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ABSTRACT
We compute zero-frequency (neutral) quasi-normal f-modes of fully relativistic and rapidly rotating

neutron stars using several realistic equations of state (EOSs) for neutron star matter. The zero-frequency
modes signal the onset of the gravitational radiation-driven instability. We Ðnd that the l \ m\ 2 (bar)
f-mode is unstable for stars with gravitational mass as low as 1.0È1.2 depending on the EOS. ForM

_
,

1.4 neutron stars, the bar mode becomes unstable at 83%È93% of the maximum allowed rotationM
_rate. For a wide range of EOSs, the bar mode becomes unstable at a ratio of rotational to gravitational

energies T /W D 0.07È0.09 for 1.4 stars, and T /W D 0.06 for maximum mass stars. This is to beM
_contrasted with the Newtonian value of T /W D 0.14. We construct the following empirical formula for

the critical value of T /W for the bar mode, which is insensitive to the(T /W )2 \ 0.115 [ 0.048M/Mmaxsph ,
EOS to within 4%È6%. This formula yields an estimate for the neutral mode sequence of the bar mode
as a function only of the starÏs mass M, given the maximum allowed mass of a nonrotatingMmaxsph ,
neutron star. The recent discovery of the fast millisecond pulsar in the supernova remnant N157B sup-
ports the suggestion that a fraction of protoÈneutron stars are born in a supernova collapse with very
large initial angular momentum. If some neutron stars are born in an accretion-induced collapse of a
white dwarf, then they will also have very large angular momentum at birth. Thus in a fraction of newly
born neutron stars the instability is a promising source of continuous gravitational waves. It could also
play a major role in the rotational evolution (through the emission of angular momentum) of merged
binary neutron stars if their postmerger angular momentum exceeds the maximum allowed to form a
Kerr black hole.
Subject headings : equation of state È instabilities È relativity È stars : neutron È stars : oscillations È

stars : rotation

1. INTRODUCTION

A core-collapse supernova or the accretion-induced col-
lapse of a white dwarf can result in the birth of a hot,
rapidly rotating neutron star. During the Ðrst year of its
life (while it cools from D1010 to 109 K) the neutron star
will be unstable to the emission of gravitational radiation
due to the Chandrasekhar-Friedman-Schutz (CFS) non-
axisymmetric instability (Chandrasekhar 1970 ; Friedman
& Schutz 1978 ; Friedman 1978). The instability will only
operate while the star is rotating more rapidly than some
critical angular velocity. Via the instability, gravitational
waves carry away a signiÐcant amount of the starÏs angular
momentum. This early spin-down epoch has two important
astrophysical implications : Ðrst, the gravitational radiation
emitted may be detectable by the planned gravitational
wave detectors. (Note that this discussion is also relevant to
postmerger objects in a neutron star binary coalescence.)
Second, it may be possible to indirectly observe the critical
angular velocity through the detection of young, rapidly
rotating pulsars in supernova remnants such as PSR
J0537[6910 (Marshall et al. 1998).

The critical velocity for the onset of the CFS instability in
polar perturbations (f-modes) has been computed before in
various approximations : in the Newtonian limit (Managan
1985 ; Imamura, Friedman, & Durisen 1985 ; Ipser & Lind-

blom 1990), in the post-Newtonian approximation (Cutler
1991 ; Cutler & Lindblom 1992 ; Lindblom 1995), in the
relativistic Cowling approximation for polytropes (Yoshida
& Eriguchi 1997), and in realistic equations of state (EOSs ;
Yoshida & Eriguchi 1999).1 The Ðrst fully relativistic com-
putation of the onset of the instability in f-modes is present-
ed in Stergioulas (1996) and Stergioulas & Friedman (1998,
hereafter SF98). SF98 Ðnd a gauge in which six perturbed
Ðeld equations can be solved simultaneously on a Ðnite grid
with good accuracy. Using polytropic EOSs with index
N \ 1.0, 1.5, and 2.0, SF98 show that general relativity has
a signiÐcant e†ect on the onset of the instability, which
lowers the rotation rate at which it occurs as the star
becomes more relativistic. A surprising result is that the
l \ m\ 2, ““ bar ÏÏ f-mode instability (which in the Newto-
nian limit exists only for sti† polytropes of index N \ 0.808)
exists for relativistic polytropes with index as large as
N \ 1.3. SF98 suggested that the l \ m\ 2 instability
should also exist for realistic EOSs, which is conÐrmed in
the present paper. In the Newtonian limit the gravitational-
waveÈdriven and viscosity-driven bar mode instabilities
occur at the same value of the ratio of rotational energy to

