
Quasi Oppositional Dragon�y Algorithm for Load
Balancing in Cloud Computing Environment
Latchoumi TP ( tplatchoumi@gmail.com)

SRMIST: SRM Institute of Science and Technology
Latha Parthiban

Pondicherry University

Research Article

Keywords: Cloud computing, load scheduling, dragon�y algorithm, oppositional based learning

Posted Date: March 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-330652/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-330652/v1
mailto:tplatchoumi@gmail.com
https://doi.org/10.21203/rs.3.rs-330652/v1
https://creativecommons.org/licenses/by/4.0/

Quasi Oppositional Dragonfly Algorithm for Load Balancing in Cloud

Computing Environment

1,*
T.P.Latchoumi,

2
Latha Parthiban

1,*
Assistant Professor, Department of Computer Science and Engineering, SRM Institute of

Science and Technology, Ramapuram, Chennai – 600 089, Tamilnadu, India

2
Professor, Department of Computer Science, Pondicherry University Community College,

Pondicherry – 605 008, India

* Corresponding Author : tplatchoumi@gmail.Com , +91 8754830690

Abstract

In Cloud Computing (CC), load balancing tasks remain an essential problem of spreading

resources from a data center to ensure that each Virtual Machine (VM) has a balanced load to

achieve maximum utilization of its capabilities. In the CC world, load balancing is a Non-

Polynomial (NP) problem solved with metaheuristic algorithms. A new Quasi Oppositional

Dragonfly Algorithm for Load Balancing (QODA-LB) was developed to achieve the optimal

resource scheduling in a CC setting. The proposed QODA-LB algorithm uses three variables to

compute an objective function: run time, running cost, and load. The QODA-LB algorithm

assigns tasks to VM based on its potential and the derivative objective function. Also, the

QODA-LB algorithm uses the principle of Quasi-Oppositional Based Learning (QOBL) to

increase the standard Dragonfly Algorithm's (DA) convergence rate. A comprehensive series of

experiments were conducted, and the findings were analyzed in a variety of ways to ensure the

efficient performance increased by the QODA-LB algorithm. The simulation's results

demonstrated optimum load balancing efficiency and outperformed the leading approaches.

Keywords: Cloud computing, load scheduling, dragonfly algorithm, oppositional based learning

1. Introduction

Load balancing in CC is thought to be a complicated study for separating virtual machine

operations in data centers. CC is an essential method for distributing on-demand services over

the Internet in this situation. The cloud is a large, interconnected system that uses all files and

mailto:tplatchoumi@gmail.com

fields in a variety of ways. To deliver the distribution of resources such as software, hardware,

data, and files according to the requirements of alternative machines on the cloud, CC is

combined with the concept of distributed and parallel computing. On the shared framework, it

has a "Pay as You Want" module. The user does not need a computing environment to measure

an operation but requires an Internet connection to allocate resources when spending money for a

certain period. As a result, it restricts the amount of software purchased that is not needed full-

time, and CC offers dynamic resource features. VMs are CC processing units that measure and

allocate resources when needed dynamically during the execution of a transaction.

Huge VMs are connected in CC by allocating resources in a pre-emptive and non-preemptive

manner; however, resources are not allocated equally, and only a few VMs are capable of

completing the tasks. If a task is delivered in the cloud, VMs must complete the process quickly

and with minimal complexity, and all VMs must operate in parallel. Determines the need for task

planning and implements it with the resources available. When several tasks are assigned to huge

VMs, they are all executed at the same time to complete the tasks. If the trade is allocated to

VMs, the scheduler must ensure that all trades are not invoked in the same VM and that alternate

VMs are usable. As a result, all user tasks on all VMs in CC must be handled by the scheduler

role. To resolve the issue of load balancing in all VMs, a smart load balancing model is needed

to improve the response time of allocated operations by maximizing the use of available

resources, as shown in Fig. 1.

The input task is spread uniformly through VMs during load balancing. The main goal of load

balancing is to relieve all VCs of their pressure and report it to other weighted minimum VMs. It

boasts a system's performance and throughput. Developers also used heuristic and meta-heuristic

templates to address load balancing issues. On a distributed network, protected load balancing is

recorded [1]. Furthermore, three models have been used to address load balancing and security

issues in a distributed network. For instance, it provides a mechanism for a mobile agent to

broadcast to all nodes in a distributed network. Following that, it provides a framework for

reforming peer-to-peer load to provide maximum efficiency, and, as a result, it provides network

security. To solve the load distribution in the Grid computer platform, a hierarchical load

balancing strategy is proposed. When dynamically sharing the input task from the VMs and the

merits of this application, which restricts the overall response time for the Grid application, the

specifics of the actual node are used. By comparing a method's speed to the Minimum

Completion Time and Perfect Details on Arrival, the speed of the method has been validated.

