
Research Article

Quasi-Optimal Elimination Trees for 2D Grids with Singularities

A. PaszyNska,1 M. PaszyNski,2 K. Jopek,2 M. Wofniak,2 D. Goik,2 P. Gurgul,2 H. AbouEisha,3

M. Moshkov,3 V. M. Calo,3,4 A. Lenharth,5 D. Nguyen,5 and K. Pingali5

1 Jagiellonian University, 31007 Krakow, Poland
2AGH University of Science and Technology, 30059 Krakow, Poland
3Applied Mathematics & Computational Science, King Abdullah University of Science and Technology (KAUST),
	uwal 23955-6900, Saudi Arabia
4Earth Science & Engineering and Center for Numerical PorousMedia, King Abdullah University of Science and Technology (KAUST),
	uwal 23955-6900, Saudi Arabia
5Institute for Computational Engineering and Science, University of Texas, Austin, TX 78712-1229, USA

Correspondence should be addressed to M. Paszyński; maciej.paszynski@agh.edu.pl

Received 16 October 2013; Revised 28 April 2014; Accepted 25 November 2014

Academic Editor: Ron Perrott

Copyright © 2015 A. Paszyńska et al. 
is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We construct quasi-optimal elimination trees for 2D �nite element meshes with singularities. 
ese trees minimize the complexity
of the solution of the discrete system. 
e computational cost estimates of the elimination process model the execution of the
multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all
possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming.
Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the
insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination
trees that has costO(�� log(��)), where�� is the number of elements in the mesh.We show that this heuristic ordering has similar
computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art
alternatives in our numerical experiments.

1. Introduction

We present a dynamic programming algorithm to �nd quasi-
optimal elimination tree for two-dimensional grids with
point and edge singularities. We consider two cost functions:
one models the sequential solver execution, while the other
models the execution cost of a parallel shared-memory solver.

e dynamic programming algorithm �nds elimination trees
thatminimize the appropriate cost function for amultifrontal
solver.
eseminimizers belong to a class of elimination trees
obtained by recursive partition of the computational mesh
along straight lines. 
ese quasi-optimal trees are expressed
as graph-grammar productions which de�ne our solver. To
optimize execution time, we use the GALOIS scheduler [1].
From the analysis of the quasi-optimal trees we propose a
heuristic algorithm that constructs in O(�� log(��)) time
(where �� denotes the number of elements of the mesh)

the elimination trees with similar performance to the one
constructed with the dynamic programming algorithm. To
determine the e�ciency of our algorithms, we compare our
elimination trees to popular alternatives. 
e comparison
is performed using MUMPS as an e�cient interface to
commonly used elimination algorithms, such as approximate
minimum �ll, approximate minimum degree, SCOTCH,
PORD, METIS, and AMD with quasi-row detection. In
particular, we estimate the number of FLOPs (oating-point
operations) in sequential execution of our graph-grammar
solver using elimination trees generated by our dynamic
programming and heuristic algorithms. We compare these
to the FLOPs resulting from execution of MUMPS using
execution time as a proxy for FLOPs. We also use numerical
experiments to compare the execution times of our sequential
and parallel solvers against those of sequential and parallel
MUMPS. Seeking to improve the parallel performance, we

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 303024, 18 pages
http://dx.doi.org/10.1155/2015/303024



2 Scienti�c Programming

consider the tree rotation algorithm to well balance the elim-
ination trees for parallel computations. We show that both
sequential and parallel graph-grammar-based solver with
GALOIS scheduler, using the elimination trees constructed
by the dynamic programming optimization as well as the
heuristic algorithm, outperformMUMPS with any ordering.

In this paper we present new contributions in the follow-
ing research areas.

Multifrontal Solvers. 
e computational cost of the mul-
tifrontal solver algorithm depends on the quality of the
elimination tree (which in sequential mode can be called an
ordering). 
e problem of �nding of an optimal elimination
tree for a givenmesh resulting inminimal computational cost
of either sequential or parallel multifrontal solver algorithm
is NP-complete [2]. However, for a �xed grid it is possible
to de�ne a large class of elimination trees, estimate the
computational costs for the solver algorithm for each tree,
and select the best one in each class. We introduce a dynamic
programming algorithm to �nd elimination trees for a given
mesh that minimizes the computational cost of sequen-
tial multifrontal direct solver algorithm. 
e elimination
trees obtained by our dynamic programming algorithm are
obtained by considering recursive partitions of the compu-
tational mesh along straight lines. 
us we call the resulting
trees quasi-optimal, since we do not consider all possible
elimination trees. We also restrict our research to the case of
initially structured two-dimensional grids with rectangular
�nite elements, where the partitions along straight lines are
possible to implement. From our experience deriving quasi-
optimal elimination trees for ordering of meshes, we devel-
oped insights and abstractions that allowed us to propose
a heuristic algorithm that constructs elimination trees with
similar properties to the trees constructed by dynamic pro-
gramming algorithm. 
e heuristic algorithm can construct
the trees in O(�� log(��)) computational cost, where �� is
the number of elements in the mesh. We have executed the
multifrontal solver algorithm for some representative grids,
namely, for grids with a point singularity and grids with
an edge singularity. We estimated the number of FLOPs of
the multifrontal solver algorithm for the elimination trees
constructed by both the dynamic programming and heuris-
tic algorithms. We compare them to the FLOPs resulting
from execution of the state-of-the-art ordering algorithms.

ese are approximate minimum �ll, approximate minimum
degree, SCOTCH, PORD, METIS (nested-dissection), and
AMD with quasi-row detection. We show that our elimina-
tion trees resulting from both dynamic programming and
the heuristic algorithms outperform the alternative ordering
algorithms in terms of FLOPs for sequential solver execution.

Graph-Grammar-Based Solvers. We express our elimination
trees and the resulting multifrontal solver as a sequence of
graph-grammar productions. Namely, the graph-grammar
productions construct frontal matrices, merge Schur com-
plement matrices of children nodes of each node of the
binary elimination tree, eliminate fully assembled degrees
of freedom, and execute backward substitutions. 
e graph-
grammar productions are implemented in the GALOIS

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Ω

Figure 1: Sample computational domain for the frontal solver.

environment [1]. 
e dependency relation between graph-
grammar productions follows the structure of the elimina-
tion tree and can be expressed as a directed acyclic graph
(DAG). 
e graph-grammar productions are implemented
as GALOIS tasks working on the DAG obtained directly
from the elimination tree. We compare the execution time
of our graph-grammar-based GALOIS solver with the exe-
cution time of sequential MUMPS and show that our solver
outperforms this implementation.

Parallelism.Weexecute the dynamic programming algorithm
with a modi�ed cost function that reects the compu-
tational cost of the parallel shared-memory multifrontal
solver algorithm.
e dynamic programming algorithm �nds
elimination trees that minimize the computational cost for
the parallel shared-memory multifrontal solver, within the
class of elimination trees obtained by recursive partitions
of the computational mesh along the straight lines. We
use tree rotation to improve the balancing of the obtained
elimination trees. As before, we express the resulting solver as
a sequence of graph-grammar productionswhich can be opti-
mally scheduled using the DAG analysis of GALOIS. 
ese
optimally scheduled graph-grammar productions are run
on multithreaded execution on a shared-memory machine.
We use four di�erent elimination trees: the quasi-optimal
dynamic programming using a multithreaded cost function
and its rotated tree as well as a heuristic elimination tree
and its rotated counterpart. We compare these four solvers
against parallel MUMPS on the same machine. All four
solvers outperformMUMPS.

