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Abstract: How to manage signalized intersections under oversaturated conditions is a long-standing problem 

in traffic science and engineering. However, although research works in this area date back to 1960s, an on-line 

control strategy with theoretically bounded performance is missing, even for the control of an isolated intersection 

under oversaturation. This paper makes one step further in this area by proposing a QUEUE-based quasi-optimal 

feedback control (abbreviated as QUEUE) strategy for an isolated oversaturated intersection. The QUEUE strategy 

is intuitive, simple, and proved to match the off-line optimum in the case of constant demand. More importantly, 

the bounds of sub-optimality of the QUEUE strategy can be specified quantitatively in general piece-wise constant 

demand cases. To better deal with the maximum queue constraints, the oversaturation period is divided into the 

queuing period and the dissipation period with two different objectives. In the queuing period, the primary 

objective is to keep the queue length within the maximum value; but for the dissipation period, the primary 

objective is to eliminate all queues at the earliest time. Interestingly, we found that both control objectives can be 

realized with the same QUEUE strategy. Numerical examples show that the QUEUE strategy approximates the 

off-line optimum very well. The average sub-optimality in comparison with the off-line optimum in the challenging 

conditions with Poisson distributed random demand is below 5%.  
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1. Introduction 

More and more traffic intersections in cities are operated under oversaturated conditions, especially during the 

peak hours. Vehicular queues may grow very long due to heavy demands that exceed the maximum discharging 

capacity of intersections. It will be even more undesirable if vehicle queues spill back to upstream intersections, 

and then the spillover spreads to more intersections and potentially leads to the gridlock (Daganzo, 2007). 

Therefore signal control strategies under such conditions must be carefully designed. 

Unlike the control of undersaturated intersections for which theories and technical tools are well-established, 

consensus has not been reached regarding the control policies for oversaturated intersections, even for an isolated 

oversaturated intersection. For an isolated oversaturated intersection, the main task is to allocate green times among 

conflicting phases to minimize the duration of oversaturation period as well as the total delay time of all vehicles. 

Although research literature on optimization of the green splits of an isolated oversaturated intersection dates back 

to 1960s, most of them belong to the category of off-line optimization. The pioneer in this field is Gazis (1964). He 

solved the continuous-time optimal control problem of an oversaturated intersection with two conflicting streams 

by semi-graphical method, and then proved the optimality of the solution using Pontryagin’s maximum principle. 

The optimal solution is a bang-bang type two-stage strategy. His method minimizes the duration of the 

oversaturation period firstly, and minimizes the total delay secondly. Based on Gazis’ work, Guardabassi et al. 

(1984) found the necessary conditions for solution existence. Michalopoulos and Stephanopoulos (1977a) took the 
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maximum queue constraint into account and offered a numerical method to compute the corresponding optimal 

solution. Chang and Lin (2000) and Zou et al. (2012) proposed discrete-time optimal control models so as to better 

match the cycle-by-cycle signal control in the real world. These works are able to find the ideal optimal solution 

analytically, providing benchmarks for control of an isolated oversaturated intersection. However, these methods 

rely upon perfect knowledge of OD demand for the whole period, which is very demanding. The same problem 

exists in the methods dealing with multiple oversaturated intersections (e.g., Michalopoulos and Stephanopoulos, 

1977b; Lieberman et al., 2000; Liu and Chang, 2011; Lertworawanich et al., 2011; Park et al., 2000). 

One common way of extending these off-line optimal control strategies to on-line strategies is by employing 

the rolling horizon (model predictive) structure (e.g., Aboudolas et al., 2010). The optimal control problem defined 

in a short horizon is solved on-line iteratively using the current traffic state as well as predicted demand over the 

finite horizon. Only the first step of the resultant control actions is implemented, then the traffic state is sampled 

again and the calculations are repeated starting from the new state and prediction. The rolling-horizon structure and 

real-time measurement greatly favor the real-world application of off-line strategies. However, prediction of future 

traffic demand is still required. 

An alternative way of on-line traffic control for an oversaturated intersection is the state feedback method. 

This kind of method directly calculates the value of control variables based on current measured state, not requiring 

prediction of future demand. To manage an oversaturated intersection, ideally, queue lengths on all directions are 

needed as state variables. It is not easy to estimate queue lengths in case of oversaturation as the phenomenon of 

queue over detectors is often encountered (Wu et al., 2010), but the recently developed queue estimation method 

based on high-resolution data provides a potential solution to the problem (Liu et al., 2009). 

Research works about on-line feedback control strategy for an oversaturated intersection are limited. Gordon 

(1969) developed an algorithm for on-line control of queue lengths at oversaturated intersections to keep the queue 

length ratios on both roads equal so as to delay spillover as long as possible. Gordon’s algorithm is meaningful in 

case when queues are forming, but not necessary when queues are dissolving in the later period of oversaturation. 

Ioslovich et al. (2011) concluded in their paper that the optimal control law derived from solving the off-line 

problem is in a feedback form of current queue lengths. But the conclusion is based on constant arrival rate of 

traffic and unconstrained queue length. Lin et al. (2011) proposed a queue-based feedback control scheme that 

maintains the proportion of queue length on one road to another in a desired range. Although several choices of the 

set point were described as examples and the results are promising, it is still unclear how “good” this control 

strategy is. The traffic-responsive urban control (TUC) strategy (Diakaki et al., 2002) and the maximum pressure 

(MP) control strategy (Varaiya, 2013) are also novel feedback control examples that adjust the signal over cycle 

based on real time measurement of queue lengths. Although not explicit designed to manage oversaturated 

intersections, the TUC strategy and the MP strategy help to mitigate oversaturation by minimizing (residual) queue 

length. However, vehicular delay might not be minimized underlying the TUC or MP strategy. 

It is essential that reliable performance evaluation of a control strategy is achievable before implementation. 

Specifically, having the benchmark of off-line optimum in hand, we should investigate quantitatively the 

sub-optimality of a feedback control strategy for an oversaturated intersection. This allows one to judge the quality 

of the control strategy. The review of literature shows that such quantitative evaluation is still missing in the 

existing feedback control strategies for an oversaturation intersection. Questions such as “can the feedback control 

strategy match the off-line optimum in certain conditions?” and “how far is the performance of feedback control 

strategy from the off-line optimum in the worst condition?” are not answered yet. Our work is to shed light on this 

issue, in which a QUEUE-based on-line quasi-optimal feedback control (QUEUE) strategy for an oversaturated 

intersection is developed and theoretically assessed. 

The primary contribution of this paper is that we find an innovative way of approximating the off-line optimal 



control strategy for an oversaturated intersection with an on-line feedback control method. The feedback strategy is 

based on the availability of detected queue size data, while perfect knowledge or reliable prediction of future 

demand is not needed. It is proved to match the off-line optimum in case of constant arrival flow rate. More 

importantly, the upper bounds of the sub-optimality from the off-line optimum are quantified in general cases. 

