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Abstract 

 
QUASI_ONE_DIMENSIONAL SCRAMJET COMBUSTOR FLOW SOLVER USING THE 

NUMERICAL PROPULSION SYSTEM SIMULATION 

 

Long Vu, MS 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Donald R. Wilson 

The flow field inside a scramjet engine combustor involves complex phenomena 

such as fuel-air mixing, combustion chemistry, and flow separation. In order to determine 

the properties of the flow along the length of the combustor, mass, momentum and 

energy balance equations are solved simultaneously using a numerical method. While a 

full three dimensional computational simulation gives detailed results with high order of 

accuracy, it demands a great amount of time and computational resource. A low order 

analysis produces a fast overall picture of the combustor operation which in turn provides 

valuable information suitable for the preliminary design process. This research work aims 

to describe the analysis process of the scramjet combustor in which a quasi-one-

dimensional, multi-species, reacting real gas model of the flow is developed to address 

the limitations in previous researches. The Numerical Propulsion System Simulation 

(NPSS), into which the NASA Chemical Equilibrium with Applications (CEA) code is 

integrated, is utilized as the platform to perform the analysis. The analytical model is 

validated by comparison with experimental data from previous researches. The results 

obtained by this method are expected to shed some light on the advantages of using 

detailed chemistry with lower order analysis to calculate scramjet engine performance.  
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Chapter 1  

Introduction 

Numerous programs aiming to develop aircraft capable of supersonic or 

hypersonic flight first appeared in the late 1950’s and early 1960’s and have developed 

unceasingly ever since [1]. Rocket propelled vehicles are not a practical option due to the 

need of an onboard oxidizer tank, resulting in low specific impulse [2]. A more promising 

choice for these high speed missions is an air breathing propulsion system and the best 

suitable air breathing engine cycle for moderate supersonic flight is the ramjet, and for 

hypersonic flight the scramjet or supersonic combustion ramjet, a variant of the ramjet 

engine cycle. 

1.1 Ramjet, Scramjet and Dual-mode Scramjet 

Ramjet Engine 

 Different from other types of air breathing engine like turbojets and turbofans, 

the ramjet engine doesn’t rely on turbo machinery but uses shockwaves for compression. 

As air passes through the engine inlet, it is compressed by shockwaves and decelerated 

to a subsonic speed before entering the combustor where fuel is injected and burnt. The 

combustion products are then accelerated through a nozzle to create thrust. Ramjet 

engines can only operate efficiently up to about Mach 6 [3]. At flight Mach numbers 

above 6, to achieve subsonic flow to the combustor, the compression ratio has to 

increase to a value at which shock losses become substantial and the airflow 

temperature is so high that oxygen dissociation begins to occur hence, less energy is 

available for conversion into thrust [2]. 
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Figure 1-1 Ramjet engine [4]. 

A ramjet engine has four components: inlet inner body, diffuser, combustor and 

nozzle. The combustion process takes place at subsonic speed.  

Scramjet Engine 

In order to sustain a usable amount of thrust at higher speed, the air entering the 

combustor has to be at lower pressure and temperature, but still moving at a supersonic 

speed. This modification to the ramjet engine is called supersonic combustion ramjet, or 

scramjet. Ground tests of scramjet engines have shown the potential to reach a 

maximum speed up to at least Mach 15 [2]. 

 

Figure 1-2 Scramjet engine [4]. 

A scramjet engine also consists of four major parts: inlet, isolator, combustor and 

nozzle. However, the combustion process happens at supersonic speed. 
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Nevertheless, scramjet engines still present some drawbacks due to the basic 

requirements for an air breathing engine and the limits relating to high airspeed:  

- Scramjet needs a working atmosphere dense enough to create large thrust, 

which places an upper bound constraint of the flight corridor for scramjet propelled 

vehicles. 

- Scramjet propelled vehicles are not able to operate at a low altitude due to high 

thermal load on the aircraft structure when it flies at a very high speed. 

- Scramjets are unable to produce static thrust and only become operationally 

efficient at supersonic Mach numbers, thus incapable of taking off on their own and they 

need high initial speed for air compression. 

These constraints require a complex launch system for a scramjet vehicle. Such 

systems typically consists of a carrier aircraft (for take – off) and a rocket to bring the 

initial flight Mach number of the scramjet-powered aircraft to about Mach 5. Despite these 

disadvantages, scramjet engines are still seen as a bright prospect of hypersonic cruise 

and ascent to low-earth-orbit thanks to its light weight and airplane like operation [2]. 

Dual-mode Scramjet Engine 

Curran and Stull introduced the idea of the dual-mode scramjet engine in 1963 

[5]. Ramjet and scramjet engines differ from each other in the speed of the flow inside the 

combustor, subsonic for ramjet and supersonic for scramjet. The dual-mode scramjet 

combines these two flow characteristics in one combustor that can operate in both 

regimes depending on the airspeed of the aircraft, hence the name dual-mode scramjet. 

Therefore, the dual-mode scramjet has a wider operational Mach number range. This 

leads to increased application potential and the possibility of a hypersonic aircraft that 

can take off by itself with the help of a turbojet. This turbojet can be used to take the 

aircraft to about Mach 3, then the dual-mode scramjet can be used at higher airspeed. 
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Figure 1-3 Dual-mode scramjet engine [3]. 

Nonetheless, the combination of the two flow regimes in one configuration 

introduces some complex phenomena in the isolator and the combustor, which lead to 

design and analysis challenges. The flow in the isolator has an intricate structure called 

the shock train, formed by the interaction between the inlet exhaust conditions and the 

combustor high back pressure, in conjunction with boundary layer separation. This 

separation region can spread into the combustor, rendering the flow analysis of this 

component more complicated as it switches from ramjet mode to scramjet mode. The 

overview of the operation of the isolator and the combustor in a dual-mode scramjet is 

described in the next section.  

1.2 Operation of Dual-mode Scramjet 

Dual-mode Scramjet Combustor 

There are two major factors that determine flow properties in the combustor: heat 

addition and the change of the combustor area [1]. 

Regarding heat addition, the Rayleigh flow model shows that: 

- At subsonic speed, the flow is accelerated by heat addition. 

- At supersonic speed, the flow is decelerated by heat addition. 

Regarding area change: 

- At subsonic speed, the flow is decelerated as the area increases. 
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- At supersonic speed, the flow is accelerated as the area increases.  

In scramjet mode, flow enters the combustor at supersonic speed. It is then 

slowed down to a minimum speed and accelerated again all the way to the combustor 

outlet. 

 
Figure 1-4 Typical changes in flow properties through the combustor in scramjet mode 

[6]. 

To grasp a general view of these changes, let us divide the combustor into two 

regions: Region 1: from the front of the combustor to the point where the flow reaches its 

minimum speed, region 2: from that point to the back of the combustor. 

In region 1, the effect of slowing down a supersonic flow brought about by heat 

addition is dominant (note the high slope of the blue line) since it is closer to the fuel 

injectors. For that reason, the supersonic entry flow is decelerated.   

In region 2, the rate of heat addition decreases substantially, thus, the effect of 

speeding up the flow from the increasing area becomes dominant. Therefore, the flow is 

accelerated.  
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In the scramjet mode, the minimum speed of the flow is still in the supersonic 

regime, meaning the flow remains supersonic throughout the combustor. 

When the minimum Mach number is equal to 1, there is the transition between 

the two modes of the dual-mode scramjet engine. 

 
Figure 1-5 Typical changes in flow properties through the combustor in transition 

between ramjet and scramjet mode [6]. 

At this condition, the entry Mach number to the combustor is designated as M3m 

[1]. 

In ramjet mode, the entry Mach number to the combustor is subsonic. Through 

the combustor, the flow is accelerated until it exits the combustor at supersonic speed.  
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Figure 1-6 Typical changes in flow properties through the combustor in ramjet mode [6]. 

The combustor is divided again into two regions: Region 1: from the front of the 

combustor to the point where the flow reaches sonic speed, region 2: the remaining part 

of the combustor. 

In region 1, the effect of speeding up subsonic flow caused by heat addition is 

dominant so the flow is accelerated.  

In region 2, the flow enters supersonic regime and thus is slowed down by heat 

addition alone. However, as the rate of heat addition decreases substantially, the effect of 

the increasing area becomes dominant. Therefore, the flow continues to be accelerated. 

At the sonic point, the flow experiences a similar phenomenon to its passage 

through a physical throat. However, this is brought about entirely by heat addition as 

there is no physical throat in a dual-mode scramjet combustor. The sonic point is, for that 

reason, called the thermal throat [1].   
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When calculating flow properties through the combustor, determining the position 

of the thermal throat is a critical task as it serves as a starting point to calculate flow 

properties at other points in the combustor. 

Let us call the entry Mach number to the combustor M3p [1]. 

Dual-mode Scramjet Isolator 

The flow in the isolator will behave according to flow properties at the front 

(Station 2) and the back (Station 3) of the isolator. 

It has been discovered that the isolator cannot operate with any arbitrary 

combination of flow properties at position 2 and 3; there is a limit. With a certain M2, the 

isolator cannot generate a M3 below the value equal to the downstream Mach number of 

a normal shock wave with the upstream Mach number M2 [1]. In other words, for a 

predetermined M3p, the condition under which the isolator and the whole engine can 

operate is M2>M2x, with M2x being the Mach number of the flow that will create the Mach 

number M3p after a normal shock wave [1].   

When the limit mentioned above is satisfied, the isolator can operate in either 

one of the three following modes: 

- Shock free mode: This is the mode where flow properties are essentially 

unchanged all the way through the isolator and there is no shock train in the isolator. 

 

Figure 1-7 Shock free isolator [7]. 

- Oblique shock train mode: When P3 is greater than P2 but the difference 

between the two is not too great, an oblique shock train will form in the isolator. 
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Figure 1-8 Isolator with oblique shock train [7]. 

- Normal shock train mode: When the difference between P3 and P2 is large 

enough, a normal shock train will form in the isolator. 

 

Figure 1-9 Isolator with normal shock train [7]. 

The operation of the dual-mode scramjet engine can be summed up as follows: 

- When M2< M2x, the engine cannot operate.  

- When M2 is between M2x and M3m, the engine will operate in the ramjet mode.  

- When M2>M3m, the engine will operate in the scramjet mode. 

1.3 Development History 

The first scramjet development program was the NASA Hypersonic Research 

Engine (HRE) program which started in 1964, with about 52 tests completed [6]. After 

this, many other programs in several countries such as Russia, France and Germany 

also began. Three prominent projects with successful flight test were the HyShot program 

by the University of Queensland in Australia that marked the first flight of a scramjet 

propelled aircraft in July 2002 [6], the Hyper-X program [9] and the X-51 program [10]. 
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The aircraft designed in the Hyper-X program is called X-43. It has made two successful 

flight tests, the first one took place on March 2004 with the aircraft reaching a speed of 

Mach 7 and the second one on November 2004. In this second flight, X-43 got to nearly 

Mach 10, which set a new speed record [7]. The X-51 program gave birth to the X-51A 

Waverider, whose final flight took place on May 1st 2013. In this flight, the aircraft reached 

a top speed of Mach 5.1 and travelled on its own scramjet powered engine for four 

minutes, making the record for longest scramjet powered flight [12].The most recent 

project involving scramjets is the SR-72, the successor of the SR-71 Blackbird. SR-72 is 

a hybrid turbojet – scramjet propelled aircraft which is expected to enter service by 2030 

[8]. 
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Chapter 2  

Literature Survey 

There have been a number of studies which approach scramjet combustion with 

different analysis methods in the past. Presented in this section are some works on this 

subject in the literature. The focus is on the methods used for developing a quasi-one-

dimensional flow model of the flow through scramjet combustors and experimental results 

that will be used to validate the quasi-one-dimensional code. 

2.1 Theoretical Researches 

Heiser and Pratt’s Approach 

This approach is presented in the Hypersonic Airbreathing Propulsion book by 

William H. Heiser and David T. Pratt. The flow through the combustor is governed by the 

following ordinary differential equation (ODE) [1]: 

2
2

2

1
1

11 12

21

b

b t

t

M
M dTdM dA

M
dx A dx T dxM




                     
    

(2.1) 

This ODE is the result of Shapiro’s generalized one-dimensional flow analysis in 

which the three conservation equations, the equation of state, Mach number and the 

second law of thermodynamics are algebraically manipulated with an ideal gas 

assumption into a set of ODE’s, each of which is the derivative of a flow property  such as 

Mach number, pressure, temperature, etc. calculated in terms of changes in area, mass 

flow rate, total temperature and the effects of friction and body forces [4, 11]. 

This governing Mach number equation demonstrates the main characteristics of 

the flow through a scramjet combustor, which is dictated by the two major driving terms: 

combustor area variation and total temperature distribution. However, it neglects the 

effects of wall friction, drag caused by internal struts or fuel jets and mass changes as 
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fuel is being added and mixed into the flow [1]. Moreover, this equation doesn’t take into 

account flow separation, which is an important behavior of the flow as the combustion 

process generates a high back pressure causing an adverse pressure gradient that 

separates the flow. Heiser and Pratt addressed this phenomenon by a constant impulse 

function method rather than incorporating it into the ODE [1, 4]. Thus, the variation of the 

core flow area in the separation zone is unknown since no position variable is involved in 

the control volume analysis. 