1 For a detailed review, see N. Stergioulas 1998, Living Reviews in
Relativity, 1, available at http ://www.livingreviews.org.
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the gravitational binding energy, T /W D 0.14. SF98 conjec-
tured that when e†ects due to relativity are included, the
onset of the two types of instabilities will be split with the
CFS instability occurring at lower values of T /W and the
viscosity-driven instability at higher values. Calculations of
relativistic e†ects on the viscous instability (Shapiro & Zane
1997 ; Bonazzola, Frieben, & Gourgoulhon 1998) agree with
this conjecture.

For a perturbation with azimuthal angular dependence
eimÕ, modes with the smallest value of the spherical harmo-
nic multipole index l will have the fastest growth rate and
the highest gravitational radiation luminosity. Hence the
modes with l\ m and, in particular, with m\ 2 are the
most relevant for astrophysics. For a perfect Ñuid all modes
with mº 2 are of interest ; however, when imperfect Ñuid
e†ects are included (Cutler & Lindblom 1987 ; Cutler, Lind-
blom, & Splinter 1990 ; Ipser & Lindblom 1991 ; Lindblom
1995 ; Yoshida & Eriguchi 1995), polar modes with m[ 5
will always be damped by shear and bulk viscosity.

In the present paper, we use the SF98 scheme to deter-
mine the onset of the CFS instability of f-modes with l \ m,
and 2 ¹ m¹ 5 for realistic EOSs. We also improve on the
numerical implementation of the method by using a new
Ðnite di†erence scheme in the angular direction and an
improved algorithm for locating the exact onset of the insta-
bility with higher accuracy. We Ðnd that the realistic EOSs
show similar behavior as the polytropic EOSs in SF98. The
l\ m\ 2 f-mode becomes unstable for all realistic EOSs
examined for stars with masses as low as M \ 1.0È1.2 M

_
,

depending on the EOS. Stars with mass near 1.4 areM
_unstable to the bar mode at 83%È93% of the mass-shedding

(Kepler) limit.
As was Ðrst noticed by Andersson (1998), the critical

angular velocity for axial r-modes in a perfect Ñuid star is
exactly zero, so that all stars are generically unstable for all
values of m (Friedman & Morsink 1998). Again, the inclu-
sion of viscosity will stabilize all modes except those with
the lowest values of m. Two independent computations,
including the e†ects of viscosity in Newtonian stars
(Lindblom, Owen, & Morsink 1999 ; Andersson, Kokkotas,
& Schutz 1998), estimate that the lowest angular velocity
for which l\ m\ 2 r-mode is unstable is roughly 6%È20%
of the Kepler limit for uniformly rotating stars.

The following scenario may describe the early spin evolu-
tion of a newly born neutron star if it is born with an
angular velocity close to the Kepler limit While the star)

K
.

cools from D1010 to 109 K, viscous e†ects will be small
enough that the gravitational radiation instability will spin
down the star. In this temperature window the spin evolu-
tion will go through two phases. In the Ðrst phase, the star is
rotating fast enough that both f and r-modes will be
unstable. During the second phase, only the r-modes are
unstable. The determination of which mode will be the
dominant mechanism for the shedding of angular momen-
tum during the Ðrst phase will depend on the relative
growth times for both types of modes. At present, the
growth times for either type of mode have not been deter-
mined for rapidly rotating relativistic stars.

The plan of this paper is as follows. In ° 2 we brieÑy
review the method for computing the onset of the polar
mode nonaxisymmetric instability in relativistic stars. In ° 3
we present the improvements in the numerical implementa-
tion of the scheme. The EOSs selected are discussed in ° 4.
In ° 5 we present the critical angular velocities for f-modes

with 2¹ m¹ 5 for a variety of EOS. Astrophysical implica-
tions will be discussed in the concluding section.