Different from the feedback control models proposed in the past, the QUEUE strategy deal with the maximum 

queue constraints in a more explicit way. We divide the whole oversaturation period into two parts, namely the 

queuing period when queues increase continuously and the dissipation period when queues decrease gradually. It is 

evident that keeping the queue length within the maximum constraints is the primary objective in the queuing 

period; but in the dissipation period, the primary objective is eliminating all queues at the earliest time, while the 

maximum queue constraints can be simplified consider or even omitted. Interestingly, we found that the control 

laws for the two different periods can be developed using the same logic in the QUEUE strategy. 

The rest of the paper is organized as follows. Section 2 defines the subject control problem and briefly reviews 

existing analytical results of off-line optimal control strategy. Section 3 introduces details about the QUEUE 

strategy, including the division of oversaturation period and the corresponding QUEUE strategy for each period. 

The optimality of the QUEUE strategy is quantitatively assessed in Section 4, and Section 5 introduces briefly the 

way of extending the QUEUE strategy to a multi-phase intersection. Numerical examples are employed to show the 

potential ability of the QUEUE strategy in Section 6. Section 7 concludes this paper and discusses future studies. 

2. Problem description and existing analytical results 

2.1 Problem description 

Here we focus mainly on developing the QUEUE strategy for an intersection with two-phase signal plans. 

However, it is shown in Section 5 that the proposed QUEUE strategy can be easily extended to intersections with 

multi-phase signal plans. In the system of an intersection with two conflicting traffic streams (Fig. 1), dynamic 

variables for stream i are the inflow demand, queue size (number of queued vehicles) and green time, denoted by di, 

ni and gi:, respectively. The main constant parameters are the saturation flow rates at the entrance of the intersection, 

denoted by s1 and s2. Note that the term “queue length” rather than “queue size” is more often used in the literature. 

However, “queue length” may represent different meanings, such as the number of queued vehicles or the distance 

from the tail of the queue to the head of the queue. To remove any ambiguity, we use “queue size” in the paper to 

represent the number of queued vehicles. 

 

Fig. 1. A traffic intersection with two conflicting traffic streams 

The well-known store-and-forward modelling (SFM) of traffic network is employed (Gazis, 1964; Aboudolas 

et al., 2009). For each traffic stream, the cycle-by-cycle evolution of queue size is expressed by the following 

conservation equation: 



 (1) 

where k is the index of cycles, c is the common cycle length, a constant. 

Oversaturation happens when demand exceeds the maximum service. It is usually defined as follows 

(d1+n1/c)/s1+(d2+n2/c)/s2>1 (2) 

Two main reasons, namely the increased demand or the decreased service, can cause oversaturation. The focus 

of this paper is the oversaturation caused by the increased demand, while the service rates s1 and s2 are assumed to 

be constant. Oversaturation caused by the decreased service due to spillover of downstream link will be considered 

in future work. 

Lost time is critical in the decision of optimal cycle length. However, the decision of cycle length is beyond 

the scope of the paper. Therefore, lost time is not considered here, as it will not change the following discussion 

except for some notation (Ioslovich, et al., 2011). So, we have 

c = g1 + g2 (3) 

As g1 and g2 are complementary, we can focus on the decision of g1, while g2 is always readily derived. The 

green time g1 is constrained by a maximum value and a minimum value as follows: 

g
min 

 g1  g
max

 (4) 

where g
min 

and g
max

 are the minimum and maximum green time for road 1, respectively. Here g
min 

and g
max

 are not 

exactly the same with the initial green time and maximum green time (for max out) in the actuated signal control 

scheme. The values of g
min 

and g
max

 could be simply set to the initial green time and maximum green time, but they 

could also be pre-determined by signal coordination or other considerations. 

Lastly, the queue size is restricted by the maximum queue size. 

0 ni  ni
max

 (5) 

where ni
max

 denotes the capacity for queued vehicles of approach i. This storage capacity is generally defined as the 

length of the road multiplied by the number of lanes and the jam density. However, the value of ni
max

 is usually set 

smaller because the end of the queue may reach upstream intersection before the link is fully jammed. Note again 

that the values of ni
max

 can also be predetermined for control purpose. 

The problem to be investigated is, finding an optimal trajectory of [g1, g2] that follows the aforementioned 

constraints, which makes the oversaturation period ends at the earliest time and the total delay time is minimized as 

well. 

2.2 Off-line optimal control solution 

The first off-line analytical solution for the above problem was proposed by Gazis (1964). The problem was 

solved using the semi-graphical method, and the optimality was proved by applying Pontryagin’s control theory. 

Gazis’s idea is explained in Fig. 2. The main components in Fig. 2 are the cumulative demand curve (CDC) and the 

cumulative service curve (CSC). In each approach, the CDC is intrinsically unpredictable and uncontrollable, but 

assumed a known linear function of time here. The CSC is controlled by signal timing, and is always below CDC 

during the oversaturation period. The vertical distance between the two curves denotes the current queue size. Note 

that the maximum queue size constraints are not considered. Without loss of generality, assume that s1>s2, then the 

result of the optimal bang-bang control strategy is shown by a two-stage piecewise linear CSC in Fig. 2. The first 

stage is giving the major approach the maximum green time (letting g1=g
max

), and the second stage is giving the 

major approach the minimum green time (letting g1=g
min

). The switch time of the two stages is denoted by . The 

oversaturation period ends at the earliest time T, indicated by the time that the CDC and CSC join together 

simultaneously in both approaches. 



 

Fig. 2. The two-stage optimal solution for control of an isolated oversaturated intersection 

Assume that n1
0
=A1 and n2

0
=A2 at the beginning, and the constant demands are d1 B1 and d2 B2, then the 

expression of the CDCs are 

 (6) 

where Qi is the cumulative demand function of approach i.  

The optimal values of  and T are solved as follows. 

 (7) 

. (8) 

It is worth noting that the optimal solution shown above minimizes T principally, on which the minimization 

of total delay time is based. If we relax the requirement that both queues are dissolved simultaneously, as pointed 

out by Gazis (1964), a further reduction of total delay time may be accomplished by extending the first stage for a 

proper period. 

2.3 Solution existence condition 

Based on Gazis’ work, Guradabassi, et al. (1984) analyzed the existence condition for the optimal solution. In 

the queue state diagram (Fig. 3), the optimal control problem is to find an optimal trajectory from the initial state 

[n1
0
, n2

0
] to the origin. With the assumption that the demands are constant (i.e., the CDCs are linear), the maximum 

and minimum green constraints form two boundary lines from [n1
0
, n2

0
], within which the reachable states region 

lies. The slopes of the boundary lines are expressed as follows. 