Ram-Scram Transition and Flame/Shock-Train Interactions in a Model Scramjet 

Experiment 

The flow model as presented in Heiser and Pratt’s book is applied in this analysis 

to study the transition between ramjet and scramjet mode. In ramjet mode, the incoming 

flow to the combustor is at subsonic speed, therefore, it passes through the sonic point 

called the thermal throat situated inside the combustor. This point results in a singularity 

in equation (2.1) when the Mach number goes to 1. The position of the thermal throat is 

determined by solving the following equation [1, 12]: 

11 1

2

b t

t

dTdA

A dx T dx

       
   

  (2.2) 

Equation (2.1) is used to solve in the upstream direction from the thermal throat 

for the Mach number at the entry of the combustor M2. The static pressure at this position 

is then calculated by Heiser and Pratt’s low-order model of the isolator [12]. Once p2 is 

obtained, the following ODE, from Shapiro’s work, is solved downstream from the thermal 

throat to determine the pressure profile of the combustor [12]: 

2 2

2

2 2

1
1

1 1 12

1 1

t

t

M M
dTdp M dA

p dx A dx T dxM M




  
  

 
  

(2.3) 
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Wall friction and mass addition are neglected and the gas is assumed to consist 

of a single species and to be calorically perfect [12]. Moreover, the flow is assumed to 

only separate inside the isolator, whereas, it has been found that separation zone also 

reaches inside the combustor [16]. 

Hyshot Program 

This is another approach based on the classical quasi-one-dimensional gas 

dynamics by Shapiro [16]. This work was done as part of the HyShot program at the 

University of Queensland in Australia that has successfully launched a test flight on July 

30th, 2002 [16]. 

Michael K. Smart developed a Mach number distribution ODE as Heiser and 

Pratt did but incorporated the effect of friction into the ODE. The following ODE is for the 

case where the back pressure is not high enough to cause flow separation [16]: 

 2 2 2 2 2

2

2 2 2 2

1 1 1
2 1 1 1 1

2 2 2
4

1 1 1

t

f

t

M M M M M
dTdM dA dx

C
A T DM M M M

                  
       

  
  

(2.4) 

When the flow does separate, a new set of ODE’s was used. The notable part of 

this approach is taking into account flow separation by introducing another variable Ac – 

the core flow area. Another ODE for the distribution of the ratio between the core flow 

area and the geometric area was developed [16]: 

2
2

2 2

4
1 /

1
2

2

f
t

cc t

dx
C

dTdM dp p DM
AA TM M

AA




 
        

   
 

  (2.5) 

     2 2

2

2

1 1 1 // 1 1 1
4 1

/ 2 / 2/

cc t

f

c c tc

M A Ad A A M dTdp dx
C M

A A p A A D TM A A

  


                   
      

  (2.6) 
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This new ODE in conjunction with the Mach number distribution ODE are to be 

solved simultaneously by a numerical method. In order to do so, the pressure distribution 

term in equation (2.5) and equation (2.6) needs to be an explicit term. It is defined by the 

following empirical formula developed by Ortwerth [17, 18]: 

2

0

89

2
f

H

dp u
C

dx D

 
  

 
  (2.7) 

This model is a lot more comprehensive than the previous one, therefore, offers 

more accurate results and better captures the physics of the flow inside a scramjet 

combustor. Nonetheless, it still uses the ideal gas assumption whose accuracy 

decreases when the temperature in the combustor becomes higher at faster air speed. 

2.2 Experimental Researches 

Free Piston Shock Tunnel Experiment at University of Queensland – T4 Scramjet: 

The free piston shock tunnel uses a free piston to adiabatically compress the 

driver gas. A shock wave propagates and reflects from the end wall of the shock tube 

after the primary diaphragm rupture. This creates a high enthalpy test gas inside the 

reservoir. The enthalpy and pressure of the gas in the reservoir can reach up to 2-15 

MJ/kg and 10-80 MPa respectively [16]. The test gas is fed into a nozzle downstream of 

the shock tube, where supersonic or hypersonic flow is generated. The duration of such 

flow to the test section can reach up to several milliseconds [16]. 

In order to achieve flows of different Mach number of 4, 6, 8 and 10, several 

axisymmetric hypersonic nozzles with different exit to throat area ratios are used. For the 

conducted experiment, the Mach 4 nozzle is used [16]. The flow passes through a pair of 

wedges with parallel side plates, then goes through a short duct forming a throat of Mach 

2.5. Downstream of this section is the start of the scramjet combustor, where the fuel 

injector is situated [16].   
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Figure 2-1 T4 scramjet inlet configuration [16]. 

This configuration generates a supersonic flow of Mach 2.5 with a total pressure 

of 1 MPa [16]. 

Pressure transducers are used to measure the wall pressure. There are 35 

pressure transducers 20mm apart of one another [16]. 

Hyshot 2 Scramjet Flight Experiment 

The Center of Hypersonic at the University of Queensland has conducted 

scramjet testing in the Mach 7 to Mach 8 range in shock tunnels for many years [17]. A 

simplified combustor designed based on the shock tunnel testing is used for two flight 

tests which took place at the Woomera Prohibited Area Test Range in central Australia 

[17]. The first flight test was on October 30th 2001 but was a failure, a second successful 

launch followed on July 30th 2002 [17].  

  The test flights implement a two-stage Terrier-Orion Mk70 rocket as the 

booster, bringing the payload and the second stage Orion motor to a maximum altitude of 

more than 300 km [17]. The payload and the second stage motor follow a parabolic 
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trajectory and reenter the atmosphere at 25 to 35 km with the speed of above Mach 7.5 

[17]. The reentry provides a useful flight conditions to test the scramjet combustor. 

 

Figure 2-2 Hyshot flight profile [17]. 

The pressure transducers in use are SenSym 19 C series and SenSym 13 mm 

series. There are in total 14 pressure measurements along the wall of the combustor. 13 

of which are on the center line starting at 103.6 mm from the combustor entrance and 22 

mm apart of each other. Another measurement is made 25 mm offset from the center 

line, 290.6 mm from the combustor entrance [17]. 
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Figure 2-3 Combustor instrumentation layout [17]. 

Data are sampled approximately every 2 milliseconds through 48 analog and 4 

digital channels [17]. 

Investigation of the Isolator Flow of Scramjet Engines 

This research performs the experiments involving flow through a scramjet 

isolator. The experiments are done in the reflected shock tunnel TH2 at the Shock Wave 

Laboratory. Helium is used as the working gas [18]. 

 

Figure 2-4 Drawing of the hypersonic shock tunnel TH2 [18]. 
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The TH2 shock tunnel comprises of three major sections: the high pressure 

section, the low pressure section and the nozzle & test section. The high pressure 

section and the low pressure section function as a shock tube that drives the test gas. 

The test gas is accelerated through the nozzle to the required Mach number in the test 

section [18].  

Pressure probes prove to provide signal that is much more suitable to determine 

the flow structure inside the isolator [18]. Kulite XCQ-080 pressure transducers are used 

in the experiment. These pressure transducers have small membrane diameter of 0.7 

mm, thus, their natural frequency is relatively high, ranging from 300 to 500 kHz, which 

makes them suitable for short measurement time of approximately 1 millisecond [18].  

Probes with operating range of 1.7, 7 and 17 bar are needed for the experiment. 

17 bar probes are used in the pitot rake, 7 bar probes are used to measure wall pressure 

in the shock train region and 1.7 bar probes are used in the upstream region of the 

isolator [18]. 
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Chapter 3  

The Numerical Propulsion System Simulation (NPSS) 

This chapter provides a description of the Numerical Propulsion System 

Simulation (NPSS) – the platform of the quasi-one-dimensional scramjet combustor code. 

3.1 Introduction of NPSS 

The simulation of a propulsion system is an intricate process that involves 

numerous phenomena from different disciplines. A software devoted to this task needs to 

not only have the ability to perform analysis with a low order of fidelity at system level to 

achieve basic understanding of the whole system without having to establish a geometry, 

but also be capable of zooming to a high enough level of fidelity to accurately simulate 

the phenomena happening within each component. In addition, the interaction between 

disciplines must be taken into consideration. 

While a full system simulation with high order of fidelity will eventually give 

detailed results that capture the entire physics of the system, it requires a large amount of 

computational resources and takes a long time to reach the final results. For this reason, 

it is complicated and unwieldy for establishing a basic understanding of the system in 

question [1]. Low order cycle analysis, on the other hand, will provide fast and simple 

results that are essential for preliminary analysis of the system. These can also help 

anticipate possible problems that will occur during subsequent detailed design process 

[19]. 

The capability of zooming into different components with different levels of fidelity 

is called multifidelity analysis. An example of multifidelity analysis is shown in Figure 3-1, 

where the high pressure core of the engine (i.e. compressor, combustor and turbine) is 

modeled as a zero-dimensional, aerothermodynamic cycle analysis that is conducted 

through the use of component performance maps and the low pressure subsystem (i.e. 
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inlet, fan, core inlet, bypass duct, nozzle) is modeled in 3-dimensions using a CFD 

turbomachinery code [20]. 

 

Figure 3-1 Hybrid Simulation: 3-Dimensional Low Pressure Subsystem Model Coupled to 

a 0-Dimensional High Pressure Core Model [20]. 

This can be done by isolated analysis, however, the interactions that occur 

between components can eventually be masked by the limited communication between 

teams or the codes which perform the individual numerical analysis [21]. When working 

with today’s highly integrated propulsion systems where multidisciplinary issues can 

decrease drastically the overall system performance, this can introduce vital problems 

[21]. Thus, it is important that multifidelity analysis be performed by one unique software 

that handles all the components in order to ensure communication between components. 

The physical processes that take place in an air-breathing gas turbine engine 

involves multiple disciplines [20]. For instance, the variations in the geometry of the high-

pressure compressor (casing, blade shape, tip clearances, etc.) that affect the efficiency 

and stability of the compressor is determined by aerodynamic, structural, and thermal 

loadings. In order to accurately predict the stall margin, simulation of all of these loadings 

is required [20]. As a result, to accurately simulate these processes, the coupling of all 

involved disciplines needs to be accounted for. 
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 The Numerical Propulsion System Simulation (NPSS) is a 

multidisciplinary, multifidelity computational simulation tool that meets all the above 

requirements. NPSS was developed by NASA in conjunction with other Government 

agencies, industries and universities [22]. It serves as a “virtual wind tunnel” that allows 

the engine manufacturer to find key design parameters early in the development process 

by performing detailed full engine simulations. The use of NPSS could cut the design and 

development time and cost by 30 to 40 percent, which is equivalent to $100 million per 

year of development, as estimated by a major engine manufacturer [22]. 

NPSS brings about the following advantages: 1) minimize the expense for 

maintaining numerous software systems, 2) ameliorate multidisciplinary team work by 

granting all disciplines access to tools and system simulation capability, 3) facilitate 

collaboration by providing the industry with a common platform for engine system 

simulation, and 4) contain all engine design and operational data in one data base 

connected to the system simulation [23]. 

Alongside gas turbine engines, NPSS usage has also been expanded other 

fields such as spacecraft applications and energy applications. 

3.2 NPSS Simulation Environment 

The multidisciplinary framework of NPSS is illustrated in Figure 3-2, where three 

primary characteristics of the simulation environment: discipline coupling, component 

integration and zooming are shown. This framework allows an engineer to “plug and play” 

or “substitute at will” the components of an engine with any combination of 0, 1, 2, 3 

dimensional component codes [24]. 
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Figure 3-2 Illustration of the NPSS Multidisciplinary Framework [21]. 

Traditionally, the interaction between different disciplines is handled in a 

sequential fashion, with the use of translators to transfer and translate information from 

one discipline to the next. This is however lengthy, tedious and often inaccurate [20]. 

Three coupling techniques are investigated to be included in NPSS: loosely coupled, 

process coupled and tightly coupled. Loosely coupled is a rationalized version of the 

traditional approach. A component’s aero, thermal and structural response is determined 

by separated programs. Then these data are coupled together by a set of generic 

translators and a subroutine library [20]. In process coupling, component codes are run 

under the control of an automated higher level system, the exchanged information 

between the codes is also managed by this system [20]. Tightly coupling connects the 
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disciplines at a fundamental equation level. The matrix representing the whole system is 

solved simultaneously by implicit methods [20]. 

3.3 NPSS Components 

Architecture, code language and basic objects 

NPSS is built on an object-oriented architecture enabling an engineer to 

numerically assemble a propulsion system where component codes may have different 

dimensionality (Numerical Zooming), and different disciplines (Multi-Discipline coupling) 

from one another [24]. This architecture is illustrated in Figure 3-3. It takes advantage of 

the abilities of object-oriented programming (inheritance, polymorphism, and 

encapsulation) and modern object-oriented concepts such as frameworks, component 

objects, and distributed object standards [24]. There are three main areas: Interface 

Layer, Object Layer and Computing Layer. Within the Interface Layer, there is a 

command and a visual interface. The Object Layer is comprised of the fundamental 

engineering specifics and support objects for propulsion systems such as geometry and 

legacy FORTRAN codes that have been used by many companies. The Computing 

Layer carries out propulsion system simulations [24]. 
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Figure 3-3 NPSS Object-Oriented Open Architecture [22]. 

NPSS utilizes a C++ type object-oriented programming language [25], with the 

following attributes: 1) maximum code reusability, 2) clear data connectivity, and 3) code 

modularity [20]. The problem can be divided into objects that consist of useful data and 

methods (functions) [26]. The basic objects used for a 0 and 1-dimensional analysis are: 

1) elements, 2) subelements, 3) flow stations, 4) ports and 5) tables [24]. This object 

structure allows NPSS to have a wide range of applications amongst air breathing, 

rocket, fuel cell and ground based power propulsion and more by creating new functional 

objects for each particular application [24]. 

