¢ > 0 the
stopping criterion Ier(xk)|| < ¢ will be satisfied in a finite
number ;f steps. Unfortunately, éteepest descent usually con-
verges linearly.

The'slow rate of convergence of steepest descent can be
improved by switching to a faster method in a neighborhocd of a
zero of V£ . Since F =vvf is a mapping from R® to R" , any of
the methods discussed in Sections 2 and 4 could be used. For

example, if £ 1is twice differentiable then Newton's method is

given by
(6.3) X =% - vzf(xk)‘]vf(xk) , k=0,1,...

where 'vzf(x) is the Hessian matrix of £ at x ; that is,
‘sz(x) is just the Jacobian matrix of V£ . It should be clear
that Theorem 2.1 applies to (6.3) with F = £ , and that under the
appropriate conditions we obtain local and quadratic convergence

of (6.3) to a zero of <vE£.



In view of the global convergence of steepest descent and the
fast local convergence of Newton's method, it would be desirable
to have a method that behaves like Newton's method near a local
minimizer but like steepest descent far from a local minimizer.

Most descent methods of this type are of the form

(6.4) = x, - AkBilvf(xk) L,k =0,1,...

X+l

where Bk is a symmetric, positive definite matrix which resembles
vzf(xk) , at least in a neighborhood of a local minimizer.
As an example of such a method, Goldfeldt,Quandt and Trotter

(1966) suggested the iteration

1 k)l

vf(x k= O'l'ooo

(6.5) X1 = Xy -_Ak(vzf(xk) + uklj-

where the scalar My > 0. is chosen so that sz(xk) + ukI is
positive definite. To justify the claim that (6.5) behaves like
Newton's method in a neighborhood of a local minimizer, recall
that if £ is differentiable in an open set D and twice differ-
entiable at a local minimizer x* of £ in D then vzf(x*) is
-positive semidefinite. Therefore if X is in a neighborhood of
a local minimizer, then very small values of M will suffice td

make sz(xk) + o I positive definite. Also note that if
s(n = -2 E(x) +uD) " NE®) ,

then s(0) 1is the Newton direction while as u + +» the angle
between s(i) and -yvf(x) decreases monotonically to zero. Thus

for large u iteration (6.5) behaves like steepest descent.
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In order to preserve, in (6.5), the good local properties of
Newton's method, one has to choose M and Ak with some care.
It is easy to see from Theorem 3.1 that as long as {uk} and
{Xk} converge to zero and unity, respectively, iteration (6.5)
is superlinearly convergent. Moreover, Theorem 3.4 shows that if
My g_nllvf(xk)ll for some constant n and A =1 for all suf-
ficiently large k , then (6.5) converges gquadratically. Unfortu-
nately, these results do not indicate how to choose {ﬁk} glo-
bally, and in fact, this has turned out to be a hard problem.

There is a method of the form (6.4) which avoids the problém

of choosing in (6.5) and yet resembles (6.5). 1In this

"k
method we try to obtain a Cholesky decomposition of ’vzf(xk);
that is, we try to find a nonsingular, lower triangular matrix
L, such that ﬁzf(xk) = LkLﬁr. Of course, if vzf(xk) is not
positive definite then this decomposition does not even exist, but
the idea is that as the decomposition proceeds it is possible to
add to the diagonal of 'sz(xk) and ensure that we obtain the
Cholesky decomposition of a well-conditioned, positive definite
matrix which differs from *vzf(xk) in some minimal way. In par-
ticular, if sz(xk) is a well-conditioned positive definite
matrix then vzf(xk) =lL§Lk. The details are given by Murray (1972),>
page 64.

In the remainder of this section we describe some of the

selection rules for Ak which are used in methods of the form

(6.4) and more generally, in any descent method of the form

(6.6) X =

k+1 - X T2

kpk Ik=O’l,oo.
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where <vf(xk),pk> < 0 . The development of these particular rules
are due to the initial work of Goldstein (1965) and Armijo (1966).
In a descent method Ak should satisfy f(xk+l) < f(xk) but
we have already noted that this requirement can be satisfied by
arbitrarily small Ak and then {xg} may converge to a point at

which 9f is not zero. A more reasonable requirement is that
(6.7) f(xk +'}kpk) < f(xk) + aAk<vf(xk),pk>, a € (0,1/2) .

The reason for choosing a < 1/2 is that with this choice, Theorem
6.4 shows that if {xk} converges to a local minimizer of £ at
which vgf(x*) is positive definite, and {pk} converges to the
Newton ;tep -sz(xk)-va(xk) in both length and direction, then
Ak = 1 will satisfy (6.7) for all sufficiently large k .

Since the right hana side of (6.7) is a straight line in A
which interpolates f(xk + Apk) at A = 0 . and whose slope is
larger than <Vf(xk),pk>, it is clear that there is a Ak which
satisfies (6;7). If a 1is close to zero then (6.7) is not a very
stringent‘requirement, and a 1is generally chosen in this way

4,10-1] being the usual range. However, it is not a

with [10°
good idea to fix Ak by Jjust requiring that it satisfy (6.7)
since, for instance, Ak = 0 1is then admissible. In general,
unreasonably small Ak are ruled out by the numerical search

procedure but theoretically we need to impose another requirement.

One such requirement is that

(6.8) WE(xy + AP) /P> 2 BE(x ) /P> 4 B € (a,1) .
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To show that there are Ak which satisfy (6.7) and (6;8)
aséume that f is defined on R and f(xk + Xék) is bounded
below for A > 0. It is then geometrically obvious that there
are _kk > 0 for which equality holds in (6.7). 1If Ak is the

first such Ak then the mean value theorem implies that
A A )
f(xk + lkpk) - f(xk) = <Vf(xk + eklkpk),pk> = G<Vf(xk)rpk>

for some ek e {0,1) , and since a < 8,

<wE(x, + 0, AP ), P> > BIE(x) B>

A

Thus Ak = BkA satisfies (6.7) and (6.8). However, we emphasize
that a search routine for A should not necessarily try to satisfy
(6.7) and (6.8). In fact, the intervals which satisfy these two
conditions can be quiﬁe small and therefore difficult to £find.
Moreover, to te§t whether or not (6.8) is satisfied requires the
evaluation of ¥f. 1Instead, the search routine should produce a

Ak which satisfies (6.7) and not be too small; (6.8) just guaran-
tees that Ak is not too small.

Theorem 6.3: Let f£:R” - R satisfy the assumptions of Theorem 6.2,

and consider an iteration of the form (6.6) where the search

> < 0

directions Py satisfy <vf(x . Then there is a se-

k) lpk
quence {Ak} which satisfies (6.7) and (6.8) and

Py
6.9 lim <vf(x > =0 .
( ) jm ( k)'TTEETI

Theorem 6.3 is due to Wolfe (1969) who also pointed out that
for many iterations (6.9) implies that {][vf(xk)ll} converges to

' zero; it is only necessary to verify that the angle between Py
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and.‘vf(xk) stays bounded away from nihety degrees. For example,
. _ . ___-l

if P = vf(xk) , Oor more generally, if Py = Bk.vf(xk) where
{Bk} is a sequence of symmetric, positive definite matrices with

uniformly bounded condition numbers,then

Py
-<9f () T, T 2 ul otz ) ||

where p is an upper bound on the condition number of Bk' Hence,
(6.9) ensures that {|Ivf(x) ||} converges to zero.

To conclude this section we assume that the vectors P, con-
verge in direction and length to the Newton step and show that

Ak =1 _yill eventually satisfy (6.7) and (6.8).