Fig. 1. Load balancing in CC platform

Load balancing based on honey bee nature is resolved in non-empty autonomous tasks on VMs

[2]. The newly developed method helps resolve load balancing over VM to enhance the

throughput, limiting the waiting time of tasks by assuming the preferences consequently. The

associations performed with alternate models like weighted Round Robin (RR), FIFO, and

Dynamic Load Balancing provide the effectiveness of a system for throughput and limit the

response time of VMs. Dynamic load balancing solved on a virtual heat distribution platform [3].

It projects two dynamic load balancing models initially it applies local and global load balancing

in the distributed virtual platforms by using heat diffusion, and second, it examined two

functional aspects like load balancing factor as well as convergence threshold.

An expanded Particle Swarm Optimization (PSO) model is being developed to address the load

balancing issue in the CC system [4]. It has made implementation faster and more effective. A

Tabu Search (TS) approach is developed for resource management in the CC model. Optimized

dynamic asset scheduling management is deployed based on factors including time constraints,

cost constraints, and optimal solutions. The TS method is used to resolve resource allocation

through prioritization as well as task grouping. The TS method is used to optimize the positions

of cloud data centers software units such as data routing and network linkage capabilities [5].

The makespan and higher application of resources are limited by a simple scheduling approach

in a grid computing platform [6]. It presents a load balancing model where the load is shared

uniformly and reduces the response time. Fuzzy Logic (FL) is implied for effective load

balancing and minimizes the cost and power in Geo-Distributed several data Centers. It

showcases the best offline geographical load balancing by using the FL inference system. The

input data mapping is non-linear such as the current application of renewable power,

accessibility of electric cost as well as power utilization to produce the requests by the data

center.

Load rebalancing is performed for distributed file systems in cloud systems where it optimizes

the network traffic by improving the bandwidth of a system [7]. The complete distribution of

load balancing rebalancing model is developed to solve the load imbalance and consequently, the

newly developed approach is related to the previous centralized approach. An online algorithm

with Lyapunov optimization strategy is proposed for load scheduling eco-aware power

management for cloud data centers [8]. The main theme of this approach is to reduce the time

average eco-aware power cost of CC data centers at the time of assuring Quality-of-Experience

(QoE) constraints. The honey bee method is executed for limiting the makespan and allocates the

resource for extending the throughput in the CC platform [9]. It is considered as a dynamic

approach that has been applied for identifying the variations in nature among dependence and

independence operations limit the makespan for all tasks by using task preferences. A load of a

server is managed by applying self-adaptive Randomized Optimization. Power consumption has

been lowered at the time of allocating resources to each task in the CC platform. Load prediction

and requirement of resources are defined by Enhanced Exponentially Weighted Moving

Average. Soft computing methods are projected to resolve the dynamic load balancing in the CC

environment [10].

The load balancing method for CC is performed by a Genetic Algorithm (GA). Resource

allocation is done in homogeneous as well as heterogeneous CC platforms [11]. Researchers

have depicted the makespan and power application at the time of resource allocation. A static

load balancing approach is developed for resolving the load balancing [12]. It employs static data

for balancing the load with no influence of a load of cluster node which contains inferior

adaptive capability. Bayes scheme is executed for prolonged load balancing. An improved

weighted round-robin approach is deployed for resolving the load balancing in case of non-pre-

emptive dependent tasks [13].

The function of load balancing is realized by various load balancing modules and results are

related to throughput and speed [14]. Various scheduling approaches are deployed for the Map-

Reduce environment that involves load balancing for the CC network [15]. Adaptive task

allocation scheduler is projected for maximizing the function of Map Reduce in a dissimilar

cloud network [16]. The deadline reduction scheduler is developed to reduce the deadline of a

task in which it is collapsed while computing the massive data like video and image in Map

Reduce frameworks [17]. An independent agent which depends upon the load balancing

approach is presented for balancing a load by VMs with the help of 3 agents like Channel agent,

load agent, and migration agent [18].