 (9) 

where n1 and n2 are queue dissolving rates of road 1 and road 2, respectively; ( n1/ n2)
max

 and ( n1/ n2)
min

 are 

the maximum and minimum values of the ratio n1/ n2, respectively. 

Consider the objective that requires the earliest end of oversaturation period, queues on both roads should be 

dissolved completely and simultaneously. In other words, the trajectory in the queue state plane should reach the 

origin without reaching any axis before. Guardabassi et al. (1984) showed that the two-stage optimal solution exists 

if and only if the origin belongs to the reachable region. 

 

Fig. 3. The queue state diagram 

3. QUEUE-based on-line quasi-optimal feedback control (QUEUE) strategy  

The goal of the proposed control strategy is to approximate the off-line optimal control solution described in 

the previous section, in an on-line feedback scheme. Instead of calculating simultaneously the entire trajectory of 

[g1, g2] for the oversaturation period based on perfect knowledge of OD demand, the QUEUE strategy determine 

the value of [g1, g2] every cycle based on traffic flow data. Fig. 4 shows an example of the cycle-by-cycle decision 

procedure of the QUEUE strategy. At the beginning of the k+1
th

 cycle, the queue sizes and arrival demands for the 

past cycle (the k
th

 cycle) have been detected and stored. Then [g1(k+1), g2(k+1)] is calculated based on the values of 

d1(k), d2(k), n1(k) and n2(k). At the end of the k+1
th

 cycle, the values of d1(k+1), d2(k+1), n1(k+1) and n2(k+1) are 

ready to be used in the next cycle. Note that yi(k)=sigi(k)/c is the constant service rate approximation for approach i 

at the k
th

 cycle used in the SFM. 



 

Fig. 4. Cycle-by-cycle evolution of CDCs and CSCs 

 

3.1 Division of the oversaturation period 

Before going into details of the QUEUE strategy, we should first introduce the special treatment in 

consideration with the maximum queue constraints. Generally, the evolution of queue sizes has two states during 

the oversaturation period. The queue sizes increase continuously at first, and then decrease gradually. It is evident 

that the maximum queue size constraints apply mainly in the former state. 

We divide the whole oversaturation period into two parts, the queuing period and the dissipation period. The 

queuing period is defined as the period when queue grows on at least one road, i.e. 

d1/s1+d2/s2>1  or  d1/s1>g
max

/c  or  d2/s2>1-g
min

/c (10) 

And the corresponding definition for the dissipation period is  

(d1+n1/c)/s1+(d2+n2/c)/s2>1  and  d1/s1+d2/s2 1  and  d1/s1 g
max

/c  and  d2/s2 1-g
min

/c (11) 

Fig. 5 shows an example how the oversaturation period is divided. For simplicity, we assume in this example 

that if d1/s1+d2/s2 1, d1/s1>g
max

/c or d2/s2>1-g
min

/c will not happen. Consequently, the oversaturation period, the 

queuing period and the dissipation period are identified by the value of d1/s1+d2/s2. At the time t0, when the demand 

curve exceeds the maximum service line d1/s1+d2/s2 1, queue will be formed on one road or both. Till the time tf, 

the queues in both approaches are dissolved. So the oversaturation period is identified by the region [t0, tf]. 

Furthermore, there is a critical time, tc, when the demand curve drops below the maximum service line. During [t0, 

tc], queues grow continuously, indicating the queuing period; during [tc, tf], queues are possible to be dissolved 

gradually, indicating the dissipation period.  



 

Fig. 5. Division of the oversaturation period: queuing period and dissipation period 

Note that Fig. 5 only shows a simple example of how the oversaturation period is divided into the queueing 

and dissipation periods. More than one repetition of queuing and dissipation periods may take place. One will see 

in the following that such repetition will not impede the application of the QUEUE strategy. 

The control objectives for these two periods are different. In the queuing period, the principal control objective 

is to prevent spillover, i.e., queue sizes should be restricted under the maximum value. But in the dissipation period, 

the principal control objective is to eliminate residual queues as soon as possible. Note again that we should also try 

to minimize the total delay as the secondary objective in the whole oversaturation period. In this paper, the control 

strategy for the dissipation period is discussed in detail, followed by the extension to the queuing period.  

3.2 QUEUE strategy for the dissipation period 

The idea of QUEUE strategy for the dissipation period comes intuitively from the queue state diagram (Fig. 3). 

Draw another two lines starting from the origin which are parallel to the boundaries starting from [n1
0
, n2

0
], 

respectively. The space between these two new boundaries indicates the attractable region of the origin. Then, the 

feasible region for trajectories that eliminate residual queues simultaneously at the earliest time is indicated by a 

parallelogram, as shown in Fig. 6.  

 

Fig. 6. The optimal trajectory during the dissipation period in case of constant demand 

Since s1>s2, queues on road 1 should be served with high priority, the corresponding two-stage optimal 

trajectory of [n1, n2] is depicted as red arrows in Fig. 6. This optimal trajectory shows clearly the logic of QUEUE, 



i.e., keep the maximum ratio of n1/ n2 (let g1=g
max

 in other words), until the queue state [n1, n2] hits the boundary 

line n1/n2=( n1/ n2)
min

. The strategy is written as 

 (12) 

However, the preceding equation is not a complete strategy yet. Two exceptions exist. 

The first one happens when the queues on the minor approach are possible to grow at the beginning of the 

dissipation period, i.e., s2(1-g
max

/c)<B2, because the minor approach is assigned with minimum green time. In this 

condition, queues on the minor approach may exceed the maximum queue size with the current strategy given by 

(12). This reveals an intermediate transition period in which both the prevention of spillover and the elimination of 

residual queues should be considered. Under this condition, the queue size on the minor approach is examined first. 

If n2 is far away from the maximum value, no additional treatment is needed; however if n2 is in a vicinity of the 

maximum value, we must prevent n2 from increasing any more. This amelioration is realized by increasing the 

minimum green time of the minor approach, or decreasing the maximum green time of the major approach in other 

words, to meet the current demand. The amelioration is written as 

 (13) 

where n2
threshold

 is the threshold value of queue size for the minor approach. It is easy to find that the value of n2 

would no longer increase, so queue spillover is prevented. 

