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Abstract. The range-searching problems that allow efficient partition trees are 

characterized as those defined by range spaces of finite Vapnik-Chervonenkis 

dimension. More generally, these problems are shown to be the only ones that admit 

linear-size solutions with sublinear query time in the arithmetic model. The proof 

rests on a characterization of spanning trees with a low stabbing number. We use 

probabilistic arguments to treat the general case, but we are able to use geometric 

techniques to handle the most common range-searching problems, such as simplex 

and spherical range search. We prove that any set of n points in E d admits a 

spanning tree which cannot be cut by any hyperplane (or hypersphere) through 

more than roughly n ~- t/d edges. This result yields quasi-optimal solutions to simplex 

range searching in the arithmetic model of computation. We also look at poly- 

gon, disk, and tetrahedron range searching on a random access machine. Given n 

points in E 2, we derive a data structure of size O(n log n) for counting how many 

points fall inside a query convex k-gon (for arbitrary values of k). The query time 

is O(x/k-'ff log n). If k is fixed once and for all (as in triangular range searching), 

then the storage requirement drops to O(n). We also describe an O(n log n)-size 

data structure for counting how many points fall inside a query circle in O(x/n log 2 n) 

query time. Finally, we present an O(n log n)-size data structure for counting how 

many points fall inside a query tetrahedron in 3-space.in O(n 2/3 log 2 n) query time. 

All the algorithms are optimal within polylogarithmic factors. In all cases, the 
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preprocessing can be done in polynomial time. Furthermore, the algorithms can 

also handle reporting within the same complexity (adding the size of the output as 

a linear term to the query time). 

1. Introduction 

Here is the traditional view of  range searching in computational geometry: Given 

a finite collection P of points in E d and a region q c_ E a, report (or count) the 

points of  P c~ q. It is understood that the points are given once and for all and 

that the region q is a query to be answered on-line. There is usually a prescribed 

set of  allowable queries, called the query domain. A typical example is to take 

the set of  all hyperrectangles (orthogonal range searching), the set of  all simplices 

(simplex range searching), the set of  all halfspaces (halfspace range searching), 

or  the set of  all d-balls (spherical range searching). To achieve greater generality, 

it is customary to assign a weight to each point of  P and ask for the cumulative 

weight o f  P n  q (that is, the sum of  the weights assigned to the points of  Pc~ q). 

Weights are usually chosen in some algebraic structure, such as a group or a 

semigroup. 

Following Haussler and Welzl [11] we can shed the problem of its geometry 

and make it purely combinatorial.  The pair (E d, query domain) is replaced by 

the abstract notion of a range space (X, R),  where X is an arbitrary set and R 

is a subset of  its power-set 2 x. For convenience, the elements of  X are still called 

points; the members of R are called ranges. As usual, points are assigned weights. 

Given a fixed finite subset P of  X, the problem is to compute the cumulative 

weight of  Pc~ q on-line, where q e R. We assume that membership in a range 

can be tested in constant time. Then an obvious solution is to store all the weighted 

points in a list and scan the entire list for each query. This solution uses linear 

space and has linear query time. In this paper  we restrict ourselves to linear-size 

(or almost linear-size) solutions. Of  course, we are primarily interested in sublinear 

query t imes)  

A popular  approach to range searching is the use of  partition trees. Willard 

[20] introduced that concept in the context of triangular range searching; the 

best partition tree for the problem in question was later given in [ 11 ]. Applications 

of  partition trees beyond range searching have been found in [8]. A partition 

tree 3 for the input set P is a rooted tree with I P] leaves. Each node v is associated 

with a node-set N(v) :  if  v is a leaf, N ( v )  is a distinct point of  P;  otherwise, 

N ( v )  is the union of  the node-sets of  all the leaves descending from v. To avoid 

redundancy we prohibit any node from having exactly one child. As a data 

structure, the partition tree need not store its node-sets explicitly but only their 

cumulative weights. To answer a query q e R, we set a count variable answer to 

the symbolic value null. (This value is not a weight per se, but rather a semaphore 

Throughout this paper the term "sublinear" refers to a function of the form f(n) = O(n ~ ), where 

a < 1 is a fixed constant. 
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playing the role of an identity element.) Beginning at the root v of  ~r, we apply 

the following recursive procedure: 

(i) I f  N(v)c_ q, then we add the cumulative weight of  N(v) to the current 

value of answer and we return. 