 This paper introduces an effective QODA-LB in the CC environment for optimal resource

scheduling. The proposed QODA-LB algorithm derives an objective function utilizing three

variables namely execution time, execution cost, and load for allocating tasks to VM for its

capacity. Besides, the QODA-LB algorithm incorporates the Quasi Oppositional Based Learning

(QOBL) concept to improve the convergence rate of classical DA. A series of simulations took

place to ensure the effective performance of the QODA-LB algorithm and the results are

examined under several aspects.

2. The Proposed QODA-LB Technique

Fig. 2 illustrates the system model of the presented load balancing approach. The main aim of the

projected model is allocating all operations to VM to the load capacity. The load balancing

method guides for eliminating the tasks from overloaded of VM and allocates to VM under a

loaded stage. The projected approach is composed of massive data centers named Physical

Machines (PM), and it contains few VMs to precede the user’s tasks. Every user of CC has a

diverse number of tasks to compute VM. Here, the loads are allocated to VM under the

application of the load balancing approach. The presented framework verifies the load of all VM

in CC. The task of VM is based on the computation time of all loads.

Fig. 2. Proposed System Architecture

2.1. Problem definition with solution framework

Assume cloud , that have “ ” number of PM is comprised of ” number of VM.

where indicates the cloud, shows the initial and PM while implies the nth PM which

is represented in the following:

where is a first VM and refers the final . Likewise, count of users is loaded in

cloud and user is composed of count of task. A user is represented in the following;

The main theme of these models is to limit the execution time and expense of the task and to

accomplish a balanced load entire VMs in CC system. Hence, it is operated using 3 objectives

namely, limitation of task Execution Time, reduction of Execution Cost and finally, to scatter the

burden for all VM in CC.

The overall Execution Time (ET) is defined with the help of Eq. (4).

The Execution Cost (EC) is determined using Eq. (5).

Lode is determined using Eq. (3).

In order to accomplish the appropriate scheduling, load balancing should be performed

accurately. In absence of balanced load, a system consumes higher time and cost to implement

the operation. In order to resolve the issue, an effective multiobjective based load balancing

scheme has been deployed [19]. The projected Multi-Objective Function (MOF) is described in

Eq. (7). —

2.2. Proposed Load Scheduling Algorithm

The key objective of the presented model is for allocating a task to VM under the application of

QODA-LB to reduce the overall ET and EC at the time of balancing the load. The load is a vital

attribute of scheduling, where the method of scattering the load over diverse nodes of an

allocated model for enhancing resource application task response time. To overcome these

issues, multiobjective-based load balancing has been deployed with the help of QODA-LB. DA

is defined as a meta-heuristic approach that is evolved by the static and dynamic swarming

nature of dragonflies. The dragonflies swarm for 2 objectives like Hunting (static swarm) and

migration (dynamic swarm). First, massive dragonflies swarm at the time of roaming in longer

distances and various territories those results in the exploration phase.

Fig. 3. Flowchart of Dragonfly algorithm

For static swarm, dragonfly’s shifts in higher swarms and bearing by close to deployments and

immediate modifications in flying direction, that leads to exploitation stage. For the enhancement

of exploring capability and to eliminate the local optimal, QOBL is embedded through . The

flowchart of DA approach is showcased in Fig. 3. The periodical steps of presented multi‐

objective load balancing relied task arrangement are provided in the following;

Step 1: Initialization

A population of dragonflies is invoked arbitrarily. A population is composed of a group of

results. The result is developed according to the count of user task as well as VM. At the initial

stage, the tasks are allocated to VM in random manner. Followed by, according to the Fitness

Function (FF) the results are maximized. A first result is provided in Eq. (1). A length of solution

implies the supremacy of a task and dragonfly refers the available nodes. There are 10 operations

and 5 nodes, and length of population is 10 and evaluation of all dragonflies might be 1, 2, 3, 4,

and 5. A sample solution encoded has been offered in Eq. (8).

The previous function is showcased as 1 which is allocated to , task 2 is declared to and

task 10 is declared to . According to the solution encoding, population matrix (SM) has been

implemented with or 1. The framework depends upon the association between task and .

The task is related through VM denotes , or . However, the column

contains a single component for 1, otherwise .

Firstly, the initial population is depending upon dragonflies.

