
QUASI-ONE-DIMENSIONAL SCRAMJET COMBUSTOR FLOW SOLVER USING THE

NUMERICAL PROPULSION SYSTEM SIMULATION

by

LONG VU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN AEROSPACE ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2018

ii

Copyright © by Long Vu 2018

All Rights Reserved

iii

Acknowledgements

I would like to thank my parents and my grandparents for their financial and

emotional support during my study. I would also like to thank my supervisor professor Dr.

Donald Wilson for his guidance and thesis committee members: Dr. Luca Maddalena and

Dr. Brian Dennis for their ideas and feedback on the research work.

I would like extend my thanks to Nandakumar Vijayakumar for his help and

suggestions.

I would also like to thank all my new friends I have made along the way: James

Phan, Peter Dao, Erin Doyle, Vinny Williams… for their help and support.

May 15, 2018

iv

Abstract

QUASI_ONE_DIMENSIONAL SCRAMJET COMBUSTOR FLOW SOLVER USING THE

NUMERICAL PROPULSION SYSTEM SIMULATION

Long Vu, MS

The University of Texas at Arlington, 2018

Supervising Professor: Donald R. Wilson

The flow field inside a scramjet engine combustor involves complex phenomena

such as fuel-air mixing, combustion chemistry, and flow separation. In order to determine

the properties of the flow along the length of the combustor, mass, momentum and

energy balance equations are solved simultaneously using a numerical method. While a

full three dimensional computational simulation gives detailed results with high order of

accuracy, it demands a great amount of time and computational resource. A low order

analysis produces a fast overall picture of the combustor operation which in turn provides

valuable information suitable for the preliminary design process. This research work aims

to describe the analysis process of the scramjet combustor in which a quasi-one-

dimensional, multi-species, reacting real gas model of the flow is developed to address

the limitations in previous researches. The Numerical Propulsion System Simulation

(NPSS), into which the NASA Chemical Equilibrium with Applications (CEA) code is

integrated, is utilized as the platform to perform the analysis. The analytical model is

validated by comparison with experimental data from previous researches. The results

obtained by this method are expected to shed some light on the advantages of using

detailed chemistry with lower order analysis to calculate scramjet engine performance.

v

Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations ... viii

List of Tables ... x

Chapter 1 Introduction... 1

1.1 Ramjet, Scramjet and Dual-mode Scramjet ... 1

 Ramjet Engine ... 1

 Scramjet Engine .. 2

 Dual-mode Scramjet Engine ... 3

1.2 Operation of Dual-mode Scramjet .. 4

 Dual-mode Scramjet Combustor ... 4

 Dual-mode Scramjet Isolator ... 8

1.3 Development History .. 9

Chapter 2 Literature Survey .. 11

2.1 Theoretical Researches .. 11

 Heiser and Pratt’s Approach ... 11

 Ram-Scram Transition and Flame/Shock-Train Interactions in a

Model Scramjet Experiment ... 12

 Hyshot Program... 13

2.2 Experimental Researches .. 14

 Free Piston Shock Tunnel Experiment at University of

Queensland – T4 Scramjet: .. 14

 Hyshot 2 Scramjet Flight Experiment .. 15

 Investigation of the Isolator Flow of Scramjet Engines 17

vi

Chapter 3 The Numerical Propulsion System Simulation (NPSS) 19

3.1 Introduction of NPSS .. 19

3.2 NPSS Simulation Environment ... 21

3.3 NPSS Components .. 23

 Architecture, code language and basic objects ... 23

 Thermodynamic packages .. 25

 Solver .. 26

Chapter 4 Quasi-one-dimensional Scramjet Isolator and Combustor Model 28

4.1 Assumptions ... 28

4.2 Conservation Equations ... 28

 Conservation of Mass .. 29

 Conservation of Momentum .. 29

 Conservation of Energy ... 29

4.3 Combustor Analytical Model ... 30

 Algebraic Manipulation Involving the Conservation Equations 30

 Friction Coefficient ... 32

 Wall Heat Loss .. 33

 Mixing Efficiency Curve ... 34

 NPSS Calculation Procedure .. 35

4.4 Isolator Analytical Model ... 39

 Empirical Formula of Pressure Distribution ... 39

 NPSS Calculation Procedure .. 40

Chapter 5 Results ... 41

5.1 Combustor Code Validation .. 41

5.2 Isolator Code Validation ... 47

vii

Chapter 6 Conclusion .. 51

6.1 Summary .. 51

6.2 Future Work .. 52

Appendix A 4th order Runge-Kutta Method ... 53

Appendix B Code outline... 55

References .. 84

Biographical Information ... 87

viii

List of Illustrations

Figure 1-1 Ramjet engine [4]. ... 2

Figure 1-2 Scramjet engine [4]. ... 2

Figure 1-3 Dual-mode scramjet engine [3].. 4

Figure 1-4 Typical changes in flow properties through the combustor in scramjet mode

[6]. ... 5

Figure 1-5 Typical changes in flow properties through the combustor in transition

between ramjet and scramjet mode [6]. .. 6

Figure 1-6 Typical changes in flow properties through the combustor in ramjet mode [6]. 7

Figure 1-7 Shock free isolator [7]. ... 8

Figure 1-8 Isolator with oblique shock train [7]. .. 9

Figure 1-9 Isolator with normal shock train [7]. ... 9

Figure 2-1 T4 scramjet inlet configuration [16]. .. 15

Figure 2-2 Hyshot flight profile [17]. .. 16

Figure 2-3 Combustor instrumentation layout [17]. ... 17

Figure 2-4 Drawing of the hypersonic shock tunnel TH2 [18]. .. 17

Figure 3-1 Hybrid Simulation: 3-Dimensional Low Pressure Subsystem Model Coupled to

a 0-Dimensional High Pressure Core Model [20]. .. 20

Figure 3-2 Illustration of the NPSS Multidisciplinary Framework [21]. 22

Figure 3-3 NPSS Object-Oriented Open Architecture [22]. .. 24

Figure 3-4 NPSS Turbojet Model [25]. .. 25

Figure 3-5 Basic NPSS Solver Operation [30]. ... 26

Figure 4-1 Schematic of elemental control volume for burner analysis [7]. 28

Figure 4-2 Discretization of the combustor. .. 36

Figure 4-3 NPSS calculation procedure flow chart. .. 37

ix

Figure 5-1 T4 scramjet geometry [7]. .. 41

Figure 5-2 Pressure distribution comparison for Case 1 – T4 experiment. 43

Figure 5-3 Pressure distribution comparison for Case 2 – T4 experiment. 43

Figure 5-4 Pressure distribution comparison for Case 3 – T4 experiment. 44

Figure 5-5 Schematic of Hyshot 2 scramjet geometry (dimensions are in millimeters) [17].

 .. 45

Figure 5-6 Hyshot 2 combustor section geometry [7]. .. 45

Figure 5-7 Pressure distribution comparison for Case 1 – Hyshot 2. 46

Figure 5-8 Pressure distribution comparison for Case 2 – Hyshot 2. 47

Figure 5-9 Heated isolator experiment setup [7]. .. 48

Figure 5-10 Pressure distribution comparison for the isolator – Fisher. 49

x

List of Tables

Table 5-1 T4 experiment data ... 42

Table 5-2 Hyshot 2 experiment data ... 46

Table 5-3 Fisher experiment data ... 48

Table 5-4 Ma3 comparison – Fisher experiment .. 50

1

Chapter 1

Introduction

Numerous programs aiming to develop aircraft capable of supersonic or

hypersonic flight first appeared in the late 1950’s and early 1960’s and have developed

unceasingly ever since [1]. Rocket propelled vehicles are not a practical option due to the

need of an onboard oxidizer tank, resulting in low specific impulse [2]. A more promising

choice for these high speed missions is an air breathing propulsion system and the best

suitable air breathing engine cycle for moderate supersonic flight is the ramjet, and for

hypersonic flight the scramjet or supersonic combustion ramjet, a variant of the ramjet

engine cycle.

1.1 Ramjet, Scramjet and Dual-mode Scramjet

Ramjet Engine

 Different from other types of air breathing engine like turbojets and turbofans,

the ramjet engine doesn’t rely on turbo machinery but uses shockwaves for compression.

As air passes through the engine inlet, it is compressed by shockwaves and decelerated

to a subsonic speed before entering the combustor where fuel is injected and burnt. The

combustion products are then accelerated through a nozzle to create thrust. Ramjet

engines can only operate efficiently up to about Mach 6 [3]. At flight Mach numbers

above 6, to achieve subsonic flow to the combustor, the compression ratio has to

increase to a value at which shock losses become substantial and the airflow

temperature is so high that oxygen dissociation begins to occur hence, less energy is

available for conversion into thrust [2].

2

Figure 1-1 Ramjet engine [4].

A ramjet engine has four components: inlet inner body, diffuser, combustor and

nozzle. The combustion process takes place at subsonic speed.

Scramjet Engine

In order to sustain a usable amount of thrust at higher speed, the air entering the

combustor has to be at lower pressure and temperature, but still moving at a supersonic

speed. This modification to the ramjet engine is called supersonic combustion ramjet, or

scramjet. Ground tests of scramjet engines have shown the potential to reach a

maximum speed up to at least Mach 15 [2].

Figure 1-2 Scramjet engine [4].

A scramjet engine also consists of four major parts: inlet, isolator, combustor and

nozzle. However, the combustion process happens at supersonic speed.

3

Nevertheless, scramjet engines still present some drawbacks due to the basic

requirements for an air breathing engine and the limits relating to high airspeed:

- Scramjet needs a working atmosphere dense enough to create large thrust,

which places an upper bound constraint of the flight corridor for scramjet propelled

vehicles.

- Scramjet propelled vehicles are not able to operate at a low altitude due to high

thermal load on the aircraft structure when it flies at a very high speed.

- Scramjets are unable to produce static thrust and only become operationally

efficient at supersonic Mach numbers, thus incapable of taking off on their own and they

need high initial speed for air compression.

These constraints require a complex launch system for a scramjet vehicle. Such

systems typically consists of a carrier aircraft (for take – off) and a rocket to bring the

initial flight Mach number of the scramjet-powered aircraft to about Mach 5. Despite these

disadvantages, scramjet engines are still seen as a bright prospect of hypersonic cruise

and ascent to low-earth-orbit thanks to its light weight and airplane like operation [2].

Dual-mode Scramjet Engine

Curran and Stull introduced the idea of the dual-mode scramjet engine in 1963

[5]. Ramjet and scramjet engines differ from each other in the speed of the flow inside the

combustor, subsonic for ramjet and supersonic for scramjet. The dual-mode scramjet

combines these two flow characteristics in one combustor that can operate in both

regimes depending on the airspeed of the aircraft, hence the name dual-mode scramjet.

Therefore, the dual-mode scramjet has a wider operational Mach number range. This

leads to increased application potential and the possibility of a hypersonic aircraft that

can take off by itself with the help of a turbojet. This turbojet can be used to take the

aircraft to about Mach 3, then the dual-mode scramjet can be used at higher airspeed.

4

Figure 1-3 Dual-mode scramjet engine [3].

Nonetheless, the combination of the two flow regimes in one configuration

introduces some complex phenomena in the isolator and the combustor, which lead to

design and analysis challenges. The flow in the isolator has an intricate structure called

the shock train, formed by the interaction between the inlet exhaust conditions and the

combustor high back pressure, in conjunction with boundary layer separation. This

separation region can spread into the combustor, rendering the flow analysis of this

component more complicated as it switches from ramjet mode to scramjet mode. The

overview of the operation of the isolator and the combustor in a dual-mode scramjet is

described in the next section.

1.2 Operation of Dual-mode Scramjet

Dual-mode Scramjet Combustor

There are two major factors that determine flow properties in the combustor: heat

addition and the change of the combustor area [1].

Regarding heat addition, the Rayleigh flow model shows that:

- At subsonic speed, the flow is accelerated by heat addition.

- At supersonic speed, the flow is decelerated by heat addition.

Regarding area change:

- At subsonic speed, the flow is decelerated as the area increases.

5

- At supersonic speed, the flow is accelerated as the area increases.

In scramjet mode, flow enters the combustor at supersonic speed. It is then

slowed down to a minimum speed and accelerated again all the way to the combustor

outlet.

Figure 1-4 Typical changes in flow properties through the combustor in scramjet mode

[6].

To grasp a general view of these changes, let us divide the combustor into two

regions: Region 1: from the front of the combustor to the point where the flow reaches its

minimum speed, region 2: from that point to the back of the combustor.

In region 1, the effect of slowing down a supersonic flow brought about by heat

addition is dominant (note the high slope of the blue line) since it is closer to the fuel

injectors. For that reason, the supersonic entry flow is decelerated.

In region 2, the rate of heat addition decreases substantially, thus, the effect of

speeding up the flow from the increasing area becomes dominant. Therefore, the flow is

accelerated.

6

In the scramjet mode, the minimum speed of the flow is still in the supersonic

regime, meaning the flow remains supersonic throughout the combustor.

When the minimum Mach number is equal to 1, there is the transition between

the two modes of the dual-mode scramjet engine.

Figure 1-5 Typical changes in flow properties through the combustor in transition

between ramjet and scramjet mode [6].

At this condition, the entry Mach number to the combustor is designated as M3m

[1].

In ramjet mode, the entry Mach number to the combustor is subsonic. Through

the combustor, the flow is accelerated until it exits the combustor at supersonic speed.

7

Figure 1-6 Typical changes in flow properties through the combustor in ramjet mode [6].

The combustor is divided again into two regions: Region 1: from the front of the

combustor to the point where the flow reaches sonic speed, region 2: the remaining part

of the combustor.

In region 1, the effect of speeding up subsonic flow caused by heat addition is

dominant so the flow is accelerated.

In region 2, the flow enters supersonic regime and thus is slowed down by heat

addition alone. However, as the rate of heat addition decreases substantially, the effect of

the increasing area becomes dominant. Therefore, the flow continues to be accelerated.

At the sonic point, the flow experiences a similar phenomenon to its passage

through a physical throat. However, this is brought about entirely by heat addition as

there is no physical throat in a dual-mode scramjet combustor. The sonic point is, for that

reason, called the thermal throat [1].