Elements are the building blocks of a model in NPSS. They account for the major 

components of the system [27]. Each element is a C++ code can exchange data with 

each other [28]. An element can have subelements: element-like objects built to provide 

supporting data to the object they accompany [27]. NPSS has various built-in elements 

like Ambient, Compressor, Burner, Turbine, Nozzle, Shaft, etc… [29] and subelements 

such as CompressorRlineMap, TurbinePRmap, BurnEfficiency, ThermalMass, etc... [29]. 
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Users can also define their own elements and subelements that are suitable for their 

model. Flow stations are found between elements. Elements communicate with one 

another through input and output ports that control the data flow through links. Elements 

may have none or an appropriate number of ports needed for their usage [27]. Functions 

and tables can also be written to execute special calculations [27]. 

Figure 3-4 shows an example of a turbojet model in NPSS. The square boxes 

represent the elements of this model. In this example, the compressor and turbine 

elements each have a subelement that would look up compressor and turbine map to 

provide off-design performance data to the element via sockets in the off-design case 

simulation [27]. The elements are connected together by links represented by the arrows 

pointing one port to another. 

 

Figure 3-4 NPSS Turbojet Model [25]. 

Thermodynamic packages 

NPSS provides a number of thermodynamic packages which can be defined by 

users at run time [19]. The thermodynamic packages store a database of the properties 

of single as well as mixtures of gases. These databases are used in the process of 

thermodynamic analysis and are collected from leading aerospace companies. The 
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thermodynamic package is able to perform thermodynamic calculation at molecular level 

of the flow under extreme conditions such as gas vibration and dissociation [19]. There 

are six thermodynamic packages available in NPSS: 1. GasTbl – Pratt & Whitney air & 

fuel properties, 2. allFuel/GEFluid – General Electric air & fuel properties, 3. Janaf – 

Honeywell implementation of JANAF package, 4. CEA – NASA’s Chemical Equilibrium 

Analysis package, 5. FPT – User customizable package, 6. REFPROP – Interface to 

NIST package [30]. 

Solver 

The simulation process of a NPSS model involves solving the conservation 

equations of mass, energy, and momentum [31]. In the example of a gas turbine engine, 

some other interdependent equations also need to be solved and often time in an implicit 

fashion [27]. Moreover, to allow users to study the effect of important design parameters, 

the particular values that meet a desired condition are to be determined [31]. These are 

the jobs of the NPSS solver. Figure 3-5 illustrates its operation. The basic solution 

method is varying a set of independent inputs iteratively until an equal number of 

equations are satisfied [30]. 

 

Figure 3-5 Basic NPSS Solver Operation [30].  

Two typical examples of solver operation during the simulation process of a gas 

turbine engine are varying fuel-to-air ratio to match a given turbine inlet temperature as 

this is one of the key design parameters determined a priori based on the level of 
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technology of the turbine (the material of the turbine blades); varying incoming air flow 

rate to obtain a desired value of engine net thrust. This operation is also called engine 

sizing: for a specific thrust requirement, the engine needs a high enough air flow rate to 

produce such amount of thrust and this in turn determines the diameter of the engine. 
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Chapter 4  

Quasi-one-dimensional Scramjet Isolator and Combustor Model 

A quasi-one-dimensional analytical model that is simple enough to reduce the 

computational resources and time but is still able to capture the complex physics of the 

flow in a scramjet isolator and combustor is described in this chapter.  

4.1 Assumptions 

The following assumptions are made: 

- The flow is quasi-one-dimensional, all parameters are either non dimensional or 

the axial position is the only independent spatial variable. 

- Steady flow is assumed. 

- The working gas is in thermodynamic and chemical equilibrium. 

- Body forces are neglected. 

4.2 Conservation Equations 

The conservations equations are formed based on an elemental control volume 

inside the combustor as shown in Figure 4-1: 

 

Figure 4-1 Schematic of elemental control volume for burner analysis [7]. 
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Conservation of Mass 

The conservation equation of mass is given by: 

cm uA   (4.1) 

Where the core flow area can be determined as the geometric area minus the 

separation area and the area of the fuel jet [7]: 

c sep jet
A A A A     (4.2) 

Conservation of Momentum 

The conservation equation of momentum is expressed in form of the change of 

static pressure across the elemental control volume [1, 11, 7]: 
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Therefore: 

m

dp du
u I

dx dx
     (4.5) 

Conservation of Energy 

The change in the enthalpy of the flow is due to the heat added by the burnt fuel 

and the heat flux through the combustor wall. This is the conservation of energy [1, 7]: 
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We have: 

e

dh du
u I

dx dx
     (4.8) 

Written in terms of total enthalpy, equation (4.8) becomes: 

t

e

dh
I

dx
   (4.9) 

We now have the three conservation equations which serve as the basis for the 

quasi-one-dimensional analytical model. The modification that needs to be made 

accordingly to each component will be described in the following sections.   

4.3 Combustor Analytical Model 

Algebraic Manipulation Involving the Conservation Equations 

First, take the derivative of the conservation equation of mass, from equation 

(4.1), we obtain: 

 c

c

dAdu u u d u dm

dx A dx dx m dx




      (4.10) 

Substitute the derivative of flow velocity into equation (4.5) and (4.8): 

2 2
2c

m
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dAdp u d u dm
u I

dx A dx dx m dx

  
      (4.11) 

and: 

2 2 2

c

e

c

dAdh u u d u dm
I

dx A dx dx m dx




      (4.12) 

As a common procedure in CEA, the derivative of each flow property can be 

calculated from those of static pressure and static temperature. In this case, the usage of 

static enthalpy as one of the independent variables instead of static temperature proves 
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to be more convenient as we already establish an equation involving the rate of change 

of static enthalpy. In addition, another independent variable is introduced because there 

is fuel added and burnt in the flow. The third independent variable is the equivalence ratio

 . 

The derivative of density can be written as follows: 

d dp dh d

dx p dx h dx dx

    


  
  
  

  (4.13) 

Each of the three partial derivatives is calculated using the finite difference 

method. 

Substitute equation (4.13) into equations (4.11) and (4.12), we will have a system 

of two equations in which 
dp

dx
 and 

dh

dx
 are treated as unknowns. Solving for these two 

quantities and combining them with equation (4.9), we arrive at three equations of the 

following forms: 

 , ,
t

dp
f p h h

dx
   (4.14) 

and: 

 , ,
t

dh
f p h h

dx
   (4.15) 

and: 

 , ,t

t

dh
f p h h

dx
   (4.16) 

These are the ultimate forms that can be solved numerically by the 4th order 

Runge-Kutta marching scheme, which will be outlined in the next section. 
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Friction Coefficient 

The reference temperature method is used to determine the friction coefficient 

and later the wall heat flux. 

First, we need to determine if the flow is laminar or turbulent. This is done by 

comparing the Reynolds number of the flow to the transition Reynolds number Re
T

 which 

is computed as follows [7]: 

   -4 2.641log Re 6.421exp 1.209 10
T

M    (4.17) 

If the flow Reynolds number is higher than the transition Reynolds number, it is 

turbulent, otherwise, it is laminar. 

The second step is to compute the reference temperature.  

- For laminar flow [7]: 

 0.5 2

*
0.16Pr 1
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     (4.18) 

- For turbulent flow [7]: 
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     (4.19) 

where: 
W

T  is the wall temperature and Pr is the Prandtl number. 

Thirdly, the reference Reynolds number is calculated as follows [7]: 

*
*

*
Re

uD


   (4.20) 

The reference density and viscosity are assumed to vary with temperature and 

are computed as follows [1, 7]: 

*

*
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    (4.21) 

and: 
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Lastly, the friction coefficient is determined from the reference Reynolds number: 

- For laminar flow [7]: 

*

0.664

Re
fC    (4.23) 

- For turbulent flow [7]: 

 0.139
*

0.02296

Re
f

C    (4.24) 

Wall Heat Loss 

 The wall heat flux is computed using the Reynolds analogy: 

- For laminar flow: 

 2/30.5 Pr
W f p W AW

q C uC T T    (4.25) 

- For turbulent flow: 

 1/30.5 Pr
W f p W AW

q C uC T T    (4.26) 

where: 
AW

T  is the wall adiabatic temperature, and is given by: 

- For laminar flow: 

 1/2 2Pr 1
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2
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  (4.27) 

- For turbulent flow: 
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  (4.28) 



 

34 

Mixing Efficiency Curve 

Not all the fuel injected into the air stream is mixed and burned. The area of the 

unmixed stream together with the separation area will compress the core flow area as 

equation (4.2) indicates. Thus, a mixing model is necessary to determine the amount of 

fuel that is mixed and burned as well as that of the unmixed fuel and its area. 

There are different formula developed from experiments that are specific to 

certain type of fuel and injection scheme. 

The simplest one is a curve fit proposed by Heiser and Pratt as follows [1]: 
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  (4.29) 

where: ,c tot  is the mixing efficiency at the end of the combustor, ϑ is an 

empirical constant whose value is from 1 to 10 [5]. This constant will determine which 

injection scheme the curve is fitted to. It has been observed that lower values of ϑ 

correspond to parallel injection and higher values results in a curve resembling to that of 

normal injection scheme.  

The following are a couple of the aforementioned empirical formula that will be 

used for the code validation: 

- Strut mixing model for hydrogen fuel: 

The mixing efficiency is given by [7]: 
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  (4.30) 

mix
L  is the mixing length and can be determined as follows: 
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where: 
23
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 , k, d and *
K  are constant and take the following values: a = 1.065, k = 3.696, 

d = 0.806 and * 390K    

f
D  is the fuel jet diameter. 

c
M  is the convective Mach number and is calculated from fuel velocity and air 

velocity as well as their acoustic speed.     

- Normal injection model for hydrogen fuel:     

The mixing efficiency is given by [7, 35]: 

( ) 1.01 0.176ln
m

x
x
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  (4.32) 

where: 

1.720.179
mix

x L e


    (4.33) 

The mixing length in this case is estimated to be 60 times the spacing between 

injectors. 

From the mixing efficiency, the area of the unmixed fuel jet is given by [7]: 

 ,3( ) 1 ( )
jet jet c

A x A x    (4.34) 

where: Ajet,3 is the fuel jet area at Station 3. 

NPSS Calculation Procedure 

The combustor is “discretized” into n infinitesimal elements of length dx which is 

the same as the aforementioned elemental control volume. This corresponds to n+1 

nodes along the axis of the combustor. The first node is at the entry of the combustor – 



 

36 

Station 3 as denoted in Figure 4-2. A flow station called Fl_I is connected to this node. 

Here after, another flow station called Fl_O is attached to each following node and moves 

towards the end of the combustor – Station 4.  

 

Figure 4-2 Discretization of the combustor. 

The calculation procedure can be described in the following flow chart: 
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Figure 4-3 NPSS calculation procedure flow chart. 

Overall, at each step, Fl_O with the help of CEA calculates and stores the flow 

data at the node is currently connected to and the data is in turn used to find that of the 

next node in line. Fl_O is continuously updated until it reaches Station 4. 

In detail, the three selected independent variables are used as follows: 
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- Static enthalpy and static pressure of the flow are inserted into CEA through 

the use of a flow station function called setTotalhP(), which in turn gives out 

static temperature and density.  

- Flow velocity is calculated from total enthalpy and static enthalpy: 

 2
t

u h h    (4.35) 

Core flow area is determined from the geometric area and the fuel jet area. 

In order to calculate the enthalpy change due to the burnt fuel, a built-in function 

in NPSS call burn() is used. This function will add and burn the fuel with the air. It keeps 

pt of the mixture the same and calculate ht based on the amount of fuel added and the 

hpr of the fuel. In this code, p, h and ht is given and the mixture properties are to be set 

by those parameters. Thus, the burn() function is first used beforehand to add and burn 

the fuel first, then setTotalhP() is used to set flow properties to the right values. 

With these properties and with the three numerically calculated values of partial 

derivative of density:
p




,
h




 and





, we now have all the needed variables to plug into 

equations (4.14), (4.15) and (4.16) to calculate the derivative of static pressure, static 

enthalpy and total enthalpy. Based on these derivatives, the values of p, h and ht at the 

next node are determined as follows: 
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and: 
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and: 
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1i i

t

t t

dh
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     (4.38) 

where the terms: dp/dx, dh/dx and dht/dx are weighted average slope value 

calculated from the 4 approximate values as outlined in the 4th order Runge-Kutta 

procedure. 

The process is repeated until the end of the combustor. 

4.4 Isolator Analytical Model 

Empirical Formula of Pressure Distribution 

The isolator is simpler than the combustor in the sense that it is usually a 

constant area duct and there is no heat addition from fuel. However, the flow is bound to 

separate, which introduces another unknown to the analytical model: the core flow area. 

Thus, another equation is required to make the set of equations solvable and further 

modification to the original conservation equations is also needed. 

The added equation is the specified pressure distribution. This is an empirical 

formula developed by Ortwerth [18, 17] based on experimental data with different Mach 

number, Reynolds number and duct geometry: 

0
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   (4.39) 

where: 
H

D  is the hydraulic diameter of the duct and 
0f

C  is the friction coefficient 

at the separation start point [17]. 