Theorem 6.4: Let £:R® - R be twice continuously differentiable

in an open set .D and consider iteration (6.6) where <Vf(Xk)rPu>
. N
and Ak is chosen to satisfy (6.7) and (6.8). 1If {xk} conVerges

to a point x* in D at which vzf(x*) is positive definite and
||9£ () + V2E(x )y | |

ko |, [1
then there is an index kg > 0 such that X =1 1is admissible

for k >k Moreover, VE£(x*) =0 and {x } converges super-

0 .
linearly to x* .

Proof: As a first step note that a consequence of (6.10) is that

there is an n > 0 such that
(6.11)  =<9£(x.),p.> > n|lpy| ]2
. k'’ 'Px” Z NPk
for all k large enough. This follows since

~<qf (%) /B> = <TPE(x, )Py /B> = <Y E(X )P + VE(R) P>
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so that (6.11) followé from (6.10) and the fact that <72f(x) is
positive definite for all x <c¢lose enough to x* .,

To show that (6.7) is eventually satisfied by Ak = 1 use
the mean value theorem to obtain . in the line segment from

X to X + Py such that
£ + p) - £(x) = 1/2<9F(x) B> = 1/2<TP£(q)py + VE(x,),By>-

Now (6.9) and (6.11) show that {pk} converges to zero; therefore

(6.10) implies that for all k sufficiently large

(6.12)  £(x, + p) - £0x) - 1/2<9£(x),p> < (1/2 = a)n|[p |1° ,

and thus (6.11) and (6.12) show that (6.7) is satisfied by Ak = 1.
To prove that (6.8) is also eventually satisfied by Ak =1 we
again use the mean value theorem to show that there is a Vi such
that

<QE(x + BB > = WE(x) + VLV )PIB> -
Thus (6.10) and (6.11) imply that for all k large enough ,
<vf (% + p) /P> < nB|[py | 12 2 =B<f(x),p>.

Hence Ak = 1 satisfies (6.8) and this concludes the first part
of the proof. For the remainder, note that since {pk} converges
to zero, (6.10) shows that VE(x*) = 0 . The superlinear convergence

of {xk} follows from Theorem 3.1.

T
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7. QUASI-NEWTON METHODS FOR UNCONSTRAINED MINIMIZATION

The derivation of updates suitable for unconstrained optimi-
zation proceeds along lines similar to the development in Section 4.
For nonlinear equations only Broyden's method appears to be satis-
factory, but here some notable differences, motivated by the dis-
cussion in Section 6, will lead us to single out four reasonable
update formulas.

One important consideration is the desire to have the quasi-
Newton step -B;lvf(xk) define .a descent direction. 1In fact, the
most widespread use of these methods is in conjunction with
iterations of the form (6.4). In this context the update formula
should ;énerate a sequence of symmetric'positive definite matrices
{Bk} such that B, resembles vzf(xk) , at least when Xy is
near a local minimizer of £ . We will examine these updates in
Section 7.2.

In Section 7.1 we examine quasi-Newton methods which can be
used to approximate the Hessian in such a way that the direction
Py = -B;lvf(xk) resembles the true Newton direction. In this
case p, may not be a descent direction, so that the direction is
usually further modified. For example, it may be modified by |
adding to Bk a suitable multiple of the identity matrix as in
iteration (6.5).

It is also possible to look at the updates of Sections 7.1

and 7.2 from an "inverse" point of view in which we try to generate

 approximations to the inverse of the Hessian. It turns out that

this gives rise to at least one other important update. These

inverse updates and their relationship to the updates of Section 7.1



and 7.2 are examined in Section 7.3.

Throughout this section we assume £:R® » R to be twice
differentiable in the open convex set D ,.and that we have an
approximation B to vzf(x) for some x in D , and a deriva-
tion s such that x + s belongs té D . We now want to obtain

2

a good approximation B to Vv“f(X) where X =x + s .

7.1 Symmetry and the Quasi-Newton Equation

In view of the above discussion, and since the Hessian is
symmetric, we want the update formula to have the property of

hereditary symmetry; that is,
(7.1) ~ B symmetric implies B symmetric.

Moreover, because of our desire to approximate the Hessian, argu-
ments similar to those in Section 4 lead us to require that B

satisfy

(7.2) Bs = y = v£(X) - 9f(x),

Note that (7.2) is just the quasi-Newton equation (4.1) for F = VE.
It is natural to ask whether it is possible to satisfy (7.1)

and (7.2) with a rank one update formula. To see whether this can

be done, first note that the general single-rank update that satis-

fies the guasi-Newton equation (7.2) is given by

T
= _ (y - Bs)c
for c € R® with <c,s>#¥ 0 . If B is to satisfy (7.1) then it

is easy to show that

PR IE L
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(y = Bs)(y - Bs)~
<y - BS,S>

s
is the only solution provided <y - Bs,s> # 0 . 1If Yy = Bs then

B = B is the solution while if y # Bs but <y - Bs,s> = 0
then there is no solution.

This update is known as the symmetric-single-rank formula. It

seems to have been first published by Broyden (1967) although sev-

- eral independent discoveries of (7.4) apparently occurred at about

-l 1 both exist and B is

the same time. If H = B and H# = B-

symmetric then the inverse relation

. T
, =- _ (s - Hy) (s - Hv)
(7.5) H=H + -y, 55

holds. The following theorem,essentially due to Fiacco and
McCormick (1968), shows that this method has very interesting

behavior when it is applied to a quadratic functional.

Theorem 7.1: Let A € L(Rn) be a nonsingular symmetric matrix ,

and set Yy = Ask for 0 <k < m where {so,...,sm} spans Rg.
Let Ho be symmetric and for k = 0,...,m generate the matrices
T
(7.6)  H_,, =H_+ S <Hkyf)ésk nyk)
Sk T Fx¥xr ¥y

where it is assumed that
(7.7) <sy - Hkyk'yk> #0 .

_ .=l
Then Hm+l = A .

The proof of this result consists of verifying, by induction,

chat Hy.=s. , 0<3j<k, for k=1,...,m+ 1 .
k. - _
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Once this is done,

= H S

me1PSy T S50 0wy

Hm.+lyj

and the result follows fmom the assumption that {so,...,sm}
spans R™,

The gist of Theorem 7.1 lies in the fact that if we have an
iteration of the form X1 = X oSy and (7.7) holds, then the
use of (7.6) allows one to minimize a gquadratic functional in a

finite number of steps. Unfortunately, there is no guarantee that

(7.7) will hold although it is not difficult to show that if

A-l - H0 is semidefinite (positive or negative) and if {Hk} is
generated by (7.6) when (7.7) holds, and Hk+l = Hk otherwise,

_ .=l
then Hm+l = A .

The fact tﬁat the vectors s - Hy and y can be orthogonal
forces a certain amount of numeripal,instability on the symmetric
single-rank method. 1In particular, update (7.4) does not satisfy (5.2) o
(5.7) and is therefore not of bounded déterioration. These dif-
ficulties have led to several improvements in the basic algorithm,
and in its modified form the method has been quiﬁe successful.

See, for example, the numerical results of Dixon (1972b).

The numerical difficulties with the symmetric single-rank
method have led to a whole class of updates which satisfy (7.1)
and (7.2). The technique used to derive this class is due to
Powell (lS?Ocﬂwho used it to obtain a double-rank version of
Broyden's method. Dennis (1972) then showed that Powell's technique
could be used to derive most of the well-known quasi-Newton updates.