(ii) If  N(v) c~ q = Q, we simply return. 

(iii) If  neither N(v)c_ q nor N ( v ) n q = Q  holds, then we recurse in all the 

children of  v. 

The correctness of  the algorithm follows very simply from the definition of  a 

partition tree. The complexity of  answering a query depends on how many nodes 

are visited and how long it takes to answer questions of  the form N(v)c_ q? or 

N(v) n q = Q?  For the purposes of  the first four sections of  this paper  we sweep 

the latter under the rug, and concentrate exclusively on the number  of  nodes 

visited when answering a query. This is the arithmetic view of  range searching, 

where attention is focused on the number of  arithmetic operations needed to 

answer a query and not on the number of steps taken by the algorithm. As it 

turns out, this restriction is of  minor consequence in the geometric applications 

we discuss in two and three dimensions. 

Given a set A c_ X we say that the query range q stabs A if there exist x, y e A 

such that x e q and y ~ q, or, in other words, if neither A_c q nor A n q = C). We 

also say that q visits node v if either v is the root of  ~r or q stabs the node-set 

of  v's father. The visiting number of the partition tree S is the maximum number 

of  nodes visited by any single query. 

Informally, the node-sets of  a partition tree are building blocks which we use 

to rewrite sets of  the form P n q  ( q e R )  in a more compact  fashion. Given a 

query q, the query-answering algorithm identifies a collection of nodes vl . . . . .  v, 

such that N(v~) . . . .  , N(v,)  partitions the set P n  q. Obviously, the maneuver is 

of  interest only if the number  of  blocks, t, is substantially smaller than tP c~ ql- 

But this may not always be possible to ensure. The "ult imate" range space, 

(X, 2 x) ,  makes the visiting number of  any partition tree linear. Why is that so? 

Label the leaves of the tree 1, 2, . . . ,  I PI from left to right, and form the union 

P '  of the node-sets of  all odd-numbered leaves. There exists a query q such that 

P ' =  P c~ q. To be answered, the query requires the visit of  each odd-numbered 

leaf, which makes the visiting number of  3r proportional to IP]. Intuitively, good 

partition trees should exist as long as the range space does not allow queries to 

"hit" P in a fairly arbitrary manner. 

Remarkably,  this existence depends on a single parameter, the Vapnik- 
Chervonenkis dimension of  the underlying range space. The following definitions 

originate in [18], albeit in a ditterent context. Given a range space (X, R) and a 

set pc__ X, we define H R ( P ) =  { P n  q l q e R}: this characterizes all the ways in 

which P can be hit by a query. We say that P is shattered by R if HR(P)  is the 

power-set of  P. The Vapnik-Chervonenkis  dimension of (X, R), or VC-dimension 

for short, is defined as the size of  the largest set P that is shattered by R. If  this 

size is unbounded,  the VC-dimension is infinite, and if R is empty, then the 

dimension is -1 .  From our previous discussion, it is clear that a range space of  

infinite VC-dimension gives rise to arbitrarily large point-sets P which admit no 
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good partition trees. The main contribution of this paper  is a proof  that the 

converse is true. More precisely, if (X, R) has finite VC-dimension, then any 

P ~ X of  size n admits a partition tree with visiting number in O(n '-lId log 2 n), 

where d > 1 is the VC-dimension of the dual range space of (X, R) (a notion 

defined below). 2 I f  d is equal to 1, the visiting number is O(log 3 n). This should 

be contrasted with a result of Alon et al. [1] which establishes the existence of 

range spaces of  finite VC-dimension for which local properties of  partition trees 

alone are insufficient to prove such a result. 