The second special condition that may change the form of two-stage bang-bang control has been mentioned by 

Gazis (1964). This condition happens when s1g
min

/c<B1, and the two-stage CSC intersects the CDC on the major 

approach before the earliest end of the oversaturation period. Note that it will never happen on the minor approach, 

because s2(1-g
min

/c) B2 is given by the definition of the dissipation period. As shown in Fig. 7, the CSC joins the 

CDC on road 1 at time ’ before the initially calculated switch time . Because negative queue size is impossible, 

green time for road 1 is partially wasted during the time period [ ’, ], and the queue size n1 will increase but never 

goes to zero in the second stage ( , T]. So the optimal solution is modified under this condition. Graphically, the 

initially calculated CSC is clipped by the CDC on road 1 to give the optimal one. The corresponding feedback 

control strategy under this condition is 

 (14) 



 

Fig. 7. The clipped two-stage optimal trajectories when s1g
min/c<B1 

In conclusion, put (12)-(14) together, then the QUEUE strategy for the dissipation period reads 

 (15) 

The QUEUE strategy is simple, intuitive, and easy to be implemented cycle-by-cycle in real-world 

intersections. The only parameters needed are the current queue sizes and the arrival demands on both roads in the 

past cycle, which are readily observable with the help of various types of detectors. More importantly, the QUEUE 

strategy is a quasi-optimal strategy with respect to the ideal optimal one derived from off-line studies. The 

proposed QUEUE strategy for the dissipation period in case of constant arrival demand is proved to be optimal (see 

Appendix A for details), and the upper bounds of the sub-optimality are given in Section 4. 



3.3 QUEUE strategy for the queuing period 

The QUEUE strategy for the queuing period has the similar logic with that for the dissipation period. Fig. 8 

shows the optimal trajectory during the queuing period in the queue state plane. In comparison with Fig. 6, this 

trajectory goes in the opposite direction. The primary goal of the control strategy is to keep queue sizes within the 

maximum value n1
max

 and n2
max

 so that queues will not spill over to upstream intersections. Therefore, if in the 

extreme case that spillover has to happen, it should happen simultaneously on both roads at the latest time. The 

ideal optimal strategy in consideration with total delay time is also a two-stage bang-bang control strategy, in which 

the major road is given priority in the first stage. Similar to (12), the basic QUEUE strategy for the queuing period 

is written as 

 (16) 

 

Fig. 8. The optimal trajectory during the queuing period in case of constant demand

Note that it is not necessary for the trajectory to reach [n1
max

, n2
max

]. In most cases, the trajectory ends at 

[n1(tc),n2(tc)], where tc is the time when the queuing period ends. However, the destination of the trajectory should 

be set to [n1
max

, n2
max

] in all cases so that the maximum queue size constraints are satisfied with most possibility. 

In comparison with the earliest end time of queue dissipation, the latest start time of queue spillover is much 

more essential. A further profitable trade-off can be made regarding the maximum queue constraints. The idea is to 

reduce the possibility of spillover by increasing some total delay time. It is realized by making the queue size 

constraints stricter, so that some queuing spaces, denoted n1
res

 and n2
res

, are reserved to deal with unpredictable 

demand variations. Then the queue size constraints are compressed to [n1
max

-n1
res

,n2
max

-n2
res

]. Even if the 

compressed constraints are broken, it is still possible to satisfy the maximum queue size constraints [n1
max

,n2
max

] 

because of the maneuverability within the reserved queuing spaces. Fig. 9 gives an example. Fig. 9(a) shows the 

case without reserved queuing spaces. It is clear that the queue state point has already gone out of the final 

boundaries (red line) of the feasible region of [n1
max

,n2
max

] when demand changes, so the maximum queue size 

constraint is broken. The comparative result with reserved queuing spaces is shown in Fig. 9(b). The compressed 

constraint makes the control trajectory switch to the second stage earlier. As a result, the queue size state still lies 

within the final boundaries of the feasible region of [n1
max

,n2
max

] when the demand changes. Although the 



compressed constraint is broken, the controlled trajectory is still capable to reach the destination [n1
max

,n2
max

] 

without breaking the maximum queue constraint. 

 

Fig. 9. Comparison of the QUEUE strategy (a) the initial one; (b) with reserved queuing spaces 

Note that the reserved queuing space plays the same role as the aforementioned threshold queue size does. 

Both of them are adopted to prevent spillover caused by random fluctuation of the demand. For simplicity, we can 

let n1
threshold

 = n1
max

-n1
res

 and n2
threshold

 = n2
max

-n2
res

, then n1
res

 and n2
res

 are the only set values needed by the signal 

controller. The value of n1
res

 and n2
res

 should be selected according to the historical knowledge from the real world. 

Their value should be set larger if the demand tends to change with larger amplitude, or if the intersection has a 

longer signal cycle.  

3.4 Summary of the QUEUE strategy 

The cycle-by-cycle procedure of the QUEUE strategy for the whole oversaturation period is summarized as 

follows: 

Step 0) Determine the values of reserved queuing space, n1
res

 and n2
res

.  

Step 1) At the beginning of each cycle, detect the current queue sizes n1 and n2, and the arrival demand d1 and 

d2 in the past cycle. Check according to (2) (10) and (11) which period the current state belongs to.  



Step 2) Determine the green split for the coming cycle. Go to Step 1 when next cycle starts.  

4. Bounding the sub-optimality of the QUEUE strategy 

The performance of the QUEUE strategy is assessed quantitatively in this section by finding the upper bounds 

of sub-optimality in comparison with the off-line optimum. Unlike the previous section, the assumption of constant 

demand is relaxed to piecewise constant which is acceptable to describe the fluctuating real world demand. With 

the demand changing unpredictably, it is impossible for any on-line control strategy to perfectly match the ideal 

off-line optimum. Fortunately, the result derived by the QUEUE strategy is found much close to the optimal one. 

Note that only the dissipation period is considered here. The same procedure can be applied to the queuing period, 

but is omitted in this paper. 

The sub-optimality arises from the unpredictable demand change. The change of demands will influence the 

slopes of boundaries (see Fig. 3) initially calculated by (9). When the demands are time varying, the slopes are 

 (17) 

The slopes may increase or decrease as the demands d1 and d2 fluctuate. In the dissipation period, it is 

reasonable to assume that the demands only change in descending direction. Consequently, the demand changes are 

categorized into three types: Type 1 for d1 remains constant but d2 decreases, Type 2 for d2 remains constant but d1 

decreases, and Type 3 for both d1 and d2 decrease. Overall, the demand changes consist of a series of change Type 

1, Type 2 or Type 3. To bound the sub-optimality of the QUEUE strategy, we only need to consider Type 1 and 

Type 2 with the following two extreme cases: 

1) d1 remains constant (d1 B1) but d2 changes directly to zero (d2=B2 d2=0); 

2) d2 remains constant (d2 B2) but d1 changes directly to zero (d1=B1 d1=0). 