8

When calculating flow properties through the combustor, determining the position

of the thermal throat is a critical task as it serves as a starting point to calculate flow

properties at other points in the combustor.

Let us call the entry Mach number to the combustor M3p [1].

Dual-mode Scramjet Isolator

The flow in the isolator will behave according to flow properties at the front

(Station 2) and the back (Station 3) of the isolator.

It has been discovered that the isolator cannot operate with any arbitrary

combination of flow properties at position 2 and 3; there is a limit. With a certain M2, the

isolator cannot generate a M3 below the value equal to the downstream Mach number of

a normal shock wave with the upstream Mach number M2 [1]. In other words, for a

predetermined M3p, the condition under which the isolator and the whole engine can

operate is M2>M2x, with M2x being the Mach number of the flow that will create the Mach

number M3p after a normal shock wave [1].

When the limit mentioned above is satisfied, the isolator can operate in either

one of the three following modes:

- Shock free mode: This is the mode where flow properties are essentially

unchanged all the way through the isolator and there is no shock train in the isolator.

Figure 1-7 Shock free isolator [7].

- Oblique shock train mode: When P3 is greater than P2 but the difference

between the two is not too great, an oblique shock train will form in the isolator.

9

Figure 1-8 Isolator with oblique shock train [7].

- Normal shock train mode: When the difference between P3 and P2 is large

enough, a normal shock train will form in the isolator.

Figure 1-9 Isolator with normal shock train [7].

The operation of the dual-mode scramjet engine can be summed up as follows:

- When M2< M2x, the engine cannot operate.

- When M2 is between M2x and M3m, the engine will operate in the ramjet mode.

- When M2>M3m, the engine will operate in the scramjet mode.

1.3 Development History

The first scramjet development program was the NASA Hypersonic Research

Engine (HRE) program which started in 1964, with about 52 tests completed [6]. After

this, many other programs in several countries such as Russia, France and Germany

also began. Three prominent projects with successful flight test were the HyShot program

by the University of Queensland in Australia that marked the first flight of a scramjet

propelled aircraft in July 2002 [6], the Hyper-X program [9] and the X-51 program [10].

10

The aircraft designed in the Hyper-X program is called X-43. It has made two successful

flight tests, the first one took place on March 2004 with the aircraft reaching a speed of

Mach 7 and the second one on November 2004. In this second flight, X-43 got to nearly

Mach 10, which set a new speed record [7]. The X-51 program gave birth to the X-51A

Waverider, whose final flight took place on May 1st 2013. In this flight, the aircraft reached

a top speed of Mach 5.1 and travelled on its own scramjet powered engine for four

minutes, making the record for longest scramjet powered flight [12].The most recent

project involving scramjets is the SR-72, the successor of the SR-71 Blackbird. SR-72 is

a hybrid turbojet – scramjet propelled aircraft which is expected to enter service by 2030

[8].

11

Chapter 2

Literature Survey

There have been a number of studies which approach scramjet combustion with

different analysis methods in the past. Presented in this section are some works on this

subject in the literature. The focus is on the methods used for developing a quasi-one-

dimensional flow model of the flow through scramjet combustors and experimental results

that will be used to validate the quasi-one-dimensional code.

2.1 Theoretical Researches

Heiser and Pratt’s Approach

This approach is presented in the Hypersonic Airbreathing Propulsion book by

William H. Heiser and David T. Pratt. The flow through the combustor is governed by the

following ordinary differential equation (ODE) [1]:

2
2

2

1
1

11 12

21

b

b t

t

M
M dTdM dA

M
dx A dx T dxM

(2.1)

This ODE is the result of Shapiro’s generalized one-dimensional flow analysis in

which the three conservation equations, the equation of state, Mach number and the

second law of thermodynamics are algebraically manipulated with an ideal gas

assumption into a set of ODE’s, each of which is the derivative of a flow property such as

Mach number, pressure, temperature, etc. calculated in terms of changes in area, mass

flow rate, total temperature and the effects of friction and body forces [4, 11].

This governing Mach number equation demonstrates the main characteristics of

the flow through a scramjet combustor, which is dictated by the two major driving terms:

combustor area variation and total temperature distribution. However, it neglects the

effects of wall friction, drag caused by internal struts or fuel jets and mass changes as

12

fuel is being added and mixed into the flow [1]. Moreover, this equation doesn’t take into

account flow separation, which is an important behavior of the flow as the combustion

process generates a high back pressure causing an adverse pressure gradient that

separates the flow. Heiser and Pratt addressed this phenomenon by a constant impulse

function method rather than incorporating it into the ODE [1, 4]. Thus, the variation of the

core flow area in the separation zone is unknown since no position variable is involved in

the control volume analysis.

Ram-Scram Transition and Flame/Shock-Train Interactions in a Model Scramjet

Experiment

The flow model as presented in Heiser and Pratt’s book is applied in this analysis

to study the transition between ramjet and scramjet mode. In ramjet mode, the incoming

flow to the combustor is at subsonic speed, therefore, it passes through the sonic point

called the thermal throat situated inside the combustor. This point results in a singularity

in equation (2.1) when the Mach number goes to 1. The position of the thermal throat is

determined by solving the following equation [1, 12]:

11 1

2

b t

t

dTdA

A dx T dx

 (2.2)

Equation (2.1) is used to solve in the upstream direction from the thermal throat

for the Mach number at the entry of the combustor M2. The static pressure at this position

is then calculated by Heiser and Pratt’s low-order model of the isolator [12]. Once p2 is

obtained, the following ODE, from Shapiro’s work, is solved downstream from the thermal

throat to determine the pressure profile of the combustor [12]:

2 2

2

2 2

1
1

1 1 12

1 1

t

t

M M
dTdp M dA

p dx A dx T dxM M

(2.3)

13

Wall friction and mass addition are neglected and the gas is assumed to consist

of a single species and to be calorically perfect [12]. Moreover, the flow is assumed to

only separate inside the isolator, whereas, it has been found that separation zone also

reaches inside the combustor [16].

Hyshot Program

This is another approach based on the classical quasi-one-dimensional gas

dynamics by Shapiro [16]. This work was done as part of the HyShot program at the

University of Queensland in Australia that has successfully launched a test flight on July

30th, 2002 [16].

Michael K. Smart developed a Mach number distribution ODE as Heiser and

Pratt did but incorporated the effect of friction into the ODE. The following ODE is for the

case where the back pressure is not high enough to cause flow separation [16]:

 2 2 2 2 2

2

2 2 2 2

1 1 1
2 1 1 1 1

2 2 2
4

1 1 1

t

f

t

M M M M M
dTdM dA dx

C
A T DM M M M

(2.4)

When the flow does separate, a new set of ODE’s was used. The notable part of

this approach is taking into account flow separation by introducing another variable Ac –

the core flow area. Another ODE for the distribution of the ratio between the core flow

area and the geometric area was developed [16]:

2
2

2 2

4
1 /

1
2

2

f
t

cc t

dx
C

dTdM dp p DM
AA TM M

AA

 (2.5)

 2 2

2

2

1 1 1 // 1 1 1
4 1

/ 2 / 2/

cc t

f

c c tc

M A Ad A A M dTdp dx
C M

A A p A A D TM A A

 (2.6)

14

This new ODE in conjunction with the Mach number distribution ODE are to be

solved simultaneously by a numerical method. In order to do so, the pressure distribution

term in equation (2.5) and equation (2.6) needs to be an explicit term. It is defined by the

following empirical formula developed by Ortwerth [17, 18]:

2

0

89

2
f

H

dp u
C

dx D

 (2.7)

This model is a lot more comprehensive than the previous one, therefore, offers

more accurate results and better captures the physics of the flow inside a scramjet

combustor. Nonetheless, it still uses the ideal gas assumption whose accuracy

decreases when the temperature in the combustor becomes higher at faster air speed.

2.2 Experimental Researches

Free Piston Shock Tunnel Experiment at University of Queensland – T4 Scramjet:

The free piston shock tunnel uses a free piston to adiabatically compress the

driver gas. A shock wave propagates and reflects from the end wall of the shock tube

after the primary diaphragm rupture. This creates a high enthalpy test gas inside the

reservoir. The enthalpy and pressure of the gas in the reservoir can reach up to 2-15

MJ/kg and 10-80 MPa respectively [16]. The test gas is fed into a nozzle downstream of

the shock tube, where supersonic or hypersonic flow is generated. The duration of such

flow to the test section can reach up to several milliseconds [16].

In order to achieve flows of different Mach number of 4, 6, 8 and 10, several

axisymmetric hypersonic nozzles with different exit to throat area ratios are used. For the

conducted experiment, the Mach 4 nozzle is used [16]. The flow passes through a pair of

wedges with parallel side plates, then goes through a short duct forming a throat of Mach

2.5. Downstream of this section is the start of the scramjet combustor, where the fuel

injector is situated [16].

15

Figure 2-1 T4 scramjet inlet configuration [16].

This configuration generates a supersonic flow of Mach 2.5 with a total pressure

of 1 MPa [16].

Pressure transducers are used to measure the wall pressure. There are 35

pressure transducers 20mm apart of one another [16].

Hyshot 2 Scramjet Flight Experiment

The Center of Hypersonic at the University of Queensland has conducted

scramjet testing in the Mach 7 to Mach 8 range in shock tunnels for many years [17]. A

simplified combustor designed based on the shock tunnel testing is used for two flight

tests which took place at the Woomera Prohibited Area Test Range in central Australia

[17]. The first flight test was on October 30th 2001 but was a failure, a second successful

launch followed on July 30th 2002 [17].

 The test flights implement a two-stage Terrier-Orion Mk70 rocket as the

booster, bringing the payload and the second stage Orion motor to a maximum altitude of

more than 300 km [17]. The payload and the second stage motor follow a parabolic

16

trajectory and reenter the atmosphere at 25 to 35 km with the speed of above Mach 7.5

[17]. The reentry provides a useful flight conditions to test the scramjet combustor.

Figure 2-2 Hyshot flight profile [17].

The pressure transducers in use are SenSym 19 C series and SenSym 13 mm

series. There are in total 14 pressure measurements along the wall of the combustor. 13

of which are on the center line starting at 103.6 mm from the combustor entrance and 22

mm apart of each other. Another measurement is made 25 mm offset from the center

line, 290.6 mm from the combustor entrance [17].

17

Figure 2-3 Combustor instrumentation layout [17].

Data are sampled approximately every 2 milliseconds through 48 analog and 4

digital channels [17].

Investigation of the Isolator Flow of Scramjet Engines

This research performs the experiments involving flow through a scramjet

isolator. The experiments are done in the reflected shock tunnel TH2 at the Shock Wave

Laboratory. Helium is used as the working gas [18].

Figure 2-4 Drawing of the hypersonic shock tunnel TH2 [18].

18

The TH2 shock tunnel comprises of three major sections: the high pressure

section, the low pressure section and the nozzle & test section. The high pressure

section and the low pressure section function as a shock tube that drives the test gas.

The test gas is accelerated through the nozzle to the required Mach number in the test

section [18].

Pressure probes prove to provide signal that is much more suitable to determine

the flow structure inside the isolator [18]. Kulite XCQ-080 pressure transducers are used

in the experiment. These pressure transducers have small membrane diameter of 0.7

mm, thus, their natural frequency is relatively high, ranging from 300 to 500 kHz, which

makes them suitable for short measurement time of approximately 1 millisecond [18].

Probes with operating range of 1.7, 7 and 17 bar are needed for the experiment.

17 bar probes are used in the pitot rake, 7 bar probes are used to measure wall pressure

in the shock train region and 1.7 bar probes are used in the upstream region of the

isolator [18].

19

Chapter 3

The Numerical Propulsion System Simulation (NPSS)

This chapter provides a description of the Numerical Propulsion System

Simulation (NPSS) – the platform of the quasi-one-dimensional scramjet combustor code.

3.1 Introduction of NPSS

The simulation of a propulsion system is an intricate process that involves

numerous phenomena from different disciplines. A software devoted to this task needs to

not only have the ability to perform analysis with a low order of fidelity at system level to

achieve basic understanding of the whole system without having to establish a geometry,

but also be capable of zooming to a high enough level of fidelity to accurately simulate

the phenomena happening within each component. In addition, the interaction between

disciplines must be taken into consideration.

While a full system simulation with high order of fidelity will eventually give

detailed results that capture the entire physics of the system, it requires a large amount of

computational resources and takes a long time to reach the final results. For this reason,

it is complicated and unwieldy for establishing a basic understanding of the system in

question [1]. Low order cycle analysis, on the other hand, will provide fast and simple

results that are essential for preliminary analysis of the system. These can also help

anticipate possible problems that will occur during subsequent detailed design process

[19].

The capability of zooming into different components with different levels of fidelity

is called multifidelity analysis. An example of multifidelity analysis is shown in Figure 3-1,

where the high pressure core of the engine (i.e. compressor, combustor and turbine) is

modeled as a zero-dimensional, aerothermodynamic cycle analysis that is conducted

through the use of component performance maps and the low pressure subsystem (i.e.

20

inlet, fan, core inlet, bypass duct, nozzle) is modeled in 3-dimensions using a CFD

turbomachinery code [20].

Figure 3-1 Hybrid Simulation: 3-Dimensional Low Pressure Subsystem Model Coupled to

a 0-Dimensional High Pressure Core Model [20].

This can be done by isolated analysis, however, the interactions that occur

between components can eventually be masked by the limited communication between

teams or the codes which perform the individual numerical analysis [21]. When working

with today’s highly integrated propulsion systems where multidisciplinary issues can

decrease drastically the overall system performance, this can introduce vital problems

[21]. Thus, it is important that multifidelity analysis be performed by one unique software

that handles all the components in order to ensure communication between components.

The physical processes that take place in an air-breathing gas turbine engine

involves multiple disciplines [20]. For instance, the variations in the geometry of the high-

pressure compressor (casing, blade shape, tip clearances, etc.) that affect the efficiency

and stability of the compressor is determined by aerodynamic, structural, and thermal

loadings. In order to accurately predict the stall margin, simulation of all of these loadings

is required [20]. As a result, to accurately simulate these processes, the coupling of all

involved disciplines needs to be accounted for.