2. NONAXISYMMETRIC PERTURBATIONS

2.1. Quasi-normal Modes and the Onset of Instability
Taking advantage of the axisymmetry and stationarity of

the equilibrium star, a general linear perturbation can be
written as a sum of quasi-normal modes characterized by
the spherical harmonic indices (l, m). In this way pertur-
bations of scalars, such as the energy density, can be
analyzed as

dv\ v
l
(r)P

l
m(cos h)ei(uit`mÕ) , (1)

where are the Legendre functions and is theP
l
m(cos h) u

ifrequency of the mode in the inertial frame. Perturbations of
vector quantities, such as the 4-velocity, can be written in
terms of vector harmonics, while the perturbation in the
metric can be written in terms of scalar, vector, and tensor
harmonics (see Regge & Wheeler 1957). Vector and tensor
harmonics are of two typesÈpolar, which transform as
([1)l under a parity transformation (under the com-
bination of reÑection in the equatorial plane and rotation
by n), and axial, which transform as ([1)l`1 under parity.
The angular parts of polar vector harmonics are pro-
portional to gradients of the spherical harmonics, while
axial vector harmonics are proportional to the curl of a
radial vector and a polar vector harmonic.

In the spherical limit, nonaxisymmetric perturbations
decouple into purely polar and purely axial modes with
unique values of m and l. In a Ñuid, polar modes correspond
to the f, p, and g-modes in the Newtonian limit, while axial
modes correspond to r-modes in a Newtonian star
(Papaloizou & Pringle 1978).

In a rotating star, the spherical symmetry is broken.
While a mode can still be speciÐed by a single value of m,
the mode will no longer consist of a single l harmonic. A
polar (l, m) mode acquires higher order in l polar terms
owing to the nonsphericity of equipotential surfaces and
(l ^ 1, m), and higher order in l axial terms owing to the
coupling between polar and axial terms :

P
l
rot D ;

l@/0

=
(P

l`2l{ ] A
l`2l{B1) . (2)

Similarly, an axial mode in a rotating star is written as a
sum of axial and polar terms :

A
l
rotD ;

l@/0

=
(A

l`2l{ ] P
l`2l{B1) . (3)

Thus a normal mode of oscillation in a rotating star is
deÐned as polar if it reduces to a purely polar mode in the
nonrotating limit and similarly for axial modes.

Gravitational radiation drives a polar or axial mode of
oscillation unstable whenever the star rotates fast enough
that a perturbation that counterrotates in the starÏ s rest
frame appears to corotate with respect to a distant inertial
observer. Conservation of angular momentum dictates that
the modeÏ s angular momentum must decrease ; however,
the angular momentum of a counterrotating perturbation
(invariantly deÐned in the rotating frame) is negative so that
gravitational radiation causes a negative angular momen-
tum perturbation to become more negative. For a given
value of m, the instability Ðrst sets in via an l\ m mode
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when the frequency of the mode vanishes in the inertial
frame. Thus the problem of Ðnding the critical angular
velocity reduces to Ðnding solutions of the time-
independent (zero frequency) perturbation equations.

2.2. Solving for T ime-independent Perturbations
In this paper we will follow the method of Stergioulas &

Friedman (1998), where one can Ðnd a detailed presen-
tation. Here we will only brieÑy sketch the solution method.
In ° 3 we will summarize improvements in the numerical
implementation.

In writing the perturbation equations for an axisym-
metric and stationary relativistic star, the Eulerian
approach is followed (see Ipser & Lindblom 1992 ; Fried-
man & Ipser 1992). The Eulerian perturbations in the
metric tensor energy density dv, and 4-velocitydg

ab
4 h

ab
,

dua are obtained by solving the system of equations consist-
ing of the perturbed Ðeld equations and the perturbed equa-
tion of conservation of the stress-energy tensor :

dR
ab

\ 8n(dT
ab

[ 12gab
dT [ 12hab

T ) , (4)

d(+
a
T ab\ 0) , (5)

where a perfect Ñuid stress-energy tensor

T
ab

\ (v] P)uaub ] Pg
ab

(6)

is assumed. In equation (6), v is energy density, P is pressure,
and ua is the 4-velocity of the Ñuid.

Since linear perturbations are subject to a gauge freedom,
only six components of the perturbed Ðeld equations need
to be solved. The projection of equation (5), normal to the
4-velocity of the Ñuid (i.e., the perturbed Euler equations),
can be solved analytically for dua. Next, one deÐnes a func-
tion

dU \ u
a
dua ] 12ubuch

bc
, (7)

so that the perturbation in the energy density becomes

dv\ (v] P)2
P!

A
dU ] 1

2
uaubh

ab

B
, (8)

where

!\ v] P
P

dP
dv

(9)

is the adiabatic index of the perturbation (assumed to be
equal to the adiabatic index of the equilibrium Ñuid).