As we mentioned earlier the visiting number  of  a partition tree focuses on the 

arithmetic (or rather algebraic) component  of  the query-answering process. We 

can go even further in that direction and define the arithmetic complexity of  a 

range-searching problem [10], [22]. In that model, a data structure is merely a 

collection of  precomputed cumulative weights. The query time counts only the 

minimum number  of  stored operands needed to form the answer to a given query; 

it says nothing about the time to find the operands in the data structure. In truth, 

each weight stored is associated with a certain subset of P, called a generator: 
the time to answer a query q is equal to the minimum number of  generators 

whose union gives P c~ q. A range space of  infinite VC-dimension gives rise to 

arbitrarily large point-sets P which admit no linear-size solutions with sublinear 

query time. Conversely, we will prove that if (X, R) has finite VC-dimension, 

then any P __q X of size n admits a linear-size solution with an O(n ~-~/d a(n)  log n) 

query time, where d > 1 is the VC-dimension of the dual of  (X, R) and a(n)  is 

a functional inverse of  Ackermann's  function. I f  d = 1, the query time is 

O(a (n )  log 2 n). 

Section 2 begins with some background material on shatter functions and 

e-nets [ 11 ]. In Section 3 we define the notion of stabbing numbers and establish 

its link with the visiting numbers of  partition trees. We also prove a lower bound 

on how good partition trees can be. The two main results of  this paper  are 

established in Section 4. We turn to specific geometric problems in Section 5. 

We prove that any set of  n points in E d admits a spanning tree which cannot 

be cut by any hyperplane (or hypersphere) through more than roughly n HId  

edges. This result yields quasi-optimal solutions to simplex and spherical range 

searching in the arithmetic model of  computation. Section 6 is concerned with 

polygon, disk, and tetrahedron range searching on a random access machine. 

Given n points in E 2 we derive a data structure of  size O(n log n) for counting 

how many points fall inside a query convex k-gon (for arbitrary values of  k). 

The query time is O(x/-kff log n). If  k is fixed once and for all (as in triangular 

range searching), then the storage requirement drops to O(n).  We also describe 

an O(n log n)-size data structure for counting how many points fall inside a 

query circle in O(v/-n log 2 n) query time. Finally, we present an O(n log n)-size 

data structure for counting how many points fall inside a query tetrahedron in 

3-space in O(n 2/31og 2 n) query time. All the algorithms are optimal within 

polylogarithmic factors. In all cases, preprocessing can be done in polynomial 

2 All logarithms are taken to the base 2. 
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time. Furthermore, the algorithms can also handle reporting within the same 

complexity (adding the size of  the output as a linear term to the query time). 

2. Preliminaries on Range Spaces 

Let (X, R) be a range space. For any integer n ->0, let i t(n) be the maximum 

size of  the collection I IR(P) ,  over all subsets P of X of size at most n: ~-(n) is 

called the (primal) shatter function of (X, R). Roughly speaking, 7r(n) indicates 

the maximum number of  ways a set of n points can be stabbed. There is a strong 

relationship between the VC-dimension of  a range space and its shatter function. 

For example,  if the dimension is infinite we have "tr(n) = 2" (pick any P such 

that I IR(P)  = 2 p and IP I -> n). The converse is obviously true. Furthermore, if the 

dimension is d < +oo, we have r r (n )=  O(n d) [18], [16]. We give a proof  for 

completeness. Let ~d(n)  be the maximum size of  {P n q lq ~ R}, over all P___ X 

of size n. We have qbo(n) = ~d(0)  = 1, SO let us assume that d, n > 0 and let p be 

a point of  P. The number  of  sets P n q can be written as A + B, where A is the 

number of  sets of  the form ( P \ { p } ) n  q and B is the number of  sets P c~ q which 

can be expressed as the disjoint union of Pc~ q' (q '~  R) and {p}. In the latter 

case, the sets P n q '  cannot shatter any subset of  P\{p}  of size d, therefore 

B <- ~ d -  i( n -- 1 ). Since, obviously A -< ~a  ( n - 1 ), we have the recurrence qb d ( n ) <-- 

¢ b d ( n - - 1 ) + ~ d - l ( n -  1), which proves the claim that ¢bd(n)= O(na).  It must be 

noted that the shatter function of  a range space of finite VC-dimension may not 

always be of  the form O(na) ;  indeed, Welzl and WSginger [19] can construct a 

range space with a shatter function in O(n log n). One last property worth 

mentioning is that if r r ( n )=  o(n),  then 7r(n)= O(1) and therefore R is finite. 

This follows from Proposition 2.19 of [2]. We summarize these facts below. 

Lemma 2.1. Let 7r denote the shatter function of  a range space ( X, R ). 