As we now have an explicit pressure distribution from equation (4.39), we can 

eliminate the du/dx term in both equations (4.5) and (4.8), resulting in a new equation 

calculating the derivative of static enthalpy: 
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     (4.40) 
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Equations (4.39), (4.40) and (4.9) are used for the 4th order Runge-Kutta method 

in the case where flow separation occurs. 

NPSS Calculation Procedure 

The isolator is divided into two regions: the attached region and the separated 

region. 

In the attached region where flow remains attached, the same equations and 

calculation procedure as the one implemented for the combustor the combustor is used. 

Heat addition from fuel is not present so there is no need to use the burn() function. 

In the separation region, generally the same NPSS calculation procedure is 

used, the only difference is that core flow area is now a new unknown and is calculated 

from flow rate, velocity and density using the conservation equation of mass. Therefore, 

we will also have core flow area distribution as an output of the quasi-one-dimensional 

code. 

The point separating these two regions is the separation start point xu. This point 

will be iterated until the Mach number or pressure at Station 3 matches the specified 

value given in the experimental data. 
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Chapter 5  

Results 

This chapter describes the quasi-one-dimensional code validation by comparison 

to experimental data available in the literature. 

5.1 Combustor Code Validation 

The first validation is done by comparing the results of the analytical model to 

that of the experimental results obtained from the T4 free piston shock tunnel experiment 

conducted at the University of Queensland [16]. 

The geometry of the combustor section in the T4 experiment is shown in the 

following figure: 

 

Figure 5-1 T4 scramjet geometry [7]. 

The combustor is a diverging duct with a rectangular initial cross section of 

dimension 0.047 m x 0.1 m. The upper and lower walls diverge symmetrically at an angle 

of 1.720 over a length 0.8 m [7, 33]. 
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The fuel injector is a strut type injector with a 0.0016 m slot width. Hydrogen fuel 

is injected parallel to the incoming airflow at the point where the combustor cross section 

starts to increase. Fuel is injected at sonic speed [7]. 

 There are three cases in the experiment. All have the same incoming condition 

and same wall temperature of 300 K but the equivalence ratio is varied. The inlet 

conditions along with the equivalence ratio of each case are shown in the following table 

[33, 7]: 

Table 5-1 T4 experiment data  

Case M3 P3 (kPa) T3 (K) Equivalence ratio 
1 2.47 59 1025 0.19 
2 2.47 59 1025 0.38 
3 2.47 59 1025 0.58 

 

In order to model the mixing efficiency of this experiment, the hydrogen fuel strut 

injector empirical formula described in Section 4.3.4 is used. 

The following plots compare the analytical results with data from the experiment. 

The horizontal axis represents the axial position from the start of the combustor (Station 

3) to the end of the combustor (Station 4). The vertical axis represents the non-

dimensionalized static pressure, which is the static pressure at the corresponding 

position divided by the combustor inlet static pressure. 
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Figure 5-2 Pressure distribution comparison for Case 1 – T4 experiment. 

 

Figure 5-3 Pressure distribution comparison for Case 2 – T4 experiment. 
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Figure 5-4 Pressure distribution comparison for Case 3 – T4 experiment. 

Figures 5-2 to 5-4 shows that the quasi-one-dimensional code provides 

reasonably accurate results that agree with the experimental data. The pressure 

increases sharply initially due to the effect of heat addition from burnt fuel then decreases 

after reaching a peak value. Fuel is mixed and burnt more efficiently right after the 

injector. After the point of maximum pressure, other effects, i.e. friction, heat loss and 

area expansion become more dominant. The initial pressure spike can be the result of 

the shockwave created by the injector strut. It can also be seen that with higher 

equivalence ratio, meaning more fuel is burnt, higher peak pressure is observed. This 

peak pressure is the cause of shock train inside the isolator. 

The second validation is carried out by comparison to the experimental results 

obtained from the Hyshot 2 flight test data [17].  

The geometry of the Hyshot 2 scramjet is described in the following figures: 
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Figure 5-5 Schematic of Hyshot 2 scramjet geometry (dimensions are in millimeters) [17]. 

 

Figure 5-6 Hyshot 2 combustor section geometry [7]. 

The combustor is a constant area duct with a rectangular initial cross section of 

dimension 0.0098 m x 0.075 m. The internal nozzle section after the combustor expands 

at an angle of 120. The length of the constant area section is 0.242 m from the fuel 

injection position and the internal nozzle spreads over a length of 0.147 m [7]. 

The fuel injector is a normal injection type where hydrogen fuel enters the 

incoming flow at a 90 degree angle. The position of the fuel injector is 0.058 m 

downstream of the combustor entrance plane. Fuel is injected at sonic speed [7, 17]. 

The flight test data comprises of two categories: unfueled combustor and fueled 

combustor, each of which contains 4 cases [17]. One case from each category is chosen 

for comparison with the quasi-one-dimensional code output. The wall temperature is 
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assumed to be constant at 350 K [7]. The other combustor entrance data are shown in 

the following table: 

Table 5-2 Hyshot 2 experiment data 

Case M3 P3 (kPa) T3 (K) Equivalence ratio 
1 (unfueled) 2.436 55.256 1388.4 0 
2 (fueled) 2.393 44.847 1416.6 0.346 

 

The hydrogen normal injection empirical formula described in Section 4.3.4 is 

used to model the mixing efficiency. 

For each case, the non-dimensionalized static pressure, which is the static 

pressure at the corresponding position divided by the combustor inlet static pressure is 

plotted versus the axial position from the injection point to the end of the combustor. The 

comparison to the flight data is as follows: 

 

Figure 5-7 Pressure distribution comparison for Case 1 – Hyshot 2. 
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Figure 5-8 Pressure distribution comparison for Case 2 – Hyshot 2. 

Once again, the results show agreement between the analytical data and the 

flight test data. This also validates the accuracy of the normal injection mixing efficiency 

curve in modeling the heat addition process.  

To conclude the combustor validation, it can be stated that the quasi-one-

dimensional code has been validated with experimental data and provided accurate 

results in terms of the pressure distribution through the combustor. 

5.2 Isolator Code Validation 

The isolator code is essentially the same analytical model as the combustor code 

with modification to the system of differential equations by adding a prescribed pressure 

distribution and removing heat addition. The validation of this modified code is done by 

comparing its results to that of the experiments done in the reflected shock tunnel TH2 at 

the Shock Wave Laboratory by Fisher [18]. 
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The following figure describes the schematic of the isolator in the experiment: 

 

Figure 5-9 Heated isolator experiment setup [7]. 

The isolator is a duct with rectangular cross section. The length of the isolator is 

0.2067 m but the pressure probe for the back pressure is at 0.18 m from Station 2 [18], 

thus, the length used for the code is 0.18 m. The height and width of the isolator are 

0.018 m and 0.1 m respectively [18]. The gas used in the experiment is Helium [18]. 

Two cases are chosen for validation. All have the same wall temperature of 1000 

K except for the first case which is run at wall temperature of 300 K and the same inlet 

condition which is shown in the following table: 

Table 5-3 Fisher experiment data 

Case M2 P2 (kPa) T2 (K) M3 

1 3.5 12.440 333 3.4 
2 3.5 12.440 333 2.4 
3 3.5 12.440 333 2.3 
4 3.5 12.440 333 2.1 

 
 

The Mach number at the end of the isolator M3 in each case is prescribed. The 

validation procedure is done by iterating the location of the separation start point until the 

back pressure obtained from the code matches the experimental data except for the first 
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case, where no separation occurs. Static wall pressure is then compared between the 

analytical results and experimental results to assess the accuracy of the code. 

The following plots show the aforementioned comparison. The horizontal axis 

represents the axial position from the start of the isolator to the last pressure probe. The 

vertical axis represents the pressure coefficient Cp, which is defined as follows: 

0

2

0 0 00.5
p

p p
C

p M


   (5.1) 

where the parameters with subscript 0 denote the free stream condition and are 

given the following values: p0 = 460 Pa, M0 = 7.5 and 
0 1.67  for Helium [21].   

 

Figure 5-10 Pressure distribution comparison for the isolator – Fisher. 
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The Mach number at Station 3 obtained from the code is compared to the 

prescribed values as follows: 

Table 5-4 Ma3 comparison – Fisher experiment 

Case Ma3 - Analytical Ma3 - Experimental Error (%) 
1 3.203 3.4 6.150% 
2 2.677 2.4 10.347% 
3 2.595 2.3 11.368% 
4 2.395 2.1 12.317% 

 

The error increases as the shock train lengthens. This indicates that the 

reference temperature method over predicts the pressure coefficient, which in turn makes 

the slope of the pressure line become stiffer than the experimental data. This becomes 

more prominent as the shock train length increases. 

It can be seen that the analytical results demonstrate reasonable accuracy in 

terms of separation start point and pressure gradient across the shock train. However, 

the given data only represent wall pressure. The flow structure inside an isolator is rather 

complex due to shock train formation, thus, the pressure of the flow changes from the 

center line outwards and is different from the wall pressure. As a result, a higher order 

analysis is needed to obtain a complete pressure distribution of the isolator.  

The modification of the combustor code only provides limited information on 

predicting the separation start point, which in turn can be used to determine the length of 

the isolator in the preliminary step of the design process. 
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Chapter 6   

Conclusion 

A summary of the work done in this thesis as well as some aspects of future work 

are presented in this chapter. 

6.1 Summary 

A quasi-one-dimensional analytical model has been developed to solve for flow 

properties inside a scramjet combustor. The basis of the model is the conversation 

equations of mass, momentum and energy combined with thermodynamics and concepts 

of boundary layer theory. The analytical model treats the working fluid as real reacting 

gas in equilibrium and takes into account the following aspect of the physics of flow 

through a scramjet combustor: geometric area change, friction, wall heat loss and the 

heat addition from the reaction of the air and fuel. A 4th order Runge-Kutta method is 

chosen to be the numerical integration scheme as it is one of the methods that provide 

results of high order of accuracy and the algebraic manipulation of the differential 

equations to arrive at the form outlined in this scheme is straight forward. 

The platform for code development is the Numerical Propulsion System 

Simulation (NPSS), which allows multidiscipline and multifidelity analysis as well as 

provides the flexibility of model customization. Thus, the NPSS code can be easily 

reused and expanded beyond the application to scramjet engines. 

  A modification to the system of governing equation is also made to solve for the 

flow through the isolator by prescribing a pressure gradient. Although this model only 

provides limited information of separation start point and wall pressure, the data obtained 

is crucial in determining the length of the isolator, which is an important parameter in the 

preliminary design process. 
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The code is validated by comparing its results to multiple experimental and flight 

test data. The comparison shows that the code provides results with acceptable level of 

accuracy, both for the combustor and isolator. 

6.2 Future Work 

Some aspects of the current work can be expanded as follows: 

• Mixing efficiency of different fuel other than hydrogen  

• Interaction between the combustor and isolator 

• Validation of said interaction 
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Appendix A 

4th order Runge-Kutta Method 
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The 4th order Runge-Kutta method is a numerical method used to solve differential 

equations that take the form as follows: 

 ,
dx

f x t
dt

  

The essence of this method is calculating  
0

x x t t    from a known  
0 0

x x t  by 

estimating the slope k of the line connecting the two points.   

The slope k is estimated as follows: 
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Having obtained k, we can easily calculate x: 

 
0 0

x x t t x k t       

From the point that we have just calculated, we can continue to calculate 

 
0

2x x t t    and so on until we reach the end of the concerned domain. 

For a system of numerous equations, the same procedure is applied for each unknown. 