In this derivation we begin with a symmetric B € L(Rn) and

consider

ROt T R

RO o s
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T
o (y - Bs)c
Cl = B + T

as a possible candidate for B. 1In general Cl is not symmetric,

so consider
c. = (¢, + c.Ty/2
2 i 1l

- However, since C2 does not satisfy the gquasi-Newton equation, we
repeat the process. In this way a segquence {Ck} is generated by

T

(y - C,.8)c

Cc =C + 2k
2k+l ~ T2k TS

(7.8)

_ = T -
Cogea = (Copyr T Copyy)/2 + k=0,1,...,

where C, = B . It turns out that {Ck} has a limit B given by

) . o
(7.9) B=p+ Y -Bs)c +c(y -Bs) _ <y-=- Bs,s> T
<c,s> .o

and it is clear that this update éatisfies (7.1) and (7.2).

Lemma 7.2: Let B € L(R™) be symmetric and let é,s, and y be
in R® with <ec,s> # 0. If the sequence {Ck} is defined by (7.8)

with C, =B themn {(C,} converges to B as defined by (7.9).

Proof: We only need to prove that the segquence {CZk} converges.

If G, =¢C

X ok ! then (7.8) shows that

(7.10) G, .. = G, + (1/2)[wch

T
k+1 = %k + QW l/<c,s>

where Wy y - Gks . In particular,

T
- - CS
Wipp = Pwk , P —(1/Q[I - EETE;J .



-4 4-

It is clear that P has one zero eigenvalue and all other eigen-
valeus equal to 1/2 , so that the Neumann Lemma (e.g. Ortega and

Rheinboldt (1973), page 45) implies that

w = IP(y=-Bs)=(I-P) (y- Bs)

, k=0
Since

lim =B + L - G,.)
Koo S k=0 1 k' !

it follows from (7. 0) and (7.11l) that '{Gk} converges, and since

T
oo -85,

(I-P) <c,s>

equations (7.10) and (7.11) also imply that the limit of"{Gk} is
B as defined by (7.9).

Once c¢ is chosen, (7.9) is a rank two update which satisfies
(7.1) and (7.2). Before looking at special cases of (7.9), we

show that this update solves a problem similar to the one specified

in Theorem 3.1.

Theorem 7.3: Let B € L(R®) be symmetric, and let c,s, and y be

in R® with <¢,s> > 0 . Assume that M € L(Rn) is any nonsingular,‘

symmetric matrix such that Mc = M ts. Then B as defined by (7.9)

is the unique solution to the problem

A

A A
(7.12) min{||B - B|| : B symmetric, Bs = y}

M,F

where || is defined by (1.3).

I IM,F

A A
Proof: Let B be any symmetric matrix such that y = Bs , and
pre- and post-multiply (7.9) by M . If My = M-ls = 2z it follows

that

O S S SR S P
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EzzT + zzTE - <Ez,z> T

E = < > -
E 2,2 <z,z>2

where E = M(B - B)M and F = M(B - B)M .- Now it is clear that

| 1E2] |

| |E2z|| , and that if v is orthogonal to 2z then
“|IEv|| < ||EV]]| . 'Thus [IEll; < I|Ell; as desired. To show
uniqueness just note that the mapping f:L(Rp) + R defined by
£(a) = ||B - AIIM,F is strictly convex on the convex set of
symmetric B such that Bs = y ;

Theorem 7.3 was inspired and is closely related to the results
of Greenstadt (1970) and Goldfarb (1970) and it shows that the
updates obtained by Greenstadt (1970) could also have been obtained
by the symmetrization argument of Lemma 7.2.

Powell (1970d)used the argument of Lemma 7.2 to obtain formula
(7.9) in the case ¢ = s . Since in this case the underlying"

single~rank method is often called the Powell symmetric Brovden

update, or the PSB update:

(7.13) B__.=B + L= Bs)s® + s(y - Bs)" _ <y - Bs,s> ss'

PSB <s,s> <s,s>2

Theorem 7.3 implies that B

PS B is the unique solution to the

problem

A A A
min{||B - B||g: B symmetric, Bs = y}

and this property is reminiscent of Theorem 4.1. In fact, it can

be shown that if neither B nor B are required to be symmetric
then the unique solution to (7.12) is given by (7.13). Theorem 7.3

also leads us to believe that B is a good approximation to the

PSB
Hessian. To justify this claim note that (7.13) implies that for any

symmetric A and B in L(RY),

BPSB - A = PT(B-A)P + [(y-As)sT + s(y-As)TP]/<s,s>

with P=1I - (ssT/<s,s>). Therefore (l.2) shows that
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s olly = asl|

IlE 'AIIFiHB‘AH IISH

PSB F

If A= ¥P£(x) and v2f is Lipschitz continuous (with constant k)

in the open convex set D then
Boan - V2E@) || < 1B - v2£(x) ||, + 3¢ [s]]
Bpse F < F

whenever x and x lie in D . This relationship shows that the

absolute error of Bk as an approximation to sz(xk) grows

linearly with ||sk||, and that this holds independent of the posi-
tion of x in D .

7.2 Positive Definiteness

We now turn to updates which in addition to satisfying (7.1)
and (7.2) generate positive definite matrices. For this, let us

investigate the.property of hereditary positive definiteness; that is,
(7.14) B positive definite implies B positive definite.

Note that if an update satisfies (7.2) and (7.14), then y = Bs
and therefore <y,s> > 0 whenever B 1is positive definite. This
imposes a restriction on the angle between y and s , which
although not severe, must be kept in mind. In fact, if <vf(x),s> < 0
then <y,s> > 0 1is equivalent to the existence of a B8 € (0,1)
such that <v£(x),s> > B<vf(x),s> . For this reason the requirement
(6.8) is very natural for quasi-Newton methods.

To investigate the property of hereditary positive definiteness,
we need a result from the perturbation theory of symmetric matrices,

e.g. Wilkinson (1965), pages 95-98:
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Lemma 7.4: Let A € L(R®) be symmetric with eigenvalues

A < vee i_ln ’

1242 |
and let A* = A + ouu’ for some u € R® . If o > 0 then A* has

eigenvalues AI such that

A

ia.- f_k

n <AL

1l hS Ai A n

2

while if o < 0 then the eigenvalues of A* can be arranged so that

*
12 A2 e A<

*
n n

Lemma 7.4 and the next two results will lead us to a choice

of ¢ in (7.9) which naturally satisfies (7.14). This development

is a bit long, but it gives a lot of insight.

Theorem 7.5: Let B € L(R®) be symmetric and positive definite,

and let c¢,s, and y be in R® with <c,s> # 0 . Then B as

defined by (7.9) is positive definite if and only if detB > 0.

Proof: If B is positive definite then clearly detB > 0 . For

the converse first note that we can write

B=3B+ va + va

where w = ¢ and

X- < - >
v = <c.sEs - (1/2)< 252
4 <c,s>

Therefore,
- _ T T
B =B + (1/2) [(vtw) (v+w) ™ = (v=w) (v=w)"] ,

and thus we have written B as B plus the sum of two symmetric
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rank one matrices. If B is positive definite then Lemma 7.4
implies that B can have at most one non-positive eigenvalue.
Therefore, if detB > 0 then all the eigenvalues must be positive
and thus B is positive definite.