4.1 Upper bound Type 1: d1 remains constant but d2 changes directly to zero 

First, we assume that s1g
min

/c B1. The case is depicted in Fig. 10. The initially estimated CDCs and CSCs 

calculated by the QUEUE strategy are depicted with black lines. The calculated value of end time and switch time 

are T’ and ’ that given by (7) and (8), respectively. Now we assume that d2 changes suddenly to zero at time ts. The 

actual CDCs and the off-line optimal trajectories of CSCs are depicted with red lines. The off-line optimal value of 

T
*
 and 

*
 are marked. It is easy to know that the decrease of d2 always causes an earlier end of the oversaturation 

period and a later switch time.  



 

Fig. 10. The case when d1 remains constant but d2 changes suddenly to zero 

Unaware of the demand change in advance, the actual trajectories of CSCs follow the initially calculated black 

curves before ts. Consequently, if ts ’, the proposed algorithm will not deviate from the ideal optimum and is able 

to postpone the switch time ’ till the optimal time 
*
. So the QUEUE strategy can still generate the optimal solution. 

But if ts> ’, i.e., the switch has already been made at time ’, it is impossible for the algorithm to go back and 

extend the first stage. Under this circumstance, the proposed algorithm restarts the first stage at ts, and switch back 

to the second stage afterwards. A distinct comparison of the ideal optimum, the initial solution and the final 

solution derived by the algorithm is depicted in Fig. 11. For the sake of a clear view, overlapped lines are drawn 

separately with small gaps. The red curve shows the ideal optimal one, which is different with the initial solution 

(the black curve) in both end time and switch time. Before ts, the final solution (the blue curve) is calculated based 

on the initial demand, and follows the trajectory of the initial one. But at ts (note again ts> ’) when the changed 

demand is detected, the value of ( n1/ n2)
min

 decreases and drops below the value of n1/n2, so the first stage is 

restarted, until a further switch time ’’. It is easy to find that ’’- ts =
*
- ’. Consequently, the final solution joins the 

off-line optimal trajectory at time ’’ and then the two curves follow the same way to the earliest end of 

oversaturation. 



 
Fig. 11. A distinct comparison of the ideal optimum, the initial and final solution of CSC on road 1 

In this case, the final solution of the proposed algorithm can still catch the earliest end of oversaturation to 

fulfill the principal control objective. The only drawback comparing to the off-line optimum is some increase of 

total delay time, indicated by the area of parallelogram between the blue and red curves in Fig. 11. Geometrically, 

the difference of delay time on road 1, DT1 is calculated as follows: 

 (18) 

Similarly, the difference of delay time on road 2, DT2, is calculated as follows: 

 (19) 

So the difference of total delay time, TDT is 

 (20) 

where, M is constant, . 

(20) shows that TDT is a parabola function of ts, within the domain ts [ ’, T’]. Thus, it is easy to find that 

the maximum value of TDT, denoted by TDT
max

, is derived when ts=( ’+T’)/2, and that 

 (21) 



On the other hand, if s1g
min

/c<B1, no matter when the value of d2 drops to zero, the initially calculated 

two-stage bang-bang strategy will be clipped by the CDC on road 1, which is unchanged. Therefore, the off-line 

optimal strategy remains the same, i.e., keeping g1=g
max

 until the CSC joins CDC on approach 1. So the feedback 

strategy (14) coincides with the off-line optimal strategy in this case. 

Overall, the Type 1 change of demand will not delay the earliest end time of the oversaturation period, and the 

upper bound for increased total delay time with respect to the off-line optimum is described by (21). 

4.2 Upper bound Type 2: d2 remains constant but d1 changes directly to zero 

First, we still assume that s1g
min

/c B1. Note that this inequality still holds when d1 decreases. The case is 

depicted in Fig. 12. Similarly, the initially CDCs and CSCs calculated by the QUEUE strategy, and the 

corresponding T’ and ’, are depicted with black lines. Now we assume that d1 changes suddenly to zero at time ts, 

and ts ’. The actual CDCs, the ideal optimal trajectories of CSCs, and the ideal optimal value of T
*
 and 

*
 are 

depicted with red lines. In this case, the decrease of d1 causes an earlier end of the oversaturation period and an 

earlier switch time.  

 

Fig. 12. The case when d2 remains constant but d1 changes suddenly to zero: ts ’ 

The sudden drop of d1 indicates that stage 2 should start earlier, or shorten the stage 1 in other words, which is 

unfortunately unreachable. On-line feedback control algorithms can do nothing but to maintain the initial solution. 

Consequently, the queues do not disappear simultaneously on both routes. The time when all queues are dissolved, 

denoted by T’’, equals to T’ in this case, and is later than the ideal earliest one T
*
. Note here the value of T’ is given 

by (7), and the value of T
* 
can be calculated similarly as follows: 

 (22) 



where B1’ is the equivalent constant demand rate with which the optimal two-stage solution is the same as that 

shown in Fig. 12. B1’ satisfies the following equation. 

 (23) 

Then, the delayed ending time, T, is calculated as follows: 

 (24) 

It is easy to see that T is a linear descending function of ts. With the assumption that ts ’, the maximum 

value of T, denoted by T
max

, is derived when ts= ’, and that 

 (25) 

On the other hand when ts< ’, two possibilities exist. If ts
*
, the QUEUE strategy is optimal as discussed 

before. However, if ts=ta (
*
, ’), we should calculate the delayed end time and see whether (25) is still the 

maximum value. In this case, the QUEUE strategy has not switched to the second stage when the demand change is 

detected at ts. As the updated value of ( n1/ n2)
min

 is less than the value of n1/n2, the second stage is started 

immediately. As shown in Fig. 13, the final trajectory derived from the QUEUE strategy lies between the initially 

calculated one and the ideal optimal one. 

 

Fig. 13. The case when d2 remains constant but d1 changes suddenly to zero: ts< ’

Now we are going to compare the delayed ending time T in this case with the maximum value given by (25). 

Note that the value of T is a function of ts, and the maximum value given by (25) is derived when ts= ’. So, the 



difference between these two values is 

 (26) 

The value of T’’(ta)-T’’( ’) is calculated using graphical method: 

 (27) 

Note again that s2(1-g
max

/c) B2 is assumed, and ta- ’<0, so we have 

 (28) 

The value of T
*
(ta)-T

*
( ’)is calculated based on (22): 

 (29) 

Note that s1g
min

/c B1 is assumed, so we have 

 (30) 

Consequently,  

 (31) 

Therefore, (25) gives the maximum delayed ending time when s1g
min

/c B1, no matter when the demand 

change takes place. 