Step 2: Fitness calculation

Once the solution is generated, the fitness of all solutions is calculated. The FF is provided in

Eq. (9). —

Step 3: Update using dragonfly algorithm

In order to enhance the solution, 5 major factors have been applied such as separation, alignment,

cohesion, attraction to food and distraction from opponent. Separation is estimated with the help

of Eq. (10).

where implies the location of present individual, shows the location of th neighboring

individual and represents the count of neighboring individuals. An alignment is measured

utilizing Eq. (11).

where indicates the velocity of th neighbouring individual. Hence cohesion is evaluated by

Eq. (12).

where X denotes the location of recent individual, implies count of neighborhoods and

indicates the location of the th neighbouring individual. Attraction to food source is determined

with the given function:

where X depicts the place of present individual and refers the place of food source. A

direction visible an enemy is measured by:

where signifies a place of recent individual, and illustrates the location of the enemy.

Once the position is calculated, then velocity vector is determined by Eq. (15).

 where represents the separation weight, is a separation of individual, a defines

alignment weight, implies alignment of individual, refers the cohesion weight,
signifies cohesion of individual, illustrates food factor, showcases food source of

individual, denotes enemy factor, refers position of enemy of the individual,

demonstrates inertia weight, and depicts the iteration counter. Once the step vector is

measured, the position vectors are estimated in the following:

where is the present iteration.

Step 4: Select best solution

When the DA and QODA are compared, DA has optimal fitness value which is lower

than DA fitness value , the best place of DA is interchanged by QODA. Otherwise,

AODA fitness value is minimum than DA fitness value, the position is changed by
Step 5: Termination criteria

The iteration is terminated if a better solution is attained. The consequent solution is submitted to

CC platform.

2.3. Quasi-oppositional based learning (Q-OBL)

It accomplishes maximum attention from developers in Computation Intelligence (CI). The main

aim of OBL in evolutionary processing is to maximize the solution accuracy and simulate the

convergence rate to reach global solution. It contains higher probability in optimization method

for generating suboptimal solution. Here, recent populations as well as inverse values are

produced at the same time and results in optimal candidate solution. Hence, inverse value is

produced correctly at mirror position of recent population. From [20], the opposite population

contains optimal chance to attain global optimal solution when compared to randomly provided

population. The OBL is obtained by describing 2 of significant mathematical features:

Opposite number

It is referred as a mirror point of candidate solution from center of search space. When is a

number in real plane with search interval , the parallel opposite number in 1D search

space is described by (17).

where implies the randomly invoked candidate solution, and are lower and higher limits of

search space. The previous definition is improved to ‐ dimensional search space and

formalized by (18).

where and
Quasiopposite number

Furthermore, the mechanism of OBL based learning is improved to quasi‐ oppositional relied

learning that showcases that quasiopposite number is nearby global optimal solution when

compared to opposite number. The quasiopposite number is meant to be among the center of

search space while opposite number , is depicted by (19).

The pseudo code to accomplish quasiopposite value is given in the following:

 ;

if ;

else ;

end

where denotes a randomly produced value from .

Jumping rate

It assists the DA to move from recent solution to fresh candidate solution where it has optimal

fitness value than present one. According to the jumping rate, as said in (20), novel population is

developed and then quasiopposite population has been determined. The selection of jumping

value guides DA to eliminate suboptimal solution and stimulate the DA to attain globally

optimized solution. Basically, the jumping rate is decided from

where and are lower and higher value of jumping rate, refers higher value

in generation and denotes the value of function call at present iteration.

3. Performance Validation

The performance validation of the QODA-LB algorithm takes place under several aspects and

the proposed model is simulated using CloudSim tool. Since the goal of the QODA-LB

algorithm is to allocate the tasks to VMs depending upon the capacity (load) of VM. The task is

allocated on VM depending upon execution time, execution cost and load. For the validation of

the experimental results of the QODA-LB algorithm, a series of simulations were carried out

under diverse configurations namely (i) PM = 5, VM = 15 and 50 tasks, (ii) PM = 10 and VM =

30 and 75 tasks, (iii) PM = 20 and VM = 50 and 100 tasks.