In view of Theorem 7.5, conditions (7.1) and (7.14) for the
updates defiﬁed by (7.9) require that if B is symmetric and .
positive definite then detB > 0. To find out what choices of ¢

satisfy this requirement we need an expression for detB .
Lemma 7.6: Let us e R® for i = 1,2,3,4. Then

T _ ' -
det (I + u,u_. + uau, ) = (1 + <u1,u2>)(l + <u3,u4>) <ul,u4><u2,u3>

172

Proof: A proof of this result can be found in Pearson (1969); the
following is an alternate argument.
Assume for the moment that <u1,u2>'# -1l. Then I + ulug is

nonsingular and

T T _ T T -1
I + ulu2 + u3u4 = (I + uluz)(I + (I + uluz)

T
u3u4) .
The result now follows by using Lemﬁas 4,2 and 4.4. Since it holds
for <ul,u2> # -1, a continuity argument shows that it holds in -
general.

Now apply Lemma 7.6 to (7.9). After some algebra it follows
that

(7.15) detB = detB[(<c,Hy>2 - <c,Hc><y,Hy> + <c,Hc><ms>)/<c,s>2]

where H =B~ . If we assume that B is positive definite and

1/2

let v =H y and w =H ¢ then

R s an D LT IO P
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(7.16) detB = detB[(<v,w>2 = [|v]|2]|w]|? + ||w]||%<y,8>)/<c,s>2] ,

and Theorem 7.5 implies that B is positive definite if and only if

7.1 |vll%y,s> > ||v]]?]|w]]? =i<v,w0? .

It is now apparent that the most natural way to satisfy (7.17)
is to choose w to be a multiple of v so that (7;17) only re-
quires'that <y,s> be positive. 1In this case c¢ is a multiple
of y and then (7.9) reduces to an update introduced by Davidon
(1959), and later clarified and improved by Fletcher and Powell

(1963). The DFP update is then given by

- T T A
(7.18) B =B + AL = Bs)y + y(y -Bs)  _ <y - Bs,s>yy®
) DFP <y,s> - 5
Y,s>
T T T
= (I - £—)B(I - =) + A
Y¢S> <y,s> <y,s>

" Some of its properties are given in the following result, but first we
note that the underlying éingle-rank formula (7.3) where ¢ 1is a

multiple of y is an update due to Pearson (1969).

Theorem 7.7: Let B € L(Rn) be a nonsingular, symmetric matrix

and define EDFP € L(R®) by (7.18) for any vectors y and s in
n

R® with <y,s> # 0 . Then EDFP is nonsingular if and only if
<y,Hy> # 0 where H = B—l . If EDFP is nonsingular then
H-DFP = ED;l can be expressed as

T T
(7.19) B o = H+ 2o - 2LE

<s,y> <y,Hy> .

Furthermore, if B 1is positive definite then ﬁDFP is positive

definite if and only if <y,s> > 0 .
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Proof: Recall that for the DFP update ¢ 1is a multiple of y so

that (7.16) reduces to

(7.20) detB___ = dets[SXeHY>

DFP <y,s> ]

Thas EDFP is nonsingular if and only if <y,Hy> # 0. To verify

tht HDFP is given by (7.19) one can either show that HDFPBDFP =1

or one can use Lemma 4.2 twice on (7.18). In either case the
proof is straightforward but tedious and is therefore omitted.
Finally, assume that B is positive definite. 1If <y,s> is

positive then (7.20) shows that detB is also positive and

DFP

thus Theorem 7.5 implies that B is positive definite. Con-

DFP

versely, if B is positive definite then

DFP

<y,s> = s,s> > 0

“Bprp
which is the desired result.

One way to use the DFP update to generate a quasi-Newton
direction and only use O(n2) arithmetic operations per iteration
would be to generate B;l = H_ via equation (7.19). Another
approach is based on the fact that if A is positive definite and

A= LLT for some lower triangular matrix, then the corresponding

decomposition of
A=A+ azzT

can be obtained in O(nz) operations provided A is positive
definite. Methods for doing this are surveyed by Gill, Golub,

Murray and Saunders (1974). That these techniques apply to (7.18)
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follows from the proof of Theorem 7.5 which shows that (7.18)

can be written as

= _ ' T iy
BDFP =B + .22, + %5252,
where o, >0, a, >0 .and  z,,z, are linear combinations of

Bs and y. If the DFP update is used in a method of the form (6.4) then

an advantage of the latter approach is that (7.18) requires no
matrix-vector products.
Finally we remark that the matrices generated by the DFP formula

are good approximations‘to the Hessian. In fact in Section 8

(see (8.16)) we will derive a general result which can be interpreted
as follows: If ||s|| 4is small then the relative error (as mea-
ssured in Section 1) of EDFP as an approximation to a positive
definite sz(xi- cannot be much larger than the corresponding

error in B . Moreover the possible increase in this error is
governed by a relative measure of how much f differs from a
quédratic on D .

7.3 Inverse Updates

So far we have been thinking in terms of obtaining an approxi-
mation to the Hessian, but it is perhaps equally reasonable to try
to obtain an approximation to the inverse of the Hessian. In
particular, it should be clear that it is possible to use the
techniques that we have been discussing to develop updating formulas
for the inverse. These updates are sometimes called inverse
updates while the updates developed in Sections 7.1 and 7.2 could

be called direct updates .
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To develop inverse updates, assume that we have an approxi-

mation H to '<72f(x)“l

1

and try ta obtain a good approximation
B to U°f(%)"! where X =3x + s . For inverse updates the

analogue of the quasi-Newton equation is
(7.21) By =s ,

and therefore, the general single rank formula which satisfies

(7.21) is

(s - Hy)d~
<d,y>

(7.22) E=H+

for any- 4 € R® with <d,y> # 0 .
It is important to realize the relationship between (7.3) and
(7.22). If Lemma 4.2 is applied to (7.3) we obtain

-1 T -1
§-1=Bl+(S-B ){)CB

<c,B “y>

Therefore, (7.3) and (7.22) represent the same update if ¢ = BTd.
Just as in Section 7.1, it is possible to study the property

of hereditary symmetry, which for inverse updates is
(7.23) H symmetric implies H symmetric.

It is easy to verify that the only single rank formula which
satisfies the quasi-Newton equation (7.21) and the hereditary
symmetric property (7.23) is again given by the symmetric single
rank formula (7.5).

To obtain other inverse updates which satisfy (7.21) and (7.23)
we carry out the symmetrization érgument of Lemma 7.2 on (7.22) to

obtain
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(s - HBy)d” + d(s - Hy)T _ <s - Hy,y>
<d'y> <d’Y>

(7.24) H =18+ aa’
This result is due to Dennis (1972) who also noted that if B and
B are defined by (7.9) and (7.24), respectively, then in general
BE # I even if B is symmetric, BH = I and é = Bd . At first
this is surprising becauseé under these asaumptions (7.3) and (7.22)
represent the same update; however, in the argument of Lemma 7.3
we used the symmetrization operation (A + AT)/Z , and in general,
the symmetrization and inversion operations do not commute.

It is also possible to prove an analogue of Theorem 7.3 for
updates (7.24). In particular, if H ié symmetric, £hen the

uniéue solution to the probiem
R ~ N A . ~
min{||H - H[IF: H symmetric, Hy = s}

is given by (7.24) with d =y . Thi§ update was proposed by
Greenstadt (1970), but it has not received any more attention in
the literature since it does not perform as well as the PSB update
(7.13). It is interesting that the underlying single rank method
was obtained by Broyden (1965), but that this update has also been
neglected because of its poor numerical performance.