For the case when s1g
min

/c<B1, the expression of the delayed ending time T is different. We are to compare 

the value of T in this case with that calculated by (24). As T=T’’-T
*
, the ideal earliest end time T

*
 and the actual 

end time T’’ are compared separately. First, the expression of the earliest end time T
* 

(see (22) ) shows that it is 

only influenced by parameters of the CDCs (Ai, Bi and ts), and the saturation service rate si. So the value of T
* 
will 

not change whether the CSC is clipped by the CDC or not. Second, the actual end time T’’ is earlier in the case than 

that when s1g
min

/c B1. This is because that, no matter the QUEUE strategy coincides with the optimal solution or 

switches to the second stage immediately at ts, the clipped CSC on road 2 is always above or equals to the initial 

two-stage one before ts (see Fig. 7). Consequently, the value of T that calculated with the clipped CSC is always 

less than or equals to the calculated assuming ideal two-stage optimal CSC. So (25) gives the maximum value of 

T no matter the initially calculated CSC is clipped or not. 

Lastly, the value of total delay time when T= T
max

 is examined. This value is compared to that when the 

earliest end time is derived by the off-line optimal strategy. As shown in Fig. 12, the difference of total delay time 

TDT is calculated by the difference between the area of trapezoid C1D1E1F1 and C2D2E2F2. For simplicity, we 

assume that the area of triangle C1D1G1 approximately equals that of triangle E1F1H1, and the area of triangle 

C2D2G2 approximately equals that of triangle E2F2H2. Thus, 

 (32) 



Note that ’>
*
 and g

max
>g

min
, the sign of TDT is determined by the sign of (T’- ’)s2-(T

*
- ’)s1, or the sign of 

s2/s1-(T
*
- ’)/(T’- ’). Note also that T

*
 is calculated when ts= ’, so we have the following: 

 (33) 

Generally, the value of g
min

/g
max

 is very small. If we assume g
min

/g
max

<(s1-s2)/s1, (33) is further written as 

 (34) 

Consequently, s2/s1-(T
*
- ’)/(T’- ’)<0, and TDT<0. The total delay time decreases in this case with respect to 

the ideal optimum. Overall, the upper bound of demand change Type 2 has a delayed ending time as described by 

(25), but is with a reduced total delay time. 

The upper bounds of the sub-optimality of QUEUE with respect to the off-line optimum are summarized as 

follows: 

Upper bound Type 1: T=0,  

Upper bound Type 2: , TDT<0 

5. QUEUE strategy for intersections with multi-phase signal plans 

Now we consider an oversaturated intersection controlled by signal plans with N phases, where N>2 is an 

integer. Given the current detector data, the earliest ending time T of the oversaturation period is ready to be 

calculated assuming constant arrival rate in the future. Without loss of generality, assume s1 s2 … sN, then the 

basic QUEUE strategy at each cycle is 

 (35) 

where i and j are indices for phases, gi
max

 and gi
min

 are the maximum and minimum values for green duration of 

phase i, ni
min

 is the minimum value of queue dissolving rate of phase i. 

The optimality of (35) is proved in Appendix B.  

Note that (35) gives only the fundamental equations describing the QUEUE strategy. Additional if-then rules 

that concern the prevention of waste of green time are needed. We can summarize from the previous sections the 

following rules (Table 1) to interpret the QUEUE strategy which also apply to the QUEUE strategy for multi-phase 

intersections.  

Table 1. Summary of if-then rules for the QUEUE strategy 

Motivation Description of the if-then rule 

Minimization of total delay time If any prior phase j (j<i) calls for a maximum green duration (gj=gj
max

), 

then gi=gi
min

. 

Minimization of the duration of the 

oversaturation period 

If it is about to miss the earliest end of the oversaturation, then gi=gi
min

. 



Minimization of total delay time If neither of the above two conditions happens, then gi=gi
max

. 

Prevention of spillover If the queue size of any conflicting phase c breaks the compressed 

maximum queue constraint, then gi=gi
max

- g and gc=gc
min

+ g, where g is 

the additional green time needed to make the output flow of phase h 

equals the corresponding inflow rate. 

Prevention of green starvation If the phase i does not have enough inflow rate to be served in a maximum 

green duration, then gi=gi
max

- g and gi+1=gi+1
min

+ g, where g is the 

unused green time in case when gi=gi
max

. 

6. Numerical examples 

6.1 An intersection with piecewise constant demand 

The proposed QUEUE method was numerically tested in a hypothetical intersection system. Parameters for 

the system are listed as follows: s1=5400veh/h, s2=3600veh/h, n1
max

=1200veh, n2
max

=1100veh, c=180s, g
max

=150s, 

and g
min

=60s. The entire control duration is 3 hours, which contains 60 cycles (180 seconds a cycle). The demands 

for both approaches are assumed to change, if any, every 0.5 hours. Table 2 shows the demands used for the 

example. 

Table 2. Tested demand profile 

Duration (h)  0~0.5 0.5~1 1~1.5 1.5~2 2~2.5 2.5~3 

d1 (veh/h)  5400 5400 3000 1600 1600 1600 

d2 (veh/h)  1200 2400 1200 900 900 900 

d1/s1+d2/s2  1.333 1.667 0.889 0.546 0.546 0.546 

Division of the 

oversaturation period 

 
Queuing period Dissipation period 

Three strategies, the ideal optimal strategy without maximum queue size constraints, the off-line optimal 

strategy with maximum queue size constraints, and the QUEUE strategy, were tested. Note again that the former 

two strategies are off-line strategies based on fully knowledge of the demand profiles, while the QUEUE strategy 

calculates on-line the green split based on current detected data cycle by cycle. The reserved queuing spaces are 

selected as n1
res

=300veh and n2
res

=300veh. 

First of all, the comparison of CSCs with different strategies is depicted in Fig. 14. The unconstrained optimal 

strategy is derived from the method introduced by Gazis (1964), which turns out a two-stage bang-bang control 

type with the switch time =1.5h. When the maximum queue constraints are taken into account, the off-line optimal 

control strategy and the QUEUE strategy allot some more green time to Approach 2 before  to prevent the queue 

size on Approach 2 from exceeding the maximum value, and switch to the second stage some time later. The 

QUEUE strategy succeeds in eliminating both queues simultaneously at the earliest time (T=2.5h) as the ideal 

optimal strategy does. Moreover, the QUEUE strategy almost matches the off-line optimal strategy with only 

1.37% higher total delay time. 



 

Fig. 14. Comparison of CSCs with different strategies 

Fig. 15 shows the time-varying queue sizes on both roads with different strategies. It is clear that n2 with the 

unconstrained optimal strategy exceeds the maximum value for about 1h. To conquer this, the trajectory of n2 with 

the off-line optimal strategy is clipped by the maximum queue size line. As the overall queues growing is inevitable, 

the peak value of n1 gets much closer to its maximum value with the off-line optimal strategy. It is exciting to find 

that the QUEUE strategy manages to keep queue sizes on both roads within the maximum values under this 

challenging condition. 