3.1. Execution Time Analysis

Table 1 and Figs. 4-6 shows the execution time analysis of the QODA-LB algorithm under

varying number of PMs, VMs and tasks. Fig. 4 shows the execution time analysis of the QODA-

LB algorithm under 5 PMs, 15 VMs and 50 tasks. The experimental results stated that FA

algorithm has demonstrated poor results by exhibiting maximum execution time. At the same

time, the DA and ADA has tried to show certainly acceptable results by attaining slightly lower

execution time. However, the QODA-LB model has exhibited better performance by attaining

minimum execution time. For instance, under the iteration of 10, the QODA-LB algorithm has

resulted to a minimum execution time of 0.32ms whereas higher execution time of 0.63s, 0.42s

and 0.38s are incurred by the FA, DA and ADA techniques respectively. Likewise, under the

iteration of 20, the QODA-LB model has lead to generate lower execution time of 0.33ms while

maximum execution time of 0.65s, 0.43s and 0.39s are obtained by the FA, DA and ADA

methods. Also, under the iteration of 30, the QODA-LB algorithm has provided least execution

time of 0.33ms and higher execution time of 0.67s, 0.45s and 0.4s are attained by the FA, DA

and ADA approach correspondingly. On the other side, under the iteration of 40, the QODA-LB

model has shown lower execution time of 0.34ms while high execution time of 0.68s, 0.47s and

0.41s are obtained by the FA, DA and ADA techniques methods. Moreover, under the iteration

of 50, the QODA-LB algorithm has demonstrated to a lower execution time of 0.35ms while

greater execution time of 0.69s, 0.48s and 0.42s are achieved by the FA, DA and ADA

techniques respectively.

Table 1 Execution Time (ms) Analysis

PM = 5, VM = 15 and Task = 50

Iterations FA DA ADA QODA-LB

10 0.63 0.42 0.38 0.32

20 0.65 0.43 0.39 0.33

30 0.67 0.45 0.4 0.33

40 0.68 0.47 0.41 0.34

50 0.69 0.48 0.42 0.35

PM = 10 and VM = 30 and Task = 75

Iterations FA DA ADA QODA-LB

10 0.93 0.86 0.73 0.65

20 0.95 0.87 0.75 0.67

30 0.95 0.87 0.76 0.68

40 0.95 0.88 0.77 0.68

50 0.95 0.89 0.78 0.69

PM = 20 and VM = 50 and Task = 100

Iterations FA DA ADA QODA-LB

10 0.95 0.90 0.78 0.67

20 0.98 0.90 0.79 0.68

30 0.99 0.93 0.80 0.71

40 0.99 0.95 0.80 0.72

50 0.99 0.96 0.81 0.73

Fig. 4. Execution time analysis of QODA-LB model under 5 PMs, 15 VMs and 50 tasks

Fig. 5 displays the execution time analysis of the QODA-LB algorithm under 10 PMs, 30 VMs

and 75 operations. The experimental results have illustrated that FA algorithm has showcases

inferior results by showing higher execution time. Meantime, the DA and ADA has attempted to

show moderate results by accomplishing better execution time. Hence, the QODA-LB model has

presented has showcases optimal function by reaching lower execution time. For sample, under

the iteration of 10, the QODA-LB scheme has exhibited to a lower execution time of 0.65ms and

higher execution time of 0.93s, 0.86s and 0.73s are obtained by the FA, DA and ADA techniques

correspondingly. In line with this, under the iteration of 20, the QODA-LB framework has

shown a lower execution time of 0.67ms while higher execution time of 0.95s, 0.87s and 0.75s

are obtained by the FA, DA and ADA methods respectively. In addition, under the iteration of

30, the QODA-LB approach has shown a least execution time of 0.68ms and higher execution

time of 0.95s, 0.87s and 0.76s are accomplished by the FA, DA and ADA methodologies

respectively. Followed by, under the iteration of 40, the QODA-LB approach has depicted to a

lower execution time of 0.68ms and higher execution time of 0.95s, 0.88s and 0.77s are achieved

by the FA, DA and ADA techniques correspondingly. Moreover, under the iteration of 50, the

QODA-LB approach has depicted a lower execution time of 0.69ms whereas maximum

execution time of 0.95s, 0.89s and 0.78s are incurred by the FA, DA and ADA approaches

respectively.