21

 The Numerical Propulsion System Simulation (NPSS) is a

multidisciplinary, multifidelity computational simulation tool that meets all the above

requirements. NPSS was developed by NASA in conjunction with other Government

agencies, industries and universities [22]. It serves as a “virtual wind tunnel” that allows

the engine manufacturer to find key design parameters early in the development process

by performing detailed full engine simulations. The use of NPSS could cut the design and

development time and cost by 30 to 40 percent, which is equivalent to $100 million per

year of development, as estimated by a major engine manufacturer [22].

NPSS brings about the following advantages: 1) minimize the expense for

maintaining numerous software systems, 2) ameliorate multidisciplinary team work by

granting all disciplines access to tools and system simulation capability, 3) facilitate

collaboration by providing the industry with a common platform for engine system

simulation, and 4) contain all engine design and operational data in one data base

connected to the system simulation [23].

Alongside gas turbine engines, NPSS usage has also been expanded other

fields such as spacecraft applications and energy applications.

3.2 NPSS Simulation Environment

The multidisciplinary framework of NPSS is illustrated in Figure 3-2, where three

primary characteristics of the simulation environment: discipline coupling, component

integration and zooming are shown. This framework allows an engineer to “plug and play”

or “substitute at will” the components of an engine with any combination of 0, 1, 2, 3

dimensional component codes [24].

22

Figure 3-2 Illustration of the NPSS Multidisciplinary Framework [21].

Traditionally, the interaction between different disciplines is handled in a

sequential fashion, with the use of translators to transfer and translate information from

one discipline to the next. This is however lengthy, tedious and often inaccurate [20].

Three coupling techniques are investigated to be included in NPSS: loosely coupled,

process coupled and tightly coupled. Loosely coupled is a rationalized version of the

traditional approach. A component’s aero, thermal and structural response is determined

by separated programs. Then these data are coupled together by a set of generic

translators and a subroutine library [20]. In process coupling, component codes are run

under the control of an automated higher level system, the exchanged information

between the codes is also managed by this system [20]. Tightly coupling connects the

23

disciplines at a fundamental equation level. The matrix representing the whole system is

solved simultaneously by implicit methods [20].

3.3 NPSS Components

Architecture, code language and basic objects

NPSS is built on an object-oriented architecture enabling an engineer to

numerically assemble a propulsion system where component codes may have different

dimensionality (Numerical Zooming), and different disciplines (Multi-Discipline coupling)

from one another [24]. This architecture is illustrated in Figure 3-3. It takes advantage of

the abilities of object-oriented programming (inheritance, polymorphism, and

encapsulation) and modern object-oriented concepts such as frameworks, component

objects, and distributed object standards [24]. There are three main areas: Interface

Layer, Object Layer and Computing Layer. Within the Interface Layer, there is a

command and a visual interface. The Object Layer is comprised of the fundamental

engineering specifics and support objects for propulsion systems such as geometry and

legacy FORTRAN codes that have been used by many companies. The Computing

Layer carries out propulsion system simulations [24].

24

Figure 3-3 NPSS Object-Oriented Open Architecture [22].

NPSS utilizes a C++ type object-oriented programming language [25], with the

following attributes: 1) maximum code reusability, 2) clear data connectivity, and 3) code

modularity [20]. The problem can be divided into objects that consist of useful data and

methods (functions) [26]. The basic objects used for a 0 and 1-dimensional analysis are:

1) elements, 2) subelements, 3) flow stations, 4) ports and 5) tables [24]. This object

structure allows NPSS to have a wide range of applications amongst air breathing,

rocket, fuel cell and ground based power propulsion and more by creating new functional

objects for each particular application [24].

Elements are the building blocks of a model in NPSS. They account for the major

components of the system [27]. Each element is a C++ code can exchange data with

each other [28]. An element can have subelements: element-like objects built to provide

supporting data to the object they accompany [27]. NPSS has various built-in elements

like Ambient, Compressor, Burner, Turbine, Nozzle, Shaft, etc… [29] and subelements

such as CompressorRlineMap, TurbinePRmap, BurnEfficiency, ThermalMass, etc... [29].

25

Users can also define their own elements and subelements that are suitable for their

model. Flow stations are found between elements. Elements communicate with one

another through input and output ports that control the data flow through links. Elements

may have none or an appropriate number of ports needed for their usage [27]. Functions

and tables can also be written to execute special calculations [27].

Figure 3-4 shows an example of a turbojet model in NPSS. The square boxes

represent the elements of this model. In this example, the compressor and turbine

elements each have a subelement that would look up compressor and turbine map to

provide off-design performance data to the element via sockets in the off-design case

simulation [27]. The elements are connected together by links represented by the arrows

pointing one port to another.

Figure 3-4 NPSS Turbojet Model [25].

Thermodynamic packages

NPSS provides a number of thermodynamic packages which can be defined by

users at run time [19]. The thermodynamic packages store a database of the properties

of single as well as mixtures of gases. These databases are used in the process of

thermodynamic analysis and are collected from leading aerospace companies. The

26

thermodynamic package is able to perform thermodynamic calculation at molecular level

of the flow under extreme conditions such as gas vibration and dissociation [19]. There

are six thermodynamic packages available in NPSS: 1. GasTbl – Pratt & Whitney air &

fuel properties, 2. allFuel/GEFluid – General Electric air & fuel properties, 3. Janaf –

Honeywell implementation of JANAF package, 4. CEA – NASA’s Chemical Equilibrium

Analysis package, 5. FPT – User customizable package, 6. REFPROP – Interface to

NIST package [30].

Solver

The simulation process of a NPSS model involves solving the conservation

equations of mass, energy, and momentum [31]. In the example of a gas turbine engine,

some other interdependent equations also need to be solved and often time in an implicit

fashion [27]. Moreover, to allow users to study the effect of important design parameters,

the particular values that meet a desired condition are to be determined [31]. These are

the jobs of the NPSS solver. Figure 3-5 illustrates its operation. The basic solution

method is varying a set of independent inputs iteratively until an equal number of

equations are satisfied [30].

Figure 3-5 Basic NPSS Solver Operation [30].

Two typical examples of solver operation during the simulation process of a gas

turbine engine are varying fuel-to-air ratio to match a given turbine inlet temperature as

this is one of the key design parameters determined a priori based on the level of

27

technology of the turbine (the material of the turbine blades); varying incoming air flow

rate to obtain a desired value of engine net thrust. This operation is also called engine

sizing: for a specific thrust requirement, the engine needs a high enough air flow rate to

produce such amount of thrust and this in turn determines the diameter of the engine.

28

Chapter 4

Quasi-one-dimensional Scramjet Isolator and Combustor Model

A quasi-one-dimensional analytical model that is simple enough to reduce the

computational resources and time but is still able to capture the complex physics of the

flow in a scramjet isolator and combustor is described in this chapter.

4.1 Assumptions

The following assumptions are made:

- The flow is quasi-one-dimensional, all parameters are either non dimensional or

the axial position is the only independent spatial variable.

- Steady flow is assumed.

- The working gas is in thermodynamic and chemical equilibrium.

- Body forces are neglected.

4.2 Conservation Equations

The conservations equations are formed based on an elemental control volume

inside the combustor as shown in Figure 4-1:

Figure 4-1 Schematic of elemental control volume for burner analysis [7].

29

Conservation of Mass

The conservation equation of mass is given by:

cm uA (4.1)

Where the core flow area can be determined as the geometric area minus the

separation area and the area of the fuel jet [7]:

c sep jet
A A A A (4.2)

Conservation of Momentum

The conservation equation of momentum is expressed in form of the change of

static pressure across the elemental control volume [1, 11, 7]:

21

2

fx w

f

c

u u Adp du dm
u u C

dx dx A dx Adx

 (4.3)

Let
m

I be:

21

2

fx w

m f

c

u u Adm
I u C

A dx Adx

 (4.4)

Therefore:

m

dp du
u I

dx dx
 (4.5)

Conservation of Energy

The change in the enthalpy of the flow is due to the heat added by the burnt fuel

and the heat flux through the combustor wall. This is the conservation of energy [1, 7]:

2 1

2

nf w

tf

q Adh du u dm
u h h

dx dx m dx mdx

 (4.6)

Let
e

I be:

30

2 1

2
e

nf w

tf

q Au dm
h h

m dx mdx
I

 (4.7)

We have:

e

dh du
u I

dx dx
 (4.8)

Written in terms of total enthalpy, equation (4.8) becomes:

t

e

dh
I

dx
 (4.9)

We now have the three conservation equations which serve as the basis for the

quasi-one-dimensional analytical model. The modification that needs to be made

accordingly to each component will be described in the following sections.

4.3 Combustor Analytical Model

Algebraic Manipulation Involving the Conservation Equations

First, take the derivative of the conservation equation of mass, from equation

(4.1), we obtain:

 c

c

dAdu u u d u dm

dx A dx dx m dx

 (4.10)

Substitute the derivative of flow velocity into equation (4.5) and (4.8):

2 2
2c

m

c

dAdp u d u dm
u I

dx A dx dx m dx

 (4.11)

and:

2 2 2

c

e

c

dAdh u u d u dm
I

dx A dx dx m dx

 (4.12)

As a common procedure in CEA, the derivative of each flow property can be

calculated from those of static pressure and static temperature. In this case, the usage of

static enthalpy as one of the independent variables instead of static temperature proves

31

to be more convenient as we already establish an equation involving the rate of change

of static enthalpy. In addition, another independent variable is introduced because there

is fuel added and burnt in the flow. The third independent variable is the equivalence ratio

 .

The derivative of density can be written as follows:

d dp dh d

dx p dx h dx dx

 (4.13)

Each of the three partial derivatives is calculated using the finite difference

method.

Substitute equation (4.13) into equations (4.11) and (4.12), we will have a system

of two equations in which
dp

dx
 and

dh

dx
 are treated as unknowns. Solving for these two

quantities and combining them with equation (4.9), we arrive at three equations of the

following forms:

 , ,
t

dp
f p h h

dx
 (4.14)

and:

 , ,
t

dh
f p h h

dx
 (4.15)

and:

 , ,t

t

dh
f p h h

dx
 (4.16)

These are the ultimate forms that can be solved numerically by the 4th order

Runge-Kutta marching scheme, which will be outlined in the next section.

32

Friction Coefficient

The reference temperature method is used to determine the friction coefficient

and later the wall heat flux.

First, we need to determine if the flow is laminar or turbulent. This is done by

comparing the Reynolds number of the flow to the transition Reynolds number Re
T

 which

is computed as follows [7]:

 -4 2.641log Re 6.421exp 1.209 10
T

M (4.17)

If the flow Reynolds number is higher than the transition Reynolds number, it is

turbulent, otherwise, it is laminar.

The second step is to compute the reference temperature.

- For laminar flow [7]:

 0.5 2

*
0.16Pr 1

0.45 0.55
2

W

TM
T T T

 (4.18)

- For turbulent flow [7]:

 1/3 2

*
0.16Pr 1

0.5 0.5
2

W

TM
T T T

 (4.19)

where:
W

T is the wall temperature and Pr is the Prandtl number.

Thirdly, the reference Reynolds number is calculated as follows [7]:

*
*

*
Re

uD

 (4.20)

The reference density and viscosity are assumed to vary with temperature and

are computed as follows [1, 7]:

*

*

T

T

 (4.21)

and:

33

3/2
*

*

*

111

111

T T K

T T K

 (4.22)

Lastly, the friction coefficient is determined from the reference Reynolds number:

- For laminar flow [7]:

*

0.664

Re
fC (4.23)

- For turbulent flow [7]:

 0.139
*

0.02296

Re
f

C (4.24)

Wall Heat Loss

 The wall heat flux is computed using the Reynolds analogy:

- For laminar flow:

 2/30.5 Pr
W f p W AW

q C uC T T (4.25)

- For turbulent flow:

 1/30.5 Pr
W f p W AW

q C uC T T (4.26)

where:
AW

T is the wall adiabatic temperature, and is given by:

- For laminar flow:

 1/2 2Pr 1
1

2
AW

M
T T

 (4.27)

- For turbulent flow:

 1/3 2Pr 1
1

2
AW

M
T T

 (4.28)

34

Mixing Efficiency Curve

Not all the fuel injected into the air stream is mixed and burned. The area of the

unmixed stream together with the separation area will compress the core flow area as

equation (4.2) indicates. Thus, a mixing model is necessary to determine the amount of

fuel that is mixed and burned as well as that of the unmixed fuel and its area.

There are different formula developed from experiments that are specific to

certain type of fuel and injection scheme.

The simplest one is a curve fit proposed by Heiser and Pratt as follows [1]:

3

4 3

,

3

4 3

()

1 1

m c tot

x x

x x
x

x x

x x

 (4.29)

where: ,c tot is the mixing efficiency at the end of the combustor, ϑ is an

empirical constant whose value is from 1 to 10 [5]. This constant will determine which

injection scheme the curve is fitted to. It has been observed that lower values of ϑ

correspond to parallel injection and higher values results in a curve resembling to that of

normal injection scheme.

The following are a couple of the aforementioned empirical formula that will be

used for the code validation:

- Strut mixing model for hydrogen fuel:

The mixing efficiency is given by [7]:

() 1 mix

kx

L d

m
x e

 (4.30)

mix
L is the mixing length and can be determined as follows:

35

*

()

f f f

mix

c a a

D K u
L

f M u

 (4.31)

where:
23

() 0.25 0.75 cM

c
f M e

 and
f a

c

f a

u u
M

a a

 , k, d and *
K are constant and take the following values: a = 1.065, k = 3.696,

d = 0.806 and * 390K

f
D is the fuel jet diameter.

c
M is the convective Mach number and is calculated from fuel velocity and air

velocity as well as their acoustic speed.

- Normal injection model for hydrogen fuel:

The mixing efficiency is given by [7, 35]:

() 1.01 0.176ln
m

x
x

x

 (4.32)

where:

1.720.179
mix

x L e

 (4.33)

The mixing length in this case is estimated to be 60 times the spacing between

injectors.