Each differential equation is calculated based on all the values of unknowns found at each step. 
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Appendix B 

Code outline 
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// CONVERSION FACTORS 
// 
// 1 BTU/lbm -- 25037. (ft/sec)^2 
// 1 psia -- 4633.056 (lbm*ft/sec^2)/ft^2  
// 1 BTU -- 25037. lbm*(ft/sec)^2 
// 1 ft -- 12. inch 
// 
#ifndef __SJBurner1D__ 
#define __SJBurner1D__ 
 
#include <InterpIncludes.ncp> 
 
class SJBurner1D extends Element { 
 
  //------------------------------------------------------------ 
  //     ******* SETUP VARIABLES ******** 
  //------------------------------------------------------------ 
  // Inputs 
  //------------------------------------------------------------ 
  // Isolator 
  real Li { 
   value = 10.; IOstatus = INPUT; units = INCH; 
   description = "Isolator length"; 
  } 
  int Niatt { 
   value = 100; IOstatus = INPUT; units = NONE; 
   description = "Number of points"; 
  } 
  int Nisep { 
   value = 100; IOstatus = INPUT; units = NONE; 
   description = "Number of points"; 
  } 
  // Combustor 
    real Lc { 
   value = 10.; IOstatus = INPUT; units = INCH; 
   description = "Combustor length"; 
  } 
  int Nc { 
   value = 100; IOstatus = INPUT; units = NONE; 
   description = "Number of points"; 
  } 
  // Ajet3 
  real Ajet3 { 
   value = 10.; IOstatus = INPUT; units = INCH2; 
   description = "Fuel Jet Area at Station 3"; 
  } 
  real xinj { 
   value = 0.; IOstatus = INPUT; units = INCH; 
   description = "Injector position"; 
  } 
  // For combustor diverging area 
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  real a1 { 
   value = 1.; IOstatus = INPUT; units = INCH2; 
   description = "First Coeff"; 
  } 
  real a2 { 
   value = 1.; IOstatus = INPUT; units = INCH2; 
   description = "Second Coeff"; 
  }  
  real xa2 { 
   value = 1.; IOstatus = INPUT; units = INCH; 
   description = "a2 position"; 
  } 
  real a3 { 
   value = 1.; IOstatus = INPUT; units = INCH2; 
   description = "Third Coeff"; 
  }  
  // Wall Temperature 
  real Tw { 
   value = 1080.; IOstatus = INPUT; units = RANKINE; 
   description = "Wall temperature"; 
  } 
  real Pr { 
   value = 0.72;  IOstatus = INPUT; units = NONE; 
   description = "Prandtl number"; 
  } 
  // FAR stoic 
  real FARstoic { 
   value = 0.0674; IOstatus = INPUT; units = NONE; 
   description = "Stoichiometric FAR"; 
  } 
  real phi0 { 
   value = 0.0291; IOstatus = INPUT; units = NONE; 
   description = "Initial equivalence ratio"; 
  } 
  //------------------------------------------------------------ 
  // Outputs 
  //------------------------------------------------------------ 
  real Vout { 
   value = 0; IOstatus = OUTPUT; units = FT_PER_SEC; 
   description = "Velocity"; 
  } 
  real Psout { 
   value = 0; IOstatus = OUTPUT; units = PSIA; 
   description = "Static Pressure"; 
  } 
  real Tsout { 
   value = 0; IOstatus = OUTPUT; units = RANKINE; 
   description = "Static Temperature"; 
  } 
  real MNout { 
   value = 0; IOstatus = OUTPUT; units = NONE; 
   description = "Mach Number"; 
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  } 
  //------------------------------------------------------------ 
  //   ******* OPTION VARIABLE SETUP ******* 
  //------------------------------------------------------------ 
  
  //------------------------------------------------------------ 
  // ****** SETUP PORTS, FLOW STATIONS, SOCKETS, TABLES ******** 
  //------------------------------------------------------------ 
   
  // FLUID PORTS 
  FluidInputPort Fl_I { 
    description = "Incoming flow"; 
  } 
 
  FluidOutputPort Fl_O { 
    description = "Exiting flow"; 
  } 
   
  // FUEL PORTS 
  FuelInputPort Fu_I { 
    description = "Incoming fuel flow"; 
  } 
  // BLEED PORTS 
   
  // THERMAL PORTS 
   
  // MECHANICAL PORTS 
   
  // FLOW STATIONS  
  FlowStation Fl_Otemp; 
  Fl_Otemp.setOption("switchTransport", "EQUIL"); 
  FlowStation Fstemp1; 
  Fstemp1.setOption("switchTransport", "EQUIL"); 
  FlowStation Fstemp2; 
  Fstemp2.setOption("switchTransport", "EQUIL"); 
  // SOCKETS 
   
  // TABLES 
   
  // DATA PORTS 
 
  //------------------------------------------------------------ 
  // ******* INTERNAL SOLVER SETUP ******* 
  //------------------------------------------------------------ 
   
  //------------------------------------------------------------ 
  //  ******  ADD SOLVER INDEPENDENTS & DEPENDENTS  ****** 
  //------------------------------------------------------------ 
   
  //------------------------------------------------------------ 
  // ******* VARIABLE CHANGED METHODOLOGY ******* 
  //------------------------------------------------------------ 
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  //------------------------------------------------------------ 
  //   ******* PERFORM ENGINEERING CALCULATIONS ******* 
  //------------------------------------------------------------ 
   
  void calculate() { 
 // Unit conversion: All parameters from flow stations are converted into normal standard,  
 // then converted back into flow station standard if needed when inputed into flow 
station functions 
 // ONLY L and x are allowed in inch 
 real intoft = 1./12.; 
 real in2cf = 1./144.; 
 real mtoin = 39.3701; 
 real m2toin2 = 39.3701**2; 
 real BTUcf = 25037.; 
 real psicf = 4633.056; 
 real KtoR = 1.8; 
 real Patopsi = 0.000145038; 
 real pi = 3.1416; 
 real e = 2.71828; 
 //Fl_I.Aphy = a1-Ajet3; 
  
    //------------------------------------------------------------ 
    // Text Output Function 
    //------------------------------------------------------------ 
 OutFileStream os_EngResultsRow { 
 // Name of the output file that is created by this out stream 
 filename = "cout"; // sent results to the command prompt 
 //filename = "EngResults.txt"; 
 } 
 // Create the Case Row Viewer named EngResultsRow 
 DataViewer CaseRowViewer EngResultsRow { 
 
  // Specify the OutFileStream object to use for this viewer 
  outStreamHandle = "os_EngResultsRow"; 
   
  // Set the default number format for real and scientific notation 
  defRealFormat = "????????.???????"; 
  defSNFormat =   "??.???????E?????"; 
   
  // List the variables that you want to print to the output file 
  variableList = { 
    "MNtext : ??.??????? = MN", 
    "Vtext : ?????.??????? = V", 
    "CPtext : ?????.??????? = CP", 
    "httext : ?????????.??????? = ht/ht2", 
    "Pstext : ?????.??????? = Ps/Ps2", 
    "Tstext : ?????.??????? = Ts/Ts2", 
    "Aphytext : ?????.??????? = Ac/A2", 
    "Artext : ?????.??????? = Ac/Awall", 
    "O2text : ??.???????? = O2", 
    "H2Otext : ??.???????? = H2O", 
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    "CO2text : ??.???????? = CO2", 
    "N2text : ??.???????? = N2" 
   } 
    
  titleBody = "";  // Title to display (if desired) 
  titleVars = {}; 
   
  // Print the Case in the file header 
  caseHeaderBody = "x ???.???????"; // Case header title to display 
  caseHeaderVars = {"xtext"}; // Actual case number 
   
  pageWidth = 10000; 
  pageHeight = 10000.; 
 } 
 real xtext;  
 real MNtext;  
 real Vtext;  
 real CPtext;  
 real httext;  
 real Pstext; 
 real Tstext;  
 real Aphytext; 
 real Artext; 
 real O2text; 
 real H2Otext; 
 real CO2text; 
 real N2text; 
 void textinitiate() { 
  xtext = 0; 
  MNtext = MNin;  
  Vtext = Vin;  
  CPtext = (Psin-Ps0)/q0; 
  httext = htin/(Fl_I.ht*BTUcf); 
  Pstext = Psin/(Fl_I.Ps*psicf); 
  Tstext = Tsin/Fl_I.Ts; 
  Aphytext = Ain/(Fl_I.Aphy*in2cf); 
  Artext = Ain/calcAwall(0); 
  O2text = Fl_I.getTotalComp("O2"); 
  H2Otext = Fl_I.getTotalComp("H2O"); 
  CO2text = Fl_I.getTotalComp("CO2"); 
  N2text = Fl_I.getTotalComp("N2"); 
     
  os_EngResultsRow.filename = "EngResults.txt"; 
  EngResultsRow.isActive = TRUE; 
  EngResultsRow.update(); 
 } 
 void textOutputUpdate(real x, real dx) { 
  xtext = x+dx; 
    MNtext = MNout;  
  Vtext = Vout;  
  CPtext = (Psout-Ps0)/q0; 
  httext = htout/(Fl_I.ht*BTUcf); 
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  Pstext = Psout/(Fl_I.Ps*psicf); 
  Tstext = Tsout/Fl_I.Ts; 
  Aphytext = A/(Fl_I.Aphy*in2cf); 
  Artext = A/calcAwall(xtext); 
  O2text = Fl_O.getTotalComp("O2"); 
  H2Otext = Fl_O.getTotalComp("H2O"); 
  CO2text = Fl_O.getTotalComp("CO2"); 
  N2text = Fl_O.getTotalComp("N2"); 
   
  os_EngResultsRow.filename = "EngResults.txt"; 
  EngResultsRow.isActive = TRUE; 
  EngResultsRow.update(); 
 } 
 //-----------------------------------------------------------------------------------------   
 // Initiate Function 
 //-----------------------------------------------------------------------------------------  
 real Ptin = Fl_I.Pt*psicf; 
 real Psin = Fl_I.Ps*psicf; 
 real htin = Fl_I.ht*BTUcf; 
 real hsin = Fl_I.hs*BTUcf; // BTU/lbm to (f/s)^2 
 real Ttin = Fl_I.Tt; 
 real Tsin = Fl_I.Ts; 
 real Vin = Fl_I.V; 
 real MNin = Fl_I.MN; 
 real Ain = Fl_I.Aphy*in2cf; // Ain in ft2 
 real Win = Fl_I.W; 
 real rhoin = Fl_I.rhos; 
 real R = Fl_I.Rs*BTUcf; // BTU/lbm.R to (f/s)^2/R 
 real Cp = Fl_I.Cps*BTUcf; 
 real gama = Fl_I.gams; 
 real Rein; 
 real muin; 
 real Wair; 
 real FAR0; 
  
 real MN0 = 7.5; 
 real Ts0 = 100.*KtoR; 
 real Ps0 = 460*Patopsi*psicf; 
 real gama0 = 1.67; 
 real q0 = 0.5*gama0*Ps0*MN0**2; 
 void initiate() { 
  // Reset Win 
  Vin = Fl_I.V; 
  rhoin = Fl_I.rhos; 
  Ain = calcAwall(0.); 
  if (xinj == 0.) { 
   Ain = Ain-Ajet3*in2cf; 
  } 
  Fl_I.W = Ain*rhoin*Vin; 
   
  Ptin = Fl_I.Pt*psicf; 
  Psin = Fl_I.Ps*psicf; 
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  htin = Fl_I.ht*BTUcf; 
  hsin = Fl_I.hs*BTUcf; // BTU/lbm to (f/s)^2 
  Ttin = Fl_I.Tt; 
  Tsin = Fl_I.Ts; 
  Win = Fl_I.W; 
  R = Fl_I.Rs*BTUcf; // BTU/lbm.R to (f/s)^2/R 
  Cp = Fl_I.Cps*BTUcf; 
  gama = Fl_I.gams; 
  MNin = Fl_I.MN; 
   
  FAR0 = phi0*FARstoic; 
  Wair = Fl_I.Wa; 
   
  Fl_O.copyFlowStatic("Fl_I"); 
 } 
 //-----------------------------------------------------------------------------------------   
 // Components Calculation Functions 
 //-----------------------------------------------------------------------------------------  
 real term1; real term2; real term3; real term4; 
 real MWf = 2.;// Hydrogen fuel 
 real calcVfx() { 
  // Assume fuel jet at the same temperature as the wall 
  // Assume MNjet = 1 
  // Set full flow condition after isolator 
  return (Fl_O.gams*(Fl_O.Rs*BTUcf*Fl_O.MW/MWf)*Tw)**0.5; 
 } 
 //-----------------------------------------------------------------------------------------  
 real Lmix; 
 real K = 390.; 
 real Mc; 
 real fMc; 
 real Df = 0.0016*mtoin; 
 real rhof = 0.003;//0.00512; //H2 lbm/ft3 at 300K // 0.004509; 0.003; 
 real aa; 
 real af; 
  
 real calcLmix() { 
  // Hydrogen parallel strut injection 
  /* 
  af = Vfx; // as Mjet = 1 
  aa = (Fl_O.gams*Fl_O.Rs*BTUcf*Fl_O.Ts)**0.5; 
  Mc = (Vfx-Fl_O.V)/(aa+af); 
  term1 = 3.*(Mc**2); 
  term2 = e**(-term1); 
  fMc = 0.25+0.75*term2;  
  return ((Df*K*((rhof*Vfx)/(Fl_O.rhos*Fl_O.V))**0.5)/fMc); 
  */ 
  return 0.34*mtoin;;//60*0.0098*mtoin; 
 } 
 //-----------------------------------------------------------------------------------------  
 // Hydrogen parallel strut injection 
 real alpha = 1.06; 
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 real k = 3.69639; 
 real d = 0.80586; 
 // Linear fit 
 real lamda = 10.; 
 real etab = 1.; 
  
