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QUASI-NILPOTENT SETS IN SEMIGROUPS

H. L. CHOW

ABSTRACT.   In a compact semigroup S with zero 0, a subset  A   of S

is called quasi-nilpotent if the closed semigroup generated by  A   contains

0.  A probability measure  p on  S  is called nilpotent if the sequence  (p.")

converges to the Dirac measure at  0.  It is shown that a probability measure

is nilpotent if and only if its support is quasi-nilpotent.  Consequently, the

set of all nilpotent measures on S  is convex and everywhere dense in the

set of all probability measures on  S  and the union of their supports is  S.

In a topological semigroup with zero   0, an element x is termed nilpo-

tent if xn—>0  as  n—► oo [5].  This definition has an obvious extension to

subsets of the semigroup, i.e. a subset  A is nilpotent if A"—>0  as  n—>oo.

Now we call a subset  B  of the semigroup quasi-nilpotent if the closed semi-

group generated by  B  contains the zero 0. It is shown that, when the topo-

logical semigroup is compact, a singleton is nilpotent if and only if quasi-

nilpotent.  Then we investigate the set of probability measures on a compact

semigroup and characterize a nilpotent probability measure as a measure

with quasi-nilpotent support.

Let S be a topological semigroup with zero 0, and A a subset of S.

Let S(A) denote the semigroup generated by A, i.e. SiA) = {J°°_iAn.  It is

trivial that any subset containing 0  is quasi-nilpotent; in particular, the

set  zV(5) of nilpotent elements of  S is quasi-nilpotent.   From the semigroup

S given in Example 6 below, in which  NiS) = [0, 1) and  N(S)n = N(5)  for

all   n [4, p. 56], we see that  NiS) is not nilpotent.

Theorem 1.  Let A  be a subset of S.   Then (i)  // 5(A) nN(5) 4 0 iwhere

the bar denotes closure), then  A  is quasi-nilpotent.

(ii)  // A"   z's quasi-nilpotent for some n, then A itself is quasi-nilpotent.

Proof, (i) Take a e 5(A) nN(5). In view of the fact that a"—» 0, we

have 0 e SiA), i.e.  A  is quasi-nilpotent.

(ii) Since SiAn) C SiA) and 0 e SiA"), it follows that 0 e SiA), and

the theorem is proved.

We remark that, if A"  is nilpotent for some n, then  A is also nilpotent,

by a similar argument to that given in the proof of Lemma 2.1.4 of [4].
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Evidently a nilpotent set is quasi-nilpotent. As for the converse, which

may not be true in general, we prove a special case in

Theorem 2. Suppose S is a compact semigroup with 0. Then x £ S is

nilpotent ij and only if quasi-nilpotent.

Proof. It is enough to show that x is nilpotent if it is quasi-nilpotent.

Recall that the minimal ideal  K(S(x)) of the compact semigroup  S(x) con-

tains exactly all cluster points of the sequence (xn)   _,  (see, for example,

[4, Theorem 3.1.1]). Now K(S(x)) = {0\ since 0 e S(x).  Thus the sequence

(x  ) has a unique cluster point, whence x"—>0 as n—>oo, completing the proof.

Remark.  The preceding theorem does not hold for a compact semitopolog-

ical semigroup (i.e. the multiplication is only separately continuous).  For

instance, take the compact monothetic semigroup  5   (p) generated by u,

with p defined in Example 2 of [l]; then the semigroup has zero 0  and iden-

tity   1   such that  u"'     —» 0  and  u" —»1.  As a consequence, the element  u

is quasi-nilpotent but not nilpotent.

In what follows 5 will be a compact semigroup with zero 0„ Denote by

P(S) the set of probability measures (i.e. normalized positive regular Borel

measures) on  S.   For p, v £ P(S), define convolution  pv  £ P(S) by

jf(z) dpv(z) = ff f(xy) dp(x) dv(y)

for all continuous functions / on S, so that P(S) forms a semigroup. If P(S)

is endowed with the weak     topology, i.e. a net  (pj in  P(S) converges to

p £ P(S) if ff(x)dplS\x)—>Jf(x)dp(x)  for continuous functions  / on  S, then

P(S) is a compact semigroup [3].

The support of p £ P(S), supp p., is the smallest closed set with fi-mass

1. It is well known [3, Lemma 2.1] that, for p, v £ P(S), supp (pv) = (supp p)

• (supp v).

Let T be a subset of P(S) and define its support as the set supp I =

M     rsupp p. It is easy to see that  supp^jT-) = (supp TjXsupp T2)  for

r1cp(S), r2cp(5).

Lemma 3. Let T C P(S).   Then supp S(Y) = supp S(V) = S(supp T).

Proof. That supp S(F) = supp S(T) follows from a result in [3, p. 55].

We assert that supp S(V) = S(supp T). Since S(T) D T"  tot n = 1, 2,.. .,

clearly  supp  S(Y) 3 suppT" = (supp D"  and so  supp S(V) 3 S(supp T).

Whence  supp S(V) 3 S(supp D.  On the other hand, take any p £ S(T).   Then

p £ Tn  tot some  n, implying that  supp p C supp V" = (supp D" C S(supp T) C

S(supp r).  This gives  supp S(T) C S(supp FT, and the result follows.