Fig. 5. Execution time analysis of QODA-LB model under 10 PMs, 30 VMs and 75 tasks

Fig. 6 displays the execution time analysis of the QODA-LB method under 20 PMs, 50 VMs and

100 tasks. The experimental results stated that FA model has shown worst results by illustrating

higher execution time. Concurrently, the DA and ADA has attempted to showcase better results

by reaching minimum execution time. Therefore, the QODA-LB approach has implied moderate

performance by reaching lower execution time. For sample, under the iteration of 10, the

QODA-LB technique has showcased at least execution time of 0.67ms while maximum

execution time of 0.95s, 0.90s and 0.78s are obtained by the FA, DA and ADA models

correspondingly. Likewise, under the iteration of 20, the QODA-LB approach has provided to a

lower execution time of 0.68ms and higher execution time of 0.98s, 0.90s and 0.79s are attained

by the FA, DA and ADA methodologies correspondingly. In addition, under the iteration of 30,

the QODA-LB approach has offered to a lower execution time of 0.71ms while maximum

execution time of 0.99s, 0.93s and 0.80s are achieved by the FA, DA and ADA methodologies

respectively. On the other side, under the iteration of 40, the QODA-LB method has generated to

a lower execution time of 0.72ms whereas greater execution time of 0.99s, 0.95s and 0.80s are

obtained by the FA, DA and ADA methods respectively. Furthermore, under the iteration of 50,

the QODA-LB framework has showcased to a lower execution time of 0.73ms whereas high

execution time of 0.99s, 0.96s and 0.81s are incurred by the FA, DA and ADA techniques

respectively.

Fig. 6. Execution time analysis of QODA-LB model under 20 PMs, 50 VMs and 100 tasks

3.2. Execution Cost Analysis

Table 2 and Figs. 7-9 demonstrates the execution cost analysis of the QODA-LB approach under

varying number of PMs, VMs and tasks. Fig. 7 depicts the execution cost analysis of the QODA-

LB algorithm under 5 PMs, 15 VMs and 50 tasks. The experimental results have pointed FA

algorithm has shown worst results by showing higher execution cost. Simultaneously, the DA

and ADA has attempted to depict considerable results by achieving lower execution cost. Hence,

the QODA-LB approach has implied moderate function by accomplishing least execution cost.

For sample, under the iteration of 10, the QODA-LB technology has provided to a lower

execution cost of 0.69 while maximum execution cost of 0.80, 0.76 and 0.75 are obtained by the

FA, DA and ADA methodologies correspondingly. Likewise, under the iteration of 20, the

QODA-LB scheme has shown least execution cost of 0.51 while high execution cost of 0.70,

0.67 and 0.60 are accomplished by the FA, DA and ADA techniques correspondingly.

Furthermore, under the iteration of 30, the QODA-LB algorithm has shown to a low execution

cost of 0.67 while high execution cost of 0.79, 0.78 and 0.74 are incurred by the FA, DA and

ADA methodologies correspondingly. Followed by, under the iteration of 40, the QODA-LB

model has showcased a minimal execution cost of 0.68 whereas maximum execution cost of

0.80, 0.77 and 0.74 are obtained by the FA, DA and ADA techniques respectively. Furthermore,

under the iteration of 50, the QODA-LB approach has provided to a low execution cost of 0.68

whereas higher execution cost of 0.80, 0.77 and 0.76 are incurred by the FA, DA and ADA

techniques.

Table 2 Execution Cost Analysis

PM = 5, VM = 15 and Task = 50

Iterations FA DA ADA QODA-LB

10 0.80 0.76 0.75 0.69

20 0.70 0.67 0.60 0.51

30 0.79 0.78 0.74 0.67

40 0.80 0.77 0.74 0.68

50 0.80 0.77 0.76 0.68

PM = 10 and VM = 30 and Task = 75

Iterations FA DA ADA QODA-LB

10 0.19 0.12 0.08 0.07

20 0.22 0.13 0.08 0.07

30 0.26 0.14 0.08 0.07

40 0.28 0.15 0.09 0.08

50 0.28 0.16 0.13 0.09

PM = 20 and VM = 50 and Task = 100

Iterations FA DA ADA QODA-LB

10 0.25 0.15 0.11 0.09

20 0.28 0.16 0.12 0.10

30 0.29 0.17 0.13 0.11

40 0.32 0.18 0.13 0.12

50 0.33 0.19 0.14 0.12

Fig. 7. Execution cost analysis of QODA-LB model under 5 PMs, 15 VMs and 50 tasks

Fig. 8 implies the execution cost analysis of the QODA-LB technology under 10 PMs, 30 VMs

and 75 tasks. The experimental results have shown that FA model has depicted inferior results by

showing higher execution cost. Meantime, the DA and ADA has attempted to represent better

results by showing minimal execution cost. Hence, the QODA-LB model has implied optimal

performance by accomplishing low execution cost. For sample, under the iteration of 10, the