The most important instance of (7.24) was given by Broyden
(1969), (1970), and independently by Fletcher (1970), Goldfarb (1970)
and Shanno (1970). This update can be obtained by asking for the
update of the general form (7.24) which "naturally" has the property
of hereditary posiEive definiteness for inverse updates; that is,

H positive definite implies H positive definite. It should be
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clear from the development in Section 7.2 that this update corres-
ponds to choosing 4 = s in (7.24) and therefore the Broyden-

Fletcher-Goldfarb-Shanno or BFGS update can be written in the form

T T T
- _ _ s _ Vs SS
(7.25) Hppes (1 z§¥§;)H(I <y,s>) + <y,s>

At this point we note that the BFGS update is sometimes called

the complementary DFP update and that the underlying single rank

method (7.22) in which d = s was proposed by G. McCormick (see
Pearson (1969)).

There is growing evidence that the BFGS is the best current
update gormula for use in unconstrained minimization. For example}
see the results of Dixon (1972b). For this reason, and for future

reference we state the following analogue of Theorem 7.7.

Theorem 7.8: Let H € L(Rp) be a nonsingular symmétric matrix,

and define- ﬁBFGS e L(R®) by (7.25) for any vectors y and s in
R® with <y,s> # 0. Then ﬁBFGS is nonsingular if and only if
-l -

<s,Bs> # 0 where B =H ~. If is nonsingular then

Hpras
EBFGS = ﬁB;és can be expressed as

T T
3 =B + vy _ Bss B
BFGS <y,s> <s,Bs>

Furthermore, if H is positive definite then HBFGS is positive

definite-if and only if <y,s> > 0.

The remark at the end of Section 7.2 about the behavior of

B as a relative approximation to the Hessian holds for ﬁBFGs

BFGS
as a relative approximation to the inverse Hessian. (See equation (8.18)

Also note
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that there is a close relationship between the matrices generated
by the DFP and BFGS updates for it is easy to verify that if H is

positive definite then

- _ = T

‘7.26) HBFGS = HDFP + vv

where v 1is the vector

(7.27) v = <y,By>/ 3= - B,

<s,Y> <y,Hy>
while if B is positive definite then

= _ = T
(7.28)  Bppp = Bppgg *+ W

where w is the vector

<s,Bs>}/2 [ v o Bs )

w <s,y> <s ,Bs>"

By virtue of Lemma 7.4, relations (7.26) and (7.28) imply that the

eigenvalues of HBFGS (EBFGS) are larger (smaller) than the eigen-

values of HDFP (BDFP

relationship between the condition number of H

). However, there does not seem to be any
BFGS and the con-

dition number of EDFP .

From a purely algebraic point of view, the developments of
Sections 7.1 and 7.2 are identical to those in Section 7.3. This
foliows from the fact that (7.22) and (7.24) can be obtained from
(7.3) and (7.9), respectively, by interchanging y and s , re-
placing B's by H's and ¢ by d . In particular Theorem 7.7
and 7.8 are identical since both of them follow from a more

general result which relates A and A where

T T T
3 - _ uv . _vu uu
A= (I <u,v>)A(I <u,v>) + <a,v>
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and <u,v> # 0, In spite of these remarks we have opted for a
separate development for expository purposes. Nevertheless, it
is useful to note that the DFP and BFGS are related by the trans-

formation
(7.29) se>y , BeH , BoH .

In fact, Fletcher's (1970) derivation of the BFGS update was through
this transformation.

Finally, we note that if a direct and inverse update are re-
lated by the transformation (7.28) then these updates are sometimes
called "dual” or "complementary" updates, and this is the reason

why the BFGS is also called the complementary DFP formula.

8. CONVERGENCE.RESULTS FOR RANK-TWO QUASI-NEWTON METHODS

Let £:R®" + R be continuously differentiable in an open set

D and consider a method of the form

(8.1) Xpep] = ¥ - }kavf(xk) f k=0,1,...,

where the matrices Hk are generated by one of the methods of
Section 7 and Ak is suitably chosen. 1In this section we examine
some of the convergence and rate of convergence results that are
available for (8.1).

In a lot of theoretical work sufficient conditions are assumed

so that Ak can be chosen by an exact line search. This usually

means that either
(8.2) A = min{A > O: <YE(x, + APy ) ,py> = 0}

where Py = -Hgi(xk) , or that Ak is the first local minimizer of



-57-

f(xk + Apk) for X > 0. Either choice is unrealistic as usually
it is not possible to £find Ak to much accuracy in a reasonable
amount of time unless, for example, £ is a quadratic, positive

definite functional. In this case
(8.3) f(x) = (L/2)<x;Ax> - <x,b> + ¢

for some symmetric positive definite A € L(R®), and the A, which

satisfies (8.2) is given by
(8.4) Ak = = <Axk - b,Pk>/<APkrPk>_-
The earlier convergence results for quasi-Newton methods were given
for £ defined by (8.3) and Ak chosen by (8.4). It was shown that
if {xk}_is generated by (8.1) and Hkvcorrespond to, say the DFP

or BFGS updates, then x, = a1

b for some 0 < 2 < n, and if 2 = n
then Hn = A-l. "This type of finite termination property has some-

times been called quadratic termination. The relevance of the

quadratic termination property to the general nonlinear problem was
originally based on the assumption that if a method terminates in
a finite number of steps for a quadratic then this implies super-
linear convergence for nonlinear functionals. There has never been
any theoretical or numerical support for this belief. (See, however,
the diséﬁssion following Theorem 8.9). Nevertheless; quadratic
termination seems-to be a desirable property although as Broyden's
method shows, it is not indispensable for superlinear conyergence.,

In order to describe the quadratic termination properties for
symmetric rank two quasi-Newton methods, consider the following

class of updates:

(8.5) H = (1 -

" +

9)Hppp * ¢Hppgg
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where ¢ 1s a parameter which may depend on s, y, H and the itera-
tion counter. This class of updates was introduced by Broyden
(1967) although not in the form (8.5). It was Fletcher (1970) who
showed that Broyden's class, which had been given in terms of a
parameter "8, could be written in the form (8.5) and that the rela-
tionship between ¢ and B8 is that ¢ = B<y,s>. Fletcher also
noted that if H is positive definite then eéuation (7.26) implies
that update (8.5) can be written as

T

H =H + ¢vv

) DFP
where the vector v is defined by (7.27). It is immediate from

this expression that if ¢ > 0 then H, shares the property of

¢
hereditary positive definiteness with EDFP' For future reference
and to state the quadratic termination properties of (8.5), note

that Broyden's class is generated by

T T
TR T e S 2 e N 6. v, v, T
14
k+1 k- <Sp 1Yy <yk,Hkyk> k'kk
(8.6) (a)
172, Sk . Bk

(

¥, = <y, /H Yy > ’
k kxYk TR <yk,Hkykl
and where the vectors Sy and Y, are usually defined by

(8.§)(b) S = Xpy1 T Xy s Y = vf(xk+l) - Vf(xk) .

Theorem 8.1: Assume that £:R" + R is the positive definite quad-

ratic functional (8.3) and that H, € L(R") is symmetric and positive

0

definite. For any given x. € R®, let {xk} be generated by (8.1)

0
where Ak' Hk satisfy (8.4) and (8.6), respectively, and ¢k may

depend on Sir Yy and H,. If ¢k > 0 then there is an integer

k
0 <2 <n such that X, = A—lb and if 2 = n then Hn = A-l.
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A typical proof of Theorem 8.1 proceeds by induction to show

that the directions s are A=-conjugate in the sense that

k
<si’Asj? = 0 ? i > j ’

and that also

Hiy; = sy, 1>73.