 real calcetam(real x) { 
  // Linear fit 
  /* 
  term1 = etab*lamda*(x-xinj)/(Lmix+(lamda-1.)*(x-xinj)); 
  if (term1 < 1.) { 
   return term1; 
  } else { 
   return 1.; 
  } 
  */ 
  x = x-xinj; 
  // Hydrogen parallel strut injection 
  /* 
  // etam = alpha*(1.-e**(-(k*x/Lmix)**d)); 
  // Group too many operations in one line will give NaN result 
  term1 = (k*x)/Lmix; 
  term2 = term1**d; 
  term3 = e**(-term2); 
  if (alpha*(1.-term3)<1.) { 
   return alpha*(1.-term3); 
  } else { 
   return 1.; 
  } 
  */ 
  // Hydrogen normal injection 
  /* 
  if (x == 0.) { 
   return 0.; 
  } else {  
   term1 = 0.179*Lmix*exp(1.72*phi0); 
   term2 = 1.01+0.176*log(x/term1); 
   if (term2 < 1.) { 
    return term2; 
   } else { 
    return 1.; 
   } 
  } 
  */ 
  // Normal or angular injection 
  /* 
  term1 = x/Lmix; 
  term2 = 1./(50.+1000.*0.25); 
  term3 = (term1+term2)**0.25; 
  if (term3 < 1.) { 
   return term3; 
  } else { 
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   return 1.; 
  } 
  */ 
  return 0.; 
 } 
 //-----------------------------------------------------------------------------------------  
 real calcdetamdx(real x, real dx) { 
  // Linear fit 
  /* 
  return etab*lamda/(Lc*(1.+(lamda-1.)*((x-xinj)/Lmix))**2); 
  */ 
  x = x-xinj; 
  // Hydrogen parallel strut injection 
  /* 
  if (x == 0.) { 
   return (-3.*calcetam(x)+4.*calcetam(x+dx)-calcetam(x+2.*dx))/(2.*dx); 
  } else { 
   if (calcetam(x) == 1.) { 
    return 0.; 
   } else { 
    term1 = (k*x)/Lmix; 
    term2 = term1**d; 
    term3 = e**(-term2); 
    term4 = term1**(d-1.); 
    return alpha*d*(k/Lmix)*term3*term4; 
   } 
  } 
  */ 
  // Universal - Difference formula 
  /* 
  return (-3.*calcetam(x)+4.*calcetam(x+dx)-calcetam(x+2.*dx))/(2.*dx); 
  */ 
  return 0.; 
 } 
 //-----------------------------------------------------------------------------------------  
 real calcAwall(real x) { 
  if (x < x3) { 
   return a1*in2cf; 
  } else { 
   if (x < xa2) { 
    return ((a2-a1)*(x-x3)/(xa2-x3)+a1)*in2cf; 
   } else { 
    return ((a3-a2)*(x-xa2)/(x4-xa2)+a2)*in2cf; 
   } 
  } 
 } 
 //-----------------------------------------------------------------------------------------  
 real calcdAwalldx(real x) { 
  if (x < x3) { 
   return 0.; 
  } else { 
   if (x < xa2) { 
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    return ((a2-a1)/(xa2-x3))*in2cf; 
   } else { 
    return ((a3-a2)/(x4-xa2))*in2cf; 
   } 
  } 
 } 
 //-----------------------------------------------------------------------------------------   
 // Calculate dPs/dx, dhs/dx, dht/dx 
 //-----------------------------------------------------------------------------------------  
 real Awall; real dAwalldx; 
 real Ajet; real dAjetdx; 
 real A; real dAdx; 
  
 real Dw; 
 real Vfx; 
 real etam; 
 real detamdx; 
 real dWdxW; 
 real dphidx; 
 real Im; 
 real Ie; 
 real D; real E; real RHS1; real RHS2; 
  
 real qw; 
 real Cw; 
 real Taw; 
 
 real drhodP; 
 real dP; real Ps1; real Ps2; real Pt1; real Pt2; 
 real drhodh; 
 real dh; real hs1; real hs2; real Vin1; real Vin2; 
 real drhodphi; 
 real dphi; 
  
 real dhtdx; 
 real dhsdx; 
 real dPsdx; 
 // For calculating Cf 
 real Cf; 
 real _R = 111.*KtoR; 
 real Retrans; 
 real Tref; 
 real Reref; 
 real rhoref; 
 real muref; 
 //-----------------------------------------------------------------------------------------   
 // Isolator - Attached Zone 
 //-----------------------------------------------------------------------------------------  
 void calcDeliatt(real Ps, real ht, real hs, real x, real dx) { 
   
  // Test 
  cout << endl; 
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  cout << "INPUT:  "; 
  cout << "Psin = " << Ps << "  "; 
  cout << "hsin = " << hs << "  "; 
  cout << "htin = " << ht << endl; 
   
  // etam 
  etam = 0.; 
  //detam/dx 
  detamdx = 0.; 
  // Awall(x) 
  Awall = calcAwall(x);  
  // dAwall/dx 
  dAwalldx = calcdAwalldx(x); 
  // A 
  A = Awall;   
  // dA/dx 
  dAdx = dAwalldx; 
   
  Fl_Otemp.copyFlow("Fl_O"); 
  // Set flow properties 
  Fl_Otemp.setTotal_hP(hs/BTUcf, Ps/psicf); 
  // Flow properties 
  Psin = Fl_Otemp.Pt*psicf; 
  hsin = Fl_Otemp.ht*BTUcf; 
  Tsin = Fl_Otemp.Tt; 
  Vin = (2.*(ht-hs))**0.5; 
  Win = Fl_Otemp.W; 
  Ain = A; 
  rhoin = Fl_Otemp.rhot; 
  R = Fl_Otemp.Rt*BTUcf; 
  Cp = Fl_Otemp.Cpt*BTUcf; 
   
  // Test 
  cout << endl; 
  cout << "hsin = " << hsin << "  "; 
  cout << "Psin = " << Psin << "  "; 
  cout << "Tsin = " << Tsin << "  "; 
  cout << "Vin = " << Vin << "  "; 
  cout << "Ain = " << Ain << "  "; 
  cout << "rhoin = " << rhoin << "  "; 
  cout << "Wfuel = " << Fl_Otemp.Wf << "  "; 
  cout << "Win = " << Win << "  "; 
  cout << "mu = " << Fl_Otemp.mut << endl; 
   
  // Dw 
  Dw = (4.*Awall/pi)**0.5; 
  // Cw 
  Cw = pi*Dw*dx*intoft; 
  // Reynold number 
  muin = Fl_Otemp.mut; 
  Rein = rhoin*Vin*Dw/muin; 
  // Transient Reynold 
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  term1 = 1.209*(10**(-4))*(MNin**2.641); 
  term2 = 6.421*(e**term1); 
  Retrans = 10**term2; 
  // Cf and qw 
  MNin = Vin/((gama*R*Tsin)**0.5); 
  if (Rein >= Retrans) {  
   // Turbulent  
   Tref = 0.5*Tsin+0.5*Tw+0.5*0.16*(Pr**(1./3.))*(gama-
1.)*Tsin*(MNin**2.); 
   rhoref = rhoin*Tsin/Tref; 
   muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R)); 
   Reref = rhoref*Vin*Dw/muref; 
   Cf = 0.02296/(Reref**0.139); 
    
   Taw = Tsin*(1.+Pr**(1./3.)*(0.5*(gama-1.)*(MNin**2.))); 
   qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(1./3.)); 
  } else { 
   // Laminar 
   Tref = 0.45*Tsin+0.55*Tw+0.5*0.16*(Pr**(1./2.))*(gama-
1.)*Tsin*(MNin**2.); 
   rhoref = rhoin*Tsin/Tref; 
   muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R)); 
   Reref = rhoref*Vin*Dw/muref; 
   Cf = 0.664/(Reref**0.5); 
    
   Taw = Tsin*(1.+Pr**(1./2.)*(0.5*(gama-1.)*(MNin**2.))); 
   qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(2./3.)); 
  } 
   
  // Test 
  cout << endl; 
  cout << "Rein = " << Rein << "  "; 
  cout << "Retrans = " << Retrans << "  "; 
  cout << "Cf = " << Cf << endl; 
   
  // drhodP 
  Fstemp1.copyFlow("Fl_Otemp"); 
  Fstemp2.copyFlow("Fl_Otemp"); 
  // Same phi --> same ht, same hs --> same Vin 
  dP = Psin*0.001; 
  Ps1 = Psin-dP; 
  Ps2 = Psin+dP; 
  Fstemp1.setTotal_hP(hsin/BTUcf, Ps1/psicf); 
  Fstemp2.setTotal_hP(hsin/BTUcf, Ps2/psicf); 
  drhodP = (Fstemp2.rhot-Fstemp1.rhot)/(2.*dP); 
  // drhodh 
  dh = hsin*0.001; 
  hs1 = hsin-dh; 
  hs2 = hsin+dh; 
  Fstemp1.setTotal_hP(hs1/BTUcf, Psin/psicf); 
  Fstemp2.setTotal_hP(hs2/BTUcf, Psin/psicf); 
  drhodh = (Fstemp2.rhot-Fstemp1.rhot)/(2.*dh); 
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  // drhodphi 
  drhodphi = 0.; 
  // Test 
  cout << endl; 
  cout << "drhodP = " << drhodP << "  "; 
  cout << "drhodh = " << drhodh << "  "; 
  cout << "drhodphi = " << drhodphi << endl; 
   
  // dW/(W*dx) 
  dWdxW = (FAR0*detamdx)/(1.+FAR0*etam); 
  // Im 
  term1 = -rhoin*Vin*(Vin-Vfx)*dWdxW;    
  term2 = -0.5*rhoin*(Vin**2)*Cf*Cw/(Ain*dx); 
  Im = term1+term2;          
   
  // Test 
  cout << endl; 
  cout << "Im term1 = " << term1 << "  "; 
  cout << "Im term2 = " << term2 << "  "; 
  cout << "Im = " << Im << endl; 
   
  // Ie 
  term1 = 0.;   
  term2 = qw*Cw/(Win*dx); 
  Ie = term1+term2; 
   
  // Test 
  cout << endl; 
  cout << "Ie term1 = " << term1 << "  "; 
  cout << "Ie term2 = " << term2 << "  "; 
  cout << "Ie = " << Ie << endl; 
   
  // dphidx 
  dphidx = (FAR0*detamdx)/FARstoic; 
  // D 
  term1 = 1.-(Vin**2)*drhodP; 
  term2 = 1.-((Vin**2)*drhodh)/rhoin; 
  term3 = ((Vin**4)*drhodP*drhodh)/rhoin; 
  D = term1*term2-term3; 
  // RHS1 
  term1 = (rhoin*(Vin**2)*dAdx)/Ain; 
  term2 = (Vin**2)*drhodphi*dphidx; 
  term3 = -(rhoin*(Vin**2)*dWdxW); 
  RHS1 = term1+term2+term3+Im; 
  // RHS2 
  term1 = ((Vin**2)*dAdx)/Ain; 
  term2 = (Vin**2)*drhodphi*dphidx/rhoin; 
  term3 = -(Vin**2)*dWdxW; 
  RHS2 = term1+term2+term3+Ie; 
  // E 
  term1 = (Vin**2)*drhodP*RHS1/rhoin; 
  term2 = (1.-(Vin**2)*drhodP)*RHS2; 
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  E = term1+term2; 
  // dhs/dx 
  dhsdx = E/D; 
  // D and E will be different 
  // E 
  term1 = (Vin**2)*drhodh*dhsdx; 
  E = term1+RHS1; 
  // D 
  D = 1.-(Vin**2)*drhodP; 
  // dPs/dx 
  dPsdx = E/D; 
  // dht/dx 
  dhtdx = Ie; 
   
  // Test 
  cout << endl; 
  cout << "dht/dx = " << dhtdx << endl; 
  cout << "dhs/dx = " << dhsdx << endl; 
  cout << "dPs/dx = " << dPsdx << endl; 
 } 
 //-----------------------------------------------------------------------------------------  
 // Isolator - Separation zone 
 //-----------------------------------------------------------------------------------------  
 void calcDelisep (real Ps, real ht, real hs, real x, real dx) { 
   
  // Test 
  cout << endl; 
  cout << "INPUT:  "; 
  cout << "Psin = " << Ps << "  "; 
  cout << "hsin = " << hs << "  "; 
  cout << "htin = " << ht << endl; 
   
  // etam 
  etam = 0.; 
  //detam/dx 
  detamdx = 0.; 
   
  Fl_Otemp.copyFlow("Fl_O"); 
  // Set flow properties 
  Fl_Otemp.setTotal_hP(hs/BTUcf, Ps/psicf); 
  // Flow properties 
  Psin = Fl_Otemp.Pt*psicf; 
  hsin = Fl_Otemp.ht*BTUcf; 
  Tsin = Fl_Otemp.Tt; 
  Vin = (2.*(ht-hs))**0.5; 
  Win = Fl_Otemp.W; 
  rhoin = Fl_Otemp.rhot; 
  Ain = Win/(rhoin*Vin); 
  R = Fl_Otemp.Rt*BTUcf; 
  Cp = Fl_Otemp.Cpt*BTUcf; 
   
  // Test 
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  cout << endl; 
  cout << "hsin = " << hsin << "  "; 
  cout << "Psin = " << Psin << "  "; 
  cout << "Tsin = " << Tsin << "  "; 
  cout << "Vin = " << Vin << "  "; 
  cout << "Ain = " << Ain << "  "; 
  cout << "rhoin = " << rhoin << "  "; 
  cout << "Wfuel = " << Fl_Otemp.Wf << "  "; 
  cout << "Win = " << Win << "  "; 
  cout << "mu = " << Fl_Otemp.mut << endl; 
   
  // Dw 
  Dw = (4.*Awall/pi)**0.5; 
  // Cw 
  Cw = pi*Dw*dx*intoft; 
  // Reynold number 
  muin = Fl_Otemp.mut; 
  Rein = rhoin*Vin*Dw/muin; 
  // Transient Reynold 
  term1 = 1.209*(10**(-4))*(MNin**2.641); 
  term2 = 6.421*(e**term1); 
  Retrans = 10**term2; 
  // Cf and qw 
  MNin = Vin/((gama*R*Tsin)**0.5); 
  if (Rein >= Retrans) {  
   // Turbulent  
   Tref = 0.5*Tsin+0.5*Tw+0.5*0.16*(Pr**(1./3.))*(gama-
1.)*Tsin*(MNin**2.); 
   rhoref = rhoin*Tsin/Tref; 
   muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R)); 
   Reref = rhoref*Vin*Dw/muref; 
   Cf = 0.02296/(Reref**0.139); 
    