From the mixing efficiency, the area of the unmixed fuel jet is given by [7]:

 ,3() 1 ()
jet jet c

A x A x (4.34)

where: Ajet,3 is the fuel jet area at Station 3.

NPSS Calculation Procedure

The combustor is “discretized” into n infinitesimal elements of length dx which is

the same as the aforementioned elemental control volume. This corresponds to n+1

nodes along the axis of the combustor. The first node is at the entry of the combustor –

36

Station 3 as denoted in Figure 4-2. A flow station called Fl_I is connected to this node.

Here after, another flow station called Fl_O is attached to each following node and moves

towards the end of the combustor – Station 4.

Figure 4-2 Discretization of the combustor.

The calculation procedure can be described in the following flow chart:

37

Figure 4-3 NPSS calculation procedure flow chart.

Overall, at each step, Fl_O with the help of CEA calculates and stores the flow

data at the node is currently connected to and the data is in turn used to find that of the

next node in line. Fl_O is continuously updated until it reaches Station 4.

In detail, the three selected independent variables are used as follows:

38

- Static enthalpy and static pressure of the flow are inserted into CEA through

the use of a flow station function called setTotalhP(), which in turn gives out

static temperature and density.

- Flow velocity is calculated from total enthalpy and static enthalpy:

 2
t

u h h (4.35)

Core flow area is determined from the geometric area and the fuel jet area.

In order to calculate the enthalpy change due to the burnt fuel, a built-in function

in NPSS call burn() is used. This function will add and burn the fuel with the air. It keeps

pt of the mixture the same and calculate ht based on the amount of fuel added and the

hpr of the fuel. In this code, p, h and ht is given and the mixture properties are to be set

by those parameters. Thus, the burn() function is first used beforehand to add and burn

the fuel first, then setTotalhP() is used to set flow properties to the right values.

With these properties and with the three numerically calculated values of partial

derivative of density:
p

,
h

 and

, we now have all the needed variables to plug into

equations (4.14), (4.15) and (4.16) to calculate the derivative of static pressure, static

enthalpy and total enthalpy. Based on these derivatives, the values of p, h and ht at the

next node are determined as follows:

1i i

dp
p p x

dx
 (4.36)

and:

1i i

dh
h h x

dx
 (4.37)

and:

39

1i i

t

t t

dh
h h x

dx
 (4.38)

where the terms: dp/dx, dh/dx and dht/dx are weighted average slope value

calculated from the 4 approximate values as outlined in the 4th order Runge-Kutta

procedure.

The process is repeated until the end of the combustor.

4.4 Isolator Analytical Model

Empirical Formula of Pressure Distribution

The isolator is simpler than the combustor in the sense that it is usually a

constant area duct and there is no heat addition from fuel. However, the flow is bound to

separate, which introduces another unknown to the analytical model: the core flow area.

Thus, another equation is required to make the set of equations solvable and further

modification to the original conservation equations is also needed.

The added equation is the specified pressure distribution. This is an empirical

formula developed by Ortwerth [18, 17] based on experimental data with different Mach

number, Reynolds number and duct geometry:

0

289

2
f

H

dp u
C

dx D

 (4.39)

where:
H

D is the hydraulic diameter of the duct and
0f

C is the friction coefficient

at the separation start point [17].

As we now have an explicit pressure distribution from equation (4.39), we can

eliminate the du/dx term in both equations (4.5) and (4.8), resulting in a new equation

calculating the derivative of static enthalpy:

1 m

e

Idh dp
I

dx dx
 (4.40)

40

Equations (4.39), (4.40) and (4.9) are used for the 4th order Runge-Kutta method

in the case where flow separation occurs.

NPSS Calculation Procedure

The isolator is divided into two regions: the attached region and the separated

region.

In the attached region where flow remains attached, the same equations and

calculation procedure as the one implemented for the combustor the combustor is used.

Heat addition from fuel is not present so there is no need to use the burn() function.

In the separation region, generally the same NPSS calculation procedure is

used, the only difference is that core flow area is now a new unknown and is calculated

from flow rate, velocity and density using the conservation equation of mass. Therefore,

we will also have core flow area distribution as an output of the quasi-one-dimensional

code.

The point separating these two regions is the separation start point xu. This point

will be iterated until the Mach number or pressure at Station 3 matches the specified

value given in the experimental data.

41

Chapter 5

Results

This chapter describes the quasi-one-dimensional code validation by comparison

to experimental data available in the literature.

5.1 Combustor Code Validation

The first validation is done by comparing the results of the analytical model to

that of the experimental results obtained from the T4 free piston shock tunnel experiment

conducted at the University of Queensland [16].

The geometry of the combustor section in the T4 experiment is shown in the

following figure:

Figure 5-1 T4 scramjet geometry [7].

The combustor is a diverging duct with a rectangular initial cross section of

dimension 0.047 m x 0.1 m. The upper and lower walls diverge symmetrically at an angle

of 1.720 over a length 0.8 m [7, 33].

42

The fuel injector is a strut type injector with a 0.0016 m slot width. Hydrogen fuel

is injected parallel to the incoming airflow at the point where the combustor cross section

starts to increase. Fuel is injected at sonic speed [7].

 There are three cases in the experiment. All have the same incoming condition

and same wall temperature of 300 K but the equivalence ratio is varied. The inlet

conditions along with the equivalence ratio of each case are shown in the following table

[33, 7]:

Table 5-1 T4 experiment data

Case M3 P3 (kPa) T3 (K) Equivalence ratio
1 2.47 59 1025 0.19
2 2.47 59 1025 0.38
3 2.47 59 1025 0.58

In order to model the mixing efficiency of this experiment, the hydrogen fuel strut

injector empirical formula described in Section 4.3.4 is used.

The following plots compare the analytical results with data from the experiment.

The horizontal axis represents the axial position from the start of the combustor (Station

3) to the end of the combustor (Station 4). The vertical axis represents the non-

dimensionalized static pressure, which is the static pressure at the corresponding

position divided by the combustor inlet static pressure.

43

Figure 5-2 Pressure distribution comparison for Case 1 – T4 experiment.

Figure 5-3 Pressure distribution comparison for Case 2 – T4 experiment.

44

Figure 5-4 Pressure distribution comparison for Case 3 – T4 experiment.

Figures 5-2 to 5-4 shows that the quasi-one-dimensional code provides

reasonably accurate results that agree with the experimental data. The pressure

increases sharply initially due to the effect of heat addition from burnt fuel then decreases

after reaching a peak value. Fuel is mixed and burnt more efficiently right after the

injector. After the point of maximum pressure, other effects, i.e. friction, heat loss and

area expansion become more dominant. The initial pressure spike can be the result of

the shockwave created by the injector strut. It can also be seen that with higher

equivalence ratio, meaning more fuel is burnt, higher peak pressure is observed. This

peak pressure is the cause of shock train inside the isolator.

The second validation is carried out by comparison to the experimental results

obtained from the Hyshot 2 flight test data [17].

The geometry of the Hyshot 2 scramjet is described in the following figures:

45

Figure 5-5 Schematic of Hyshot 2 scramjet geometry (dimensions are in millimeters) [17].

Figure 5-6 Hyshot 2 combustor section geometry [7].

The combustor is a constant area duct with a rectangular initial cross section of

dimension 0.0098 m x 0.075 m. The internal nozzle section after the combustor expands

at an angle of 120. The length of the constant area section is 0.242 m from the fuel

injection position and the internal nozzle spreads over a length of 0.147 m [7].

The fuel injector is a normal injection type where hydrogen fuel enters the

incoming flow at a 90 degree angle. The position of the fuel injector is 0.058 m

downstream of the combustor entrance plane. Fuel is injected at sonic speed [7, 17].

The flight test data comprises of two categories: unfueled combustor and fueled

combustor, each of which contains 4 cases [17]. One case from each category is chosen

for comparison with the quasi-one-dimensional code output. The wall temperature is

46

assumed to be constant at 350 K [7]. The other combustor entrance data are shown in

the following table:

Table 5-2 Hyshot 2 experiment data

Case M3 P3 (kPa) T3 (K) Equivalence ratio
1 (unfueled) 2.436 55.256 1388.4 0
2 (fueled) 2.393 44.847 1416.6 0.346

The hydrogen normal injection empirical formula described in Section 4.3.4 is

used to model the mixing efficiency.

For each case, the non-dimensionalized static pressure, which is the static

pressure at the corresponding position divided by the combustor inlet static pressure is

plotted versus the axial position from the injection point to the end of the combustor. The

comparison to the flight data is as follows:

Figure 5-7 Pressure distribution comparison for Case 1 – Hyshot 2.

47

Figure 5-8 Pressure distribution comparison for Case 2 – Hyshot 2.

Once again, the results show agreement between the analytical data and the

flight test data. This also validates the accuracy of the normal injection mixing efficiency

curve in modeling the heat addition process.

To conclude the combustor validation, it can be stated that the quasi-one-

dimensional code has been validated with experimental data and provided accurate

results in terms of the pressure distribution through the combustor.

5.2 Isolator Code Validation

The isolator code is essentially the same analytical model as the combustor code

with modification to the system of differential equations by adding a prescribed pressure

distribution and removing heat addition. The validation of this modified code is done by

comparing its results to that of the experiments done in the reflected shock tunnel TH2 at

the Shock Wave Laboratory by Fisher [18].

48

The following figure describes the schematic of the isolator in the experiment:

Figure 5-9 Heated isolator experiment setup [7].

The isolator is a duct with rectangular cross section. The length of the isolator is

0.2067 m but the pressure probe for the back pressure is at 0.18 m from Station 2 [18],

thus, the length used for the code is 0.18 m. The height and width of the isolator are

0.018 m and 0.1 m respectively [18]. The gas used in the experiment is Helium [18].

Two cases are chosen for validation. All have the same wall temperature of 1000

K except for the first case which is run at wall temperature of 300 K and the same inlet

condition which is shown in the following table:

Table 5-3 Fisher experiment data

Case M2 P2 (kPa) T2 (K) M3

1 3.5 12.440 333 3.4
2 3.5 12.440 333 2.4
3 3.5 12.440 333 2.3
4 3.5 12.440 333 2.1

The Mach number at the end of the isolator M3 in each case is prescribed. The

validation procedure is done by iterating the location of the separation start point until the

back pressure obtained from the code matches the experimental data except for the first

49

case, where no separation occurs. Static wall pressure is then compared between the

analytical results and experimental results to assess the accuracy of the code.

The following plots show the aforementioned comparison. The horizontal axis

represents the axial position from the start of the isolator to the last pressure probe. The

vertical axis represents the pressure coefficient Cp, which is defined as follows:

0

2

0 0 00.5
p

p p
C

p M

 (5.1)

where the parameters with subscript 0 denote the free stream condition and are

given the following values: p0 = 460 Pa, M0 = 7.5 and
0 1.67 for Helium [21].

Figure 5-10 Pressure distribution comparison for the isolator – Fisher.

50

The Mach number at Station 3 obtained from the code is compared to the

prescribed values as follows:

Table 5-4 Ma3 comparison – Fisher experiment

Case Ma3 - Analytical Ma3 - Experimental Error (%)
1 3.203 3.4 6.150%
2 2.677 2.4 10.347%
3 2.595 2.3 11.368%
4 2.395 2.1 12.317%

The error increases as the shock train lengthens. This indicates that the

reference temperature method over predicts the pressure coefficient, which in turn makes

the slope of the pressure line become stiffer than the experimental data. This becomes

more prominent as the shock train length increases.

It can be seen that the analytical results demonstrate reasonable accuracy in

terms of separation start point and pressure gradient across the shock train. However,

the given data only represent wall pressure. The flow structure inside an isolator is rather

complex due to shock train formation, thus, the pressure of the flow changes from the

center line outwards and is different from the wall pressure. As a result, a higher order

analysis is needed to obtain a complete pressure distribution of the isolator.

The modification of the combustor code only provides limited information on

predicting the separation start point, which in turn can be used to determine the length of

the isolator in the preliminary step of the design process.

51

Chapter 6

Conclusion

A summary of the work done in this thesis as well as some aspects of future work

are presented in this chapter.

6.1 Summary

A quasi-one-dimensional analytical model has been developed to solve for flow

properties inside a scramjet combustor. The basis of the model is the conversation

equations of mass, momentum and energy combined with thermodynamics and concepts

of boundary layer theory. The analytical model treats the working fluid as real reacting

gas in equilibrium and takes into account the following aspect of the physics of flow

through a scramjet combustor: geometric area change, friction, wall heat loss and the

heat addition from the reaction of the air and fuel. A 4th order Runge-Kutta method is

chosen to be the numerical integration scheme as it is one of the methods that provide

results of high order of accuracy and the algebraic manipulation of the differential

equations to arrive at the form outlined in this scheme is straight forward.

The platform for code development is the Numerical Propulsion System

Simulation (NPSS), which allows multidiscipline and multifidelity analysis as well as

provides the flexibility of model customization. Thus, the NPSS code can be easily

reused and expanded beyond the application to scramjet engines.

 A modification to the system of governing equation is also made to solve for the

flow through the isolator by prescribing a pressure gradient. Although this model only

provides limited information of separation start point and wall pressure, the data obtained

is crucial in determining the length of the isolator, which is an important parameter in the

preliminary design process.

52

The code is validated by comparing its results to multiple experimental and flight

test data. The comparison shows that the code provides results with acceptable level of

accuracy, both for the combustor and isolator.

6.2 Future Work

Some aspects of the current work can be expanded as follows:

• Mixing efficiency of different fuel other than hydrogen

• Interaction between the combustor and isolator

• Validation of said interaction

53

Appendix A

4th order Runge-Kutta Method

54

The 4th order Runge-Kutta method is a numerical method used to solve differential

equations that take the form as follows:

 ,
dx

f x t
dt

The essence of this method is calculating
0

x x t t from a known
0 0

x x t by

estimating the slope k of the line connecting the two points.