Thus, a zero-frequency mode is obtained by solving six
components of the perturbed Ðeld (eq. [4]) for and theh

abperturbed energy conservation equation

d(u
b
+

a
T ab\ 0) (10)

for dU. SF98 found that by choosing the gauge as

h
rh\ 0 , (11)

hhÕ \ 0 , (12)

h
tÕ\ [uhÕÕ , (13)

hÕÕ\ hhh
r2 e2(t~a) , (14)

six components of the perturbed Ðeld equations can be
solved simultaneously on a Ðnite grid for the required

boundary conditions, given a trial function for dU that is
close to its actual solution.

The remaining equation (10) is solved by expanding the
function dU in terms of suitably chosen basis functions dU

i
,

dU \;
i

a
i
dU

i
. (15)

For polar modes, the basis functions are chosen to be

dU
i
\ dU

i
(jk)\ rl`2(j`k)Y

l`2km (cos h) , (16)

obtained by letting j and k take di†erent values º0 for each
value of i. Equation (10) is an equation linear in dU and can
be represented schematically as

L (dU) \ 0 , (17)

where L is the linear operator deÐned in Appendix C of
SF98. Substituting the expansion (eq. [15]) in equation (17),
and deÐning the inner product

SdU
j
o L o dU

i
T \

P
i

dU
j

m)ut
L (dU

i
)J[g d3x , (18)

where ) is the angular velocity of the star, a solution for the
homogeneous equation (17) exists only when the determi-
nant of the inner product matrix vanishes,

det SdU
j
o L o dU

i
T \ 0 . (19)

The solution to the perturbation equations is found by suc-
cessively solving the perturbed Ðeld equations for a trial
function of the form given by equation (15), and then evalu-
ating the determinant of equation (18) for a sequence of
stars with increasing rotation rate until the determinantÏ s
value passes through zero. The star for which the determi-
nant is exactly zero has a zero-frequency (neutral) f-mode,
which indicates the onset of the gravitational-radiationÈ
driven instability in this mode.

Stergioulas & Friedman (1998) also found that neutral
f-modes can be determined with high accuracy (less than
1% error) in an approximate gauge, in which only two per-
turbed Ðeld equations need to be solved, which allows a
larger number of grid points to be used. The approximate
gauge is deÐned by equations (11)È(14), supplemented by
the approximations

h
tt

g
tt
] 2ug

tÕ
\ h

rr
g
rr

\ hhh
ghh

(20)

and

h
th\ h

rÕ \ 0 . (21)

Equation (20) enforces a similar relation between the diago-
nal components of as in the Newtonian limit, whileh

ab
,

equation (21) essentially ignores the axial contribution to
the metric perturbation (the axial contribution to the Ñuid
velocity perturbation is retained). All results in the present
paper will be obtained using the approximate gauge. Eight
basis functions are used in equation (15), which corresponds
to j \ 0 . . . 3 and k \ 0 . . . 1.

3. IMPROVED NUMERICAL IMPLEMENTATION

In SF98, a highly accurate Ðnite-di†erence scheme was
used for the angular variable, which allowed the use of only
a few angular spokes. This Ðnite-di†erence scheme requires
the solution to be a very smooth function, and it gave accu-
rate results for relativistic polytropes of index N º 1.0. Rea-
listic EOSs have, however, a sti† interior and a sudden drop
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in density near the surface. Hence the Ðnite di†erence
scheme used in SF98 would su†er from the Gibbs phenome-
non at the surface of the star if it were applied to realistic
EOSs. This would result in an error of several percent in the
determination of neutral modes for these EOSs.

Here we use for the angular variable the same standard
3-point Ðnite di†erence scheme as is used for the radial
variable in SF98. With a Ðne enough grid, the density dis-
tribution near the surface is resolved accurately (see ° 4).

Another improvement is the use of RidderÏ s method (see,
e.g., Press et. al. 1992) for locating the exact point along a
sequence of rotating stars, where the determinant goes
through zero. In SF98, linear interpolation between two
nearby stars was used.