1.1. Finite Element Method (FEM), Multifrontal Solver, and
Elimination Trees. In this paper we focus on a class of
two dimensional structured meshes with rectangular �nite
elements, subject to ℎ re�nement as it is described by
Demkowicz in [3]. Let us focus on a simple 2D �nite element
mesh.
e domainΩ is described by two elements and ��een
supernodes, that is, two interiors, seven edges, and six vertices
(see Figure 1). In the 2D adaptive FEM, described in [3], we
utilize basis functions related to abstract element supernodes.
In this example (see Figure 2), we have linear basis functions
associated with element vertices, namely, with supernodes
1, 3, 5, 11, 13, and 15, quadratic basis functions associated
with element edges, namely, with supernodes 2, 4, 6, 8, 10,
12, and 14, and quadratic basis functions associated with
element interiors, namely, with supernodes 7 and 9.
is case
corresponds to the polynomial order of approximation� = 2.
In the general case of order �, we have � − 1 basis functions
related to each element edge and (� − 1)2 basis functions



Scienti�c Programming 3

1

2

3

4

5

6 7 8 9 10

11 12 13 14 15

Ω

(a)

1 2 3 4 5

6

7

8

9

10

11 12 13 14 15
Ω

(b)

1 2 3 4 5

7 9

6 8 10

11 12 13 14 15
Ω

(c)

Figure 2: Exemplary basis functions spread over element supernodes: (a) basis function associated with vertex supernode 1 (black), vertex
supernode 3 (dark gray), and vertex supernode 5 (light gray); (b) basis function associated with edge supernode 6 (black), edge supernode
8 (dark gray), and edge supernode 10 (light gray); (c) basis function associated with interior supernode 7 (black) and interior supernode 9
(dark gray).

(0,1) (1,1)
(1,2)

(1,2)

(1,1)

(1,1)

(1,1)

(2,1)

(2,1)

(2,0)(1,0) (1,0)(0,0)
(0,0)

Element (1,1) Element (1,2)

Element

ElementElement

Element

Computational mesh Elimination tree

Figure 3: Computational domain expressed as an elimination tree.

related to each element interior. In 2D FEM [3], we construct
the algebraic system by computing inner products of these
basis functions or their derivatives over the analyzed domain.

us, each entry of the resulting matrix system corresponds
to the interaction between particular basis functions. 
e
numerical values of these interactions are determined by the
choice of weak form and the support of the basis functions.

e connectivity, which is the controlling characteristic of
the computational complexity, is only determined by the
supports and the weak form. Interior basis functions have
support over an element only, edge basis functions have
support over one or two elements, and vertex basis functions
have their support spread over one or many elements,
depending on the grid connectivity.


emultifrontal solver introduced byDu� andReid [4, 5]
is a popular solver for systems of linear equations, which is a
generalization of the frontal solver algorithmdescribed in [6].
In a multifrontal solver, connectivity analysis is performed
using an elimination tree. 
e elimination tree in classical
solvers is obtained from a planar graph analysis. 
e graph
is constructed based on the sparsity of the global matrix.
In our solver, however, we construct the elimination tree by
analyzing the mesh. A computational domain is decomposed
into a hierarchy of subdomains, which de�nes an elimination
tree (Figure 3). 
e construction of the elimination tree for
an arbitrary mesh is a complex task. 
e elimination tree is
constructed using the graph representing the connectivities
of the mesh. 
is graph is partitioned using algorithms such
as nested-dissection from the METIS library [7, 8] or min-
imum degree algorithms [9]. Usually, solvers like MUMPS
[10–12] are not aware of the structure of the mesh, and they
need to reconstruct the connectivity pattern by analyzing

(A1)
(E1)

1 2 6 7 11 12 3 8 13 1 2 6 7 11 12 3 8 13

1

2

6

7

11

12

3

8

13

1

2

6

7

11

12

3

8

13

Figure 4: Assembly and partial forward elimination on the le� ele-
ment. 
ese operations are expressed by two graph-grammar pro-
ductions. (�1) represents the process of generation and assembly
of the frontal matrix and (�1) represents the partial forward
eliminations.

the sparsity pattern of the matrix given to the solver. 
e
sparse representation of the mesh connectivity for linear
order FE method, �nite di�erences, and particle methods
directly implies the mesh (or the topological structure of the
mesh). For the high-order FEmethods, the sparse representa-
tion does not precisely reect the mesh structure (it rep-
resents the discretization explicitly). In the multifrontal
approach, the solver generates a frontal matrix for each ele-
ment of the mesh. 
is is illustrated in Figures 4 and 5. Fully
assembled supernodes are eliminated within each frontal
matrix, and the resulting Schur complement matrices are
merged at the parent level of the tree. 
is is illustrated in
Figure 6. Finally, the solver computes the solution at the elim-
ination tree root node followed by backward substitutions at
child nodes. 
is process is presented in Figure 7.



4 Scienti�c Programming

(A2)
(E2)

4 5 9 10 14 15 3 8 134 5 9 10 14 15 3 8 13
4

5

9

10

14

15

3

8

13

4

5

9

10

14

15

3

8

13

Figure 5: Partial forward elimination on the right element. 
is operation is expressed by two graph-grammar productions. (�2) represents
again the process of generation and assembly of the frontal matrix and (�2) represents the partial forward eliminations.

1 2 6 7 11 12 3 8 131 2 6 7 11 12 3 8 13
1
2
6
7
11
12
3
8
13

1
2
6
7
11
12
3
8
13

4 5 9 101415 3 8 134 5 9 101415 3 8 13
4
5
9
10
14
15
3
8
13

4
5
9
10
14
15
3
8
13

3 8 13
3

8

13

3 8 13
3

8

13

(Aroot)
(Eroot)

Figure 6: Assembly and full forward of the interface problem matrix. 
ese operations are expressed by two graph-grammar productions.
(�root) represents the process of merging of the Schur complements from the son nodes and (�root) represents full elimination at the root
node.

1.2. Graph-Grammar-Based Solver. 
e topological structure
of the mesh [13–16] as well as the multifrontal solver algo-
rithm [17, 18] can be expressed by graph-grammar produc-
tions [19–22]. In this section we express the multifrontal
solver algorithmby graph-grammar productions that directly
follow the structure of the elimination tree. We present the
implementation of the multifrontal solver in the GALOIS
system for sequential and concurrent execution of graph-
grammar productions. 
e input for our solver is the elim-
ination tree, coded in the following way:

2 <- polynomial order of approximation

2 <- number of elements

1 1 0 0 1 1 <- first element id (1, 1)

level 1, element 1, and its coordinates

(0,0), (1,1)

1 2 1 0 2 1 <- first element id (1, 2)

level 1, element 2, and its coordinates

(1, 0), (2, 1)

3 <- number of nodes in elimination tree

1 2 1 1 1 2 2 3 <- tree node id = 1,

2 elements, (1, 1) and (1, 2), pointers

to son nodes 1, 2

2 1 1 1 <- tree node id = 2, 1 element

(1, 1) no son nodes

3 1 1 2 <- tree node id = 3, 1 element

(1, 2) no son nodes.


is example tree corresponds to the case presented in
Figure 3.