The slope k is estimated as follows:

1 0 0

,k f x t

2 0 1 0
,

2 2

t t
k f x k t

3 0 2 0
,

2 2

t t
k f x k t

4 0 3 0

,k f x k t t t

1 2 3 4
2 2

6

k k k k
k

Having obtained k, we can easily calculate x:

0 0

x x t t x k t

From the point that we have just calculated, we can continue to calculate

0

2x x t t and so on until we reach the end of the concerned domain.

For a system of numerous equations, the same procedure is applied for each unknown.

Each differential equation is calculated based on all the values of unknowns found at each step.

55

Appendix B

Code outline

56

// CONVERSION FACTORS
//
// 1 BTU/lbm -- 25037. (ft/sec)^2
// 1 psia -- 4633.056 (lbm*ft/sec^2)/ft^2
// 1 BTU -- 25037. lbm*(ft/sec)^2
// 1 ft -- 12. inch
//
#ifndef __SJBurner1D__
#define __SJBurner1D__

#include <InterpIncludes.ncp>

class SJBurner1D extends Element {

 //--
 // ******* SETUP VARIABLES ********
 //--
 // Inputs
 //--
 // Isolator
 real Li {
 value = 10.; IOstatus = INPUT; units = INCH;
 description = "Isolator length";
 }
 int Niatt {
 value = 100; IOstatus = INPUT; units = NONE;
 description = "Number of points";
 }
 int Nisep {
 value = 100; IOstatus = INPUT; units = NONE;
 description = "Number of points";
 }
 // Combustor
 real Lc {
 value = 10.; IOstatus = INPUT; units = INCH;
 description = "Combustor length";
 }
 int Nc {
 value = 100; IOstatus = INPUT; units = NONE;
 description = "Number of points";
 }
 // Ajet3
 real Ajet3 {
 value = 10.; IOstatus = INPUT; units = INCH2;
 description = "Fuel Jet Area at Station 3";
 }
 real xinj {
 value = 0.; IOstatus = INPUT; units = INCH;
 description = "Injector position";
 }
 // For combustor diverging area

57

 real a1 {
 value = 1.; IOstatus = INPUT; units = INCH2;
 description = "First Coeff";
 }
 real a2 {
 value = 1.; IOstatus = INPUT; units = INCH2;
 description = "Second Coeff";
 }
 real xa2 {
 value = 1.; IOstatus = INPUT; units = INCH;
 description = "a2 position";
 }
 real a3 {
 value = 1.; IOstatus = INPUT; units = INCH2;
 description = "Third Coeff";
 }
 // Wall Temperature
 real Tw {
 value = 1080.; IOstatus = INPUT; units = RANKINE;
 description = "Wall temperature";
 }
 real Pr {
 value = 0.72; IOstatus = INPUT; units = NONE;
 description = "Prandtl number";
 }
 // FAR stoic
 real FARstoic {
 value = 0.0674; IOstatus = INPUT; units = NONE;
 description = "Stoichiometric FAR";
 }
 real phi0 {
 value = 0.0291; IOstatus = INPUT; units = NONE;
 description = "Initial equivalence ratio";
 }
 //--
 // Outputs
 //--
 real Vout {
 value = 0; IOstatus = OUTPUT; units = FT_PER_SEC;
 description = "Velocity";
 }
 real Psout {
 value = 0; IOstatus = OUTPUT; units = PSIA;
 description = "Static Pressure";
 }
 real Tsout {
 value = 0; IOstatus = OUTPUT; units = RANKINE;
 description = "Static Temperature";
 }
 real MNout {
 value = 0; IOstatus = OUTPUT; units = NONE;
 description = "Mach Number";

58

 }
 //--
 // ******* OPTION VARIABLE SETUP *******
 //--

 //--
 // ****** SETUP PORTS, FLOW STATIONS, SOCKETS, TABLES ********
 //--

 // FLUID PORTS
 FluidInputPort Fl_I {
 description = "Incoming flow";
 }

 FluidOutputPort Fl_O {
 description = "Exiting flow";
 }

 // FUEL PORTS
 FuelInputPort Fu_I {
 description = "Incoming fuel flow";
 }
 // BLEED PORTS

 // THERMAL PORTS

 // MECHANICAL PORTS

 // FLOW STATIONS
 FlowStation Fl_Otemp;
 Fl_Otemp.setOption("switchTransport", "EQUIL");
 FlowStation Fstemp1;
 Fstemp1.setOption("switchTransport", "EQUIL");
 FlowStation Fstemp2;
 Fstemp2.setOption("switchTransport", "EQUIL");
 // SOCKETS

 // TABLES

 // DATA PORTS

 //--
 // ******* INTERNAL SOLVER SETUP *******
 //--

 //--
 // ****** ADD SOLVER INDEPENDENTS & DEPENDENTS ******
 //--

 //--
 // ******* VARIABLE CHANGED METHODOLOGY *******
 //--

59

 //--
 // ******* PERFORM ENGINEERING CALCULATIONS *******
 //--

 void calculate() {
 // Unit conversion: All parameters from flow stations are converted into normal standard,
 // then converted back into flow station standard if needed when inputed into flow
station functions
 // ONLY L and x are allowed in inch
 real intoft = 1./12.;
 real in2cf = 1./144.;
 real mtoin = 39.3701;
 real m2toin2 = 39.3701**2;
 real BTUcf = 25037.;
 real psicf = 4633.056;
 real KtoR = 1.8;
 real Patopsi = 0.000145038;
 real pi = 3.1416;
 real e = 2.71828;
 //Fl_I.Aphy = a1-Ajet3;

 //--
 // Text Output Function
 //--
 OutFileStream os_EngResultsRow {
 // Name of the output file that is created by this out stream
 filename = "cout"; // sent results to the command prompt
 //filename = "EngResults.txt";
 }
 // Create the Case Row Viewer named EngResultsRow
 DataViewer CaseRowViewer EngResultsRow {

 // Specify the OutFileStream object to use for this viewer
 outStreamHandle = "os_EngResultsRow";

 // Set the default number format for real and scientific notation
 defRealFormat = "????????.???????";
 defSNFormat = "??.???????E?????";

 // List the variables that you want to print to the output file
 variableList = {
 "MNtext : ??.??????? = MN",
 "Vtext : ?????.??????? = V",
 "CPtext : ?????.??????? = CP",
 "httext : ?????????.??????? = ht/ht2",
 "Pstext : ?????.??????? = Ps/Ps2",
 "Tstext : ?????.??????? = Ts/Ts2",
 "Aphytext : ?????.??????? = Ac/A2",
 "Artext : ?????.??????? = Ac/Awall",
 "O2text : ??.???????? = O2",
 "H2Otext : ??.???????? = H2O",

60

 "CO2text : ??.???????? = CO2",
 "N2text : ??.???????? = N2"
 }

 titleBody = ""; // Title to display (if desired)
 titleVars = {};

 // Print the Case in the file header
 caseHeaderBody = "x ???.???????"; // Case header title to display
 caseHeaderVars = {"xtext"}; // Actual case number

 pageWidth = 10000;
 pageHeight = 10000.;
 }
 real xtext;
 real MNtext;
 real Vtext;
 real CPtext;
 real httext;
 real Pstext;
 real Tstext;
 real Aphytext;
 real Artext;
 real O2text;
 real H2Otext;
 real CO2text;
 real N2text;
 void textinitiate() {
 xtext = 0;
 MNtext = MNin;
 Vtext = Vin;
 CPtext = (Psin-Ps0)/q0;
 httext = htin/(Fl_I.ht*BTUcf);
 Pstext = Psin/(Fl_I.Ps*psicf);
 Tstext = Tsin/Fl_I.Ts;
 Aphytext = Ain/(Fl_I.Aphy*in2cf);
 Artext = Ain/calcAwall(0);
 O2text = Fl_I.getTotalComp("O2");
 H2Otext = Fl_I.getTotalComp("H2O");
 CO2text = Fl_I.getTotalComp("CO2");
 N2text = Fl_I.getTotalComp("N2");

 os_EngResultsRow.filename = "EngResults.txt";
 EngResultsRow.isActive = TRUE;
 EngResultsRow.update();
 }
 void textOutputUpdate(real x, real dx) {
 xtext = x+dx;
 MNtext = MNout;
 Vtext = Vout;
 CPtext = (Psout-Ps0)/q0;
 httext = htout/(Fl_I.ht*BTUcf);

61

 Pstext = Psout/(Fl_I.Ps*psicf);
 Tstext = Tsout/Fl_I.Ts;
 Aphytext = A/(Fl_I.Aphy*in2cf);
 Artext = A/calcAwall(xtext);
 O2text = Fl_O.getTotalComp("O2");
 H2Otext = Fl_O.getTotalComp("H2O");
 CO2text = Fl_O.getTotalComp("CO2");
 N2text = Fl_O.getTotalComp("N2");

 os_EngResultsRow.filename = "EngResults.txt";
 EngResultsRow.isActive = TRUE;
 EngResultsRow.update();
 }
 //---
 // Initiate Function
 //---
 real Ptin = Fl_I.Pt*psicf;
 real Psin = Fl_I.Ps*psicf;
 real htin = Fl_I.ht*BTUcf;
 real hsin = Fl_I.hs*BTUcf; // BTU/lbm to (f/s)^2
 real Ttin = Fl_I.Tt;
 real Tsin = Fl_I.Ts;
 real Vin = Fl_I.V;
 real MNin = Fl_I.MN;
 real Ain = Fl_I.Aphy*in2cf; // Ain in ft2
 real Win = Fl_I.W;
 real rhoin = Fl_I.rhos;
 real R = Fl_I.Rs*BTUcf; // BTU/lbm.R to (f/s)^2/R
 real Cp = Fl_I.Cps*BTUcf;
 real gama = Fl_I.gams;
 real Rein;
 real muin;
 real Wair;
 real FAR0;

 real MN0 = 7.5;
 real Ts0 = 100.*KtoR;
 real Ps0 = 460*Patopsi*psicf;
 real gama0 = 1.67;
 real q0 = 0.5*gama0*Ps0*MN0**2;
 void initiate() {
 // Reset Win
 Vin = Fl_I.V;
 rhoin = Fl_I.rhos;
 Ain = calcAwall(0.);
 if (xinj == 0.) {
 Ain = Ain-Ajet3*in2cf;
 }
 Fl_I.W = Ain*rhoin*Vin;

 Ptin = Fl_I.Pt*psicf;
 Psin = Fl_I.Ps*psicf;

62

 htin = Fl_I.ht*BTUcf;
 hsin = Fl_I.hs*BTUcf; // BTU/lbm to (f/s)^2
 Ttin = Fl_I.Tt;
 Tsin = Fl_I.Ts;
 Win = Fl_I.W;
 R = Fl_I.Rs*BTUcf; // BTU/lbm.R to (f/s)^2/R
 Cp = Fl_I.Cps*BTUcf;
 gama = Fl_I.gams;
 MNin = Fl_I.MN;

 FAR0 = phi0*FARstoic;
 Wair = Fl_I.Wa;

 Fl_O.copyFlowStatic("Fl_I");
 }
 //---
 // Components Calculation Functions
 //---
 real term1; real term2; real term3; real term4;
 real MWf = 2.;// Hydrogen fuel
 real calcVfx() {
 // Assume fuel jet at the same temperature as the wall
 // Assume MNjet = 1
 // Set full flow condition after isolator
 return (Fl_O.gams*(Fl_O.Rs*BTUcf*Fl_O.MW/MWf)*Tw)**0.5;
 }
 //---
 real Lmix;
 real K = 390.;
 real Mc;
 real fMc;
 real Df = 0.0016*mtoin;
 real rhof = 0.003;//0.00512; //H2 lbm/ft3 at 300K // 0.004509; 0.003;
 real aa;
 real af;

 real calcLmix() {
 // Hydrogen parallel strut injection
 /*
 af = Vfx; // as Mjet = 1
 aa = (Fl_O.gams*Fl_O.Rs*BTUcf*Fl_O.Ts)**0.5;
 Mc = (Vfx-Fl_O.V)/(aa+af);
 term1 = 3.*(Mc**2);
 term2 = e**(-term1);
 fMc = 0.25+0.75*term2;
 return ((Df*K*((rhof*Vfx)/(Fl_O.rhos*Fl_O.V))**0.5)/fMc);
 */
 return 0.34*mtoin;;//60*0.0098*mtoin;
 }
 //---
 // Hydrogen parallel strut injection
 real alpha = 1.06;

63

 real k = 3.69639;
 real d = 0.80586;
 // Linear fit
 real lamda = 10.;
 real etab = 1.;

 real calcetam(real x) {
 // Linear fit
 /*
 term1 = etab*lamda*(x-xinj)/(Lmix+(lamda-1.)*(x-xinj));
 if (term1 < 1.) {
 return term1;
 } else {
 return 1.;
 }
 */
 x = x-xinj;
 // Hydrogen parallel strut injection
 /*
 // etam = alpha*(1.-e**(-(k*x/Lmix)**d));
 // Group too many operations in one line will give NaN result
 term1 = (k*x)/Lmix;
 term2 = term1**d;
 term3 = e**(-term2);
 if (alpha*(1.-term3)<1.) {
 return alpha*(1.-term3);
 } else {
 return 1.;
 }
 */
 // Hydrogen normal injection
 /*
 if (x == 0.) {
 return 0.;
 } else {
 term1 = 0.179*Lmix*exp(1.72*phi0);
 term2 = 1.01+0.176*log(x/term1);
 if (term2 < 1.) {
 return term2;
 } else {
 return 1.;
 }
 }
 */
 // Normal or angular injection
 /*
 term1 = x/Lmix;
 term2 = 1./(50.+1000.*0.25);
 term3 = (term1+term2)**0.25;
 if (term3 < 1.) {
 return term3;
 } else {