   Taw = Tsin*(1.+Pr**(1./3.)*(0.5*(gama-1.)*(MNin**2.))); 
   qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(1./3.)); 
  } else { 
   // Laminar 
   Tref = 0.45*Tsin+0.55*Tw+0.5*0.16*(Pr**(1./2.))*(gama-
1.)*Tsin*(MNin**2.); 
   rhoref = rhoin*Tsin/Tref; 
   muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R)); 
   Reref = rhoref*Vin*Dw/muref; 
   Cf = 0.664/(Reref**0.5); 
    
   Taw = Tsin*(1.+Pr**(1./2.)*(0.5*(gama-1.)*(MNin**2.))); 
   qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(2./3.)); 
  } 
   
  // Test 
  cout << endl; 
  cout << "Cf = " << Cf << endl; 
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  // dW/(W*dx) 
  dWdxW = (FAR0*detamdx)/(1.+FAR0*etam); 
  // Im 
  term1 = -rhoin*Vin*(Vin-Vfx)*dWdxW;    
  term2 = -0.5*rhoin*(Vin**2)*Cf*Cw/(Ain*dx); 
  Im = term1+term2;          
   
  // Test 
  cout << endl; 
  cout << "Im term1 = " << term1 << "  "; 
  cout << "Im term2 = " << term2 << "  "; 
  cout << "Im = " << Im << endl; 
   
  // Ie 
  term1 = 0.; 
  term2 = qw*Cw/(Win*dx); 
  Ie = term1+term2; 
   
  // Test 
  cout << endl; 
  cout << "Ie term1 = " << term1 << "  "; 
  cout << "Ie term2 = " << term2 << "  "; 
  cout << "Ie = " << Ie << endl; 
   
  // dPs/dx 
  dPsdx = 0.5*rhoin*(Vin**2)*Cf*89; 
  // hds/dx 
  dhsdx = dPsdx/rhoin-Im/rhoin+Ie; 
  // dht/dx 
  dhtdx = Ie; 
   
  // Test 
  cout << endl; 
  cout << "dht/dx = " << dhtdx << endl; 
  cout << "dhs/dx = " << dhsdx << endl; 
  cout << "dPs/dx = " << dPsdx << endl; 
 } 
 //-----------------------------------------------------------------------------------------   
 // Combustor 
 //-----------------------------------------------------------------------------------------  
 void calcDelc(real Ps, real ht, real hs, real x, real dx, real factor, int flag, int flag2) { 
   
  // Test 
  cout << endl; 
  cout << "INPUT:  "; 
  cout << "Psin = " << Ps << "  "; 
  cout << "hsin = " << hs << "  "; 
  cout << "htin = " << ht << endl; 
   
  // etam 
  etam = calcetam(x); 
  // detam/dx 
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  detamdx = calcdetamdx(x, dx); 
   
  // Test 
  cout << endl; 
  cout << "etam = " << etam << "  "; 
  cout << "detam/dx = " << detamdx << endl; 
   
  // Awall(x) 
  Awall = calcAwall(x);  
  // dAwall/dx 
  dAwalldx = calcdAwalldx(x); 
  // Ajet  
  Ajet = Ajet3*in2cf*(1.-etam);  
  // dAjet/dx 
  dAjetdx = -Ajet3*in2cf*detamdx;  
  // A 
  A = Awall-Ajet;   
  // dA/dx 
  dAdx = dAwalldx-dAjetdx; 
   
  Fl_Otemp.copyFlow("Fl_O"); 
  // Burn to add fuel into flow composition, add from position x 
  Fu_I.Wfuel = Wair*FAR0*calcdetamdx(x-0.5*factor*dx, dx)*dx*factor; 
  Fl_Otemp.burn("Fu_I", 1.); 
  // Set flow properties 
  Fl_Otemp.setTotal_hP(hs/BTUcf, Ps/psicf); 
  // Flow properties 
  Psin = Fl_Otemp.Pt*psicf; 
  hsin = Fl_Otemp.ht*BTUcf; 
  Tsin = Fl_Otemp.Tt; 
  Vin = (2.*(ht-hs))**0.5; 
  Win = Fl_Otemp.W; 
  Ain = A; 
  rhoin = Fl_Otemp.rhot; 
  R = Fl_Otemp.Rt*BTUcf; 
  Cp = Fl_Otemp.Cpt*BTUcf; 
   
  // Test 
  cout << endl; 
  cout << "hsin = " << hsin << "  "; 
  cout << "Psin = " << Psin << "  "; 
  cout << "Tsin = " << Tsin << "  "; 
  cout << "Vin = " << Vin << "  "; 
  cout << "Ain = " << Ain << "  "; 
  cout << "rhoin = " << rhoin << "  "; 
  cout << "Wfuel = " << Fl_Otemp.Wf << "  "; 
  cout << "Win = " << Win << "  "; 
  cout << "mu = " << Fl_Otemp.mut << endl; 
   
  // Dw 
  Dw = (4.*Awall/pi)**0.5; 
  // Cw 
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  Cw = pi*Dw*dx*intoft; 
  // Reynold number 
  muin = Fl_Otemp.mut; 
  Rein = rhoin*Vin*Dw/muin; 
  // Transient Reynold 
  term1 = 1.209*(10**(-4))*(MNin**2.641); 
  term2 = 6.421*(e**term1); 
  Retrans = 10**term2; 
  // Cf and qw 
  MNin = Vin/((gama*R*Tsin)**0.5); 
  if (Rein >= Retrans) {  
   // Turbulent  
   Tref = 0.5*Tsin+0.5*Tw+0.5*0.16*(Pr**(1./3.))*(gama-
1.)*Tsin*(MNin**2.); 
   rhoref = rhoin*Tsin/Tref; 
   muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R)); 
   Reref = rhoref*Vin*Dw/muref; 
   Cf = 0.02296/(Reref**0.139); 
    
   Taw = Tsin*(1.+Pr**(1./3.)*(0.5*(gama-1.)*(MNin**2.))); 
   qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(1./3.)); 
  } else { 
   // Laminar 
   Tref = 0.45*Tsin+0.55*Tw+0.5*0.16*(Pr**(1./2.))*(gama-
1.)*Tsin*(MNin**2.); 
   rhoref = rhoin*Tsin/Tref; 
   muref = muin*((Tref/Tsin)**1.5)*((Tsin+_R)/(Tref+_R)); 
   Reref = rhoref*Vin*Dw/muref; 
   Cf = 0.664/(Reref**0.5); 
    
   Taw = Tsin*(1.+Pr**(1./2.)*(0.5*(gama-1.)*(MNin**2.))); 
   qw = 0.5*rhoin*Vin*Cp*Cf*(Tw-Taw)/(Pr**(2./3.)); 
  } 
   
  // Test 
  cout << endl; 
  cout << "Cf = " << Cf << endl; 
   
  // drhodP 
  Fstemp1.copyFlow("Fl_Otemp"); 
  Fstemp2.copyFlow("Fl_Otemp"); 
  // Same phi --> same ht, same hs --> same Vin 
  dP = Psin*0.001; 
  Ps1 = Psin-dP; 
  Ps2 = Psin+dP; 
  Fstemp1.setTotal_hP(hsin/BTUcf, Ps1/psicf); 
  Fstemp2.setTotal_hP(hsin/BTUcf, Ps2/psicf); 
  drhodP = (Fstemp2.rhot-Fstemp1.rhot)/(2.*dP); 
  // drhodh 
  dh = hsin*0.001; 
  hs1 = hsin-dh; 
  hs2 = hsin+dh; 
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  Fstemp1.setTotal_hP(hs1/BTUcf, Psin/psicf); 
  Fstemp2.setTotal_hP(hs2/BTUcf, Psin/psicf); 
  drhodh = (Fstemp2.rhot-Fstemp1.rhot)/(2.*dh); 
  // drhodphi 
  Fstemp1.copyFlow("Fl_Otemp"); 
  Fstemp2.copyFlow("Fl_Otemp"); 
  dphi = 0.001*FAR0/FARstoic; // 0.1; 0.01; 0.001 give close results, starts to 
diverge at 0.0001  
  Fu_I.Wfuel = Wair*FARstoic*dphi; 
  Fstemp1.burn("Fu_I", 1.); 
  Fstemp1.setTotal_hP(hsin/BTUcf, Psin/psicf); 
  Fu_I.Wfuel = 2.*Wair*FARstoic*dphi; 
  Fstemp2.burn("Fu_I", 1.); 
  Fstemp2.setTotal_hP(hsin/BTUcf, Psin/psicf); 
  drhodphi = (-3.*Fl_Otemp.rhot+4.*Fstemp1.rhot-Fstemp2.rhot)/(2.*dphi); 
   
  // Test 
  cout << endl; 
  cout << "drhodP = " << drhodP << "  "; 
  cout << "drhodh = " << drhodh << "  "; 
  cout << "drhodphi = " << drhodphi << endl; 
   
  // dW/(W*dx) 
  dWdxW = (FAR0*detamdx)/(1.+FAR0*etam); 
  // Im 
  term1 = -rhoin*Vin*(Vin-Vfx)*dWdxW;    
  term2 = -0.5*rhoin*(Vin**2)*Cf*Cw/(Ain*dx); 
  Im = term1+term2;          
   
  // Test 
  cout << endl; 
  cout << "Im term1 = " << term1 << "  "; 
  cout << "Im term2 = " << term2 << "  "; 
  cout << "Im = " << Im << endl; 
   
  // Ie 
  Fstemp2.setTotal_hP(hsin/BTUcf, Psin/psicf); 
  Fu_I.Wfuel = Wair*FAR0*calcdetamdx(x+0.5*dx, dx)*dx; 
  Fstemp2.burn("Fu_I", 1.); 
  term1 = -(Fstemp2.ht*BTUcf-hsin)/dx; 
   
  term2 = qw*Cw/(Win*dx); 
   
  Ie = term1+term2; 
   
  // Test 
  cout << endl; 
  cout << "Ie term1 = " << term1 << "  "; 
  cout << "Ie term2 = " << term2 << "  "; 
  cout << "Ie = " << Ie << endl; 
   
  // dphidx 
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  dphidx = (FAR0*detamdx)/FARstoic; 
  // D 
  term1 = 1.-(Vin**2)*drhodP; 
  term2 = 1.-((Vin**2)*drhodh)/rhoin; 
  term3 = ((Vin**4)*drhodP*drhodh)/rhoin; 
  D = term1*term2-term3; 
  // RHS1 
  term1 = (rhoin*(Vin**2)*dAdx)/Ain; 
  term2 = (Vin**2)*drhodphi*dphidx; 
  term3 = -(rhoin*(Vin**2)*dWdxW); 
  RHS1 = term1+term2+term3+Im; 
  // RHS2 
  term1 = ((Vin**2)*dAdx)/Ain; 
  term2 = (Vin**2)*drhodphi*dphidx/rhoin; 
  term3 = -(Vin**2)*dWdxW; 
  RHS2 = term1+term2+term3+Ie; 
  // E 
  term1 = (Vin**2)*drhodP*RHS1/rhoin; 
  term2 = (1.-(Vin**2)*drhodP)*RHS2; 
  E = term1+term2; 
  // dhs/dx 
  dhsdx = E/D; 
  // D and E will be different 
  // E 
  term1 = (Vin**2)*drhodh*dhsdx; 
  E = term1+RHS1; 
  // D 
  D = 1.-(Vin**2)*drhodP; 
  // dPs/dx 
  dPsdx = E/D; 
  // dht/dx 
  dhtdx = Ie; 
   
  // Test 
  cout << endl; 
  cout << "dht/dx = " << dhtdx << endl; 
  cout << "dhs/dx = " << dhsdx << endl; 
  cout << "dPs/dx = " << dPsdx << endl; 
 } 
 //-----------------------------------------------------------------------------------------   
 // 4th RK Loops 
 //-----------------------------------------------------------------------------------------  
 real htintemp; 
 real hsintemp; 
 real Psintemp; 
  
 int i; 
 real k1; real k2; real k3; real k4; 
 real l1; real l2; real l3; real l4; 
 real m1; real m2; real m3; real m4; 
  
 real hsout; 
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 real htout; 
 real gamaout; 
 real Rout; 
  
 real sonicSpeed; 
 // Flag for switching 
 int flag; 
 int flag2; 
 int sos; 
 //-----------------------------------------------------------------------------------------   
 // Isolator Attached Zone - 4th RK 
 //-----------------------------------------------------------------------------------------  
 void RKisoatt() { 
  cout << endl; 
  cout << endl; 
  cout << "*******************ISOLATOR ATTACHED ZONE********************" << 
endl; 
  cout << endl;   
  for (i=0; i<Niatt; i++) { 
   Psintemp = Psin; 
   htintemp = htin; 
   hsintemp = hsin; 
   // Position 
   x = x2+dxiatt*i; 
    
   // Test 
   cout << endl; 
   cout << "*******************Position********************" << endl; 
   cout << "x = " << x << endl; 
    