(i) (X, R) has infinite VC-dimension if and only if rr(n) = 2", for all n >-0. 
(ii) I f  (X, R) has VC-dimension d, then It(n) = O(nd).  

(iii) I f  Tr(n) = o(n),  then 7r(n) = O(1) and R is finite. 

Dudley [6] has shown that the set of  range spaces of  finite VC-dimension is 

closed under union, intersection, and complementation. We use a special case of  

this result in the following. For completeness we include a proof. 

Lemma 2.2. Let ( X, R)  be a range space of  finite VC-dimension d and let R = 
{(q u q ' ) \ (q  c~ q')lq, q'~ R}  be the set of  symmetric differences between sets of  tL 
Then the range space ( X, R)  has finite VC-dimension. 

Proof Since a range of  (X,/~) is defined by two ranges of  (X, R), its shatter 

function cannot exceed the square of the shatter function of (X, R). The proof  

follows from Lemma 2.1(i) and (ii). [] 
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In some sense it can be argued that X and R play symmetrical roles in the 

range space (X, R). In the same way as a range is associated with all the points 

in it, we can associate a point with all the ranges that contain it. This suggests 

introducing the set X* = {Rx tx ~ X}, where Rx = {q c R lx ~ q}. The pair (R, X*) 

is a range space, called the dual of  (X, R) [2]. I f  every pair of  points in X is 

stabbed by at least one range of  R, then we easily check that, up to isomorphism, 

duality is involutory; in other words, the dual of  (R, X*) is isomorphic to (X, R). 

The shatter function of (R, X*),  denoted ~r*(n), is also called the dual shatter 
function of  (X, R). Let Q be a set of  ranges in R. Any maximal subset of X 

which is stabbed by no range q ~ Q is called a cell of Q. Equivalently, we can 

consider the relation which puts in the same equivalence class the points of  X 

with the same membership relationship with respect to the ranges of  Q. The 

equivalence classes are the cells of  Q: their set is denoted by I I* (Q) .  It is clear 

that rr*(n) is equal to the maximum size of  H * ( Q ) ,  over all subsets Q of R of 

size at most n->0. The following lemma is proven in [2]. Again we include a 

proof  for the sake of completeness. 

Lemma 2.3. A range space has finite VC-dimension if  and only i f  its dual also has 

finite VC-dimension. 

Proof. Because duality is an involution (under the stabbing conditions described 

earlier), it suffices to prove that the dual of  a range space (X, R) of  infinite 

VC-dimension is also of  infinite VC-dimension. Let P = {Po,P~ . . . . .  p,_~} be a 

subset of  X of size n = 2 k which is shattered by R. Define k subsets P ~ , . . . ,  Pk C p 

as follows: P~ contains p~ if and only if the binary representation o f j  over k bits 

has a 1 as its ith most significant bit. Because P is shattered, each P, can be 

matched to a range q~ c Q such that P~ = P n q~. By construction the only qj's that 

contain Pi are those whose indices correspond to a 1 in the binary representation 

of  i. Therefore, all combinations are achieved and I I * ( { q ~ , . . . ,  qk}) = 2 k- Since 

k can be made arbitrarily large we conclude from Lemma 2.1(i) (and the fact 

that "all n "  and "infinitely many n"  are in this case equivalent) that the dual 

range space of (X, R) has infinite VC-dimension. [] 

We now turn to the crucial concept of  e-nets introduced in [11]. Let (X, R) 

be a range space and let e < 1 be a positive real. Given a nonempty finite subset 

P of  X, a subset N of  P is called an e-net of P for R if, for any q e  R, the 

inequali ty IP n ql > elPI implies that N n q ~ Q. The notion can be extended to 

the case of  multisets P without difficulty. In that case, the cardinality is to be 

understood with multiplicity counted in, as in I{1, 1}1--2. 

L e m m a 2 . 4 [ l l ] .  Let ( X,  R)  be a range space of  VC-dimension d > l and let e < l 
be a positive real. For every multiset P of  points in X there exists an e-net of  P for 
R, with 
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The lemma will be applied to a dual range space to argue that, given a range 

space of  finite VC-dimension (X, R) and two finite sets Pc_ X and Q ~  R, there 

are two points p, p ' c  P such that the pair {p, p'} is not stabbed by more than 

roughly IQI/IPi b ranges of  Q, for some constant b > 0. 