64

 return 1.;
 }
 */
 return 0.;
 }
 //---
 real calcdetamdx(real x, real dx) {
 // Linear fit
 /*
 return etab*lamda/(Lc*(1.+(lamda-1.)*((x-xinj)/Lmix))**2);
 */
 x = x-xinj;
 // Hydrogen parallel strut injection
 /*
 if (x == 0.) {
 return (-3.*calcetam(x)+4.*calcetam(x+dx)-calcetam(x+2.*dx))/(2.*dx);
 } else {
 if (calcetam(x) == 1.) {
 return 0.;
 } else {
 term1 = (k*x)/Lmix;
 term2 = term1**d;
 term3 = e**(-term2);
 term4 = term1**(d-1.);
 return alpha*d*(k/Lmix)*term3*term4;
 }
 }
 */
 // Universal - Difference formula
 /*
 return (-3.*calcetam(x)+4.*calcetam(x+dx)-calcetam(x+2.*dx))/(2.*dx);
 */
 return 0.;
 }
 //---
 real calcAwall(real x) {
 if (x < x3) {
 return a1*in2cf;
 } else {
 if (x < xa2) {
 return ((a2-a1)*(x-x3)/(xa2-x3)+a1)*in2cf;
 } else {
 return ((a3-a2)*(x-xa2)/(x4-xa2)+a2)*in2cf;
 }
 }
 }
 //---
 real calcdAwalldx(real x) {
 if (x < x3) {
 return 0.;
 } else {
 if (x < xa2) {

65

 return ((a2-a1)/(xa2-x3))*in2cf;
 } else {
 return ((a3-a2)/(x4-xa2))*in2cf;
 }
 }
 }
 //---
 // Calculate dPs/dx, dhs/dx, dht/dx
 //---
 real Awall; real dAwalldx;
 real Ajet; real dAjetdx;
 real A; real dAdx;

 real Dw;
 real Vfx;
 real etam;
 real detamdx;
 real dWdxW;
 real dphidx;
 real Im;
 real Ie;
 real D; real E; real RHS1; real RHS2;

 real qw;
 real Cw;
 real Taw;

 real drhodP;
 real dP; real Ps1; real Ps2; real Pt1; real Pt2;
 real drhodh;
 real dh; real hs1; real hs2; real Vin1; real Vin2;
 real drhodphi;
 real dphi;

 real dhtdx;
 real dhsdx;
 real dPsdx;
 // For calculating Cf
 real Cf;
 real _R = 111.*KtoR;
 real Retrans;
 real Tref;
 real Reref;
 real rhoref;
 real muref;
 //---
 // Isolator - Attached Zone
 //---
 void calcDeliatt(real Ps, real ht, real hs, real x, real dx) {

 // Test
 cout << endl;

66

 cout << "INPUT: ";
 cout << "Psin = " << Ps << " ";
 cout << "hsin = " << hs << " ";
 cout << "htin = " << ht << endl;

 // etam
 etam = 0.;
 //detam/dx
 detamdx = 0.;
 // Awall(x)
 Awall = calcAwall(x);
 // dAwall/dx
 dAwalldx = calcdAwalldx(x);
 // A
 A = Awall;
 // dA/dx
 dAdx = dAwalldx;

 Fl_Otemp.copyFlow("Fl_O");
 // Set flow properties
 Fl_Otemp.setTotal_hP(hs/BTUcf, Ps/psicf);
 // Flow properties
 Psin = Fl_Otemp.Pt*psicf;
 hsin = Fl_Otemp.ht*BTUcf;
 Tsin = Fl_Otemp.Tt;
 Vin = (2.*(ht-hs))**0.5;
 Win = Fl_Otemp.W;
 Ain = A;
 rhoin = Fl_Otemp.rhot;
 R = Fl_Otemp.Rt*BTUcf;
 Cp = Fl_Otemp.Cpt*BTUcf;

 // Test
 cout << endl;
 cout << "hsin = " << hsin << " ";
 cout << "Psin = " << Psin << " ";
 cout << "Tsin = " << Tsin << " ";
 cout << "Vin = " << Vin << " ";
 cout << "Ain = " << Ain << " ";
 cout << "rhoin = " << rhoin << " ";
 cout << "Wfuel = " << Fl_Otemp.Wf << " ";
 cout << "Win = " << Win << " ";
 cout << "mu = " << Fl_Otemp.mut << endl;

 // Dw
 Dw = (4.*Awall/pi)**0.5;
 // Cw
 Cw = pi*Dw*dx*intoft;
 // Reynold number
 muin = Fl_Otemp.mut;
 Rein = rhoin*Vin*Dw/muin;
 // Transient Reynold

67

 term1 = 1.209*(10**(-4))*(MNin**2.641);
 term2 = 6.421*(e**term1);
 Retrans = 10**term2;
 // Cf and qw
 MNin = Vin/((gama*R*Tsin)**0.5);
 if (Rein >= Retrans) {
 // Turbulent
 Tref = 0.5*Tsin+0.5*Tw+0.5*0.16*(Pr**(1./3.))*(gama-
1.)*Tsin*(MNin**2.);
 rhoref = rhoin*Tsin/Tref;
 muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R));
 Reref = rhoref*Vin*Dw/muref;
 Cf = 0.02296/(Reref**0.139);

 Taw = Tsin*(1.+Pr**(1./3.)*(0.5*(gama-1.)*(MNin**2.)));
 qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(1./3.));
 } else {
 // Laminar
 Tref = 0.45*Tsin+0.55*Tw+0.5*0.16*(Pr**(1./2.))*(gama-
1.)*Tsin*(MNin**2.);
 rhoref = rhoin*Tsin/Tref;
 muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R));
 Reref = rhoref*Vin*Dw/muref;
 Cf = 0.664/(Reref**0.5);

 Taw = Tsin*(1.+Pr**(1./2.)*(0.5*(gama-1.)*(MNin**2.)));
 qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(2./3.));
 }

 // Test
 cout << endl;
 cout << "Rein = " << Rein << " ";
 cout << "Retrans = " << Retrans << " ";
 cout << "Cf = " << Cf << endl;

 // drhodP
 Fstemp1.copyFlow("Fl_Otemp");
 Fstemp2.copyFlow("Fl_Otemp");
 // Same phi --> same ht, same hs --> same Vin
 dP = Psin*0.001;
 Ps1 = Psin-dP;
 Ps2 = Psin+dP;
 Fstemp1.setTotal_hP(hsin/BTUcf, Ps1/psicf);
 Fstemp2.setTotal_hP(hsin/BTUcf, Ps2/psicf);
 drhodP = (Fstemp2.rhot-Fstemp1.rhot)/(2.*dP);
 // drhodh
 dh = hsin*0.001;
 hs1 = hsin-dh;
 hs2 = hsin+dh;
 Fstemp1.setTotal_hP(hs1/BTUcf, Psin/psicf);
 Fstemp2.setTotal_hP(hs2/BTUcf, Psin/psicf);
 drhodh = (Fstemp2.rhot-Fstemp1.rhot)/(2.*dh);

68

 // drhodphi
 drhodphi = 0.;
 // Test
 cout << endl;
 cout << "drhodP = " << drhodP << " ";
 cout << "drhodh = " << drhodh << " ";
 cout << "drhodphi = " << drhodphi << endl;

 // dW/(W*dx)
 dWdxW = (FAR0*detamdx)/(1.+FAR0*etam);
 // Im
 term1 = -rhoin*Vin*(Vin-Vfx)*dWdxW;
 term2 = -0.5*rhoin*(Vin**2)*Cf*Cw/(Ain*dx);
 Im = term1+term2;

 // Test
 cout << endl;
 cout << "Im term1 = " << term1 << " ";
 cout << "Im term2 = " << term2 << " ";
 cout << "Im = " << Im << endl;

 // Ie
 term1 = 0.;
 term2 = qw*Cw/(Win*dx);
 Ie = term1+term2;

 // Test
 cout << endl;
 cout << "Ie term1 = " << term1 << " ";
 cout << "Ie term2 = " << term2 << " ";
 cout << "Ie = " << Ie << endl;

 // dphidx
 dphidx = (FAR0*detamdx)/FARstoic;
 // D
 term1 = 1.-(Vin**2)*drhodP;
 term2 = 1.-((Vin**2)*drhodh)/rhoin;
 term3 = ((Vin**4)*drhodP*drhodh)/rhoin;
 D = term1*term2-term3;
 // RHS1
 term1 = (rhoin*(Vin**2)*dAdx)/Ain;
 term2 = (Vin**2)*drhodphi*dphidx;
 term3 = -(rhoin*(Vin**2)*dWdxW);
 RHS1 = term1+term2+term3+Im;
 // RHS2
 term1 = ((Vin**2)*dAdx)/Ain;
 term2 = (Vin**2)*drhodphi*dphidx/rhoin;
 term3 = -(Vin**2)*dWdxW;
 RHS2 = term1+term2+term3+Ie;
 // E
 term1 = (Vin**2)*drhodP*RHS1/rhoin;
 term2 = (1.-(Vin**2)*drhodP)*RHS2;

69

 E = term1+term2;
 // dhs/dx
 dhsdx = E/D;
 // D and E will be different
 // E
 term1 = (Vin**2)*drhodh*dhsdx;
 E = term1+RHS1;
 // D
 D = 1.-(Vin**2)*drhodP;
 // dPs/dx
 dPsdx = E/D;
 // dht/dx
 dhtdx = Ie;

 // Test
 cout << endl;
 cout << "dht/dx = " << dhtdx << endl;
 cout << "dhs/dx = " << dhsdx << endl;
 cout << "dPs/dx = " << dPsdx << endl;
 }
 //---
 // Isolator - Separation zone
 //---
 void calcDelisep (real Ps, real ht, real hs, real x, real dx) {

 // Test
 cout << endl;
 cout << "INPUT: ";
 cout << "Psin = " << Ps << " ";
 cout << "hsin = " << hs << " ";
 cout << "htin = " << ht << endl;

 // etam
 etam = 0.;
 //detam/dx
 detamdx = 0.;

 Fl_Otemp.copyFlow("Fl_O");
 // Set flow properties
 Fl_Otemp.setTotal_hP(hs/BTUcf, Ps/psicf);
 // Flow properties
 Psin = Fl_Otemp.Pt*psicf;
 hsin = Fl_Otemp.ht*BTUcf;
 Tsin = Fl_Otemp.Tt;
 Vin = (2.*(ht-hs))**0.5;
 Win = Fl_Otemp.W;
 rhoin = Fl_Otemp.rhot;
 Ain = Win/(rhoin*Vin);
 R = Fl_Otemp.Rt*BTUcf;
 Cp = Fl_Otemp.Cpt*BTUcf;

 // Test

70

 cout << endl;
 cout << "hsin = " << hsin << " ";
 cout << "Psin = " << Psin << " ";
 cout << "Tsin = " << Tsin << " ";
 cout << "Vin = " << Vin << " ";
 cout << "Ain = " << Ain << " ";
 cout << "rhoin = " << rhoin << " ";
 cout << "Wfuel = " << Fl_Otemp.Wf << " ";
 cout << "Win = " << Win << " ";
 cout << "mu = " << Fl_Otemp.mut << endl;

 // Dw
 Dw = (4.*Awall/pi)**0.5;
 // Cw
 Cw = pi*Dw*dx*intoft;
 // Reynold number
 muin = Fl_Otemp.mut;
 Rein = rhoin*Vin*Dw/muin;
 // Transient Reynold
 term1 = 1.209*(10**(-4))*(MNin**2.641);
 term2 = 6.421*(e**term1);
 Retrans = 10**term2;
 // Cf and qw
 MNin = Vin/((gama*R*Tsin)**0.5);
 if (Rein >= Retrans) {
 // Turbulent
 Tref = 0.5*Tsin+0.5*Tw+0.5*0.16*(Pr**(1./3.))*(gama-
1.)*Tsin*(MNin**2.);
 rhoref = rhoin*Tsin/Tref;
 muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R));
 Reref = rhoref*Vin*Dw/muref;
 Cf = 0.02296/(Reref**0.139);

 Taw = Tsin*(1.+Pr**(1./3.)*(0.5*(gama-1.)*(MNin**2.)));
 qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(1./3.));
 } else {
 // Laminar
 Tref = 0.45*Tsin+0.55*Tw+0.5*0.16*(Pr**(1./2.))*(gama-
1.)*Tsin*(MNin**2.);
 rhoref = rhoin*Tsin/Tref;
 muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R));
 Reref = rhoref*Vin*Dw/muref;
 Cf = 0.664/(Reref**0.5);

 Taw = Tsin*(1.+Pr**(1./2.)*(0.5*(gama-1.)*(MNin**2.)));
 qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(2./3.));
 }

 // Test
 cout << endl;
 cout << "Cf = " << Cf << endl;

71

 // dW/(W*dx)
 dWdxW = (FAR0*detamdx)/(1.+FAR0*etam);
 // Im
 term1 = -rhoin*Vin*(Vin-Vfx)*dWdxW;
 term2 = -0.5*rhoin*(Vin**2)*Cf*Cw/(Ain*dx);
 Im = term1+term2;

 // Test
 cout << endl;
 cout << "Im term1 = " << term1 << " ";
 cout << "Im term2 = " << term2 << " ";
 cout << "Im = " << Im << endl;

 // Ie
 term1 = 0.;
 term2 = qw*Cw/(Win*dx);
 Ie = term1+term2;

 // Test
 cout << endl;
 cout << "Ie term1 = " << term1 << " ";
 cout << "Ie term2 = " << term2 << " ";
 cout << "Ie = " << Ie << endl;

 // dPs/dx
 dPsdx = 0.5*rhoin*(Vin**2)*Cf*89;
 // hds/dx
 dhsdx = dPsdx/rhoin-Im/rhoin+Ie;
 // dht/dx
 dhtdx = Ie;

 // Test
 cout << endl;
 cout << "dht/dx = " << dhtdx << endl;
 cout << "dhs/dx = " << dhsdx << endl;
 cout << "dPs/dx = " << dPsdx << endl;
 }
 //---
 // Combustor
 //---
 void calcDelc(real Ps, real ht, real hs, real x, real dx, real factor, int flag, int flag2) {

 // Test
 cout << endl;
 cout << "INPUT: ";
 cout << "Psin = " << Ps << " ";
 cout << "hsin = " << hs << " ";
 cout << "htin = " << ht << endl;

 // etam
 etam = calcetam(x);
 // detam/dx

72

 detamdx = calcdetamdx(x, dx);

 // Test
 cout << endl;
 cout << "etam = " << etam << " ";
 cout << "detam/dx = " << detamdx << endl;

