QUASI-NILPOTENT SETS IN SEMIGROUPS

H. L. CHOW

ABSTRACT. In a compact semigroup S with zero 0, a subset A of S is called quasi-nilpotent if the closed semigroup generated by A contains 0. A probability measure μ on S is called nilpotent if the sequence (μ^n) converges to the Dirac measure at 0. It is shown that a probability measure is nilpotent if and only if its support is quasi-nilpotent. Consequently, the set of all nilpotent measures on S is convex and everywhere dense in the set of all probability measures on S and the union of their supports is S.

In a topological semigroup with zero 0, an element x is termed nilpotent if $x^n \rightarrow 0$ as $n \rightarrow \infty$ [5]. This definition has an obvious extension to subsets of the semigroup, i.e. a subset A is nilpotent if $A^n \rightarrow 0$ as $n \rightarrow \infty$. Now we call a subset B of the semigroup quasi-nilpotent if the closed semigroup generated by B contains the zero 0. It is shown that, when the topological semigroup is compact, a singleton is nilpotent if and only if quasinilpotent. Then we investigate the set of probability measures on a compact semigroup and characterize a nilpotent probability measure as a measure with quasi-nilpotent support.

Let S be a topological semigroup with zero 0, and A a subset of S. Let S(A) denote the semigroup generated by A, i.e. $S(A) = \bigcup_{n=1}^{\infty} A^n$. It is trivial that any subset containing 0 is quasi-nilpotent; in particular, the set N(S) of nilpotent elements of S is quasi-nilpotent. From the semigroup S given in Example 6 below, in which N(S) = [0, 1) and $N(S)^n = N(S)$ for all n [4, p. 56], we see that N(S) is not nilpotent.

Theorem 1. Let A be a subset of S. Then (i) If $\overline{S(A)} \cap N(S) \neq \emptyset$ (where the bar denotes closure), then A is quasi-nilpotent.

(ii) If A^n is quasi-nilpotent for some n, then A itself is quasi-nilpotent.

Proof. (i) Take $a \in \overline{S(A)} \cap N(S)$. In view of the fact that $a^n \to 0$, we have $0 \in \overline{S(A)}$, i.e. A is quasi-nilpotent.

(ii) Since $S(A^n) \subset S(A)$ and $0 \in \overline{S(A^n)}$, it follows that $0 \in \overline{S(A)}$, and the theorem is proved.

We remark that, if A^n is nilpotent for some *n*, then A is also nilpotent, by a similar argument to that given in the proof of Lemma 2.1.4 of [4].

Received by the editors April 3, 1974 and, in revised form, July 15, 1974. AMS (MOS) subject classifications (1970). Primary 22A20, 43A05, 60B15; Secondary 22A15.

Key words and phrases. Quasi-nilpotent set, compact semigroup with zero, uprobability, minimum ung apply points of a semigroup.

Copyright © 1975, American Mathematical Society

H. L. CHOW

Evidently a nilpotent set is quasi-nilpotent. As for the converse, which may not be true in general, we prove a special case in

Theorem 2. Suppose S is a compact semigroup with 0. Then $x \in S$ is nilpotent if and only if quasi-nilpotent.

Proof. It is enough to show that x is nilpotent if it is quasi-nilpotent. Recall that the minimal ideal $K(\overline{S(x)})$ of the compact semigroup $\overline{S(x)}$ contains exactly all cluster points of the sequence $(x^n)_{n=1}^{\infty}$ (see, for example, [4, Theorem 3.1.1]). Now $K(\overline{S(x)}) = \{0\}$ since $0 \in \overline{S(x)}$. Thus the sequence (x^n) has a unique cluster point, whence $x^n \to 0$ as $n \to \infty$, completing the proof.

Remark. The preceding theorem does not hold for a compact semitopological semigroup (i.e. the multiplication is only separately continuous). For instance, take the compact monothetic semigroup $S_w(\mu)$ generated by u, with μ defined in Example 2 of [1]; then the semigroup has zero 0 and identity 1 such that $u^{n!/2} \rightarrow 0$ and $u^{n!} \rightarrow 1$. As a consequence, the element uis quasi-nilpotent but not nilpotent.

In what follows S will be a compact semigroup with zero 0. Denote by P(S) the set of probability measures (i.e. normalized positive regular Borel measures) on S. For μ , $\nu \in P(S)$, define convolution $\mu\nu \in P(S)$ by

 $\int f(z) \, d\mu\nu(z) = \iint f(xy) \, d\mu(x) \, d\nu(y)$

for all continuous functions f on S, so that P(S) forms a semigroup. If P(S) is endowed with the weak^{*} topology, i.e. a net (μ_{α}) in P(S) converges to $\mu \in P(S)$ if $\int f(x) d\mu_{\alpha}(x) \rightarrow \int f(x) d\mu(x)$ for continuous functions f on S, then P(S) is a compact semigroup [3].

The support of $\mu \in P(S)$, supp μ , is the smallest closed set with μ -mass 1. It is well known [3, Lemma 2.1] that, for μ , $\nu \in P(S)$, supp $(\mu\nu) = (\text{supp }\mu) \cdot (\text{supp }\nu)$.