QODA-LB approach has depicted to a lower execution cost of 0.07 while maximum execution

cost of 0.19, 0.12 and 0.08 are acquired by the FA, DA and ADA techniques correspondingly. In

line with this, under the iteration of 20, the QODA-LB framework has showcased least execution

cost of 0.07 whereas higher execution cost of 0.22, 0.13 and 0.08 are attained by the FA, DA and

ADA models correspondingly. In addition, under the iteration of 30, the QODA-LB approach

has provided to a lower execution cost of 0.07 while higher execution cost of 0.26, 0.14 and 0.08

are achieved by the FA, DA and ADA methodologies respectively. Then, under the iteration of

40, the QODA-LB technology has offered to a lower execution cost of 0.08 while maximum

execution cost of 0.28, 0.15 and 0.09 are accomplished by the FA, DA and ADA technologies

correspondingly. Moreover, under the iteration of 50, the QODA-LB algorithm has demonstrated

to a least execution cost of 0.09 while maximum execution cost of 0.28, 0.16 and 0.13 are

incurred by the FA, DA and ADA techniques respectively.

Fig. 8. Execution cost analysis of QODA-LB model under 10 PMs, 30 VMs and 75 tasks

Fig. 9 illustrated the execution cost analysis of the QODA-LB algorithm under 20 PMs, 50 VMs

and 100 tasks. The experimental results have implied that FA algorithm has depicted worst

results by showing higher execution cost. Concurrently, the DA and ADA has tried to depict

moderate results by accomplishing better execution cost. Thus, the QODA-LB model has

showcased considerable performance by reaching lower execution cost. For instance, under the

iteration of 10, the QODA-LB method has illustrated to lower execution cost of 0.09 while

maximum execution cost of 0.25, 0.15 and 0.11 are achieved by the FA, DA and ADA

techniques respectively. Along with that, under the iteration of 20, the QODA-LB algorithm has

provided to lower execution cost of 0.10 whereas maximum execution cost of 0.28, 0.16 and

0.12 are obtained by the FA, DA and ADA methodologies correspondingly. In addition, under

the iteration of 30, the QODA-LB scheme has resulted to a lower execution cost of 0.11 while

high execution cost of 0.29, 0.17 and 0.13 are obtained by the FA, DA and ADA models

respectively.

Fig. 9. Execution cost analysis of QODA-LB model under 20 PMs, 50 VMs and 100 tasks

Followed by, under the iteration of 40, the QODA-LB approach has provided to lower execution

cost of 0.12 and high execution cost of 0.32, 0.18 and 0.13 are attained by the FA, DA and ADA

techniques. Moreover, under the iteration of 50, the QODA-LB algorithm has offered to a lower

execution cost of 0.12 whereas higher execution cost of 0.33, 0.19 and 0.14 are incurred by the

FA, DA and ADA schemes correspondingly.

4. Conclusion

This paper has presented an effective QODA-LB algorithm in the CC environment to achieve

optimal resource scheduling. The main theme of this model is to limit the execution time and

expense of the task and to accomplish a balanced load over all VMs in CC system. The proposed

QODA-LB algorithm derives an objective function using three variables, namely execution time,

execution cost, and load. According to the derived objective function, the QODA-LB algorithm

allocates tasks to VM with respect to its capacity. The simulation outcome has depicted optimal

load balancing performance and demonstrated better results compared to state of art methods. A

set of simulations were carried out to examine the execution cost and execution time analysis of

the QODA-LB algorithm under a varying number of PMs, VMs and tasks. In future, the

performance of the QODA-LB algorithm is further enhanced by the use of deep learning models.

Conflict of Interest

Authors do not have any conflict of interest.

References

[1] Ezumalai, R., Aghila, G., Rajalakshmi, R., 2010. Design and architecture for efficient load

balancing with security using mobile agents. Int. J. Eng. Technol. (IACSIT) 2 (1), 149–160

[Online].

[2] Krishna, P. Venkata, 2013. Honey bee behavior inspired load balancing of tasks in cloud

computing environments. Appl. Soft Comput. 13 (5), 2292–2303.

[3] Deng, Y., Lau, R.W., 2014. Dynamic load balancing in distributed virtual environments

using heat diffusion. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 10 (2),

16.

[4] Zhu, Y., Zhao, D., Wang, W., and He, H. (2016, January) ’A Novel Load 460 Balancing

Algorithm Based on Improved Particle Swarm Optimization in Cloud Computing

Environment’, In International Conference on Human Centered Computing, Springer, pp.