Since the Dirac measure 6 at 0 is a zero in P(S), we can now consid-

er quasi-nilpotent sets in  P(S).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUASI-NILPOTENT SETS IN SEMIGROUPS 395

Theorem 4.  A subset Y C PiS) is quasi-nilpotent if and only if supp Y

is quasi-nilpotent in  5.

Proof.  Suppose first that  Y is quasi-nilpotent, i.e.  6 £ SiY).   By virtue

of Lemma 3, we have 0 £ 5(supp Y) i.e.   supp  T is quasi-nilpotent.  Con-

versely, suppose  supp  r is quasi-nilpotent in  5.  This means that 0 £

5(supp D and therefore  iOj is the minimal ideal  K(5(supp Y)) of the semi-

group 5(supp Y). Now consider the minimal ideal  K(5(T)) of the compact

semigroup 5(r) [6, Theorem 2]. Since  supp K(5(D) = K(supp 5(r)) (see,

for example, [2, Theorem 5(2)]) and supp 5(F) = 5(supp Y) by Lemma 3, we

have iOj = supp K(5(D), giving that K(sTY)) = {6>S.  Accordingly d e S(f),

and the theorem is proved.

By Theorems 2 and 4, we immediately obtain

Theorem 5.  A measure p £ PiS)  is nilpotent if and only if supp p is

quasi-nilpotent in 5.

Example 6.  The result in Theorem 5 is best possible in the sense that

the support of a nilpotent measure in P(5) need not be a nilpotent subset of

5.  Take the semigroup 5 = [0, l] with the usual topology and the ordinary

multiplication. Let p be the restriction to 5 of the Lebesgue measure on

the real line.  Since supp p. = S is quasi-nilpotent, it follows that p is nil-

potent. However, supp p is not nilpotent since (supp p)n = supp p = 5 for all n.

Note that Theorem 5 is not true for the compact semitopological semi-

group Swip) considered in the Remark above. Obviously the Dirac measure

(5(a) at u is not nilpotent while  supp 8iu) is quasi-nilpotent in  5.

Applying Theorem 5, we obtain the following results about the set

A/(P(5)) of nilpotent elements in  P(5).  First we have a sufficient condition

for a probability measure to be nilpotent.

Theorem 7. Let p £ PiS).  If supp pnNiS) 40, then p £ /V(P(5)).

Proof.  Since  5(supp p)C\NiS) D supp pCiNiS) 4 0, we see that the set

supp p is quasi-nilpotent in  5 by Theorem 1 (i).  Whence p is nilpotent.

Example 8.   The converse of Theorem 7 may not hold.  For instance,

take the semigroup 5 with the following multiplication table:

0 a b c

0      0 0 0 0

a      0 0 a 0

b     0 0 b 0

c      0 a a c

Then the measure p = l/2i8ib) + Sic)) £ N(P(5)) since 0 e supp p . However,

supp pHNiS) = {b, c(ni0, a! = 0.
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Corollary 9„  (i)  N(P(S))  is a noncountable set.

(ii)   IJisuppfi: p eN(P(S))\ = S.

Proof,  (i) Take any measure p 4 6 and real number 0 < t < 1.  Then

the measure  tp + (l - t)6 is nilpotent since 0 e supp (tp + (l — t)6) ON(S).

Hence the set  N(P(S)) 3 \tp + (l - t)6: 0 < t < 1 \ and so is noncountable.

(ii) Let a £ S.  Since 0 e supp y2(8(a) + d)nN(S), it follows that

lA(8(a) + 6) £ N(P(S)).   That a e supp V2(8(a) + 6) gives the result.

A semigroup with zero is said to be nil if each element is nilpotent.

Theorem 10.   P(S)  is nil if and only if S is nil.

Proof.   The "if" part follows from the fact that, for p £ P(S), supp p

C\N(S) = supp p 4 0 •   To prove the "only if" part, take  a £ S and note

that 8(a) is nilpotent in  P(S).  So  a is nilpotent in S and the proof is com-

plete.

Lemma 11.  Let p, v £ P(S).  If p £ N(P(S)) and supp p C supp v, then

v £ N(P(S)).

Proof.  This is immediate since 0 e S(supp p) C S(supp v).

Theorem 12.  (i)  N(P(S))  is a convex set and hence connected.

(ii)  NiPjS)) = P(S).

ProoL  (i)  Take p, v e N(P(S)).  For real number 0 < t < 1, the. measure

tp+(l - t)v £ N(P(S))  since

supp (tp + (l - t)v) = supp p u supp v D supp p-

Thus  N(P(S))  is convex.

(ii) Let r e P(S). Clearly 6/n + (n - l)r/n £ N(P(S)) tot any positive

integer n. As the sequence (6/n + (n - l)r/zz)°°_1 converges to r, we see

that  N(P(S))  is dense in  P(S).

Corollary 13.  Let  W  be a subset of P(S).  If W D N(P(S)), then W is

a connected set.

Proof.  This follows simply from the previous theorem.

For any   p  £ P(S),   it is a well-known fact that the  sequence

((p + p  +•• • + p")/n)°°_,   must converge to a measure  L(p) £ P(S)   such that

supp L(p) is the minimal ideal of the semigroup  S(supp p); see [7] or [8].

Theorem 14.   The measure p £ P(S) is nilpotent if and only if L(p) = 6.

Proof.  In view of the fact that  L(p) - 6 if and only if S(supp p)  con-

tains  0, we apply Theorem 5 to conclude the proof.
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