Given the elimination tree, the operations performed
by the solver can be coded as graph-grammar productions,
working over the elimination tree. In particular, eachmerging
and elimination operation can be represented as a single



Scienti�c Programming 5

1 2 6 7 11 12 3 8 131 2 6 7 11 12 3 8 13
1

2

6

7

11

12

3

8

13

1

2

6

7

11

12

3

8

13

4 5 9 10 14 15 3 8 13
4

5

9

10

14

15

3

8

13

4

5

9

10

14

15

3

8

13

4 5 9 10 14 15 3 8 13

3 8 13
3

8

13

(BSroot)

(BS1)

(BS2)

Figure 7: Backward substitution at root node followed by backward substitutions at child nodes. 
ese operations are expressed by three
graph-grammar productions. (�	root) represents the process of backward substitution at root node and (�	1), (�	2) represent backward
substitutions at child nodes.

(Aroot) (Eroot) (BSroot)

(A1)

(A2)

(E1)

(E2)

(BS1)

(BS2)

Figure 8: Directed acyclic graph for the elimination tree for a two-�nite-element mesh.

graph-grammar production.
e above example contains the
following graph-grammar productions:

(�1) - (�1) - (�2) - (�2) - (�root) - (�root)

- (�	root) - (�	1) - (�	2) .
(1)


e dependency relation between these graph-grammar
productions strictly follows the elimination tree and it is
represented as a directed acyclic graph (DAG).
is represen-
tation is equivalent to the one obtained by the trace theory
[17, 23].
ese graph-grammar productions are implemented
as GALOIS tasks working on the DAG representing the elim-
ination tree. 
e DAG for our simple example is presented in
Figure 8. We start from graph-grammar productions located
at the leaves of the elimination tree, then we go up to the root,
and �nally we go back down to the leaves. 
e tasks are then
managed and scheduled by GALOIS [1]. 
at is, there is a
direct relation between the structure of the elimination tree,
the graph-grammar productions, the dependency relation
between them, and the scheduling based onDAG inGALOIS.

us, we present the elimination trees generated by our

algorithms and we refrain from listing the graph-grammar
productions.

2. Computational Cost Estimates for
Sequential and Parallel Multifrontal
Solver Algorithm

In order to estimate the number of oating-point operations
(FLOPs) executed by themultifrontal algorithmwe start with
estimation of the FLOPs number during elimination of 
 rows
from square matrix� of size � × � (see Figure 9). 
e FLOPs
number as derived in [24] is equal to

 (
, �) =

 (6�2 − 6
� + 6� + 2
2 − 3
 + 1)

6 . (2)

To estimate the sequential execution cost of the multi-
frontal solver we sum up the costs of all the nodes of the
elimination tree. To estimate the parallel shared-memory
execution cost of the multifrontal solver we sum the maxi-
mum cost of each level of the elimination tree. Additionally
we assume that we have enough cores to process all frontal



6 Scienti�c Programming

ab

(1) (2) (3)

Figure 9: Elimination of 
 fully assembled rows from matrix� of size � × �. In this example 
 = 3 and � = 9, and the row subtraction is
performed in three steps, denoted on panels (1), (2), and (3). 
e dark gray squares denote rows to be eliminated, the red squares denote the
value checked by partial pivoting, and the white squares denote zeros generated during the row subtractions.

Table 1: Estimation of computational cost on a two-element domain
for graph-grammar productions expressing the multifrontal solver
algorithm for � = 2, for sequential and parallel shared-memory
solver executions.

Graph-grammar
production


 � OPS(
, �)

(PelimM1 1) 6 9 271

(PelimM1 2) 6 9 271

(PsolveM1 1,2) 3 3 27

Total sequential 271 + 271 + 27 = 569

Total parallel max(271, 271) + 27 = 288

matrices from all levels of the elimination tree in parallel,
which is not always the case in practical computations. 
is
is illustrated in Table 1.

Our solver uses partial pivoting. 
e pivoting is per-
formed over the local frontal matrices at all the levels of the
elimination tree. Partial pivoting compares the values of all
the entries located below the diagonal within the rows that
are fully assembled, which can be eliminated at this level. We
do not pivot with nonfully assembled rows. From the point
of view of the FLOPs, pivoting does not require FLOPs; it
requires a few comparisons followed by a swi� of the integers
in the vector representing rows order.
us we do not include
the cost of pivoting in the cost function.
e implementation
of the pivoting requires just one loop through diagonal
column, followed by swap of the two indexes in the row
indexes vector. 
e cost of pivoting is negligibly small in
comparison to the factorization itself. In our previous papers

[18, 25] we have developed one two-dimensional solver and
one three-dimensional solver using such partial pivoting
algorithm and we have solved a number of computational
problems with ℎ, �, and ℎ� adaptivity, including linear
elasticity [26], Poisson equation [27],Maxwell equations [28],
propagation of acoustics waves over the human head [29],
and the Stokes ow problem [30]. We have not encountered
convergence or round-o� error problems.

3. Quasi-Optimal Elimination Trees by
Dynamic Programming


esearch for the optimal elimination tree can be represented
by the directed acyclic graph (DAG) presented in Figure 10.

e DAG root node represents the entire computational
mesh, while child DAG nodes represent possible partitions
of the mesh. We consider partitions of the mesh along
straight lines which can be either horizontal or vertical.
us,
child DAG nodes of a root DAG node represent all possible
partitions of the root along straight lines. We repeat this
partition process recursively, until we reach leaves represent-
ing single �nite elements. Some subbranches of the DAG
are identical. For example, we identify identical branches in
Figure 10 by red or green. 
ese subbranches do not need to
be regenerated, since we can use the pointer to an already
generated identical subbranch. 
e elimination trees are
represented as binary subtrees of this DAG.
e optimization
procedure is executed twice, once for each cost function
de�ned recursively below. One cost function corresponds to
sequential solver cost; the other one corresponds to parallel
solver cost. 
e cost of processing the internal DAG node is
de�ned as

cost of processing internal DAG node

= cost of processing �rst child DAG node

+ cost of processing second child DAG node

+ cost of elimination of common interface

(3)

for the optimization performed for the sequential solver
execution and

cost of processing internal DAG node

= max {cost of processing �rst child DAG node,

cost of processing second child DAG node}

+ cost of elimination of common interface

(4)

for the optimization performed for the parallel shared-
memory solver execution. Again, this is only true under



Scienti�c Programming 7

1,2 1,3 1,6

1,1 1,7
2,2 2,3 2,5 2,6

2,1
3,2 3,3 3,5 3,6

3,1 3,7
2,7

1,5

1,3 1,6 1,6

1,7 1,7
2,2 2,3 2,5 2,6

2,1 3,2 3,3 3,5 3,6

3,1 3,7
2,7

1,5 1,3 1,5

1,2 1,3 1,6

1,1 1,7

1,1 1,7

2,2 2,3 2,5 2,6

2,1 3,2 3,3 3,5 3,6

3,1 3,7
2,7

2,2 2,3 2,5 2,6

2,1
3,2 3,3 3,5 3,6

3,1 3,7
2,7

1,5 1,2 1,3 1,61,51,2

1,1 1,11,7
2,2 2,3 2,2 2,32,5 2,6

2,2 2,3 2,5 2,6

2,12,1
3,2 3,3 3,5 3,6

3,1

3,2 3,3

3,13,7
2,7

1,7
2,2 2,3 2,5 2,6

2,1 3,2 3,3 3,5 3,6

3,1 3,7
2,7

2,1
3,2 3,3 3,5 3,6

3,1 3,7
2,7

1,7
2,5 2,6

3,5 3,6

3,7
2,7

1,3 1,2 1,31,61,5

1,3 1,61,5

1,61,5

· · · · · · · · · · · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

Figure 10: Tree of partitions used by the dynamic programming algorithm.

