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QUASI-NILPOTENT SETS IN SEMIGROUPS

H. L. CHOW

ABSTRACT. In a compact semigroup S with zero 0, a subset 4 of S
is called quasi-nilpotent if the closed semigroup generated by A contains
0. A probability measure 1 on S is called nilpotent if the sequence (1)
converges to the Dirac measure at 0. It is shown that a probability measure
is nilpotent if and only if its support is quasi-nilpotent. Consequently, the
set of all nilpotent measures on S is convex and everywhere dense in the

set of all probability measures on S and the union of their supports is S.

In a topological semigroup with zero 0, an element x is termed nilpo-
tent if x”— 0 as n— o [5]. This definition has an obvious extension to
subsets of the semigroup, i.e. a subset A is nilpotent if A” =50 as n— o,
Now we call a subset B of the semigroup quasi-nilpotent if the closed semi-
group generated by B contains the zero 0. It is shown that, when the topo-
logical semigroup is compact, a singleton is nilpotent if and only if quasi-
nilpotent. Then we investigate the set of probability measures on a compact
semigroup and characterize a nilpotent probability measure as a measure
with quasi-nilpotent support.

Let S be a topological semigroup with zero 0, and A a subset of §.
Let S(A) denote the semigroup generated by A4, i.e. S(A) = U:=1A". It is
trivial that any subset containing 0 is quasi-nilpotent; in particular, the
set N(S) of nilpotent elements of S is quasi-nilpotent. From the semigroup
S given in Example 6 below, in which N(S) = [0, 1) and N(S5)” = N(S) for
all n [4, p. 56], we see that N(S) is not nilpotent.

Theorem 1. Let A be a subset of S. Then (i) If SCAYNN(S) £ & (where
the bar denotes closure), then A is quasi-nilpotent.

(ii) If A™ is quasi-nilpotent for some n, then A itself is quasi-nilpotent.

Proof. (i) Take a € S(A) \N(S). In view of the fact that a”— 0, we
have 0 € 3?(-A_), i.e. A is quasi-nilpotent.

(ii) Since S(A™ CS(A) and 0 € S(A™), it follows that 0 € S(A), and
the theorem is proved.

We remark that, if A” is nilpotent for some n, then A is also nilpotent,

by a similar argument to that given in the proof of Lemma 2.1.4 of [4].
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Evidently a nilpotent set is quasi-nilpotent. As for the converse, which

may not be true in general, we prove a special case in

Theorem 2. Suppose S is a compact semigroup with 0. Then x €S is

nilpotent if and only if quasi-nilpotent.

Proof. It is enough to show that x is nilpotent if it is quasi-nilpotent.

Recall that the minimal ideal K(S—(x-j) of the compact semigroup S(x) con-
tains exactly all cluster points of the sequence (x"):;l (see, for example,
[4, Theorem 3.1.1]). Now K(S(x)) = {0} since 0 € Tx) Thus the sequence
(x") has a unique cluster point, whence x” — 0 as n — oo, completing the proof.
Remark. The preceding theorem does not hold for a compact semitopolog-
ical semigroup (i.e. the multiplication is only separately continuous). For
instance, take the compact monothetic semigroup Sw(,u) generated by u,
with p defined in Example 2 of [1]; then the semigroup has zero 0 and iden-

172 !
"/2,0 and 4"' > 1. Asa consequence, the element u

tity 1 such that «
is quasi-nilpotent but not nilpotent.

In what follows § will be a compact semigroup with zero 0. Denote by
P(S) the set of probability measures (i.e. normalized positive regular Borel

measures) on S. For pu, v € P(S), define convolution pv € P(S) by

ff(z) du(z) = ff f(xy) du(x) dvly)

for all continuous functions f on S, so that P(S) forms a semigroup. If P(S)
is endowed with the weak™ topology, i.e. a net () in P(S) converges to
p € P(S) if [{(x)dp x)— [f(x)du(x) for continuous functions [ on §, then
P(S) is a compact semigroup [3].

The support of u € P(S), supp p, is the smallest closed set with p-mass
1. It is well known [3, Lemma 2.1] that, for p, v € P(S), supp (u) = (supp p)
- (supp v).

Let T be a subset of P(S) and define its support as the set supp 1" =
W. It is easy to see that supp(I';T',) = (supp I )(supp I',) for
T, CP(S), T, CPOS)

Lemma 3. Let I' C P(S). Then supp S(I') = supp S(I') = S(supp ).

Proof. That supp S = supp S(I') follows from a result in [3, p. 55].
We assert that supp S(I') = S(supp I'). Since S(IN)DTI7” for n=1, 2,...,
clearly supp S(I) D supp I'” = (supp I')” and so supp S(I') O S(supp I).
Whence supp S(I') D S(supp I'). On ‘the other hand, take any p € S(I'). Then
p € I'™ for some m, implying that supp p C supp [ = (supp I')* C S(supp I') C
S(supp I). This gives supp S(I') C S(supp 1), and the result follows.

Since the Dirac measure 6 at 0 is a zero in P(S), we can now consid-
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Theorem 4. A subset I' C P(S) is quasi-nilpotent if and only if supp T

is quasi-nilpotent in S.