 // Awall(x)
 Awall = calcAwall(x);
 // dAwall/dx
 dAwalldx = calcdAwalldx(x);
 // Ajet
 Ajet = Ajet3*in2cf*(1.-etam);
 // dAjet/dx
 dAjetdx = -Ajet3*in2cf*detamdx;
 // A
 A = Awall-Ajet;
 // dA/dx
 dAdx = dAwalldx-dAjetdx;

 Fl_Otemp.copyFlow("Fl_O");
 // Burn to add fuel into flow composition, add from position x
 Fu_I.Wfuel = Wair*FAR0*calcdetamdx(x-0.5*factor*dx, dx)*dx*factor;
 Fl_Otemp.burn("Fu_I", 1.);
 // Set flow properties
 Fl_Otemp.setTotal_hP(hs/BTUcf, Ps/psicf);
 // Flow properties
 Psin = Fl_Otemp.Pt*psicf;
 hsin = Fl_Otemp.ht*BTUcf;
 Tsin = Fl_Otemp.Tt;
 Vin = (2.*(ht-hs))**0.5;
 Win = Fl_Otemp.W;
 Ain = A;
 rhoin = Fl_Otemp.rhot;
 R = Fl_Otemp.Rt*BTUcf;
 Cp = Fl_Otemp.Cpt*BTUcf;

 // Test
 cout << endl;
 cout << "hsin = " << hsin << " ";
 cout << "Psin = " << Psin << " ";
 cout << "Tsin = " << Tsin << " ";
 cout << "Vin = " << Vin << " ";
 cout << "Ain = " << Ain << " ";
 cout << "rhoin = " << rhoin << " ";
 cout << "Wfuel = " << Fl_Otemp.Wf << " ";
 cout << "Win = " << Win << " ";
 cout << "mu = " << Fl_Otemp.mut << endl;

 // Dw
 Dw = (4.*Awall/pi)**0.5;
 // Cw

73

 Cw = pi*Dw*dx*intoft;
 // Reynold number
 muin = Fl_Otemp.mut;
 Rein = rhoin*Vin*Dw/muin;
 // Transient Reynold
 term1 = 1.209*(10**(-4))*(MNin**2.641);
 term2 = 6.421*(e**term1);
 Retrans = 10**term2;
 // Cf and qw
 MNin = Vin/((gama*R*Tsin)**0.5);
 if (Rein >= Retrans) {
 // Turbulent
 Tref = 0.5*Tsin+0.5*Tw+0.5*0.16*(Pr**(1./3.))*(gama-
1.)*Tsin*(MNin**2.);
 rhoref = rhoin*Tsin/Tref;
 muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R));
 Reref = rhoref*Vin*Dw/muref;
 Cf = 0.02296/(Reref**0.139);

 Taw = Tsin*(1.+Pr**(1./3.)*(0.5*(gama-1.)*(MNin**2.)));
 qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(1./3.));
 } else {
 // Laminar
 Tref = 0.45*Tsin+0.55*Tw+0.5*0.16*(Pr**(1./2.))*(gama-
1.)*Tsin*(MNin**2.);
 rhoref = rhoin*Tsin/Tref;
 muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R));
 Reref = rhoref*Vin*Dw/muref;
 Cf = 0.664/(Reref**0.5);

 Taw = Tsin*(1.+Pr**(1./2.)*(0.5*(gama-1.)*(MNin**2.)));
 qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(2./3.));
 }

 // Test
 cout << endl;
 cout << "Cf = " << Cf << endl;

 // drhodP
 Fstemp1.copyFlow("Fl_Otemp");
 Fstemp2.copyFlow("Fl_Otemp");
 // Same phi --> same ht, same hs --> same Vin
 dP = Psin*0.001;
 Ps1 = Psin-dP;
 Ps2 = Psin+dP;
 Fstemp1.setTotal_hP(hsin/BTUcf, Ps1/psicf);
 Fstemp2.setTotal_hP(hsin/BTUcf, Ps2/psicf);
 drhodP = (Fstemp2.rhot-Fstemp1.rhot)/(2.*dP);
 // drhodh
 dh = hsin*0.001;
 hs1 = hsin-dh;
 hs2 = hsin+dh;

74

 Fstemp1.setTotal_hP(hs1/BTUcf, Psin/psicf);
 Fstemp2.setTotal_hP(hs2/BTUcf, Psin/psicf);
 drhodh = (Fstemp2.rhot-Fstemp1.rhot)/(2.*dh);
 // drhodphi
 Fstemp1.copyFlow("Fl_Otemp");
 Fstemp2.copyFlow("Fl_Otemp");
 dphi = 0.001*FAR0/FARstoic; // 0.1; 0.01; 0.001 give close results, starts to
diverge at 0.0001
 Fu_I.Wfuel = Wair*FARstoic*dphi;
 Fstemp1.burn("Fu_I", 1.);
 Fstemp1.setTotal_hP(hsin/BTUcf, Psin/psicf);
 Fu_I.Wfuel = 2.*Wair*FARstoic*dphi;
 Fstemp2.burn("Fu_I", 1.);
 Fstemp2.setTotal_hP(hsin/BTUcf, Psin/psicf);
 drhodphi = (-3.*Fl_Otemp.rhot+4.*Fstemp1.rhot-Fstemp2.rhot)/(2.*dphi);

 // Test
 cout << endl;
 cout << "drhodP = " << drhodP << " ";
 cout << "drhodh = " << drhodh << " ";
 cout << "drhodphi = " << drhodphi << endl;

 // dW/(W*dx)
 dWdxW = (FAR0*detamdx)/(1.+FAR0*etam);
 // Im
 term1 = -rhoin*Vin*(Vin-Vfx)*dWdxW;
 term2 = -0.5*rhoin*(Vin**2)*Cf*Cw/(Ain*dx);
 Im = term1+term2;

 // Test
 cout << endl;
 cout << "Im term1 = " << term1 << " ";
 cout << "Im term2 = " << term2 << " ";
 cout << "Im = " << Im << endl;

 // Ie
 Fstemp2.setTotal_hP(hsin/BTUcf, Psin/psicf);
 Fu_I.Wfuel = Wair*FAR0*calcdetamdx(x+0.5*dx, dx)*dx;
 Fstemp2.burn("Fu_I", 1.);
 term1 = -(Fstemp2.ht*BTUcf-hsin)/dx;

 term2 = qw*Cw/(Win*dx);

 Ie = term1+term2;

 // Test
 cout << endl;
 cout << "Ie term1 = " << term1 << " ";
 cout << "Ie term2 = " << term2 << " ";
 cout << "Ie = " << Ie << endl;

 // dphidx

75

 dphidx = (FAR0*detamdx)/FARstoic;
 // D
 term1 = 1.-(Vin**2)*drhodP;
 term2 = 1.-((Vin**2)*drhodh)/rhoin;
 term3 = ((Vin**4)*drhodP*drhodh)/rhoin;
 D = term1*term2-term3;
 // RHS1
 term1 = (rhoin*(Vin**2)*dAdx)/Ain;
 term2 = (Vin**2)*drhodphi*dphidx;
 term3 = -(rhoin*(Vin**2)*dWdxW);
 RHS1 = term1+term2+term3+Im;
 // RHS2
 term1 = ((Vin**2)*dAdx)/Ain;
 term2 = (Vin**2)*drhodphi*dphidx/rhoin;
 term3 = -(Vin**2)*dWdxW;
 RHS2 = term1+term2+term3+Ie;
 // E
 term1 = (Vin**2)*drhodP*RHS1/rhoin;
 term2 = (1.-(Vin**2)*drhodP)*RHS2;
 E = term1+term2;
 // dhs/dx
 dhsdx = E/D;
 // D and E will be different
 // E
 term1 = (Vin**2)*drhodh*dhsdx;
 E = term1+RHS1;
 // D
 D = 1.-(Vin**2)*drhodP;
 // dPs/dx
 dPsdx = E/D;
 // dht/dx
 dhtdx = Ie;

 // Test
 cout << endl;
 cout << "dht/dx = " << dhtdx << endl;
 cout << "dhs/dx = " << dhsdx << endl;
 cout << "dPs/dx = " << dPsdx << endl;
 }
 //---
 // 4th RK Loops
 //---
 real htintemp;
 real hsintemp;
 real Psintemp;

 int i;
 real k1; real k2; real k3; real k4;
 real l1; real l2; real l3; real l4;
 real m1; real m2; real m3; real m4;

 real hsout;

76

 real htout;
 real gamaout;
 real Rout;

 real sonicSpeed;
 // Flag for switching
 int flag;
 int flag2;
 int sos;
 //---
 // Isolator Attached Zone - 4th RK
 //---
 void RKisoatt() {
 cout << endl;
 cout << endl;
 cout << "*******************ISOLATOR ATTACHED ZONE********************" <<
endl;
 cout << endl;
 for (i=0; i<Niatt; i++) {
 Psintemp = Psin;
 htintemp = htin;
 hsintemp = hsin;
 // Position
 x = x2+dxiatt*i;

 // Test
 cout << endl;
 cout << "*******************Position********************" << endl;
 cout << "x = " << x << endl;

 //---
 // Step 1
 cout << endl;
 cout << "-----------------Step 1---" << endl;
 calcDeliatt(Psintemp, htintemp, hsintemp, x, dxiatt);
 k1 = dPsdx;
 l1 = dhtdx;
 m1 = dhsdx;
 //---
 // Step 2
 cout << endl;
 cout << "-----------------Step 2---" << endl;
 calcDeliatt(Psintemp+0.5*k1*dxiatt, htintemp+0.5*l1*dxiatt,
hsintemp+0.5*m1*dxiatt, x+0.5*dxiatt, dxiatt);
 k2 = dPsdx;
 l2 = dhtdx;
 m2 = dhsdx;
 //---
 // Step 3
 cout << endl;
 cout << "-----------------Step 3---" << endl;

77

 calcDeliatt(Psintemp+0.5*k2*dxiatt, htintemp+0.5*l2*dxiatt,
hsintemp+0.5*m2*dxiatt, x+0.5*dxiatt, dxiatt);
 k3 = dPsdx;
 l3 = dhtdx;
 m3 = dhsdx;
 //---
 // Step 4
 cout << endl;
 cout << "-----------------Step 4--" << endl;
 calcDeliatt(Psintemp+k3*dxiatt, htintemp+l3*dxiatt,
hsintemp+m3*dxiatt, x+dxiatt, dxiatt);
 k4 = dPsdx;
 l4 = dhtdx;
 m4 = dhsdx;
 cout << endl;
 cout << "-----------------End Step--" <<
endl;
 //---
 dPsdx = (k1+2.*k2+2.*k3+k4)/6.;
 dhtdx = (l1+2.*l2+2.*l3+l4)/6.;
 dhsdx = (m1+2.*m2+2.*m3+m4)/6.;
 //---
 // Test
 cout << endl;
 cout << "dPsdx = " << dPsdx << endl;
 cout << "dhtdx = " << dhtdx << endl;
 cout << "dhsdx = " << dhsdx << endl;
 //---

 // Setup Fl_O with new Ps and Ts
 //---

 Psout = Psintemp+dPsdx*dxiatt;
 htout = htintemp+dhtdx*dxiatt;
 hsout = hsintemp+dhsdx*dxiatt;
 // Set Ps, ht, hs
 Vout = (2.*(htout-hsout))**0.5;
 Fl_O.setTotal_hP(hsout/BTUcf, Psout/psicf);
 Tsout = Fl_O.Tt;
 gamaout = Fl_O.gamt;
 Rout = Fl_O.Rt*BTUcf;
 sonicSpeed = (gamaout*Rout*Tsout)**0.5;
 MNout = Vout/sonicSpeed;

 // Test
 cout << endl;
 cout << "Psout = " << Psout << endl;
 cout << "Tsout = " << Tsout << endl;
 cout << "Vout = " << Vout << endl;
 cout << "MNout = " << MNout << endl;
 cout << endl;
 cout << "*******************Next Iteration********************" << endl;

78

 cout << endl;
 // Text output
 textOutputUpdate(x, dxiatt);
 //---

 // Prepare for the next iteration
 //---
 Psin = Psout;
 htin = htout;
 hsin = hsout;
 }
 }
 //---
 // Isolator Separated Zone - 4th RK
 //---
 void RKisosep() {
 cout << endl;
 cout << endl;
 cout << "*******************ISOLATOR SEPARATION ZONE********************"
<< endl;
 cout << endl;
 for (i=0; i<Nisep; i++) {
 Psintemp = Psin;
 htintemp = htin;
 hsintemp = hsin;
 // Position
 x = xu+dxisep*i;

 // Test
 cout << endl;
 cout << "*******************Position********************" << endl;
 cout << "x = " << x << endl;

 //---
 // Step 1
 cout << endl;
 cout << "-----------------Step 1---" << endl;
 calcDelisep(Psintemp, htintemp, hsintemp, x, dxisep);
 k1 = dPsdx;
 l1 = dhtdx;
 m1 = dhsdx;
 //---
 // Step 2
 cout << endl;
 cout << "-----------------Step 2---" << endl;
 calcDelisep(Psintemp+0.5*k1*dxisep, htintemp+0.5*l1*dxisep,
hsintemp+0.5*m1*dxisep, x+0.5*dxisep, dxisep);
 k2 = dPsdx;
 l2 = dhtdx;
 m2 = dhsdx;
 //---
 // Step 3

79

 cout << endl;
 cout << "-----------------Step 3---" << endl;
 calcDelisep(Psintemp+0.5*k2*dxisep, htintemp+0.5*l2*dxisep,
hsintemp+0.5*m2*dxisep, x+0.5*dxisep, dxisep);
 k3 = dPsdx;
 l3 = dhtdx;
 m3 = dhsdx;
 //---
 // Step 4
 cout << endl;
 cout << "-----------------Step 4--" << endl;
 calcDelisep(Psintemp+k3*dxisep, htintemp+l3*dxisep,
hsintemp+m3*dxisep, x+dxisep, dxisep);
 k4 = dPsdx;
 l4 = dhtdx;
 m4 = dhsdx;
 cout << endl;
 cout << "-----------------End Step--" <<
endl;
 //---
 dPsdx = (k1+2.*k2+2.*k3+k4)/6.;
 dhtdx = (l1+2.*l2+2.*l3+l4)/6.;
 dhsdx = (m1+2.*m2+2.*m3+m4)/6.;
 //---
 // Test
 cout << endl;
 cout << "dPsdx = " << dPsdx << endl;
 cout << "dhtdx = " << dhtdx << endl;
 cout << "dhsdx = " << dhsdx << endl;
 //---