Let Γ be a subset of P(S) and define its support as the set supp $\Gamma = \overline{\bigcup_{\mu \in \Gamma} \text{supp } \mu}$. It is easy to see that $\text{supp}(\Gamma_1 \Gamma_2) = (\text{supp } \Gamma_1)(\text{supp } \Gamma_2)$ for $\Gamma_1 \subset P(S), \Gamma_2 \subset P(S)$.

Lemma 3. Let $\Gamma \subset P(S)$. Then supp $\overline{S(\Gamma)} = \text{supp } S(\Gamma) = \overline{S(\text{supp } \overline{\Gamma})}$.

Proof. That supp $\overline{S(\Gamma)} = \text{supp } S(\Gamma)$ follows from a result in [3, p. 55]. We assert that supp $S(\Gamma) = \overline{S(\text{supp } \Gamma)}$. Since $S(\Gamma) \supset \Gamma^n$ for n = 1, 2, ...,clearly supp $S(\Gamma) \supset \text{supp } \Gamma^n = (\text{supp } \Gamma)^n$ and so supp $S(\Gamma) \supset S(\text{supp } \Gamma)$. Whence supp $S(\Gamma) \supset \overline{S(\text{supp } \Gamma)}$. On the other hand, take any $\mu \in S(\Gamma)$. Then $\mu \in \Gamma^n$ for some *n*, implying that supp $\mu \subset \text{supp } \Gamma^n = (\text{supp } \Gamma)^n \subset S(\text{supp } \Gamma) \subset \overline{S(\text{supp } \Gamma)}$. This gives supp $S(\Gamma) \subset \overline{S(\text{supp } \Gamma)}$, and the result follows.

Since the Dirac measure θ at 0 is a zero in P(S), we can now consid-License or copyright respirations may apply to redistribution (see https://www.ams.org/journal-terms-of-use er quarks-nilpotent sets in **Theorem 4.** A subset $\Gamma \subset P(S)$ is quasi-nilpotent if and only if supp Γ is quasi-nilpotent in S.

Proof. Suppose first that Γ is quasi-nilpotent, i.e. $\theta \in \overline{S(\Gamma)}$. By virtue of Lemma 3, we have $0 \in \overline{S(\sup p \Gamma)}$ i.e. supp Γ is quasi-nilpotent. Conversely, suppose supp Γ is quasi-nilpotent in S. This means that $0 \in \overline{S(\sup p \Gamma)}$ and therefore $\{0\}$ is the minimal ideal $K(\overline{S(\sup p \Gamma)})$ of the semigroup $\overline{S(\sup p \Gamma)}$. Now consider the minimal ideal $K(\overline{S(\Gamma)})$ of the compact semigroup $\overline{S(\Gamma)}$ [6, Theorem 2]. Since $\sup K(\overline{S(\Gamma)}) = K(\sup p \overline{S(\Gamma)})$ (see, for example, [2, Theorem 5(2)]) and $\sup p \overline{S(\Gamma)} = \overline{S(\sup p \Gamma)}$ by Lemma 3, we have $\{0\} = \sup K(\overline{S(\Gamma)})$, giving that $K(\overline{S(\Gamma)}) = \{\theta\}$. Accordingly $\theta \in \overline{S(\Gamma)}$, and the theorem is proved.

By Theorems 2 and 4, we immediately obtain

Theorem 5. A measure $\mu \in P(S)$ is nilpotent if and only if supp μ is quasi-nilpotent in S.

Example 6. The result in Theorem 5 is best possible in the sense that the support of a nilpotent measure in P(S) need not be a nilpotent subset of S. Take the semigroup S = [0, 1] with the usual topology and the ordinary multiplication. Let μ be the restriction to S of the Lebesgue measure on the real line. Since supp $\mu = S$ is quasi-nilpotent, it follows that μ is nilpotent. However, supp μ is not nilpotent since (supp μ)ⁿ = supp $\mu = S$ for all n.

Note that Theorem 5 is not true for the compact semitopological semigroup $S_w(\mu)$ considered in the Remark above. Obviously the Dirac measure $\delta(u)$ at u is not nilpotent while supp $\delta(u)$ is quasi-nilpotent in S_*

Applying Theorem 5, we obtain the following results about the set N(P(S)) of nilpotent elements in P(S). First we have a sufficient condition for a probability measure to be nilpotent.

Theorem 7. Let $\mu \in P(S)$. If supp $\mu \cap N(S) \neq \emptyset$, then $\mu \in N(P(S))$.

Proof. Since $\overline{S(\text{supp }\mu)} \cap N(S) \supset \text{supp }\mu \cap N(S) \neq \emptyset$, we see that the set supp μ is quasi-nilpotent in S by Theorem 1 (i). Whence μ is nilpotent.