634–645.

[5] Larumbe, F., Sanso, B., 2013. A tabu search algorithm for the location of data centers and

software components in green cloud computing networks. IEEE Trans. Cloud Comput. 1

(1), 22–35.

[6] Alharbi, F., Rabigh, K.S.A., 2012. Simple scheduling algorithm with load balancing for

grid computing. Asian Trans. Comput. 2 (2), 8–15.

[7] Hsiao, H.C., Chung, H.Y., Shen, H., Chao, Y.C., 2013. Load rebalancing for distributed

file systems in clouds. IEEE Trans. Parallel Distrib. Syst. 24 (5), 951–962.

[8] Deng, X., Wu, D., Shen, J., He, J., 2016. Eco-aware online power management and load

scheduling for green cloud datacenters. IEEE Syst. J. 10 (1), 78–87.

[9] Vasudevan, S.K., Anandaram, S., Menon, A.J., Aravinth, A., 2016. A novel improved

honey bee based load balancing technique in cloud computing environment. Asian J.

Information Technol. 15 (9), 1425–1430.

[10] Mondal, B., Choudhury, A., 2015. Simulated annealing (SA) based load balancing strategy

for cloud computing. (IJCSIT) Int. J. Comput. Sci. Information Technol. 6 (4), 3307–3312.

[11] Mishra, Sambit Kumar, Sahoo, Bibhudatta, Parida, PritiParamita, 2018. Load balancing in

cloud computing: a big picture. J. King Saud Univ.-Comput. Information Sci.

[12] Song, S., Lv, T., Chen, X., Feb. 2014. Load balancing for future internet: an approach

based on game theory. J. Appl. Math. 2014, (2014) 959782.

[13] Devi, D. Chitra, RhymendUthariaraj, V., 2016. Load balancing in cloud computing

environment using improved weighted round robin algorithm for nonpreemptive dependent

tasks. Scientific World J. 2016.

[14] Kanakala, V.R.T., Reddy, V.K., 2015. Performance analysis of load balancing techniques

in cloud computing environment. TELKOMNIKA Indones. J. Electr. Eng. 13 (3), 568–

573.

[15] Selvi, R.T., Aruna, R., 2016. Longest approximate time to end scheduling algorithm in

Hadoop environment. Int. J. Adv. Res. Manag. Archit. Technol. Eng. 2 (6).

[16] Yang, S.J., Chen, Y.R., 2015. Design adaptive task allocation scheduler to improve

MapReduce performance in heterogeneous clouds. J. Netw. Comput. Appl. 57, 61–70.

[17] Hwang, Eunji, KyongHoon Kim, 2012. Minimizing cost of virtual machines for deadline-

constrained mapreduce applications in the cloud. In: Proceedings of the 2012 ACM/IEEE

13th International Conference on Grid Computing. IEEE Computer Society.

[18] Singha, A., Juneja, D., Malhotra, M., 2015. Autonomous Agent Based Load-balancing

algorithm in Cloud Computing. International Conference on Advanced

ComputingTechnologies and Applications (ICACTA), 45, 832–841.

[19] Neelima, P. and Reddy, A.R.M., 2020. An efficient load balancing system using adaptive

dragonfly algorithm in cloud computing. Cluster Computing, pp.1-9.

[20] Guha, D., Roy, P. and Banerjee, S., 2017. Quasi-oppositional symbiotic organism search

algorithm applied to load frequency control. Swarm and Evolutionary Computation, 33,

pp.46-67.

Figures

Figure 1

Load balancing in CC platform

Figure 2

Proposed System Architecture

Figure 3

Flowchart of Dragon�y algorithm

Figure 4

Execution time analysis of QODA-LB model under 5 PMs, 15 VMs and 50 tasks

Figure 5

Execution time analysis of QODA-LB model under 10 PMs, 30 VMs and 75 tasks

Figure 6

Execution time analysis of QODA-LB model under 20 PMs, 50 VMs and 100 tasks

Figure 7

Execution cost analysis of QODA-LB model under 5 PMs, 15 VMs and 50 tasks

Figure 8

Execution cost analysis of QODA-LB model under 10 PMs, 30 VMs and 75 tasks

Figure 9

Execution cost analysis of QODA-LB model under 20 PMs, 50 VMs and 100 tasks