the assumption that we have enough available threads to pro-
cess all frontal matrices from a given level of the elimination
tree at the same time, which is not always the case in practical
application. Each node of the elimination tree contains a
frontal matrix with size � having some number 
 of fully
assembled degrees of freedom. Leaf nodes contain element
frontal matrices with fully assembled internal supernodes
which can be eliminated. 
e cost (
, �) of elimination of

 fully assembled supernodes from frontal matrix of size �
has been de�ned in (2). 
is is just the number of operations
for the partial forward elimination algorithm. Given a geo-
metric description of the �nite element mesh, the dynamic
programming algorithm works in two steps. In the �rst
step, theDAG representing the subproblems and dependency
relations between them is constructed. 
en, the DAG is
optimized in a bottom-up approach.
e DAG is constructed
as follows. 
e algorithm adds a �rst DAG node to the DAG
corresponding to the initial mesh. At any subsequent step
� > 1, any unprocessed DAG node is processed and this DAG
node is marked as processed. 
e algorithm terminates once
all DAG nodes are processed. To process a DAG node we
list all possible bisections of the (sub)mesh the DAG node
represents, which we denote as a nodal mesh. 
e nodal
submesh bisections use straight vertical or horizontal lines
to split the mesh into two. 
ese straight lines are called
separators. For each separator (bisection of the submesh)
two children DAG nodes are assigned to the parent DAG
node under analysis which are formed by an edge of the
graph. Once all possible separators are applied the DAG node
analysis is complete and is marked as processed.

A�er completing the construction of the DAG, we start
the optimization stage based on a cost analysis that is built
as follows. First, we assign to each DAG node with zero out
degrees the cost of evaluating its Schur complement. 
ese
DAG nodes are called sinks and correspond to individual

�nite elements. All DAG nodes with descendants are called
parents. 
e cost assigned to each parent corresponds to the
child DAG nodes of partitions with minimal cost, that is, for
a DAG node with only sink children, the cost corresponding
to the sum of the children in serial execution or the cost of
the most expensive children in parallel as listed in Table 1.
For parent DAG nodes with children which have out-node
connections, the cost corresponds to the path to sinks with
minimal cost. 
e optimization began by assigning the
cost to each sink. 
en, for each parent whose children’s
cost has been fully processed, each partition is assigned a
cost based on the separator used and the full cost of the
submeshes. 
e partitions with minimum cost are kept and
all other children DAG nodes are removed.
e optimization
procedure continues this way until reaching the root of the
tree.


e dynamic programming algorithm itself for the case
of sequential solver optimization has been described in
conference proceedings paper [31]. We also refer to [32] for
examples on the usage of the GALOIS solver over these
trees. In this paper we focus on the trees constructed by the
heuristic algorithm presented in the next section, delivering a
computational cost similar to the one obtained by the quasi-
optimal trees obtained with dynamic programming. Below,
we provide a short summary of a quasi-optimal elimina-
tion tree found by our dynamic programming algorithm
for meshes with point and edge singularities with three
re�nement levels.

3.1. Description of Quasi-Optimal Orderings

Based on Dynamic Programming

3.1.1. Point Singularity in Sequential Execution. 
e dynamic
programming optimization algorithm sequential execution
for a mesh with a point singularity results in the elimination



8 Scienti�c Programming

Sinks

Mesh

Figure 11: Optimal elimination tree for point singularity for a sequential solver.

tree presented in Figure 11.
e pattern of the elimination tree
is invariant with the number of re�nement levels. 
e tree
follows level-by-level elimination pattern.

3.1.2. Point Singularity for a Parallel Solver. 
is time we have
executed the dynamic programming optimization algorithm
for the point singularity with the cost function designed for
a parallel shared-memory solver. 
e obtained elimination
tree is presented in Figure 12. 
e tree is no longer cutting
layers, one by one, but rather trying to balance the load over
each partition. However, the pattern is not invariant with
re�nement level.

3.1.3. Edge Singularity in Sequential Execution. We switch
now to an edge singularity. For the dynamic optimization
algorithm optimizing for sequential solution on a mesh with
an edge singularity the optimization procedure resulted in the
elimination tree presented in Figure 13. 
e general elimina-
tion tree pattern is invariant with the level of re�nements.
e
optimizer cuts the largest two elements, and then it partitions
the remaining mesh into two parts. 
e optimizer does this
sequence recursively until the leaves.

3.1.4. Edge Singularity for a Parallel Solver. As before, switch-
ing the cost estimates for parallel execution leads to a tree

which is not invariant with the re�nement level. 
e quasi-
optimal tree is presented in Figure 14. 
is result of the
optimization on the bisection sequence scales to optimize
load balancing for the selected separators.

4. Heuristic Algorithm for Construction of
the Elimination Trees


e dynamic programming strategy algorithm described
above to check the computational cost of the multifrontal
solver resulting from elimination trees is obtained by recur-
sive partitioning of the computational mesh along straight
lines.
ere aremany such elimination trees for a singlemesh,
and the dynamic programming algorithm can only be used as
a learning tool, since the cost of �nding the elimination tree
resulting in minimal cost for a large mesh is actually orders
of magnitude larger than the cost of the solution itself. 
e
dynamic programming algorithm allowed us to construct a
heuristic algorithm that provides similar elimination trees in
O(�� log(��)) computational cost, where�� is the number of
elements of themesh.
us, we propose an area and neighbors
algorithm for construction elimination trees for multifrontal
solvers for ℎ re�ned grids.



Scienti�c Programming 9

Sinks

Mesh

Figure 12: Optimal elimination tree for point singularity for the solver working in parallel shared-memory mode.

Sinks

Mesh

Figure 13: Optimal elimination tree for edge singularity for the solver working in sequential mode.


e heuristic algorithm can be utilized under the follow-
ing assumptions.

(i) 
e computational mesh is two-dimensional, and it
is obtained by performing a sequence of isotropic

re�nements from initial structured regular mesh with
rectangular elements.

(ii) When constructing the ℎ re�nedmesh, only isotropic
ℎ re�nement is allowed. In other words, selected



10 Scienti�c Programming

Sinks

Mesh

Figure 14: Optimal elimination tree for edge singularity for the solver working in parallel shared-memory mode.

1 2

34

(a)

1 2

4
5 6

8 7

(b)

1 2

4
5 6

8 9 10

1112

(c)

1 2

4
5 6

8
9 10

12
13 14

1516

(d)

Figure 15: Generation of numbering of elements over the mesh ℎ re�ned towards point singularity, re�ned in four steps denoted on panels
(a), (b), (c), and (d).

rectangular elements are always broken into four
smaller son elements.

(iii) 
e elements in the initial mesh are numbered, and
their numbers are topologically sorted, le� to right,
row by row.

(iv) Each element of the initial mesh has assigned re�ne-
ment level equal to 1.

(v) When the adaptive algorithm breaks an element into
four son elements, the re�nement level of all son
elements is equal to the re�nement level of the parent
element plus one.