This was the argument used by Broyden (1967); it shows that X 41
minimizes £ in the hyperplane 'xo + L where L is the linear
span of so,...,sk. Broyden (1971b) and Powell (1972b,1973) have
extended and refined Theorem 8.l1l; in particular, Powell (1972b)
shows that A]'/ZFIkAl/2 has at least k unit eigenvalues. However,
in all these results finite termination depends on choosing Ak

by (8.4). Also note that if
b, = — k'K
ko <sy = By

then (8.6) (a) reduces to the symmetric rank one formula (7.6) but

Theorems 7.1 and 8.1 are not comparable.
In a certain sense, Theorem 8.1 generalizes to nonlinear

functionals. The relevant result is due to Powell (1971,1972a).

Theorem 8.2: Let £R® + R be twice continuously differentiable

and convex on R" and assume that for a given X e R® the level
set L(xo) is bounded. Suppose that {xk} is generated by (8.1)
and that Ak’ Hk are chosen by an exact line search and the DFP
update, respectively. Then for any symmetric, positive definite

H, € L(R™) and € > 0 there is an index k such that ]]Vf(xk)ll < g,

It is possible to show that if kk is chosen by an exact line

' search, then the conclusion of Theorem 6.3 still holds; that is,
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lim <9f (%), > =0,
Korbo kTR T

where p; = -Hka(xk)' Therefore, an obvious but so far unsuccessful
approach to proving Theorem 8.2 would be to show that some éub-
sequence of {Hk} has uniformly bounded condition numbers. Instead,
the proof consists of assuming that l!vf(xk)]| > £ holds for all

k > 0, and then reaching a contradiction. Moreover, the techniques
used in arriving at this contradiction depend very heavily on the
use of exact line searches.

It would be very interesting to show that Theorem 8.2 still
holds if the convexity assumption is relaxed or the choice of A
is more realistic. 1In doing this( the choice of Ak should guar-
antee that the matrices H remain positive definite. A choice
of Ak which satisfies this requirement is given in Theorem 6.3

since in this caée
<ykpsk> 2 lk(B = l)<Vf(Xklpk> > 0.

Note that exact line searches also satisfy this requirement.
That Theorem 8.2 extends to other methods in the Broyden
class (8.5) follows from the following remarkable result of Dixon

(1972a).

Theorem 8.3: Let £:R™ + R be differentiable on Rn, and assume. that

for a given X € R® the level set L(xo) is bounded. Given a
symmetric positive definite H, € L(R") suppose that {xk} is generated
by (8.1) where Ak’ Hk are chosen according to (8.2) and (8.6),
respectively. If ¢, > 0 then the sequence {xk} is independent

of {¢k}.
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Dixon's result is actually more general than Theorem 8.3
since it allows negative wvalues of ¢k. However, the above formu-
lation suffices for our purposes, and moreover, the more general
formulation requires additional assumptions 55 {Hk}.

All the results presented so far on the convergence of rank-
two quasi-Newton methods depend on exact line searches. Moreover,
none of these results give any indication of how to choose ¢k € [0,=)
when exact searcheé are not used. The following result of Fletcher
(1970) shows that for quadratic functionals the updates with
¢k € [0,1] have a very desirable property which does not depend on

exact line searches.

Theorem 8.4: Assume that £f:R" -+ R is the positive definite quadratic

functional (8.3) and that H0 e L(Rn) is symmetric and positive
definite. ILet {Sk} be any sequence of nonzero vectors, let {Hk}

be generated by (8.6) (a) with Yy = As, , and let Ai(k) sy 1= 1,00.,n

1/2

k

be the eigenvalues of Al/szA . If ¢k € [0,1] theq

(k) (k+1)

min{A, "',1} < A, < max{Ai(k){l} .

Since Fletcher (1970) showed that Theorem 8.4 fails if
@kaﬁ [0,1]), this result indicates that the most reasonable updates
in Broyden's class (8.5) aeorrespond to ¢ € [0,1]. In fact,
numerical results of Dixon (1972b) suggest that ¢ =1 is to be
preferred. Of course, Theorem 8.4 does not say anything about the
PSB update since it is not of the form (8.5).

As noted by Fletcher (1970), Theorem 8.4 implies that the

sequence Hk has uniformly bounded condition numbers and therefore

it can be used to give a global convergence result for strictly
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convex quadratic functionals without exact line searches (for example
if )k is chosen according to Theorem 6.3 with b = -HﬁVf(xk)).

This result indicates that Theorem 8.2 might hold with a more
realistic line search.

We have surveyed the global convergence results for rank-two
quasi-Newton methods; since the analysis of the asymptotic rate of
convergence is of major importanée, we now investigate this topic
as well as the local convergence properties of the BFGS dnd DFP
methods.

For the local convergence of these updates we show how to
choose a norm so that (4.2) and (4.7) hold, respectively. First

consider the DFP method and recall that B and B are related

DFP
by (7.18). It follows that for any symmetric A and B in L(Rp)

(8.7) Bopp = A =P (B=- AP+ [(y - As)y” +y(y - As)"Pl/cy,s
where
T
=1 - S¥Y _
(8.8) P=1- 2t
A similar relationship holds between H and EBFGS for the BFGS

update. In this case ﬁBFGS and H are related by (7.25) so
that if A and H are symmetric, and A is nonsingular, then

= -1

-1,..T
(8.9) Hopas™ A .

= P(H~A )P + [(s—A-ly)sT + s(s-A-ly)TPT]/<y,s>

where P 1is again defined by (8.8). 1In order to show that (8.7)
satisfies (4.2), and (8.9) satisfies (4.7), we need the following
result of Broyden (1970).

Lemma 8.5: If Q € L(Rn) is defined by

T
(8.10)  Q=1I- 1o

with u, v in R® and <u,v> ¥ 0, then
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larl, = Ll lvl

|<urV>|
Proof: The most straightforward way to verify this result is to

recall that IlQllg is the largest eigenvalue of 9’Q and to cal-

culate the eigenvalues of QTQ with Iemma 7.6.

Lemma 8.5 shows that l|P|I2 is the secant of the angle between
y and s , and since y and s are not in general parailel,
'||P||2 may be arbitrarily large. Therefore the £&,-norm does not
seem to be suitable for estimating (8.7) or (8.9). However, near

1/2 1724

x* we do have that A y and A are nearly parallel if

A =‘vzf(x*) and this suggests the use of a weighted norm. For
- the DFP method an appropriate norm is defined by

(8.11) = ||A-l/2EA—I/2

18] | pep g -

Then Lemma 8.5 and (l.2) impiy that

T 1/2..-1/22 -1
18.12) | [pT(m-2)p|| o, < 12228721 2 B-a] | oy = Lol B2
W
where
(8.13) w = <Y.S2 7 = <a”172y,al/%>
. ~1/2 <172 12
Ha 21| [1aM%s]] (1272 1212
Similar estimates of the other terms in (8.7) yield
@.an  ramasR 1 [[aTt%y - al/%)
<y,s> DFP _— wz ||Al/2 ll
(y-2s)yT 1 |[aTt2y o al/2g)
(8.15) Ii":ﬁ?j;;‘ll < 173
! DFP w | |A~" “s] |

Now place (8.12), (8.14) and (8.1l5) together to obtain

« X jpa)| o+ 2 LATM2y - alZ5))
DFP - (.u2 DFP w2 llAl/Zsll *

(8.16) | 1B Al

DFP

An analogous relationship holds for the BFGS update in this case

the appropriate norm is defined by
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_ lIAl/ZEAl/2

(8.17) B Igpas =

IIF"

and it is not difficult to verify that the analogue of (8.16) is

: 1/2 -1/2
= -1 1 -1 2_|[a"%s-n /%]
(8.18) IIHBFGS-A IIBFGS = :?llH-A IIBFGS+ :F ||A-l/2yl| )

As noted in Section 7, an interpretation of (8.18) is that if
A = 9%f(x) is positive definite and ||s|| is small, then the relative
error of EBFGS as an approximation to vzf(x).l is not too much
larger than the relative error ofl H as an approximation to vzf(x)_l.
Furthermore, the possible growth in this relative error is deter-~
mined by how much f differs on the points x and x from the
quadratic whose Hessian is A . This difference is measured in two

ways but both have to do with how well A—l/zy' is approximated by

A1/2

s ; there is an additive term which is the relative error in
this approximation and a multiplicative term which is the square

of the secant of the angle between these two vectors. Of course,
we easily see that the additive term does not exceed the product

of the square root of the condition number of A and the relative
error in the approximation of y by As . An analogous discussion
holds for (8.16).