Example 8. The converse of Theorem 7 may not hold. For instance, take the semigroup S with the following multiplication table:

	0	а	·b	С
0	0	0	0	0
а	0	0	а	0
b	0	0	b	0
с	0	а	а	с

LiceThe Boother measure of the transmission of the supple of the supple

Corollary 9. (i) N(P(S)) is a noncountable set. (ii) $\bigcup \{ \sup p \ \mu: \ \mu \in N(P(S)) \} = S.$

Proof. (i) Take any measure $\mu \neq \theta$ and real number $0 \leq t < 1$. Then the measure $t\mu + (1 - t)\theta$ is nilpotent since $0 \in \text{supp}(t\mu + (1 - t)\theta) \cap N(S)$. Hence the set $N(P(S)) \supset \{t\mu + (1 - t)\theta: 0 \leq t \leq 1\}$ and so is noncountable.

(ii) Let $a \in S$. Since $0 \in \text{supp } \frac{1}{2}(\delta(a) + \theta) \cap N(S)$, it follows that $\frac{1}{2}(\delta(a) + \theta) \in N(P(S))$. That $a \in \text{supp } \frac{1}{2}(\delta(a) + \theta)$ gives the result.

A semigroup with zero is said to be nil if each element is nilpotent.

Theorem 10. P(S) is nil if and only if S is nil.

Proof. The "if" part follows from the fact that, for $\mu \in P(S)$, supp $\mu \cap N(S) = \text{supp } \mu \neq \emptyset$. To prove the "only if" part, take $a \in S$ and note that $\delta(a)$ is nilpotent in P(S). So a is nilpotent in S and the proof is complete.

Lemma 11. Let μ , $\nu \in P(S)$. If $\mu \in N(P(S))$ and supp $\mu \subseteq$ supp ν , then $\nu \in N(P(S))$.

Proof. This is immediate since $0 \in \overline{S(\text{supp } \mu)} \subset \overline{S(\text{supp } \nu)}$.

Theorem 12. (i) N(P(S)) is a convex set and hence connected. (ii) $\overline{N(P(S))} = P(S)$.

Proof. (i) Take μ , $\nu \in N(P(S))$. For real number $0 \le t \le 1$, the measure $t\mu + (1 - t)\nu \in N(P(S))$ since

 $\operatorname{supp}(t\mu + (1 - t)\nu) = \operatorname{supp} \mu \cup \operatorname{supp} \nu \supset \operatorname{supp} \mu$.

Thus N(P(S)) is convex.

(ii) Let $\tau \in P(S)$. Clearly $\theta/n + (n-1)\tau/n \in N(P(S))$ for any positive integer *n*. As the sequence $(\theta/n + (n-1)\tau/n)_{n=1}^{\infty}$ converges to τ , we see that N(P(S)) is dense in P(S).

Corollary 13. Let W be a subset of P(S). If $W \supset N(P(S))$, then W is a connected set.

Proof. This follows simply from the previous theorem.

For any $\mu \in P(S)$, it is a well-known fact that the sequence $((\mu + \mu^2 + \dots + \mu^n)/n)_{n=1}^{\infty}$ must converge to a measure $L(\mu) \in P(S)$ such that supp $L(\mu)$ is the minimal ideal of the semigroup $\overline{S}(\text{supp }\mu)$; see [7] or [8].

Theorem 14. The measure $\mu \in P(S)$ is nilpotent if and only if $L(\mu) = \theta$.

Proof. In view of the fact that $L(\mu) = \theta$ if and only if $\overline{S(\text{supp }\mu)}$ con-License or copyright restrictions may apply to redistribution; see https://www.anfs.org/journal-terms-of-use tains 0, we apply Theorem 5 to conclude the proof.

REFERENCES

1. G. Brown and W. Moran, Idempotents of compact monothetic semigroups, Proc. London Math. Soc. (3) 22 (1971), 203-216. MR 44 #5408.

2. H. L. Chow, On supports of semigroups of measures, Proc. Edinburgh Math. Soc. (2) 19 (1974), 31-33.

3. I. Glicksberg, Convolution semigroups of measures, Pacific J. Math. 9 (1959), 51-67. MR 21 #7405.

4. A. B. Paalman-de Miranda, *Topological semigroups*, 2nd ed., Math. Centre Tracts 11, Mathematisch Centrum, Amsterdam, 1970.

5. K. Numakura, On bicompact semigroups with zero, Bull. Yamagata Univ. (Nat. Sci.) 1951, no. 4, 405-412. MR 16, 447.

6. _____, On bicompact semigroups, Math. J. Okayama Univ. 1 (1952), 99-108. MR 14, 18.

7. M. Rosenblatt, Limits of convolution sequences of measures on a compact topological semigroup, J. Math. Mech 9 (1960), 293-305; addendum, ibid. 10 (1961), 681. MR 22 #9544; 22, p. 2547.

8. S. Schwarz, Convolution semigroup of measures on compact non-commutative semigroups, Czechoslovak Math. J. 14 (89) (1964), 95-115. MR 30 #212.

DEPARTMENT OF MATHEMATICS, CHUNG CHI COLLEGE, THE CHINESE UNIVER-SITY OF HONG KONG, HONG KONG