(vi) 
e area of each element is de�ned as
1/22∗re�nement level.

(vii) When the adaptive algorithm breaks an element into
four son elements, they get the new numbers in the
global numbering of elements, and their numbers
increase clockwise.

(viii) 
e mesh ful�lls the 1-irregularity rule, telling that an
element can be broken only once without breaking an
adjacent large element.

(ix) When there are one element on one side of an edge
and two elements on the other side of the mesh, we
call this common edge a constrained edge.

(x) Whenwe compute themaximumnumber of common
edges between two adjacent patches of elements in the
mesh, we count each constrained edge as one.


e assumptions listed above correspond to the computa-
tional grids generated by two-dimensional ℎ� adaptive �nite
element method called ℎ�2� described in [3]. However in
this paper we consider only uniform polynomial order of
approximation� = 2 (only ℎ re�nementwith uniform� = 2).

e exemplary process of generation of the numbering for
point and edge singularity is presented in Figures 15 and 16.

e corresponding numbering of re�nement levels for par-
ticular elements is reported in Tables 2 and 3.



Scienti�c Programming 11

1 2

34

(a)

2

34

5 6

78

(b)

2

3

8 7

65

9 10

1112

(c)

2

3

8

9 10

1112

13 14

1516

7

6

(d)

2

3

12

13 14

1516

17 18

1920

11

109

7

6

(e)

2

3

12

13 14

1516

17 18

1920

2221

2324

11

10

7

6

(f)

2

3

2221

2324

2625

2728

13 14

1516

17 18

1920

11

10

7

6

(g)

Figure 16: Generation of numbering of elements over the mesh ℎ re�ned towards edge singularity, re�ned in seven steps denoted on panels
(a), (b), (c), (d), (e), (f), and (g).

Table 2: Re�nement levels for particular elements from mesh with
point singularity.

Re�nement level Area Elements

1 1 1, 2, 4

2 1/4 5, 6, 8

3 1/16 9, 10, 11, 12

4 1/256 13, 14, 15, 16

Table 3: Re�nement levels for particular elements from mesh with
edge singularity.

Re�nement level Area Elements

1 1 2, 3

2 1/4 6, 7, 10, 11

3 1/16
13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28


e area and neighbors algorithm executed on the com-
putational mesh with �� elements can be summarized as
shown in Algorithm 1.

Notice the following remarks.

(i) 
anks to our de�nition of numbering of elements,
the initial forest sorted according to the numbering
of elements is also sorted according to elements area.

(ii) When we rotate the point or edge singularity by 90,
180, or 270 degrees our numbering algorithm fol-
lowed by the area and neighbors algorithm will gen-
erate similar quasi-optimal elimination trees resulting
in a similar number of FLOPs.

(iii) In the general case, the algorithm may not deliver
quasi-optimal elimination trees, since it is a heuristic
algorithm, and the problem of construction of an
optimal elimination tree is NP-complete.

Let us illustrate the heuristic algorithm on the mesh
examples with point and edge singularities. 
e meshes are
presented in Figures 15 and 16. Let us focus �rst on the mesh
with point singularity, as presented in Figure 17.

(1) 
e elements are sorted according to their number-
ing, in the reversed order, which is equivalent to
sorting according to their area, from smallest to the
largest.

(2) We select the subforest with smallest elements (16),
(15), (14), (13)withminimum area equal to 1/256 (cf.
Figure 17(a)).

(3) We �nd out that the maximum number of common
edges between elements (16), (15), (14), (13) is equal
to 1.

(4) 
e two pairs of elements (16, 15) and (14, 13) with
minimum area and maximum number of common
edges are formed. 
e elements (16), (15), (14), (13)
are removed from the list; the newly created trees with
pairs of elements are put at the beginning of the list (cf.
Figure 17(b)).

(5) 
e subforest with trees built from smallest patches is
now (16, 15), (14, 13) and the minimum area is equal
to 2/256 (cf. Figure 17(b)).

(6) We �nd out thatmaximumnumber of common edges
between patches (16, 15), (14, 13) is equal to 2.



12 Scienti�c Programming

(1) Create forest of �� one-element trees,

(2) sorted according to the numbering of elements, from largest to smallest

(3) Store list of neighbors for each tree

(4) Compute area = 1/22∗re�nement level for each tree

(5) repeat
(6) Select sub-forest of elements with minimum area

(7) Find maximum number of common edges between all pairs in the selected sub-forest

(8) Loop through all pairs of trees (v,w) in the sub-forest with number of common edges

(9) equal to the maximum number of common edges found

(10) Create new root node r

(11) Assign v and w as children nodes of r

(12) Update area of r: area(r) = area(v) + area(w)

(13) Update list of neighbors of r (merge the lists)

(14) Add new tree � to the forest in such a way

(15) that the forest is still sorted according to area of trees

(16) end for
(17) until forest has one element

Algorithm 1

16 15 14 13 12 10 9 8 6 5 4 2 1

Subforest, area = 1/256

(a)

16 15 14 13 12 10 9 8 6 5 4 2 1

Subforest, area = 2/256

(b)

16 15 14 13 12 10 9 8 6 5 4 2 1

Subforest, area = 1/16

(c)

10 9 16 15 14 13 12 8 6 5 4 2 1

Subforest, area = 2/16

(d)

10 9 16 15 14 13 12 8 6 5 4 2 1

Subforest, area = 1/4

(e)

10 9 16 15 14 13 12 86 5 4 2 1

Subforest, area = 2/4

(f)

10 9 16 15 14 13 12 86 5 4 2 1

Subforest, area = 1

(g)

146 10 9 16 15 13 12 85 42 1

Subforest, area = 2

(h)

146 10 9 16 15 13 12 85 42 1

(i)

Figure 17: Particular steps of construction of the heuristic elimination tree for mesh with point singularity.



Scienti�c Programming 13

(7) We form a new tree from a pair ((16, 15), (14, 13));
the pairs (16, 15), (14, 13) are removed from the list,
and the new tree ((16, 15), (14, 13)) is added at the
beginning of the list (cf. Figure 17(c)).

(8) 
e subforest with trees built from smallest patches
is now ((16, 15), (14, 13)), (12), (10), (9) and the
minimum area is equal to 1/16 (cf. Figure 17(c)).

(9) We �nd out thatmaximumnumber of common edges
between patches ((16, 15), (14, 13)), (12), (10), (9) is
equal to 1.

(10) We form a new tree from a patch and element
(((16, 15), (14, 13)), (12)) as well as a new tree out of
elements ((10), (9)). 
ey are removed from the list,
and the new trees are added at the beginning of the
list (cf. Figure 17(d)).

(11) 
e subforest with smallest patches is now ((10), (9)),
(((16, 15), (14, 13)), (12)) and the minimum area is
2/16 (cf. Figure 17(d)).

(12) We �nd out that the maximum number of com-
mon edges between patches ((10), (9)), (((16, 15),
(14, 13)), (12)) is equal to 2.

(13) We form a new tree from patches (((10), (9)), (((16,
15), (14, 13)), (12))). 
ey are removed from the list,
and the new tree is added at the beginning of the list
(cf. Figure 17(e)).

(14) 
e subforest with smallest patches is now (((10), (9)),
(((16, 15), (14, 13)), (12))), (8), (6), (5) and the mini-
mum area is 1/4 (cf. Figure 17(e)).