4. EQUATIONS OF STATE

The critical neutron star models for a set of EOSs were
computed using the method described in the preceding
section. Four realistic EOSs, A, C, L, and WFF3, which
span a wide range of sti†ness, were selected. EOSs A, C, and
L are labeled as in Arnett & Bowers (1977). EOS A is one of
the softest EOSs that allows a nonrotating 1.4 neutronM

_star. EOS C has intermediate sti†ness, while EOS L is one
of the sti†est realistic EOSs. EOS WFF3 (UV 14 ] TNI in
Wiringa, Fiks, & Fabrocini 1988) is a modern EOS. At
lower densities we match it to an EOS (Lorenz, Ravenhall,
& Pethick 1993), which accurately describes the crust of a
neutron star (see Nozawa et al. 1998 for more details on the
EOSs).

All realistic EOSs examined have an adiabatic index !,
which is larger than 2.0 at the center and for most of the
interior of the star. Thus the equilibrium models are similar
to sti† polytropic models with index N \ 1/(![ 1)\ 1.0.
For such polytropic models the Eulerian perturbation in
the energy density diverges at the surface. This poses a
potential threat to our numerical scheme since the inte-
grand of equation (18) depends on dv (cf., eq. [C24] of
SF98). Although the integral (eq. [18]) is formally Ðnite, the
divergence of dv at the surface of the star would make it
difficult to accurately evaluate the integral. Skinner & Lind-
blom (1996) avoided this problem by using analytic expres-
sions for the divergence of dv in the case of Newtonian
polytropes. In the realistic EOSs that we examined, this
problem is not encountered because the EOSs soften near
the surface of the star. In Figure 1 we plot the expression
(v] P)2/P!, which is proportional to dv near the surface,
and the adiabatic index ! as a function of radial coordinate
distance (in the equatorial plane) for representative equi-
librium models constructed with EOSs C and L. As can be
seen, the adiabatic index becomes less than !\ 2.0 near the
surface, so that dv goes to zero, which occurs in soft poly-
tropes of index N [ 1.0. With enough grid points in the
radial direction, this change in dv can be resolved accu-
rately. Note that (v] P)2/P! has a maximum at exactly the
points in the interior of the star, where the adiabatic index
becomes !\ 2.0. The vertical axis in Figure 1 is dimension-
less [we set c\ G\ 1 and the length scale equal to

where g cm~3].c/(Gv0)1@2, v0\ 1015
The critical curves we obtain for the four realistic EOSs

are also representative of the critical curves that one would
obtain for sti† polytropes if one correctly handled the diver-
gence of dv at the surface or matched a soft polytropic
surface to a sti† polytropic interior. For example, models
constructed with EOS C are roughly similar to polytropic

FIG. 1.ÈBehavior of (v] P)2/P! (solid line) and ! (dotted line) in the
equatorial plane as a function of coordinate radius is the coordinate(r

eradius at the equator). A 1.44 EOS C model (upper panel) and a 1.38M
_EOS L model (lower panel), which belong to the l \ m\ 2 neutralM

_mode sequence, are shown. The units of the vertical axis are explained in
the text. Note that the divergence of (v] P)2/P! at the surface is avoided
by a softening of the EOS (! becomes less than 2.0).

models of index N D 0.7, while models constructed with
EOS L are roughly similar to polytropic models of index
N D 0.5.

5. CRITICAL CURVES FOR REALISTIC EQUATIONS OF

STATE

Results for each EOS are summarized in Tables 1 and 2
and Figures 2È5. The tables list equilibrium properties of
the critical stars for a few selected examples. For each value
of m, three stars were selected : a low-mass star, a star with
mass close to 1.4 and a star close to the maximumM

_
,

mass stable star along each neutral mode sequence. The
following quantities are displayed in the tables : central
energy density ratio of rotational energy to gravita-(v

c
) ;

tional potential energy (T /W ) ; critical angular velocity ()
c
) ;

ratio of critical angular velocity to the mass-shedding)
climit at same central energy density gravita-)

K
()

c
/)

K
) ;

tional mass (M) ; rest mass and equatorial circum-(M0) ;ferential radius (R).
The l \ m\ 2 bar mode has the fastest growth time and

will be the most efficient mode for the emission of gravita-
tional radiation. For 1.4 stars, the bar mode is unstableM

_for for the softest EOS A, and for)/)
K

[ 0.83 )/)
K

[ 0.93
for EOS C. This corresponds to critical spin periods of 0.8
and 1.1 ms for EOSs A and C, respectively. For maximum
mass stars the bar mode is unstable for at)/)

K
[ 0.69

M \ 2.9 for the sti†est EOS L, and atM
_

)/)
K

[ 0.77
M \ 2.0 for EOS C.M

_In terms of T /W , the l \ m\ 2 mode becomes unstable
at T /W D 0.071È0.086 for 1.4 stars, and at T /W D 0.06M