3. Stabbing Numbers of Spanning Paths 

Let P be the input set of  a range-searching problem whose underlying range 

space (X, R) has finite VC-dimension. We prove in Section 4 that a certain 

permutation of  P, call it, p~ . . . .  , p, ,  is such that no range of R can stab more 

than "a  few" pairs of  the form {Pi, P~÷~}. Consequently, given a query q, the 

set P n q  can be expressed as the union of a few intervals of  the form 

p~,pi .~, . . .  ,pj_~,pj. Computing the cumulative weights of  these intervals and 

adding them will give the desired answer. As it turns out, computing a 

partial sum, which is the name for the cumulative weight of  a query interval, 

is a well-studied problem which has a very efficient solution [21]. A permuta- 

tion of the input points can be regarded as a one-path spanning tree, 

{P~, P2},. • •, {Pn-~, P,}. As we shall see, good spanning paths of the type above 

lead to good partition trees as well. We discuss the relationship between spanning 

trees, spanning paths, and partition trees below. But we need an additional piece 

of terminology. Given a spanning tree T of P and a range q ~ R, let or(q) denote 

the number  of  edges of  T stabbed by q (an edge is a set of  two points). The 

maximum value of  tr(q) over all ranges q in R is called the stabbing number of  

T and is denoted or(T). 

Lemma 3.1. Let ( X, R)  be a range space and let P be a set of  n points in X:  

(i) l f  T is a spanning tree of  P, then there exists a spanning path with a stabbing 
number at most twice that of  T. 

(ii) I f  ~ is a spanning path of  P, then there exists a balanced binary partition 

tree for P with a visiting number at most 2t r (~)  [log n ] + 1. 

(iii) l f  f f  is a partition tree for P, then there exists a spanning path whose stabbing 

number does not exceed the visiting number of  ~r 

Proof (i) Connect together the vertices of  T in the order given by a depth-first 

traversal o f  the tree. This gives us a spanning path whose stabbing number is at 

most twice that of  T. Indeed, let e be an edge of  the spanning path that is stabbed 

by a range q. I f  e is not an edge of T, then it creates a cycle in T, at least two 

of whose edges are stabbed by q. Because of the depth-first labeling, no edge of  

T thus needs to be charged more than twice, which proves our claim. 

To prove (ii), build a complete binary tree f f  on n leaves and associate the 

points of the spanning path, in sequence, with the leaves of  f f  from left to right. 

If  the node-set of  an internal node of 3 is stabbed by a query range q, then the 

subtree rooted at that node must have two consecutive leaves ! and l' such that 

the edge {x, x'} of  the spanning path is stabbed by q, where N ( l ) = { x }  and 
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N ( l ' )  ={x'}.  By definition there are no more than t r (~ )  stabbed edges, hence 

no more than t r (~ ) [ log  n ] stabbed node-sets. Each stabbed node-set gives rise 

to two visited nodes, which accounts for all of  them, save the root. 

As regards (iii), assign an arbitrary left-to-right order among the children of 

every internal node of ~r, and let l ~ , . . . ,  I, denote the leaves of  3- from left to 

right. Next, form the spanning path (x~, x2,. • . ,  x , )  of  P, where {xi} is the node-set 

o f  li. I f  the edge {xi, x++l} is stabbed by a range q, we charge this event to the 

unique child of  the nearest common ancestor v of  l, and l++t that is also 

an ancestor of  l~ (or li itself). Since N ( v )  is necessarily stabbed by q, the child 

which takes the charge is visited. Furthermore, such a node cannot be charged 

twice. D 

The problem is now to compute spanning trees of  a low stabbing number. But 

before doing so, we establish a simple lower bound on the minimum stabbing 

number  of  a spanning tree. This tells us where to set our sights. 

[,emma 3.2. Let ( X,  R)  be a range space with a dual shatter function zr*( m ) in 

f l (md) ,  for d >- 1. Then, for  any no, there exists a set P of  n > no points in X such 

that every spanning tree o f  P has a stabbing number at least cn l-~/d, for some 

constant c > O. 