(15) We �nd out that the maximum number of common
edges between patches is equal to 1.

(16) We form new trees ((6), (5)) and ((((10), (9)), (((16,
15), (14, 13)), (12))), (8)). 
e original patches are
removed from the list, and the new trees are added
at the beginning of the list (cf. Figure 17(f)).

(17) 
e subforest with smallest patches is now ((6), (5),
(((10), (9)), (((16, 15), (14, 13)), (12)))) and the mini-
mum area is 2/4 (cf. Figure 17(f)).

(18) We �nd out that the maximum number of common
edges between the patches is equal to 2.

(19) We form a new tree from patches ((6), (5), (((10), (9)),
(((16, 15), (14, 13)), (12)))). 
ey are removed from
the list, and the new tree is added at the beginning
of the list (cf. Figure 17(g)).

(20) 
e scenario is repeated recursively until one tree is
formed.

Let us focus nowon the case of themeshwith edge singularity,
as presented in Figure 18. For the sake of simplicity, we
present only a short description for this case.

(1) 
e elements are sorted according to their area.

(2) 
e eight pairs of elements with minimum area and
maximum number of common edges are selected.

(3) 
e created eight patches of elements still have mini-
mal areas.
ey are selected to form four new patches.

Table 4: Comparison of FLOPs for area and neighbors algorithm
versus MUMPS with nested-dissection (METIS), approximate min-
imum �ll (AMF), approximate minimum degree (AMD), quasi-
approximate minimum degree (QAMD), PORD, and SCOTCH
executed over the mesh with point singularity.

�
MUMPS + PORD,
AMF, AMD, QAMD,

SCOTCH
MUMPS + METIS

Area and
neighbors

25 1120 1120 1145

37 2070 2070 1991

49 3020 3448 2837

61 3970 3970 3683

73 4920 5424 4529

85 5870 7282 5375

97 6820 8556 6221

109 7770 9830 7067

121 8720 10780 7913

(4) At this point, patches (5, 6) and (17, 18) have the
same minimal area as the four created multielement
patches. All these six patches aremerged now into two
new patches.

(5) At this point patches ((5, 6), (17, 18)) and the two
multielement patches have minimal area and they are
merged.

(6) Nowwe have tomerge two patches that haveminimal
area.

(7) 
e situation is repeated again.

5. Tree Rotation Algorithm

We apply a tree rotation algorithm to improve the balance of
the elimination tree [33, 34]. 
e algorithm browses the tree
in breadth-�rst search order and performs a sequence of local
rotations every time a branch is much deeper than the other
one. For a detailed description of the tree rotation algorithm
please refer to [33, 34].

6. Numerical Results

6.1. Comparison of Computational Cost for Dierent Elimina-
tionTrees. In this sectionwe compare the number of oating-
point operations (FLOPs) of our heuristic elimination trees
constructed for the meshes with point and edge singulari-
ties, with alternative ordering algorithms available through
MUMPS. In particular, we compare the number of FLOPs
of our GALOIS solver based on our heuristic elimination
trees with number of FLOPs required by MUMPS using
the ordering provided by approximate minimum �ll (AMF),
approximate minimum degree (AMD), SCOTCH, PORD,
METIS, and AMD with quasi-row detection. We utilize
sequential version of our GALOIS solver, with heuristic
elimination tree, without tree rotations. 
e results of the
comparison are presented in Tables 4 and 5 as well as in
Figures 19 and 20 using log-log scale. In all the cases, our



14 Scienti�c Programming

2367101113141516171819202122232425262728

(a)

2367101113141516171819202122232425262728

(b)

2367101113141516171819202122232425262728

(c)

2367101113141516171819202122232425262728

(d)

2367101113141516171819202122232425262728

(e)

2367101113141516171819202122232425262728

(f)

Figure 18: Particular steps (a)–(f) for construction of the heuristic elimination tree for mesh with edge singularity.



Scienti�c Programming 15

Table 5: Comparison of FLOPs for area and neighbors algorithm
versus MUMPS with nested-dissection (METIS), approximate min-
imum �ll (AMF), approximate minimum degree (AMD), quasi-
approximate minimum degree (QAMD), PORD, and SCOTCH
executed over the mesh with edge singularity.

�
MUMPS + PORD,
AMF, AMD, QAMD,

SCOTCH
MUMPS + METIS

Area and
neighbors

25 1120 1120 1145

51 3527 3831 3342

101 10100 10530 9827

199 28970 35710 26204

393 77740 81450 64827

779 197400 204100 153510

1549 486700 513400 348519

3087 1155000 1223000 765176

6161 2656000 2766000 1717203

10000

1000

F
L

O
P

s

25 100 121

Number of degrees of freedom

Exponent factor (MUMPS)

y = 19.694x1.2802

MUMPS + PORD, AMF, AMD,
QAMD, SCOTCH

MUMPS + METIS
Area and neighbors

Exponent factor

(area and neighbors)

y = 24.537x1.2114

Figure 19: Comparison of the number of FLOPs for the point
singularity. No visible di�erence between MUMPS + METIS and
MUMPS + other orderings.

heuristic algorithms deliver a lower number of FLOPs. We
also estimated the exponent factors for both algorithms and

obtain O(�1.2114) for our algorithm and O(�1.2802) for the
best alternative ordering for the point singularity, as well

as O(�1.323) for our algorithm and O(�1.4122) for the best
alternative ordering for the edge singularity.

6.2. Comparison of Dynamic Programming and Heuristic
Algorithms. In this section we analyze the computational
performance of the quasi-optimal and heuristic elimination
trees in actual implementations. To compare the methods we
use the execution time. 
is allows us to account for FLOPs
and memory transfers in this comparison. We schedule the
resulting sequences of graph-grammar productions using
GALOIS to obtain an optimized performance both in serial

10000

1000

F
L

O
P

s

Number of degrees of freedom

Exponent factor (MUMPS)

y = 19.694x1.2802

MUMPS + PORD, AMF, AMD,
QAMD, SCOTCH

MUMPS + METIS Area and neighbors

Exponent factor
(area and neighbors)

y = 24.537x1.2114

10 21 100121

Figure 20: Comparison of the number of FLOPs for the edge
singularity.

T
im

e 
(s

)

10

1

0.1

Heuristic

Number of threads

1 10 32

Dynamic programming sequential

Dynamic programming parallel

Figure 21: Comparison of the execution times between quasi-
optimal and heuristic elimination trees for a mesh with an edge
singularity.

and in parallel execution. We compare the solver execution
time over three elimination trees:

(i) the dynamic programming tree using the sequential
cost function, without tree rotations,

(ii) the dynamic programming tree using the parallel cost
function, without tree rotations,

(iii) the heuristic elimination tree, without tree rotations.


e tests are performed on a GILBERT machine with 64
cores. We focus on the mesh with point and edge singularity.

e solvers use an increasing number of threads, from 1, 2,
4, 8, 16 to 32. 
e results are presented in Figure 21. 
e
results indicate that the heuristic algorithms result in similar
execution times like the quasi-optimal trees generated by the
dynamic programming algorithm.

We can draw the following conclusions from the per-
formed numerical experiments.

(i) Both dynamic programming orderings provide sim-
ilar execution times; the parallel ordering becomes
slightly faster for a large number of threads.

(ii) Our heuristic ordering provides a similar execution
time to that of the dynamic programming orderings.