 // Setup Fl_O with new Ps and Ts
 //---

 Psout = Psintemp+dPsdx*dxisep;
 htout = htintemp+dhtdx*dxisep;
 hsout = hsintemp+dhsdx*dxisep;
 // Set Ps, ht, hs
 Vout = (2.*(htout-hsout))**0.5;
 Fl_O.setTotal_hP(hsout/BTUcf, Psout/psicf);
 Tsout = Fl_O.Tt;
 gamaout = Fl_O.gamt;
 Rout = Fl_O.Rt*BTUcf;
 sonicSpeed = (gamaout*Rout*Tsout)**0.5;
 MNout = Vout/sonicSpeed;
 A = Fl_O.W/(Fl_O.rhot*Vout);

 // Test
 cout << endl;
 cout << "Psout = " << Psout << endl;
 cout << "Tsout = " << Tsout << endl;
 cout << "Vout = " << Vout << endl;

80

 cout << "MNout = " << MNout << endl;
 cout << endl;
 cout << "*******************Next Iteration********************" << endl;
 cout << endl;
 // Text output
 textOutputUpdate(x, dxisep);
 //---

 // Prepare for the next iteration
 //---
 Psin = Psout;
 htin = htout;
 hsin = hsout;
 }
 }
 //---
 // Combustor - 4th RK
 //---
 void RKc() {
 cout << endl;
 cout << endl;
 cout << "*******************COMBUSTOR********************" << endl;
 cout << endl;
 flag = 0;
 flag2 = 0;
 for (i=0; i<Nc; i++) {
 Psintemp = Psin;
 htintemp = htin;
 hsintemp = hsin;
 // Position
 x = x3+dxc*i;

 // Test
 cout << endl;
 cout << "*******************Position********************" << endl;
 cout << "x = " << x << endl;

 //---
 // Step 1
 cout << endl;
 cout << "-----------------Step 1---" << endl;
 calcDelc(Psintemp, htintemp, hsintemp, x, dxc, 0., flag, flag2);
 k1 = dPsdx;
 l1 = dhtdx;
 m1 = dhsdx;
 //---
 // Step 2
 cout << endl;
 cout << "-----------------Step 2---" << endl;
 calcDelc(Psintemp+0.5*k1*dxc, htintemp+0.5*l1*dxc,
hsintemp+0.5*m1*dxc, x+0.5*dxc, dxc, 0.5, flag, flag2);
 k2 = dPsdx;

81

 l2 = dhtdx;
 m2 = dhsdx;
 //---
 // Step 3
 cout << endl;
 cout << "-----------------Step 3---" << endl;
 calcDelc(Psintemp+0.5*k2*dxc, htintemp+0.5*l2*dxc,
hsintemp+0.5*m2*dxc, x+0.5*dxc, dxc, 0.5, flag, flag2);
 k3 = dPsdx;
 l3 = dhtdx;
 m3 = dhsdx;
 //---
 // Step 4
 cout << endl;
 cout << "-----------------Step 4--" << endl;
 calcDelc(Psintemp+k3*dxc, htintemp+l3*dxc, hsintemp+m3*dxc, x+dxc,
dxc, 1., flag, flag2);
 k4 = dPsdx;
 l4 = dhtdx;
 m4 = dhsdx;
 cout << endl;
 cout << "-----------------End Step--" <<
endl;
 //---
 dPsdx = (k1+2.*k2+2.*k3+k4)/6.;
 dhtdx = (l1+2.*l2+2.*l3+l4)/6.;
 dhsdx = (m1+2.*m2+2.*m3+m4)/6.;
 //---
 // Test
 cout << endl;
 cout << "dPsdx = " << dPsdx << endl;
 cout << "dhtdx = " << dhtdx << endl;
 cout << "dhsdx = " << dhsdx << endl;
 //---

 // Setup Fl_O with new Ps and Ts
 //---

 Psout = Psintemp+dPsdx*dxc;
 htout = htintemp+dhtdx*dxc;
 hsout = hsintemp+dhsdx*dxc;
 // Burn
 detamdx = calcdetamdx(x+0.5*dxc, dxc);
 Fu_I.Wfuel = Wair*FAR0*detamdx*dxc;
 Fl_O.burn("Fu_I", 1.);
 // Set Ps, ht, hs
 Vout = (2.*(htout-hsout))**0.5;
 Fl_O.setTotal_hP(hsout/BTUcf, Psout/psicf);
 Tsout = Fl_O.Tt;
 gamaout = Fl_O.gamt;
 Rout = Fl_O.Rt*BTUcf;
 sonicSpeed = (gamaout*Rout*Tsout)**0.5;

82

 MNout = Vout/sonicSpeed;

 // Test
 cout << endl;
 cout << "Psout = " << Psout << endl;
 cout << "Tsout = " << Tsout << endl;
 cout << "Vout = " << Vout << endl;
 cout << "MNout = " << MNout << endl;
 cout << "Flag = " << flag << endl;
 cout << "Flag2 = " << flag2 << endl;
 cout << endl;
 cout << "*******************Next Iteration********************" << endl;
 cout << endl;
 // Text output
 textOutputUpdate(x, dxc);
 //---

 // Prepare for the next iteration
 //---
 Psin = Psout;
 htin = htout;
 hsin = hsout;
 }
 }
 //---
 // Main Program
 //---
 real x;
 real x2 = 0.;
 real xu;
 real x3 = x2+Li;
 real x4 = x3+Lc;
 real dxiatt;
 real dxisep;
 real dxc = (x4-x3)/Nc;

 initiate();
 textinitiate();
 // Fisher
 xu = 0.155*mtoin;
 dxiatt = (xu-x2)/Niatt;
 dxisep = (x3-xu)/Nisep;
 RKisoatt();
 RKisosep();
 // Boyce and Hyshot
 /*
 Vfx = calcVfx();
 Lmix = calcLmix();
 RKc();
 */

 }

83

 //--
 // register the appropriate errors at build time
 //--
 void VCinit()
 {
 ESOregCreate(1023901, 8, "", TRUE, FALSE, TRUE); // provisional
 ESOregCreate(1093901, 8, "", TRUE, FALSE, TRUE); // provisional
 }
}
#endif

84

References

[1] Heiser, W. H.; Pratt, D. T., "Hypersonic Airbreathing Propulsion," Washington, DC,
American Institute of Aeronautics and Astronautics, Inc., 1994.

[2] Smart, Michael K., "Scramjet Inlets," Centre for Hypersonics, The University of
Queensland, Brisbane, Australia, September 2010.

[3] Kanda, T.; Chinzei, N.; Kudo, K.; Murakami, A., "Dual-mode Operation in a Scramjet
Combustor," in AIAA/NAL-NASDA-ISAS 10th International Space Planes and
Hypersonic Systems and Technologies Conference, Kyoto, Japan, April 2001.

[4] Vijayakumar, Nandakumar; Wilson, Donald. R.; Lu, Frank. K., "Multifidelity
Simulation of a Dual Mode Scramjet Compression System using Coupled NPSS and
FLUENT Codes," in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,
Cleveland, OH, July 28-30, 2014.

[5] Curran, E. T.; Murthy, S. N. B., "Scramjet Propulsion," Reston, Virginia, American
Institute of Aeronautics and Astronautics, Inc., 2000.

[6] Vu, L. N., "Analysis and Design of a Dual-mode Scramjet Engine Inlet and Isolator,"
Hanoi University of Science and Technology, Hanoi, Vietnam, May 2016.

[7] Gopal, V., "Reduced-order Analysis of Dual-mode Supersonic Combustion Ramjet
Propulsion System," The University of Texas at Arlington, Arlington, TX, December
2015.

[8] Mateu, M. M., "Study of an Air – Breathing Engine for Hypersonic Flight," Polytechnic
University of Catalonia, Catalonia, Spain, September 2013.

[9] Gibbs, Y., "NASA Armstrong Fact Sheet: Hyper-X Program," nasa, 28 Febuary 2014.
[Online]. Available: https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-
040-DFRC.html.

[10] Mutzman, R.; Murphy, S., "X-51 Development: A Chief Engineer’s Perspective," in
17th AIAA International Space Planes and Hypersonic Systems and Technologies
Conference, San Francisco, California, 13 April 2011.

[11] Thompson, E.; Henry, K.; Wiliams, L., "Faster Than a Speeding Bullet: Guinness
Recognizes NASA Scramjet," NASA, June 2005.

[12] Wall, M., "Air Force's X-51A Hypersonic Scramjet Makes Record-Breaking Final
Flight," Space.com, 3 May 2013. [Online]. Available: https://www.space.com/20967-
air-force-x-51a-hypersonic-scramjet.html.

[13] Norris,G., "Skunk Works Reveals SR-71 Successor Plan," Aviation Week & Space
Technology, November 2013.

[14] Shapiro, A. H., "The Dynamics and Thermodynamics of Compressible Flow," Ronald
Press, New York, 1953.

[15] Fotia, Matthew L.; Driscoll, James F. , "Ram-Scram Transition and Flame/Shock-
Train Interactions in a Model Scramjet Experiment," Journal of Propulsion and
Power, vol. Vol. 29, no. No. 1, January–February 2013.

[16] Smart, Michael K., "Scramjets," Centre for Hypersonics, The University of
Queensland, Brisbane, Australia, 2008.

[17] Smart, Michael K., "Scramjet Isolators," Centre for Hypersonics, The University of

85

Queensland, Brisbane, Australia, September 2010.

[18] Ortwerth, P. J., "Scramjet Vehicle Integration," American Institute of Aeronautics and
Astronautics, Washington DC, 2001.

[19] Boyce, R. R.; Wendt, M.; Paull, A.; Chinzei, N.; Stalker, R. J.; Miyajima, H.,
"Supersonic Combustion - A Shock Tunnel and Vitiation-heated Slowdown Tunnel
Comparison," in 36th Aerospace Sciences Meeting & Exhibit, Reno, NV, January
1998.

[20] Smart, M. K.; Hass, N. E.; Paull, A., "Flight Data Analysis of the HyShot 2 Scramjet
Flight Experiment," AIAA Journal, vol. 44, no. 10, October 2006.

[21] Fisher, C. M., "Investigation of the Isolator Flow of Scramjet Engines," Aachen
University, München, 2014.

[22] N. Vijayakumar, "Design and Multifidelity Analysis of a Dual Mode Scramjet
Compression System Using Coupled NPSS and FLUENT Simulation," University of
Texas at Arlington, Arlington, TX, May 2014.

[23] J. K. Lytle, "NASA/TM-1999-209194, The Numerical Propulsion System Simulation:
A Multidisciplinary Design System for Aerospace Vehicles," NASA Glenn Research
Center, Cleveland, Ohio, July 1999.

[24] Claus, Russell W.; Lavelle, Thomas; Townsend, Scott; Tuner, Mark, "Coupled High-
Fidelity Engine System Simulation," in 26th International Congress of the
Aeronautical Sciences, September 2008.

[25] J. K. Lytle, "NASA/TM-2000-209915, The Numerical Propulsion System Simulation:
An Overview," NASA Glenn Research Center, Cleveland, Ohio, June 2000.

[26] J. K. Lytle, "Multi-fidelity Simulations of Air Breathing Propulsion Systems," in 42nd
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento,
California, 9 - 12 July 2006.

[27] G. J. Follen, "An Object Oriented Extensible Architecture for Affordable Aerospace
Propulsion Systems," in Applied Vehicle Technology Conference, Paris, France, 22-
26 April, 2002.

[28] "NPSS Basics," Wolverine Ventures Inc, Jupiter FL, 2014.

[29] S. Coogan, "Object-Oriented Aircraft Mission Analysis Using NPSS," in 54th AIAA
Aerospace Sciences Meeting, San Diego, California, 4-8 January 2016.

[30] "NPSS User Guide," Numerical Propulsion System Simulation Consortium, February
2, 2016.

[31] N. Vijayakumar, "Re-Engineering the Northrop YB-49," The University of Texas at
Arlington, Arlington, TX, June 15, 2015.

[32] "NPSS User Guide Reference Sheets," Numerical Propulsion System Simulation
Consortium, February 1, 2016.

[33] "Introduction to system modeling," Wolverine Ventures Incorporated, Jupiter FL,
2014.

[34] S. M. Jones, "An Introduction to Thermodynamic Performance Analysis of Aircraft
Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation
Code," Glenn Research Center, Cleveland, Ohio, March 2007.

[35] Segal, C., "The scramjet engine: processes and characteristics," New York,
Cambridge University Press, 2009.

86

[36] Doolan, C. J.; Boyce, R., "A Quasi-One-Dimensional Mixing and Combustion Code
for Trajectory Optimisation and Design Studies," in 15th AIAA International Space
Planes and Hypersonic Systems and Technologies Conference, Dayton, Ohio, 2008.

87

Biographical Information

Long Vu was born in Ho Chi Minh city (formerly known as Saigon), Vietnam on

the first day of 1993. Long developed his interest for Physics since he took his first

Physics class in 7th grade. He was accepted to high school program of Hanoi University

of Science specializing in Physics. He attended Hanoi University of Science and

Technology after high school and earned his Bachelor of Science Degree in Aerospace

Engineering in 2016. In the summer after his junior year, Long was selected to join the

summer internship program of GE Hitachi and had the opportunity to work within the

mechanical team at GE Hitachi in Wilmington, NC.

Long came to the United States for a second time to pursue his Master of

Science in Aerospace Engineering degree at the University of Texas at Arlington. During

his education at UTA, Long worked under the supervision of Dr. Donald Wilson at the

Aerodynamic Research Center.

Long plans to continue pursuing his goals to become an engineer to contribute to

the development of the next generation of aerospace vehicles.