_



TABLE 1

NEUTRAL MODE SEQUENCES FOR EOS A AND EOS L

v
c

)
c

M M0 R
(]1015 g cm~3) T /W (]103 s~1) )

c
/)K (M

_
) (M

_
) (km)

EOS A

m\ 2 . . . . . . 1.00 0.082 6.58 0.94 0.97 1.04 12.4
1.50 0.071 7.46 0.83 1.40 1.55 11.2
3.20 0.056 9.25 0.72 1.76 2.06 9.4

m\ 3 . . . . . . 1.00 0.066 6.02 0.86 0.94 1.00 11.7
1.60 0.056 6.90 0.74 1.41 1.58 10.7
3.20 0.044 8.28 0.65 1.73 2.03 9.3

m\ 4 . . . . . . 1.00 0.054 5.50 0.79 0.91 0.97 11.3
1.62 0.045 6.28 0.67 1.40 1.57 10.5
3.20 0.035 7.42 0.58 1.71 2.00 9.2

m\ 5 . . . . . . 1.00 0.044 5.04 0.72 0.89 0.95 11.0
1.68 0.036 5.80 0.60 1.41 1.58 10.3
3.20 0.029 6.76 0.53 1.70 1.99 9.1

EOS L

m\ 2 . . . . . . 0.35 0.089 4.08 0.96 1.20 1.27 18.9
0.38 0.086 4.20 0.91 1.38 1.48 18.3
1.20 0.057 5.67 0.69 2.90 3.43 15.1

m\ 3 . . . . . . 0.35 0.070 3.70 0.87 1.14 1.21 17.5
0.40 0.067 3.88 0.81 1.44 1.54 17.2
1.20 0.045 5.10 0.62 2.85 3.38 14.9

m\ 4 . . . . . . 0.35 0.056 3.38 0.79 1.10 1.16 16.8
0.40 0.054 3.53 0.74 1.39 1.50 16.6
1.20 0.036 4.58 0.56 2.82 3.34 14.7

m\ 5 . . . . . . 0.35 0.046 3.09 0.73 1.08 1.13 16.3
0.40 0.044 3.23 0.68 1.36 1.46 16.3
1.20 0.029 4.16 0.51 2.79 3.31 14.6

TABLE 2

NEUTRAL MODE SEQUENCES FOR EOS C AND EOS WFF3

v
c

)
c

M M0 R
(]1015 g cm~3) T /W (]103 s~1) )

c
/)

K
(M

_
) (M

_
) (km)

EOS C

m\ 2 . . . . . . 0.74 0.087 5.48 0.99 1.23 1.32 16.4
0.90 0.082 5.92 0.93 1.44 1.56 14.9
2.50 0.059 8.13 0.77 2.00 2.30 11.2

m\ 3 . . . . . . 0.70 0.066 4.75 0.89 1.11 1.18 14.9
0.95 0.061 5.38 0.82 1.43 1.56 13.8
2.50 0.046 7.30 0.69 1.96 2.26 11.0

m\ 4 . . . . . . 0.70 0.052 4.29 0.80 1.07 1.14 14.2
1.00 0.047 4.94 0.73 1.45 1.58 13.2
2.50 0.036 6.48 0.62 1.94 2.23 10.8

m\ 5 . . . . . . 0.70 0.042 3.91 0.73 1.05 1.11 13.8
1.00 0.038 4.46 0.65 1.42 1.55 12.9
2.50 0.028 5.79 0.55 1.92 2.20 10.7

EOS WFF3

m\ 2 . . . . . . 0.80 0.091 6.09 0.98 1.10 1.17 14.6
1.00 0.083 6.56 0.89 1.40 1.53 13.2
2.50 0.059 8.33 0.74 1.98 2.31 10.7

m\ 3 . . . . . . 0.70 0.072 5.17 0.94 0.86 0.90 13.9
1.05 0.063 5.99 0.79 1.40 1.55 12.5
2.50 0.046 7.44 0.66 1.95 2.27 10.5

m\ 4 . . . . . . 0.70 0.057 4.68 0.85 0.82 0.87 13.0
1.10 0.051 5.55 0.71 1.43 1.58 12.1
2.50 0.037 6.73 0.60 1.92 2.24 10.4