Proof. Suppose first that I' is quasi-nilpotent, i.e. 6 ¢ s(). By virtue
of Lemma 3, we have 0 € S(sTpp—rs i.e. supp I' is quasi-nilpotent. Con-
versely, suppose supp I is quasi-nilpotent in S. This means that 0 €
S(supp I) and therefore {0} is the minimal ideal K(S(supp I)) of the semi-
group m Now consider the minimal ideal K(S(I)) of the compact
semigroup (M) [6, Theorem 2]. Since supp K(S(MD) = K(supp s)) (see,
for example, [2, Theorem 5(2)]) and supp S(I') = S(supp I') by Lemma 3, we
have {0} = supp K(SM)), giving that K(S()) = {6}. Accordingly 6 es),

and the theorem is proved.

By Theorems 2 and 4, we immediately obtain

Theorem 5. A measure p € P(S) is nilpotent if and only if supp p is

quasi-nilpotent in S.

Example 6. The result in Theorem 5 is best possible in the sense that
the support of a nilpotent measure in P(S) need not be a nilpotent subset of
S. Take the semigroup S = [0, 1] with the usual topology and the ordinary
multiplication. Let p be the restriction to S of the Lebesgue measure on
the real line. Since supp p =S is quasi-nilpotent, it follows that yu is nil-
potent. However, supp y is not nilpotent since (supp p)” = supp w==_ for all n.

Note that Theorem 5 is not true for the compact semitopological semi-
group Sw(l.l.) considered in the Remark above. Obviously the Dirac measure
&(u) at u is not nilpotent while supp 8(z) is quasi-nilpotent in S,

Applying Theorem 5, we obtain the following results about the set
N(P(S)) of nilpotent elements in P(S). First we have a sufficient condition

for a probability measure to be nilpotent.
Theorem 7. Let p € P(S). If supp uNN(S) £ &, then p € N(P(S)).

Proof. Since S(supp p) N N(S) D supp u NN(S) £ &, we see that the set
supp p is quasi-nilpotent in § by Theorem 1 (i). Whence p is nilpotent.

Example 8. The converse of Theorem 7 may not hold. For instance,
take the semigroup § with the following multiplication table:

|0 a b ¢
0]0 0 0 O
al 0 0 « O
b10 0 5 O
cl 0 a a ¢

LiceI‘sbga)pm@rﬂﬁ%H%pdv}Iﬁer}égégﬁ)seé‘h@g@\)/)/v.ﬁlﬁgﬁlﬁngl)()rmsiﬂ&e 0 € SU.PP #2. However,
supp p NN(S) = {b, c}N{0, a} = &.
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Corollary 9, (i) N(P(S)) is a noncountable set.
(ii) Ulsupp p: p e N(P())} = S.

Proof. (i) Take any measure p # 0 and real number 0 <¢ <1, Then
the measure tp + (1 = £)0 is nilpotent since 0 € supp (tp + (1= 1)8) NN(S).
Hence the set N(P(S)) D {tp + (1 - £)6: 0 <¢ <1} and so is noncountable.

(ii) Let a € S. Since 0 € supp %(8(a) + ) NN(S), it follows that
74(8(a) + 0) € N(P(S)). That a € supp %(8(a) + 6) gives the result.

A semigroup with zero is said to be nil if each element is nilpotent.
Theorem 10. P(S) is nil if and only if S is nil.

Proof. The “‘if”’ part follows from the fact that, for p € P(S), supp p
NN(S) = supp p # &. To prove the “‘only if’’ part, take a € S and note

that &(a) is nilpotent in P(S). So a is nilpotent in S and the proof is com-

plete.

Lemma 11. Let p, v € P(S). If p € N(P(S)) and supp p C supp v, then
v e N(P(S).

Proof. This is immediate since 0 € S(supp p) C S(supp v).

Theorem 12. (i) N(P(S)) is a convex set and hence connected.
(i1) N(P(S)) = P(S).

Proof. (i) Take p, v € N(P(S)). For real number 0 <t <1, the.measure
tu+ (1 = v e N(P(S)) since

supp (tpp + (1 = £)v) = supp p U supp v D supp p.

Thus N(P(S)) is convex.

(ii) Let 7 € P(S). Clearly 0/n + (n = 1)r/n € N(P(S)) for any positive
integer n. As the sequence (6/n + (n — 1)7/n)”_, converges to 1, we see
that N(P(S)) is dense in P(S).

Corollary 13. Let W be a subset of P(S). If WD N(P(S)), then W is

a connected set.

Proof. This follows simply from the previous theorem.

For any p € P(S), it is a well-known fact that the sequence
(e + et ;L")/n):ozl must converge to a measure L(p) € P(S) such that
supp L(y) is the minimal ideal of the semigroup S(supp p); see [7] or [8].

Theorem 14, The measure p € P(S) is nilpotent if and only if L(p) = 6.

Proof, In view of the fact that Lﬁ{‘) = 0 if and only if S(supp p) con-
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tains 0, we apply Theorem 5 to conclude the proof.
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