Another consequence of (8.16), (8.18) is the local convergence

of the DFP and BFGS methods as given by Broyden, Dennis and Moré (1973).

Theorem 8.6: Let £:R” + R be twice continuously differentiable in

an open convex set D , and assume that vf(x*) = 0 and 'vzf(x*)

is positive definite for some x* in D . Suppose, in addition, that
2 2 * *
(8.19) | lv“E(x) - ¢“f(x*) || < k||x=x*|| , x € D,

and consider the DFP and BFGS methods as defined by (8.1l) with }k

i
.—J
.

Then the DFP and BFGS methods are locally and superlinearly conver-

gent at x¥*,.
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Proof: To prove that these methods are locally and linearly con=-
vérgent at x* , we only need to show that (4.2) and (4.7) are
satisfied when DM is the set of all symmetric matrices and F = Vf.
For the DFP method, first note that (8.13) with A = T°£(x*) and

Iemmas 3.2 and 3.3 imply that

2
2 < [ullly -v f(x*)SH]z

l-w a

< [uco (x,5)1°

l[ . Thus if

where o (x,x) is defined by (4.3) and u = [[vzf(x*)-

x and X lie in a neighborhood Ny of x* such that 0o(x,Xx) < (21.u<)_l

then wz > 1/2 . 1In particular,

(8.20) 1 l-w -
=1+-—2—<1+K110(XX-)=-
;7 w - ' !

Therefore (8.16) with A = sz(x*) and Lemma 3.2 imply that (5.2)
holds with a; = KU and 'az = 4cp and where |]|+|| is the matrix
norm defined by k8.ll). This proves the local convergence of the
DFP method. For the BFGS first let & be a positive lower bound
for the eigenvalues of vzf(x) in a neighborhood N2 of x* so that
llyll > €|ls]| provided x and x 1lie in N, .
‘sz(x*)-l, (8.20) and Lemma 3.3 imply that (5.7)

If NZC Nl then

(8.18) with A

holds with = xu and @, = 4(up)l/2K/s. Here p = llvzf(x*)ll

*1
and ||+|{| is the norm defined by (8.17).

To prove that the DFP and BFGS methods are superliﬁearly con-
vergent is more difficuit and requires careful estimation of the
and | |pE-a"1)pT|

terms IlPT(B-A)PII respectively. These

DFP BFGS
estimates were obtained by Broyden, Dennis and Moré (1973) and then
used by Dennis and Moré (1974) to prove superlinear convergence for

various choices of Ak in {8.1).
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Theorem 8.7: Let £:R" - R satisfy the assumptions of Theorem 8.6,

and suppose that {xk} is a sequence in D such that

(8.21) P % = x*[| < 4=
k=0
If the sequence {H,} is defined by (8.6) with either ¢ = 0 or
’¢k £ 1 and <Yy r Sy is positive for k > 0 , then for any symmetric
positive definite HO in L(Rn) the matrices Hk are well-defined

and positive definite with uniformly bounded condition numbers.
-1

Moreover, if Bk = Hk then
]I -sz(x*)]s ||
(8.22) lim %k e LS
koo k

Since <y ,s;> is positive for k > 0, Theorems 7.7 and 7.8
imply that in either case He is well-defined and positive definite.
The remainder of the proof is somewhat long, so we only outline it.
First it is shown that {IIBkII} is-bounded and (8.22) holds for the
DFP method. A similar argument for BFGS shows that {[[H ||} is

‘bounded and instead of (8.22),
|18, - <%£ 0 My, ||
(8.23) lim =
Lim Al

However, if {IIBkII} is bounded then

2 o L ono2 -1 L o2 - -1,
(B = v E(x*)]s, = [I - Bw £(x*) T1(yy - T2E(x*)sy) + B [B~Pf (x*) "Ly,
shows that (8.23) implies (8.22). Hence, the final step in the
proof consists of using the techniques of Powell (1971, pages 31-32)
to prove that {IIBkII} and {][Hk[[} are bounded for the BFGS and

DFP methods respectively.

Dennis and More (1974) elaborate on Theorem 8.7 and give

examples which show that (8.24) does not necessarily imply that
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{Bk} converges to sz(x*). Also note that Theorem 8.7 implies that
the DFP and BFGS methods of Theorem 8.6 are superlinearly convergent.

This is also a consequence of the following more general result.

Theorem 8.8: Let £:R® » R satisfy the assumptions of Theorem 8.6

and consider the DFP and BFGS methods as defined by (8.1) with Ak
determined by any strategy such that (8.22) implies that {Ak}
converges to unity. If the segquence {xk} generated by the DFP
and BFGS method satisfies (8.21) then {xk} converges superlinearly

to x* .,

Proof: Theorem 3.1 implies that {xk} converges superlinearly to

x* if _

1n "t - o?sx*)1s, ||
g8. 24) lim M B’I‘ls . kK =9
koo k

On the other hané, Theorem 8.8 and our assumptions éhow that (8.22)
holds and hence {lk} converges to unity. Thus (8.24) also holds
‘and hence {xk} conﬁerges superlinearly to x*.

The remark at the end of Section 5 shows that assumption (8.21)
is not needed if (xo,HO) is sufficiently close to (x*,vzf(x*)-l).
In a similar vein, it would be interesting to prove Théofem 8.8
assuming only that {xk} converges to x* instead of (8.21). However,
as it stands Theorem 8.8 shows that either the DFP and BFGS methods

éonverge superlinearly or they converge sublinearly in the sense that

lim sup lek - x*lll/k =1 .
k= 4=

In practice, sublinear convergence is essentially equivalent to
non-convergence, so Theorem 8.8.covers all the computationally

interesting cases.
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As pointed out in Section 3, condition (8.22) is equivalent
to requiring the vectors P = -Bk-lvf(xk) to approach the Newton
step in both direction and length, so most algorithms for finding
Ak satisfy the assumptions of Theorem 8.8. For example, Theorem 6.4
shows that the strategy of Theorem 6.3 satisfies Theorem 8.8 while
Dennis and Moré (1974) have shown that this is also the case for
.exact .line searches. This indicates thaﬁ the bFP method with
.:exact line searches may be superlinearly convergent; in fact,

more is known.

Theorem 8.9: Let f:R® - R and X, satisfy the assumptions of

Theorem §.2 and let'{xk} be generated by the DFP method with perfect
line searches. If {xk} converges to a point x* at which<v2f(x*)
is positive definite and (8.19) holds, then vf(x*) = 0 and {xk}
converges superlinearly to x* . In addition there is an n > 0

such that
(8-25)  lxmen = x*[ <nllx - x*[[* , k20

That {xk} conwverges superlinearly to x* is due to Powell
(1971), but (8.25) -- which is known as n-step quadratic convergence --
is due to Burmeister (1973). The proofs'of these two results are
completely different; Burmeister's proof depends on the finite
termination property of DFP while, as pointed out by Dennis and Moré
(1974), Powell's result can be proved by showing that (8.21) holds
and then applying Theorem 8.8. It should also be appreciated that
a sequence may converge n-step quadratically but not be superlinearly
convergent ahd conversely. However, n-step quadratic convergence
does imply that

lim| [x, - x*lll/k =
k>
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and thus {xk} is R-superlinearly convergent in the terminology
of Ortega and Rheinboldt (1970); Q-superlinear convergence corres-

ponds to the notion used in this paper.