   //-----------------------------------------------------------------------------------------  
   // Step 1 
   cout << endl; 
   cout << "-----------------Step 1-------------------------------------------" << endl; 
   calcDeliatt(Psintemp, htintemp, hsintemp, x, dxiatt); 
   k1 = dPsdx; 
   l1 = dhtdx; 
   m1 = dhsdx; 
   //-----------------------------------------------------------------------------------------  
   // Step 2 
   cout << endl; 
   cout << "-----------------Step 2-------------------------------------------" << endl; 
   calcDeliatt(Psintemp+0.5*k1*dxiatt, htintemp+0.5*l1*dxiatt, 
hsintemp+0.5*m1*dxiatt, x+0.5*dxiatt, dxiatt); 
   k2 = dPsdx; 
   l2 = dhtdx; 
   m2 = dhsdx; 
   //----------------------------------------------------------------------------------------- 
   // Step 3 
   cout << endl; 
   cout << "-----------------Step 3-------------------------------------------" << endl; 
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   calcDeliatt(Psintemp+0.5*k2*dxiatt, htintemp+0.5*l2*dxiatt, 
hsintemp+0.5*m2*dxiatt, x+0.5*dxiatt, dxiatt); 
   k3 = dPsdx; 
   l3 = dhtdx; 
   m3 = dhsdx; 
   //-----------------------------------------------------------------------------------------  
   // Step 4 
   cout << endl; 
   cout << "-----------------Step 4------------------------------------------" << endl; 
   calcDeliatt(Psintemp+k3*dxiatt, htintemp+l3*dxiatt, 
hsintemp+m3*dxiatt, x+dxiatt, dxiatt); 
   k4 = dPsdx; 
   l4 = dhtdx; 
   m4 = dhsdx; 
   cout << endl; 
   cout << "-----------------End Step------------------------------------------" << 
endl; 
   //----------------------------------------------------------------------------------------- 
   dPsdx = (k1+2.*k2+2.*k3+k4)/6.; 
   dhtdx = (l1+2.*l2+2.*l3+l4)/6.; 
   dhsdx = (m1+2.*m2+2.*m3+m4)/6.; 
   //----------------------------------------------------------------------------------------- 
   // Test 
   cout << endl; 
   cout << "dPsdx = " << dPsdx << endl; 
   cout << "dhtdx = " << dhtdx << endl; 
   cout << "dhsdx = " << dhsdx << endl; 
   //-----------------------------------------------------------------------------------------
  
   // Setup Fl_O with new Ps and Ts 
   //-----------------------------------------------------------------------------------------
  
   Psout = Psintemp+dPsdx*dxiatt; 
   htout = htintemp+dhtdx*dxiatt; 
   hsout = hsintemp+dhsdx*dxiatt; 
   // Set Ps, ht, hs 
   Vout = (2.*(htout-hsout))**0.5; 
   Fl_O.setTotal_hP(hsout/BTUcf, Psout/psicf); 
   Tsout = Fl_O.Tt; 
   gamaout = Fl_O.gamt; 
   Rout = Fl_O.Rt*BTUcf; 
   sonicSpeed = (gamaout*Rout*Tsout)**0.5; 
   MNout = Vout/sonicSpeed; 
    
   // Test 
   cout << endl; 
   cout << "Psout = " << Psout << endl; 
   cout << "Tsout = " << Tsout << endl; 
   cout << "Vout = " << Vout << endl; 
   cout << "MNout = " << MNout << endl; 
   cout << endl; 
   cout << "*******************Next Iteration********************" << endl; 
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   cout << endl; 
   // Text output 
   textOutputUpdate(x, dxiatt); 
   //-----------------------------------------------------------------------------------------
  
   // Prepare for the next iteration 
   //----------------------------------------------------------------------------------------- 
   Psin = Psout; 
   htin = htout; 
   hsin = hsout; 
  }  
 } 
 //-----------------------------------------------------------------------------------------   
 // Isolator Separated Zone - 4th RK 
 //-----------------------------------------------------------------------------------------   
 void RKisosep() { 
  cout << endl; 
  cout << endl; 
  cout << "*******************ISOLATOR SEPARATION ZONE********************" 
<< endl; 
  cout << endl; 
  for (i=0; i<Nisep; i++) { 
   Psintemp = Psin; 
   htintemp = htin; 
   hsintemp = hsin; 
   // Position 
   x = xu+dxisep*i; 
    
   // Test 
   cout << endl; 
   cout << "*******************Position********************" << endl; 
   cout << "x = " << x << endl; 
    
   //-----------------------------------------------------------------------------------------  
   // Step 1 
   cout << endl; 
   cout << "-----------------Step 1-------------------------------------------" << endl; 
   calcDelisep(Psintemp, htintemp, hsintemp, x, dxisep); 
   k1 = dPsdx; 
   l1 = dhtdx; 
   m1 = dhsdx; 
   //-----------------------------------------------------------------------------------------  
   // Step 2 
   cout << endl; 
   cout << "-----------------Step 2-------------------------------------------" << endl; 
   calcDelisep(Psintemp+0.5*k1*dxisep, htintemp+0.5*l1*dxisep, 
hsintemp+0.5*m1*dxisep, x+0.5*dxisep, dxisep); 
   k2 = dPsdx; 
   l2 = dhtdx; 
   m2 = dhsdx; 
   //----------------------------------------------------------------------------------------- 
   // Step 3 
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   cout << endl; 
   cout << "-----------------Step 3-------------------------------------------" << endl; 
   calcDelisep(Psintemp+0.5*k2*dxisep, htintemp+0.5*l2*dxisep, 
hsintemp+0.5*m2*dxisep, x+0.5*dxisep, dxisep); 
   k3 = dPsdx; 
   l3 = dhtdx; 
   m3 = dhsdx; 
   //-----------------------------------------------------------------------------------------  
   // Step 4 
   cout << endl; 
   cout << "-----------------Step 4------------------------------------------" << endl; 
   calcDelisep(Psintemp+k3*dxisep, htintemp+l3*dxisep, 
hsintemp+m3*dxisep, x+dxisep, dxisep); 
   k4 = dPsdx; 
   l4 = dhtdx; 
   m4 = dhsdx; 
   cout << endl; 
   cout << "-----------------End Step------------------------------------------" << 
endl; 
   //-----------------------------------------------------------------------------------------  
   dPsdx = (k1+2.*k2+2.*k3+k4)/6.; 
   dhtdx = (l1+2.*l2+2.*l3+l4)/6.; 
   dhsdx = (m1+2.*m2+2.*m3+m4)/6.; 
   //----------------------------------------------------------------------------------------- 
   // Test 
   cout << endl; 
   cout << "dPsdx = " << dPsdx << endl; 
   cout << "dhtdx = " << dhtdx << endl; 
   cout << "dhsdx = " << dhsdx << endl; 
   //-----------------------------------------------------------------------------------------
  
   // Setup Fl_O with new Ps and Ts 
   //-----------------------------------------------------------------------------------------
  
   Psout = Psintemp+dPsdx*dxisep; 
   htout = htintemp+dhtdx*dxisep; 
   hsout = hsintemp+dhsdx*dxisep; 
   // Set Ps, ht, hs 
   Vout = (2.*(htout-hsout))**0.5; 
   Fl_O.setTotal_hP(hsout/BTUcf, Psout/psicf); 
   Tsout = Fl_O.Tt; 
   gamaout = Fl_O.gamt; 
   Rout = Fl_O.Rt*BTUcf; 
   sonicSpeed = (gamaout*Rout*Tsout)**0.5; 
   MNout = Vout/sonicSpeed; 
   A = Fl_O.W/(Fl_O.rhot*Vout); 
    
   // Test 
   cout << endl; 
   cout << "Psout = " << Psout << endl; 
   cout << "Tsout = " << Tsout << endl; 
   cout << "Vout = " << Vout << endl; 
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   cout << "MNout = " << MNout << endl; 
   cout << endl; 
   cout << "*******************Next Iteration********************" << endl; 
   cout << endl; 
   // Text output 
   textOutputUpdate(x, dxisep); 
   //-----------------------------------------------------------------------------------------
  
   // Prepare for the next iteration 
   //-----------------------------------------------------------------------------------------  
   Psin = Psout; 
   htin = htout; 
   hsin = hsout; 
  }  
 } 
 //-----------------------------------------------------------------------------------------   
 // Combustor - 4th RK 
 //-----------------------------------------------------------------------------------------   
 void RKc() { 
  cout << endl; 
  cout << endl; 
  cout << "*******************COMBUSTOR********************" << endl; 
  cout << endl; 
  flag = 0;  
  flag2 = 0; 
  for (i=0; i<Nc; i++) { 
   Psintemp = Psin; 
   htintemp = htin; 
   hsintemp = hsin; 
   // Position 
   x = x3+dxc*i; 
    
   // Test 
   cout << endl; 
   cout << "*******************Position********************" << endl; 
   cout << "x = " << x << endl; 
    
   //-----------------------------------------------------------------------------------------  
   // Step 1 
   cout << endl; 
   cout << "-----------------Step 1-------------------------------------------" << endl; 
   calcDelc(Psintemp, htintemp, hsintemp, x, dxc, 0., flag, flag2); 
   k1 = dPsdx; 
   l1 = dhtdx; 
   m1 = dhsdx; 
   //----------------------------------------------------------------------------------------- 
   // Step 2 
   cout << endl; 
   cout << "-----------------Step 2-------------------------------------------" << endl; 
   calcDelc(Psintemp+0.5*k1*dxc, htintemp+0.5*l1*dxc, 
hsintemp+0.5*m1*dxc, x+0.5*dxc, dxc, 0.5, flag, flag2); 
   k2 = dPsdx; 
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   l2 = dhtdx; 
   m2 = dhsdx; 
   //-----------------------------------------------------------------------------------------  
   // Step 3 
   cout << endl; 
   cout << "-----------------Step 3-------------------------------------------" << endl; 
   calcDelc(Psintemp+0.5*k2*dxc, htintemp+0.5*l2*dxc, 
hsintemp+0.5*m2*dxc, x+0.5*dxc, dxc, 0.5, flag, flag2); 
   k3 = dPsdx; 
   l3 = dhtdx; 
   m3 = dhsdx; 
   //----------------------------------------------------------------------------------------- 
   // Step 4 
   cout << endl; 
   cout << "-----------------Step 4------------------------------------------" << endl; 
   calcDelc(Psintemp+k3*dxc, htintemp+l3*dxc, hsintemp+m3*dxc, x+dxc, 
dxc, 1., flag, flag2); 
   k4 = dPsdx; 
   l4 = dhtdx; 
   m4 = dhsdx; 
   cout << endl; 
   cout << "-----------------End Step------------------------------------------" << 
endl; 
   //-----------------------------------------------------------------------------------------  
   dPsdx = (k1+2.*k2+2.*k3+k4)/6.; 
   dhtdx = (l1+2.*l2+2.*l3+l4)/6.; 
   dhsdx = (m1+2.*m2+2.*m3+m4)/6.; 
   //-----------------------------------------------------------------------------------------  
   // Test 
   cout << endl; 
   cout << "dPsdx = " << dPsdx << endl; 
   cout << "dhtdx = " << dhtdx << endl; 
   cout << "dhsdx = " << dhsdx << endl; 
   //-----------------------------------------------------------------------------------------
  
   // Setup Fl_O with new Ps and Ts 
   //-----------------------------------------------------------------------------------------
  
   Psout = Psintemp+dPsdx*dxc; 
   htout = htintemp+dhtdx*dxc; 
   hsout = hsintemp+dhsdx*dxc; 
   // Burn 
   detamdx = calcdetamdx(x+0.5*dxc, dxc);  
   Fu_I.Wfuel = Wair*FAR0*detamdx*dxc; 
   Fl_O.burn("Fu_I", 1.); 
   // Set Ps, ht, hs 
   Vout = (2.*(htout-hsout))**0.5; 
   Fl_O.setTotal_hP(hsout/BTUcf, Psout/psicf); 
   Tsout = Fl_O.Tt; 
   gamaout = Fl_O.gamt; 
   Rout = Fl_O.Rt*BTUcf; 
   sonicSpeed = (gamaout*Rout*Tsout)**0.5; 
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   MNout = Vout/sonicSpeed; 
    
   // Test 
   cout << endl; 
   cout << "Psout = " << Psout << endl; 
   cout << "Tsout = " << Tsout << endl; 
   cout << "Vout = " << Vout << endl; 
   cout << "MNout = " << MNout << endl; 
   cout << "Flag = " << flag << endl; 
   cout << "Flag2 = " << flag2 << endl; 
   cout << endl; 
   cout << "*******************Next Iteration********************" << endl; 
   cout << endl; 
   // Text output 
   textOutputUpdate(x, dxc); 
   //-----------------------------------------------------------------------------------------
  
   // Prepare for the next iteration 
   //-----------------------------------------------------------------------------------------  
   Psin = Psout; 
   htin = htout; 
   hsin = hsout; 
  } 
 } 
 //-----------------------------------------------------------------------------------------   
 // Main Program 
 //-----------------------------------------------------------------------------------------   
 real x; 
 real x2 = 0.; 
 real xu; 
 real x3 = x2+Li; 
 real x4 = x3+Lc; 
 real dxiatt; 
 real dxisep; 
 real dxc = (x4-x3)/Nc; 
  
 initiate(); 
 textinitiate(); 
 // Fisher 
 xu = 0.155*mtoin; 
 dxiatt = (xu-x2)/Niatt; 
 dxisep = (x3-xu)/Nisep; 
 RKisoatt(); 
 RKisosep(); 
 // Boyce and Hyshot 
 /* 
 Vfx = calcVfx(); 
 Lmix = calcLmix(); 
 RKc(); 
 */ 
  
  } 



 

83 

  //------------------------------------------------------------ 
  // register the appropriate errors at build time 
  //------------------------------------------------------------ 
  void VCinit() 
  { 
    ESOregCreate( 1023901, 8, "", TRUE, FALSE, TRUE ); // provisional 
    ESOregCreate( 1093901, 8, "", TRUE, FALSE, TRUE ); // provisional 
  } 
} 
#endif
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