(iii) We conclude that we can safely use the elimination
trees generated by the heuristic ordering instead of



16 Scienti�c Programming

1000 10000 100000 1000000
10

1

0.1

0.01

0

T
im

e 
(s

)

MUMPS 8 cores
MUMPS 4 cores

MUMPS 1 core

MUMPS 2 cores

GALOIS 1 core
GALOIS 2 cores

GALOIS 4 cores
GALOIS 8 cores

Number of degrees of freedom

Figure 22: Log-log scale comparison of the execution times of the
MUMPS and GALOIS solvers for di�erent numbers of threads,
for di�erent numbers of re�nement levels, for the mesh with edge
singularity.

expensive dynamic programming orderings; how-
ever, we will continue comparison of these two
approaches for other kinds ofmeshes and in 3D in our
future work.

6.3. Comparison with MUMPS. In this example we compare
our GALOIS solver with heuristic trees without the rotation
algorithm against MUMPS with AMD ordering provided
by METIS, since AMD results in a minimum number of
FLOPs. We compile our GALOIS based solver with the
gcc-4.8.0 compiler. Our solver does not use any optimized
numerical libraries and is a pure C code. We compare against
MUMPS solver version 4.10.0 compiled with gfortran-4.8.0
and linked with metis-4.0.3, atlas-3.10.1, LAPACK-3.4.2, and
ScaLAPACK-2.0.2. In MUMPS we utilize Cholesky factor-
ization (the problem is symmetric, positive de�nite). We use
a simple model problem, the heat transfer equation. In our
solver we utilize LU factorization. We compare execution
times as well as parallel e�ciency and speedup. 
e tests are
performed on a single node of ATARI Linux cluster with 16-
core Intel Xeon CPU, with 2.4GHz, total 16GB RAM. 
e
point singularity results in very small computational meshes,
and the comparison of parallel solvers makes no sense there.
In the following experiments we focus on the mesh with an
edge singularity. 
e comparison of the execution times for
an edge singularity is presented in Figure 22.
e comparison
of the parallel e�ciency for an edge singularity is presented
in Figure 23. 
e comparison of the parallel speedup for an
edge singularity is presented in Figure 24.

We can draw the following conclusions from the per-
formed numerical experiments.

(i) For small problem sizes (less than 10000 degrees of
freedom) MUMPS and GALOIS solvers behave like
for point singularity case.

(ii) For larger problem sizes both MUMPS and GALOIS
speed up when we increase the number of cores.

(iii) For larger problem sizes GALOIS scales well up to 8
cores; howeverMUMPS scales well up to 4 cores only.

E
�

ci
en

cy

1.00E + 02

1.00E + 01

1.00E − 01

1000 10000 100000 100000010 100

MUMPS 8 cores

MUMPS 4 cores

MUMPS 1 core

MUMPS 2 cores

GALOIS 1 core

GALOIS 2 cores

GALOIS 4 cores 

GALOIS 8 cores

Number of degrees of freedom

1.00E + 00

Figure 23: Comparison of the e�ciency of the MUMPS and
GALOIS solvers for di�erent numbers of threads, for di�erent
numbers of re�nement levels, for themeshwith edge singularity.
e
log-log scale is utilized.

1.00E + 01

1.00E + 00

1.00E − 01

Sp
ee

d
u

p MUMPS 1 core
GALOIS 1 core

GALOIS 2 cores

GALOIS 2 cores

GALOIS 4 cores

GALOIS 4 cores

GALOIS 8 coresGALOIS 8 cores

1000 10000 100000 100000010 100

Number of degrees of freedom

Figure 24: Comparison of the speedup of theMUMPS andGALOIS
solvers for di�erent numbers of threads, for di�erent numbers of
re�nement levels, for the mesh with edge singularity. 
e log-log
scale is utilized.

(iv) For larger problems the GALOIS solver with any
thread number outperforms multithreaded MUMPS.

6.4. Tests Using Tree Rotation Algorithm. In this section we
compare execution times for the meshes with point and edge
singularities, using our heuristic elimination trees, before
and a�er execution of the rotation algorithm. 
e tests are
performed on aGILBERTmachine with 64 cores. From these
experiments we do not observe a signi�cant improvement on
the performance of the proposed heuristic elimination trees.

at is, for some instances rotation improves performance
while in others it does not. In all cases the performance is
comparable.

7. Conclusions

In this paper we discussed a dynamic programming algo-
rithm for �nding quasi-optimal elimination trees for two-
dimensional grids with singularities. We performed the
optimization for the cost function reecting sequential and
parallel execution.We introduce a heuristic algorithm to con-
struct the elimination trees. 
ese heuristic elimination trees
have similar performance to that of the quasi-optimal trees
obtained with dynamic programming. 
e quasi-optimal



Scienti�c Programming 17

and heuristic elimination trees are compared against state-
of-the-art solvers implemented in popular libraries such as
MUMPS. We compare number of FLOPs for each solver
(using execution times as proxies forMUMPS) and show that
our elimination trees deliver better computational costs in
terms of the exponent factors.We also executed the algorithm
for rotation of our elimination trees to check if they are
well balanced and well suited to parallel computations. We
veri�ed experimentally that the tree rotation may improve
the execution time of the multifrontal solver working with
our elimination trees, but this is not always the case. Finally
our elimination trees were expressed as graph-grammar
productions and implemented in our graph-grammar-based
solver using GALOIS scheduler. 
e solver is compared
with MUMPS. We show that the graph-grammar-based
solver outperformsMUMPS for large problems and provides
comparable execution times for small ones.

Conflict of Interests


e authors declare that there is no conict of interests
regarding the publication of this paper.

Acknowledgments


e work of Anna Paszyńska, Maciej Paszyński, Konrad
Jopek, Maciej Woźniak, Damian Goik, and Piotr Gurgul
was supported by the Polish National Science Center Grants
nos. DEC-2012/07/B/ST6/01229, DEC-2011/03/B/ST6/01393,
and DEC-2012/06/M/ST1/00363. 
e work of Keshav Pingali
and Andrew Lenerth was supported by NSF Grants CCF
1337281, CCF 1218568, ACI 1216701, and CNS 1064956. Don-
ald Nguyen was supported by a DOE Sandia Fellowship. 
e
work of Hassan AbouEisha, Mikhail Moskkov, and Victor
Manuel Calo and visits of Anna Paszyńska, Maciej Paszyński,
andMaciejWoźniak at KAUSTwere supported by the Center
for Numerical Porous Media at KAUST. 
e visits of Maciej
Paszyński at ICES were supported by J. T. Oden Research
Faculty Fellowship.

References

[1] K. Pingali, D. Nguyen,M. Kulkarni et al., “
e tao of parallelism
in algorithms,” in Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation
(PLDI ’11), pp. 12–25, June 2011.

[2] M. Yannakakis, “Computing the minimum �ll-in is NP-
complete,” SIAM Journal on Algebraic Discrete Methods, vol. 2,
no. 1, pp. 77–79, 1981.

[3] L. Demkowicz, Computing with hp-Adaptive Finite Elements,
Volume I: One and Two Dimensional Elliptic and Maxwell Prob-
lems, AppliedMathematics andNonlinear Science, Chapman&
Hall/CRC Press, 2006.

[4] I. S. Du� and J. K. Reid, “
emultifrontal solution of inde�nite
sparse symmetric linear equations,” ACM Transactions on
Mathematical So�ware, vol. 9, no. 3, pp. 302–325, 1983.