m\ 5 . . . . . . 0.70 0.047 4.31 0.79 0.80 0.85 12.6
1.10 0.042 5.09 0.65 1.40 1.55 11.8
2.50 0.031 6.18 0.55 1.91 2.23 10.3
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FIG. 2.ÈNeutral mode sequences for EOS A. Shown are the ratio of
rotational to gravitational energy T /W (upper panel) and the ratio of the
critical angular velocity to the angular velocity at the mass-shedding)

climit for uniform rotation (lower panel) as a function of gravitational mass.
The solid lines are the neutral mode sequences for l\ m\ 2, 3, 4, and 5
(from top to bottom), while the dashed line in the upper panel corresponds
to the mass-shedding limit for uniform rotation.

FIG. 3.ÈSame as Fig. 2, but for EOS L

FIG. 4.ÈSame as Fig. 2, but for EOS C

for the maximum mass along the neutral mode sequence.
The latter value is surprisingly insensitive to the EOS. In
fact, the l \ m\ 2 neutral mode sequence can be approx-
imated by the following linear empirical formula :

AT
W
B
2
\ 0.115[ 0.048

M
Mmaxsph , (22)

where is the maximum mass for a spherical starMmaxsph
allowed by a given EOS. The empirical formula has an
accuracy of roughly 4%È6% for all values of M except for
stars near the axisymmetric stability limit ; that is, near the
maximum mass along the neutral mode sequence where it is
somewhat larger (the T /W vs. M curves deviate somewhat
from linearity, as can be seen in Figs. 2È5). While in the
Newtonian limit the bar mode becomes unstable at
T /W D 0.14, in realistic 1.4 neutron stars the onset ofM

_the bar mode instability is at roughly one-half to two-thirds
the Newtonian estimate of T /W .

The critical curves for the l \ m\ 3, 4, and 5 modes
appear at successively lower rotation rates. All critical
curves for all EOSs are nearly linear in gravitational mass,
and similar empirical formulae for these modes can also be
written as in equation (22).

The obtained critical curves assume a perfect Ñuid. We
expect that including the e†ects of viscosity will raise the
critical angular velocities by a few percent in the 109È1010 K
temperature window. The strengthening of the instability
by relativistic e†ects will also widen the temperature
window in which the instability will be active, as was
already shown by post-Newtonian computations (Cutler &
Lindblom 1992 ; Lindblom 1995).

By doubling the number of grid points in both directions,
and from comparisons with the Newtonian limit and with
the results in SF98, we estimate the accuracy of our present



EOS WFF3

0.02

0.04

0.06

0.08

0.1

0.12
T

/W

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
M (M )

0.4

0.5

0.6

0.7

0.8

0.9

1.0

c
/

K

860 MORSINK, STERGIOULAS, & BLATTNIG Vol. 510

FIG. 5.ÈSame as Fig. 2, but for EOS WFF3

results to be at the 1% level. Increasing the number of basis
functions in equation (15) to more than eight did not a†ect
the critical curves by more than 1%.

6. DISCUSSION

We Ðnd that for a wide range of realistic EOSs the polar
l\ m\ 2 bar mode is unstable to the emission of gravita-
tional waves in newly born 1.4 neutron stars, rotatingM

_close to the Kepler limit until their angular velocity falls
below 83%È93% of the Keplerian value. The recent obser-
vation of the fastest rotating young pulsar in the supernova
remnant N157B (Marshall et al. 1998) suggests that a frac-
tion of neutron stars born in supernovae are born with very
large initial rotational energy. If some neutron stars are
born in accretion-induced collapse of white dwarfs
(Friedman 1983), they are also expected to have a large
initial spin. Since it is initially very hot and di†erentially
rotating, a protoÈneutron star can even be born with an
angular velocity exceeding the mass-shedding limit for uni-
formly rotating stars. As the star cools and passes through
the temperature window of 109È1010 K, the non-
axisymmetric bar mode, driven by gravitational radiation,
will grow and the star will lose angular momentum by the
emission of gravitational waves. Within a short time the
star will have slowed down enough that the bar mode will
become stable again. At this point, viscosity changes the
density proÐle of the star to a nearly axisymmetric conÐgu-
ration (see Lai & Shapiro 1995 for a recent discussion), but
higher order mass and equal or higher order current multi-
poles may still be present. During this Ðrst phase the r-mode
instability will also be operating. The r-mode instability will
then continue to slow down the star until the star reaches a
period of roughly 6È9 ms, when the instability will be
damped by viscosity.