 

Fig. 15. Comparison of queue size trajectories with different strategies 

Finally, the control trajectory of the QUEUE strategy is analyzed. In comparison with the two-stage ideal 

optimal strategy, the control trajectory of the QUEUE strategy usually has multiple stages. In this particular 

example, it has 8 stages in all (see Fig. 16). Stage 1 is the same with the optimal one, letting g1=g
max

 at the 

beginning. At time t=0.75h, g1 is switched to g
min

 (Stage 2) to meet the compressed maximum queue constraints 



[n1
max

-n1
res

, n2
max

-n2
res

]. At time t=0.8h, the compressed maximum queue constraints are broken and the final 

constraints [n1
max

, n2
max

] are considered. So a new sequence of g1=g
max

 (Stage 3) and g1=g
min

 (Stage 4) is set. At 

time t=1h, the queuing period switches to the dissipation period as a result of demand drop, so g1=g
max

 is set again 

(Stage 5). However, when the transition period together with a long queue on Approach 2 are detected (t=1.1h), the 

maximum feasible value g
max

 is replaced by the one determined by the demand d2 so as to keep n2 within the 

maximum constraint. As a consequence, Stage 6 and Stage 7 take place with respect to different demands. At time 

t=1.85h, g1 switches to g
min

 finally. 

 

 

Fig. 16. Mutli-stage control trajectory of the QUEUE strategy 

6.2 An intersection with Poisson distributed random demand 

To test the performance of QUEUE strategy in the context of random demand fluctuation, the initial piecewise 

constant demands (Table 2) was replaced by Poisson distributed random values. For example, at each cycle (3 min) 

during the time t=0~0.5h, the actual arrival number of vehicle on road 1 was set a random value that follows 

Poisson distribution with the mean =5400veh/h*3min=270veh. Demands for the rest of time were generated in the 

same manner (see Fig. 17). 

 

 



 

Fig. 17. Poisson distributed random demand profile

The consequent control result shows that the QUEUE strategy still did an excellent job. The queue size 

trajectories are shown in Fig. 18. The QUEUE strategy ended the oversaturation period 3 minute (2.00%) later than 

the off-line optimum, and the difference of total delay time is 2.65% higher.  

 

Fig. 18. Queue size trajectories with Poisson distributed demand 

We then conduct a series of 20 tests, each with randomly generated demands followed the same Poisson 

distribution. The values of T and TDT in terms of percentage with respect to the off-line optimum are 

summarized in Table 4. The average values of oversaturation ending time difference ( T) and the difference of the 

total delay time ( TDT) are 4.18% and 0.91%. The value of T may go as high as 17.65%, but it can be further 



improved by adopting filtering algorithms that eliminate the influence of high-frequency large-amplitude demand 

fluctuation. The values of TDT never exceed 4%, and are negative in several tests. The results demonstrate that 

the QUEUE strategy performs very close to the off-line optimal strategy, and it may further reduce the total delay 

time comparing to the off-line optimal strategy at the cost of some delayed ending time of the oversaturation 

period. 

 

Table 4. Results of tests with random demand that follows the same Poisson distribution 

Test T (%) 
TDT 

(%) 
 Test T (%) 

TDT 

(%) 

1 2.00% 2.65%  11 2.04% -0.43% 

2 17.65% 3.03%  12 1.96% -1.28% 

3 1.96% 0.31%  13 2.00% 0.34% 

4 2.00% 0.70%  14 17.65% 3.23% 

5 2.00% 2.10%  15 4.08% 2.10% 

6 2.04% -0.25%  16 2.04% -0.94% 

7 4.17% 1.43%  17 4.08% 1.89% 

8 1.89% -0.85%  18 3.92% -1.02% 

9 2.04% 3.04%  19 2.04% 1.56% 

10 4.08% 1.68%  20 4.00% -1.01% 

    Average 4.18% 0.91% 

7. Discussion and concluding remarks 

In this paper, we propose a queue-based on-line quasi-optimal feedback control (QUEUE) strategy for an 

isolated oversaturated intersection. The description and analysis of the QUEUE strategy for an intersection with 

two-phase signal plans are exhibited in detail; the extension to a multi-phase intersection is briefly introduced as 

well.  

It is inspiring to find that the QUEUE strategy can approximate the off-line optimum in an on-line feedback 

manner which means that it can be readily used in practice. The outstanding performances of the QUEUE strategy 

are concluded as follows: 

1. For constant demand, it is proved to perfectly match the off-line optimum. 

2. For piece-wise constant demand, the upper bounds of the sub-optimality can be quantitatively calculated, 

and lie in a reasonable range. 

3. For Poisson distributed random demand, it is shown in numerical examples that the average sub-optimality 

is less than 5% with respect to the off-line optimum. 

The QUEUE strategy for one isolated intersection is the first step to deal oversaturation. If more than one 

oversaturated intersections are located adjacently, the QUEUE strategy can also work with some necessary 

extension. The main idea is that the QUEUE strategy will always run locally at each intersection, i.e., a 

decentralized strategy. The basic control logic is the same as proposed in this paper. Most of the time, the QUEUE 

strategy optimally allocates the green splits of a particular intersection based on the queue sizes and arrival flow 

rates on its own approaches. Considering the interaction of two adjacent intersections, efforts must be made to 

prevent the queue spillover to upstream intersection as well as the waste of green time caused by insufficient supply 

to downstream intersection. To these ends, queue sizes of adjacent intersections should also be measured and 

considered in the determination of the signal timing for the subject intersection, and proper threshold values of 

queue sizes should be set to trigger special tactics such as upstream gating. We should note that, however, such 



extension is not straightforward. Solid theoretical analysis and comprehensive numerical testing are needed to 

develop the extended QUEUE strategy and test its optimality (or sub-optimality). We leave these topics for future 

research. 

 

Appendix A. Proof of optimality in case of constant arrival demand 

With constant arrival demand, we are to prove the optimality of the basic equation (12) of the QUEUE 

strategy in case when s1g
min

/c B1 in detail, on the basis of which the optimality of the ameliorations for the two 

special cases and the final equation (15) of the QUEUE strategy could be easily proved. We start with several 

lemmas. 

 

Lemma A1. Assume that the arrival flow rates are constant and s1g
min

/c B1, then, the feedback strategy (12) has 

the same structure (either one-stage or two-stage) with the ideal optimal one. 

 

Proof. As mentioned by Gazis (1964), the existence of the two-stage optimal solution is based on the following 

assumption:  

 (A1) 

With this assumption, the optimal strategy is letting g1=g
max

 in the first stage and g1=g
min

 in the second stage. 

We now check whether the feedback strategy (12) performs in the same way. 