Theorem 8.10: Let f£:R” + R be the strictly convex quadratic func-

1 the DFP and BFGS methods converge
1

tional (8.3). Then for Ak

globally and superlinearly to A “b.

Proof: It is clear that the iterations are well defined. To prove
the result for the DFP method note that since y=As,equation (8.7)

implies that

- - _ T ,=1/2 -1/2
(8.26) | 1Bppp=2llppp = 1107127 “ (B a)a 10l g
where z = Al/zs and
T
_ zZZz
Q-I-_<z’z> .

However, in the éroof of Theorem 5.2 we showed that for any

E € L(R®) and z € R* ,

llEellp < IEN, - <z||E|1F>'1<JT’J.(E?zTL,L)2 :

Thus, if we let n, = ]|Bk - A||DFP » and use (1.2) and the above

estimate in (8.26) then

2,-1 2
N1 S [ - (2n) T Ing

where
|1a l/erk - A)s

. ol
k HAl/zs

Nl
It is now clear that {nk} is monotone decreasing and hence convergent.

If n is an upper bound for {nk} then

-1 2
(271) ll’k _<_ ﬂk - ﬂk+l ’



-70=-

and since {n,} is converging it follows that {y.} tends to zero.
k k

Consequently,
II(Bk - A)sk||= 0

(8.27) lim

koo

o
Moreover,
Alx .y = x*) = 9E(x 1) = 9E(x) + As, = (A - By)s,

implies that

llxk+l - x*|| < IIA.lll Il(Bk = A)Skll
Ts 11T = TS, 11 '
and thus (8.27) shows that {xk} converges superlinearly to x* .

For the BFGS method similar calculations with (8.9) yield

l1m. - a~l1y, ||
(8.28) 1im x k= -

Moreover, Theorem 8.4 shows that {[[B, ||} is bounded.. Thus, as
noted after Theorem 8.7, (8.28) implies that (8.27) holds and now
the proof is completed as before. .

Theorem 8.10 seems to be just a curiosity since if Ak is
chosen by an exact line search, then convergence will take place
in at most n steps. However, it does give an indication of the
stability of the DFP and BFGS updates without exact line searches;

We have now finished our study of the asymptotic hehavior of

the DFP and BFGS methods. It is also possible to study the PSB up-
| date, but since it does not generate positive definite matrices,
results like Theorem 8.8 have to be modified for the PSB update.

The PSB update is not generally used in a descent implementa-
tion, but Powell (1970c, 1970d) has described and analyzed a quite

competitive algorithm which uses the PSB algorithm in a hybrid
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implementation, and has shown that if certain "special iterations"
are taken then the algorithm converges globally and superlinearly.
These special iterations guarantee that the directions used by the
PSB update are uniformly linearly independent and therefore, that
the sequence {Bk} generated by the PSB update converges to the
Jacobian evaluated at the solution -- for a discussion of the
concept of uniform linear independence and its relationship to the
Broyden and PSB update see Moré and Trangenstein (1974). Powell
(1974) later proved that in theory the algorithm converged globally
and superlinearly even if these special iterations are not used.
In practice however they cannot be taken away from the algorithm,
without ; significant loss in efficienCy.

The above results of Powell deserve further investigation.
In fact, the whole question of how to globalize an algorithm is

very important and represents an open field of research.

In its simplest form the PSB method is given by

(8.29)  x,; = % - B wflx)

where {Bk} is generated by
T n
(Yp=Bysi ) sy ™ + S () =Bysy )™ <yy =By Sy ,8,> T

(8.30) B = B, + e S.5.

k+1 k

S ‘2 k
<S 1S, ?

and as usual
(8.31) v, =vE(x ) - 9E(x ), s T ox ., - ox .

Note that since the matrices {Bk} are not necessarily positive

definite it is not possible to carry out the above iteration by
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updating an LDLT decomposition of Bk—.A Td avoi& O(n3) operations
per step it is usual to generéte B, = Bk-l. An alternative would
be to update a factorization of the form QTQT , where Q is ortho-
gonal and T is tridiagonal, but this approach has not been
invéstigated.

The following result of Broyden, Dennis and More (1973) covers

the above iteration.

Theorem 8.11: Let f:R" - R satisfy the assumptions of Theorem 8.6

except that now sz(x*) is not required to be positive definite,
and consider the PSB method as defined by (8.29), (8.30) and (8.31).

Then the PSB method is locally and superlinearly convergent.

Since the proof of this result is so similar to that of Theorem
4.2 we omit it. - It is also worthwhile noting that the remarks made
about Broyden's method after Theorem 4.2 apply, with obvious modi-
fications, to the PSB method, and that Dennis (1971, 1972) has
given kantorovich theorems for the Broyden and PSB methods.

To conclude this section we point out that the PSB method, if
properly modified, is globally énd superlinearly convergent for
the quadratic functional (8.3) if A 1is any nonsingular, symmetric
matrix. It is only necessary to modify Bk+l so that it is non-

singular. For example, if instead of (8.30) we define
T T
(yk-Bksk)sk-+ sk(yk Bksk) 2<yk-Bksk,sk> s T

(8.32) B =B + 8 -0 x5k
+1
koE <Sp Sy 8 <Syp 1Sy 2

and Bk is nonsingular then it is possible to choose © SO that

k
(8.33) B4 1s nonsingular, lek - 1] < 8 for some 8 e (0,1).

Moré and Trangenstein (1974) elaborate on how this can be done,

and also prove the following result.
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Theorem 8.12: Let £:R™> R be given by (8.3) where A € L(R™) is

any nonsingular, symmetric matrix and consider the PSB method (8.29)
where {Bk} is generated by (8.32),(8.31) and & satisfies (8.33).

Then the PSB method is globally and superlinearly convergent to A-lb.

Moré and Trangenstein (1974) also point out that Theorem 8.11
holds if the PSB method (8.29) is defined by (8.32), (8.31) and ek
satisfies (8.33).

9. CONCLUDING REMARKS

We have tried to write this survey in such a way that the
important problems suggest themselves, so instead of ending with
remarks about directions for future research, we end with an
admission of certain omissions. |

Although we have indicated several approaches to the computation
of the updates, all these approaches are based on an additive
correction of rank at most two. Other approaches are possible;
Brodlie, Gourlay and Greenstadt (1973) discuss multiplicative

corrections so that their direct updates are of the form
B= (I + uvT)B(I + vuT) ’

and show that the DFP and BFGS can be written in this factored form.
We have not mentioned any particular implementations because
there are a number of very promisihg algorithms now being tested
and such remarks would likely be out of date before their publication.
See, however, the paper of Fletcher (1972), which discusses several
of the currently available algorithms.
Finally, we apologize for the omission of several excellent

papers which only deal with quasi-Newton methods as applied to
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strictly convex quadratic functionals. In particular, the paper
of Huang (1970) introduces a class of updates which has-many of the
properties of the Broyden class. We have restricted our attention
to the Broyden class since it is that subclass of the Huang class

which satisfies the quasi-Newton equation and has the hereditary

symmetry property.
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