The above picture assumes that the star cools through
the standard modiÐed URCA cooling scenario. If instead
neutron stars cool very rapidly through, e.g., the direct Urca
process, then the instability in f-modes may not have
enough time to grow signiÐcantly, and the rotational evolu-
tion of the star will only be a†ected by the r-mode insta-
bility.

The results presented in this paper conÐrm that general
relativity decreases the critical value of T /W for the
gravitational-waveÈdriven instability, as suggested by SF98.
Combined with the observation (Shapiro & Zane 1997 ;
Bonazzola et. al. 1998) that the e†ect of general relativity on
the onset of the viscous instability is to make it occur at
higher values of T /W , it is clear that the CFS instability is
more likely to occur than the viscous instability. The
increase in the critical value of T /W for the onset of viscous
instability can be understood on intuitive grounds. The
viscous instability is essentially a battle between gravity,
which acts to keep the Ñuid centrally condensed and a cen-
trifugal ““ force ÏÏ that acts to drive the Ñuid away from the
center of the star. The role of viscosity is to act as a vehicle
for the centrifugal force to overcome gravityÏ s attraction.
(This is similar to the mechanical example of a bead on a
vertical U-shaped wire. When the wire is static, the bead sits
at the bottom of the U. When the wire rotates about a
vertical axis, the bead will move up to a higher equilibrium
position on the wire if there is friction between the bead and
the wire.) As a sequence of stars becomes more relativistic,
the gravitational Ðeld is stronger and the viscous instability
can only set in when the centrifugal force is larger ; i.e., for
larger values of T /W . It is more difficult to explain why the
CFS instability sets in at lower values of T /W for general
relativity than for Newtonian gravity. We note that in the
Cowling approximation (S. Yoshida & Y. Eriguchi 1998,
private communication) the frequencies of the f-modes
decrease as the compactness of the stars increase. Similarly,
our Ðgures show that T /W for the onset of the instability
decreases as the compactness increases. Since Newtonian
gravity underestimates the compactness of a neutron star, it
seems likely that it also overestimates the value of T /W for
the neutral mode.

The CFS-instability in the bar f-mode appears to be a
good source of detectable continuous gravitational waves.
Lai & Shapiro (1995) have studied the development of the
f-mode instability using Newtonian ellipsoidal models of
rotating stars (Lai, Rasio, & Shapiro 1993, 1994). They con-
sider the case where a neutron star is created in a core
collapse with large initial angular momentum. After a brief
dynamical phase, the protoÈneutron star becomes axisym-
metric but secularly unstable. The instability deforms the
star into a nonaxisymmetric conÐguration via the l\ m\ 2
bar mode. As the star slows down, the frequency of the
gravitational waves sweeps downward from a few hundred
to 0 Hz, passing through the ideal sensitivity band of LIGO.
A rough estimate of the wave amplitude shows that at
D100 Hz the gravitational waves from the CFS instability
could be detected out to the distance of 30 Mpc by LIGO or
VIRGO, and to 140 Mpc by the advanced LIGO detector.
This result is very promising, especially since for relativistic
stars the instability will be stronger than in the Newtonian
computations.

Another astrophysical situation in which the instability
may have the opportunity to grow is after the merger of two
neutron stars in a binary coalescence. Recently, Baumgarte
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& Shapiro (1998) studied the case in which the merged
neutron star is unstable to collapse but has more angular
momentum than required to collapse to a Kerr black hole.
They Ðnd that neutrino emission is inefficient for shedding
the excess angular momentum of the neutron star, and they
suggest that this can happen through the growth of the
gravitational-radiationÈdriven bar f-mode. We expect the
gravitational waves from the instability in these high-mass
(M [ 2.8 merged neutron stars to be especially strongM

_
)

and a detailed, full, relativistic study is needed.
The computation of quasi-normal Ðnite-frequency modes

of rapidly rotating relativistic stars is a more difficult
problem than the neutral-mode calculation presented in
this paper. The main difficulty is in applying the boundary
conditions at inÐnity. Lindblom, Mendell, & Ipser (1997)
have recently proposed an approximate near-zone bound-
ary condition that appears to be a promising approach for

solving for the complex eigenfrequencies. We plan to
incorporate the near-zone boundary conditions into the
SF98 method to allow the approximate computation of fre-
quencies and growth times of the quasi-normal modes with
reasonable accuracy.
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