Proof Let a > 0 be a constant such that 7r*(m) >- amd for infinitely many integers 

m > 0. For such a value of  m, there exists a set Q of m ranges in R with at least 

am d cells. Now let P be a set of  n = [am d ] points in X, no two of which lie in 

the same cell of  Q. Each edge of any spanning tree T of the points is stabbed 

by at least one of the m ranges of  R, therefore one range must stab at least 

(n - 1) /m = ~~(n l - l / d )  edges of  T. [] 

From Lemma 3.1(iii) we conclude that under the conditions of Lemma 3.2 no 

partition tree can have a stabbing number in o ( n H / d ) .  

4. Computing Spanning Trees of a Low Stabbing Number 

Let (X, R) be a range space with dual shatter function 7r*(m) = O(m a ), for some 

constant d-> 1. Let P be a set of  n points in X and let Q be a muttiset of  m 

ranges in R. There exist two points p, p '  E P such that the set {p, p'} is not stabbed 

by more than roughly re(log n)/n~/d ranges of Q (counting multiplicities). This 

fact, which is proven below, is the main building block for constructing a spanning 

tree of  a low stabbing number. The idea is to connect p and p '  by an edge and 

discard one of  the points from further consideration. I f  we iterated in this fashion, 

we would obtain a tree T whose edges are guaranteed not to be stabbed by too 

many ranges of  Q. In turn, this would ensure that most ranges in Q stab only 

few edges of  T. This technique is similar to the greedy algorithms for computing 

minimum spanning trees. To strengthen the result and ensure that all and not 

just most ranges stab few edges, we use a weighting mechanism. Once the first 
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edge of T is chosen, we identify every range stabbing it and duplicate it. Any 

edge chosen subsequently has a similar effect on all the ranges stabbing it, 

including those already duplicated. This is a way of influencing the choice of 

future tree edges: if a range q stabs a new edge of the tree, each pair of points 

stabbed by q is, in effect, moved further apart (in the pseudodistance defined by 

the number of ranges stabbing a pair of  points) and made less likely to be 

subsequently picked as a tree edge. The duplicating process increases the size of  

the multiset Q geometrically, but the progression rate is kept fairly small thanks 

to the edge-selection process. On the other hand, every time a given range stabs 

a new tree edge it is duplicated. This also gives us a geometric progression, but 

one of much higher rate. Consequently, no range can be duplicated too much 

and the stabbing number is thus kept low. 

Lemma 4.1. Let (X, R)  be a range space with dual shatter function ~r*(m)= 
O(md), for some constant d >- 1. Let P be a set of  n points in X and let Q be a 

multiset o f  m ranges in R. There exists a pair of  points in P which is not stabbed 
by more than cm(log n) /n  |/d ranges of Q, where c is a constant. 

Proof. For x~ X, let R,. be the set of ranges in R that contain x, and, for 

x, y ~ X (x ~ y), let Rxy be the set of ranges in R that stab {x, y}. The range space 

( R , { R x l x e X } )  is the dual of  (X, R) and is therefore of  finite VC-dimension 

(Lemma 2.1). Because of  Lemma 2.2 and the fact that R~y = (Rx w Ry)\ (Rx n Ry) 

we find that the range space ~ = (R, {Rxy Ix, y e X, x # y}) also has finite VC- 

dimension. This implies (Lemma 2.4) that for every e (0<  e < 1) there exists an 

e-net N of Q for ~,  with ]Nl<-b(1/e) log(1/e) ,  for some constant b. Since 

rr*(m)= O(md),  the setting e = c(Iog n) /n  lid gives us 7r*(INt)<n, for some 

appropriate choice of a constant c. By the pigeonhole principle, two points of P 

must fall in the same cell of  N, therefore the pair which they form cannot be 

stabbed by more than em = cm(Iog n) /n  I/d ranges of  Q. [] 

The next result shows how to get the construction of the spanning tree started. 

The technique is used in several different contexts, so we have expressed the 

lemma in terms of a parameter function/3. 

Lemma 4.2. Let (X, R)  be a range space of  finite VC-dimension and let f l(n) be 

a decreasing function (for n > no) which tends to 0 as n goes to infinity. Assume 
that, for any finite set P c_ X and any finite multiset Q c_ R, there exists a pair of  

points in P which is not stabbed by more than IQI/3(IPI) ranges of  Q. Given a set 

P of n points in X, it is then possible to form a forest of  trees with at least n/2 
edges, such that every range of  R stabs O( nfl ( n / 2 ) + log n) edges. 