Note that [n1
0
, n2

0
]=[A1, A2], (A1) is equivalent to 

 (A2) 

Consequently, g1=g
max

 is set at the very beginning. As long as n1/n2>( n1/ n2)
min

 holds, the derivative of n1/n2 

is written as 

 (A3) 

As long as n1/n2<( n1/ n2)
max

 holds, 

 (A4) 

Note that  is negative, so n1/n2 will decrease continuously until the queue state [n1,n2] reaches any 

boundary. There are four boundaries in total, i.e., the upper boundary n1/n2=( n1/ n2)
max

, the lower boundary 

n1/n2=( n1/ n2)
min

, the horizontal axis n1/n2=0 and the vertical axis n1/n2=± . As assumed, 

, (A5) 

so the first boundary that [n1,n2] reaches is the lower boundary n1/n2=( n1/ n2)
min

. And it is obvious from (12) that 



as long as n1/n2=( n1/ n2)
min

, the equation will hold until [n1,n2]=[0,0]. In other words, two stages constitute the 

feedback strategy (12), which are g1=g
max

 in the first stage and g1=g
min

 in the second stage. It exhibits the same 

two-stage structure as the optimal strategy does. 

We need also discuss conditions in which (A1)-(A2) do not hold. Except for the attractable region of the origin, 

there are another two regions in the first quadrant (Fig. A1), expressed by the following inequalities, respectively. 

 (A6) 

 (A7) 

If (A6) holds, it is proved by Gazis that letting g1=g
min

 till both queues are dissolved is the optimal strategy. 

With the feedback strategy (12), g1=g
min

 is set at the very beginning, and as long as n1/n2<( n1/ n2)
min

, we have 

 (A8) 

So n1/n2 will decrease continuously to 0 and then – . This is shown in Fig. A1 by the red arrow crosses the 

horizontal axis and then reaches the vertical axis. Note that the actual trajectory should never go out of the first 

quadrant, but is bounded by the axes. However, it is depicted by a straight line here to illustrate that the control 

strategy is letting g1=g
min

 continuously without any switch, which coincides with the optimal one.  

If (A7) holds, it can be proved in the same way that the feedback strategy (12) coincides with the optimal one, 

which is letting g1=g
max

 till both queues are dissolved. This completes the proof of Lemma A1.   

 

 Schematic optimal trajectories starting from different regions 

 

Lemma A2. Assume that the arrival flow rates are constant and the two-stage optimal strategy shown in Fig. 2 

exists, then, the feedback strategy (12) switches to the second stage at the same time as the optimal one does shown 

in (8). 

 



Proof. According to Lemma 1, the control strategy derived from the feedback strategy (12) is letting g1=g
max

 in the 

first stage and g1=g
min

 in the second stage. With the assumption that arrival flow rates are constant, the derivative of 

either n1 or n2 is constant. So either n1 or n2 is a linear function of time t at the first stage. Denote the corresponding 

switch time by 0. Then, at time 0, we have 

 (A9) 

Note that [n1
0
, n2

0
]=[A1, A2], the value of 0 is easily calculated from (A9). 

 (A10) 

Compare (A10) with (8), and 0=
*
 is proved.   

 

Then, combining Lemma A1 and Lemma A2 immediately gives the following theorem. 

 

Theorem A1. Assume that the arrival flow rates are constant and s1g
min

/c B1, then, (12) gives the ideal optimal 

strategy for the dissipation period. 

 

Appendix B. Proof of optimality for multi-phase intersection 

We show the optimality of (35) by contradiction. If we put the control solution derived from (35) at each 

cycle together, it turns out an N K matrix G, where N is the number of signal phases and K=T/c is the least total 

number of cycles needed to end the oversaturation period. 

 (B1) 

where gi,x is the green duration of phase i at cycle x, i=1,2,…,N, x=1,2,…,K. 

It is easy to find that the summation of each row or each column of G is constant, 

 (B2) 

Consider another solution, an N K matrix Ga which is different from G, that also ends the oversaturation 

period at the earliest time, we are to prove that Ga is less optimal in terms of the total delay time in the following. 

Since (B2) still holds for Ga, there must be at least four pairs of different elements between the two matrices. 

For example, 

 (B3) 

where gi,x- g
a
i,x =g

a
i,y- gi,y= g

a
j,x- gj,x= gj,y- g

a
j,y= g 0. 



 

Lemma B1.  If i<j and x<y as shown in (B3), then gi,x=gi
max

, gi,y=gi
min

, gj,x=gj
min

, gj,y=gj
max

, and g>0. 

 

Proof. We know form (35) that gi,x=gi
max

 or gi
min

. If gi,x=gi
max

, then gi,x g
a
i,x, so g>0. In such a case, gi,y=gi

min
 must 

hold; otherwise, if gi,y= gi
max

, g
a
i,y=gi,y+ g will break the maximum green time constraint. Similarly, we get 

gj,x=gj
min

 and gj,y=gj
max

. On the other hand, if gi,x=gi
min

, we get gi,y=gi
max

, gj,x=gj
max

 and gj,y=gj
min

. 

Overall, there are two sets of feasible values,  

gi,x=gi
max

, gi,y=gi
min

, gj,x=gj
min

, gj,y=gj
max

, and g>0, (B4) 

or 

gi,x=gi
min

, gi,y=gi
max

, gj,x=gj
max

, gj,y=gj
min

, and g<0. (B5) 

However, if we assume that (B5) is the case, since gi,y=gi
max

, it follows from (B1) that 

 (B6) 

Note that the arrival flow rates are constant, so the value of ni
min

 is also constant. Moreover, the queue 

length in the dissipation period is decreasing, so ni,x>ni,y, and 

 (B7) 

Since gi,x=gi
min

, comparing (35) and (B7) reveals that there exists a phase h that satisfies 

h<i<j, and gh,x=gh
max

. (B8) 

Then we get gj,x=gj
min

 from (35), which is in contradiction to (B5). 

It is now proved that (B5) does not coincide with the initial strategy (B1). So (B4) is the only possibility.   

 

Lemma B2.  The total delay time applying Ga is greater than that applying G. 

 

Proof.  First, the following recursive equations are derived regarding the conservation of vehicles 

 (B9) 

where ni,0 is the initial queue size of phase i. 

So the total delay time is 

 (B10) 

where the first component is a constant, and the second one is a function of the controlled green splits.  



Then, the difference of total delay time between the two solutions G and Ga is 

 (B11) 

Here y>x and si>sj are assumed, and we know from Lemma B1 that g>0. As a consequence, TDT>0. In 

other words, the total delay time applying Ga is greater than that applying G.   

 

We can prove similarly that any other solution that ends the oversaturation period at the earliest time but has 

more than four different elements from G is less optimal in terms of the total delay time.  

Finally, we get the following theorem. 

 

Theorem B1 Assume that the arrival flow rates are constant, then, (35) gives the ideal optimal multi-phase control 

strategy for the dissipation period. 
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