[5] I. S. Du� and J. K. Reid, “
e multifrontal solution of unsym-
metric sets of linear equations,” SIAM Journal on Scienti�c and
Statistical Computing, vol. 5, no. 3, pp. 633–641, 1984.

[6] B.M. Irons, “A frontal solution program for �nite element analy-
sis,” International Journal for NumericalMethods in Engineering,
vol. 2, no. 1, pp. 5–32, 1970.

[7] G. Karypis and V. Kumar, “METIS—unstructured graph parti-
tioning and sparse matrix ordering system, version 2.0,” Tech.
Rep., 1995.

[8] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
Scienti�c Computing, vol. 20, no. 1, pp. 359–392, 1998.

[9] P. R. Amestoy, T. A. Davis, and I. S. Du�, “An approximate
minimum degree ordering algorithm,” SIAM Journal on Matrix
Analysis & Applications, vol. 17, no. 4, pp. 886–905, 1996.

[10] P. R. Amestoy, I. S. Du�, and J.-Y. L’Excellent, “Multifrontal
parallel distributed symmetric and unsymmetric solvers,”Com-
puter Methods in Applied Mechanics and Engineering, vol. 184,
no. 2–4, pp. 501–520, 2000.

[11] P. R. Amestoy, I. S. Du�, J.-Y. L’Excellent, and J. Koster, “A fully
asynchronous multifrontal solver using distributed dynamic
scheduling,” SIAM Journal onMatrix Analysis and Applications,
vol. 23, no. 1, pp. 15–41, 2001.

[12] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet,
“Hybrid scheduling for the parallel solution of linear systems,”
Computer Methods in Applied Mechanics and Engineering, vol.
2, no. 32, pp. 136–156, 2001.

[13] A. Paszyńska, M. Paszyński, and E. Grabska, “Graph transfor-
mations for modeling hp-adaptive �nite element method with
mixed triangular and rectangular elements,” in Computational
Science—ICCS 2009, vol. 5545 of Lecture Notes in Computer
Science, pp. 875–884, Springer, Berlin, Germany, 2009.

[14] A. Paszynska, M. Paszynski, and A. Grabska, “Graph transfor-
mations for modeling hp-adaptive �nite element method with
triangular elements,” in Computational Science—ICCS 2008,
vol. 5103 of Lecture Notes in Computer Science, pp. 604–613,
2008.

[15] M. Paszynski, “On the parallelization of self-adaptive hp-
�nite element methods part I. Composite programmable graph
grammar model,” Fundamenta Informaticae, vol. 93, no. 4, pp.
411–434, 2009.

[16] M. Paszynski, “On the parallelization of self-adaptive ℎ�-�nite
element methods. II. Partitioning communication agglomera-
tionmapping (PCAM) analysis,” Fundamenta Informaticae, vol.
93, no. 4, pp. 435–457, 2009.

[17] P. Obrok, P. Pierzchala, A. Szymczak, andM. Paszynski, “Graph
grammar-based multi-thread multi-frontal parallel solver with
trace theory-based scheduler,” Procedia Computer Science, vol.
1, no. 1, pp. 1993–2001, 2010.

[18] M. Paszyński and R. Schaefer, “Graph grammar-driven parallel
partial di�erential equation solver,” Concurrency and Computa-
tion: Practice and Experience, vol. 22, no. 9, pp. 1063–1097, 2010.

[19] E. Grabska, “
eoretical concepts of graphical modeling. Part
two: CP-graph grammars and languages,”MachineGraphics and
Vision, vol. 2, no. 2, pp. 149–178, 1993.

[20] A. Habel and H.-J. Kreowski, “May we introduce to you: hyper-
edge replacement,” inGraph-Grammars and	eirApplication to
Computer Science, vol. 291 of Lecture Notes in Computer Science,
pp. 15–26, Springer, Berlin, Germany, 1987.

[21] A. Habel and H.-J. Kreowski, “Some structural aspects of
hypergraph languages generated by hyperedge replacement,” in
STACS 87, vol. 247 of Lecture Notes in Computer Science, pp.
207–219, Springer, 1987.



18 Scienti�c Programming

[22] G. Ślusarczyk and A. Paszyńska, “Hypergraph grammars in hp-
adaptive �nite element method,” Procedia Computer Science,
vol. 18, pp. 1545–1554, 2012.

[23] V. Diekert and G. Rozenberg, 	e Book of Traces, World
Scienti�c, River Edge, NJ, USA, 1995.

[24] P. Gurgul, “A linear complexity direct solver for h-adaptive grids
with point singularities,” Procedia Computer Science, vol. 29, pp.
1090–1099, 2014.

[25] M. Paszyński, D. Pardo, and A. Paszyńska, “Parallel multi-
frontal solver for p adaptive �nite element modeling of multi-
physics computational problems,” Journal of Computational
Science, vol. 1, no. 1, pp. 48–54, 2010.

[26] B. Barabasz, E. Gajda-Zagórska, S. Migórski, M. Paszyński,
R. Schaefer, and M. Smołka, “A hybrid algorithm for solving
inverse problems in elasticity,” International Journal of Applied
Mathematics and Computer Science, vol. 24, no. 4, pp. 865–886,
2014.

[27] E. Gajda-Zagórska, R. Schaefer, M. Smołka, M. Paszyński, and
D. Pardo, “A hybrid method for inversion of 3D DC resistivity
logging measurements,” Natural Computing, 2014.

[28] D. Pardo, L. Demkowicz, C. Torres-Verdinn, and M. Paszyn-
ski, “Two-dimensional high-accuracy simulation of resistiv-
ity logging-while-drilling (LWD) measurements using a self-
adaptive goal-oriented ℎ� �nite elementmethod,” SIAM Journal
on Applied Mathematics, vol. 66, no. 6, pp. 2085–2106, 2006.

[29] L. Demkowicz, P. Gatto, J. Kurtz et al., “Modeling of bone con-
duction of sound in the human head using hp-�nite elements:
code design and veri�cation,” Computer Methods in Applied
Mechanics and Engineering, vol. 200, no. 21-22, pp. 1757–1773,
2011.

[30] P. Matuszyk and M. Paszyński, “Fully automatic hp adaptive
�nite element method for the Stokes problem in two dimen-
sions,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 197, no. 51-52, pp. 4549–4558, 2008.

[31] H. AbouEisha,M.Moshkov, V. Calo,M. Paszynski, D. Goik, and
K. Jopek, “Dynamic programming algorithm for generation of
optimal elimination trees for multi-frontal direct solver over h-
re�ned grids,” Procedia Computer Science, vol. 29, pp. 947–959,
2014.

[32] D. Goik, K. Jopek, M. Paszyński, A. Lenharth, D. Nguyen, and
K. Pingali, “Graph grammar based multi-thread multi-frontal
direct solver with galois scheduler,” Procedia Computer Science,
vol. 29, pp. 960–969, 2014.

[33] M. Fredrik, “An algorithm for computing an elimination tree of
minimum height for a tree,” in Proceedings of the 2ndMeeting of
the International Linear Algebra Society, Lisbon, Portugal, 1992.

[34] M. Fredrik, “An algorithm for computing an elimination tree of
minimum height for a tree,” Tech. Rep. CS-91-59, University of
Bergen, Bergen, Norway, 1991.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