Proof. Let P be a set of  n points in X and let Qo be a minimum set of  ranges 

in R such that {P c~ q t q ~ R} = { P c~ q I q ~ Qo}. If (X, R) has VC-dimension d, we 

know from Lemma 2.1 that [Qo[ = O(na). Let {p, p'} be a pair of  points in P that 

is not stabbed by more than IQol/3(n) ranges of Q0. We make the pair {p, p'} the 

first edge of our forest. The ranges of Q0 that stab this edge are not nearly as 
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fresh and young as the others, so we duplicate each of them, thus producing a 

multiset Q~. Next, we iterate the whole procedure with respect to the set of  points 

P\{p}  and the new multiset of  ranges. Note that to duplicate a range with 

multiplicity/a, means to give it multiplicity 2tz. All in all, we iterate through the 

procedure p = In /2]  times. The size of the final multiset Q~ is at most 

(1 +/3(n - p + 1))'lOof-< IOol e p~(#/2> --- tQot e"~(~/2). 

Because of  the duplication policy, no range can stab more than log IOp[ edges. 

The fact that IQol = O(rid) completes the proof. [] 

We conclude with the main result of this section: the existence of spanning 

paths of  a low stabbing number for range spaces of  finite VC-dimension. This 

existence is characteristic of  finite VC-dimensionality. 

Theorem 4.3. Let (X, R)  be a range space with a dual shatter function 7r*( m ) in 
O(md),  for some constant d >- 1. Any nonempty set of  n points in X admits a 
spanning path with the stabbing number O(n t-~/d log n ) , / f d  > 1, and O(log 2 n), 

i f d = l .  

Proof. Let P be a set of  n points in X. From Lemma 4.1 we easily check that 

the function fl(n) = c(log n) /n  ~/d satisfies all the conditions of Lemma 4.2. In 

particular, we derive the finite VC-dimensionality of  (X, R) from the fact that 

its dual shatter function is bounded by a polynomial (Lemmas 2.1 and 2.3). 

Therefore, there exists a forest spanning at least half the points of P, with a 

stabbing number in O(n 1-1/d log n). Keep one point per tree of the forest and 

apply the same construction to the remaining points. Iterate on this process until 

the number of points left falls below n H / d  log n. Finally, connect the remaining 

points via an arbitrary spanning path. This procedure produces a spanning tree 

of  P with a stabbing number at most proportional to 

Y~ ((n/2k) HId log(n/2k)). 
k ~ O  

This gives O ( n H / a l o g n ) ,  if d > l ,  and O(log2n),  if d = l .  Lemma 3.1(i) 

completes the proof. [] 

Theorem 4.3 not only characterizes the existence of good spanning trees, it 

also shows how to construct them. First, compute a set Qo of  representative 

ranges (hopefully, in time polynomial in 7r(n), where ~r(n) is the primal shatter 

function of  (X, R)). If testing membership in a range is tractable, then we easily 

construct a good spanning tree (along the lines of Theorem 4.3) in polynomial 

time. Note that the duplication mechanism might generate weights of  exponential 

size. We can cope with that difficulty by using linear-size arrays to emulate long 

computer words. From Lemma 3.1 we conclude to the existence of  a balanced 

binary partition tree with sublinear visiting number, if and only if the range- 

searching problem is defined over a range space of  finite VC-dimension. Recall 
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that this result is mostly of  theoretical interest. Indeed, the visiting number is a 

realistic complexity measure only if testing intersection between a node-set and 

a query range can be performed in constant time (or at least reasonably fast). 

Sometimes that problem alone might be almost as difficult as the original range- 

searching problem (cL our discussion of  simplex range searching in the next 

section). 

What about the complexity of  range searching in the arithmetic model 

[10], [22]? Recall that in that model, a data structure is a collection of precom- 

puled weights, each associated with a certain subset of P, called a generator. The 

query time is measured as the maximum, over all queries q e R, of the minimum 

number of  generators whose union is P c~ q. In this way, note that a data structure 

essentially works for all weight assignments: if we change the weights of the 

input points, all we have to do is re-evaluate the cumulative weight of each 

generator and the new data structure will work just the same. A spanning path 

of P provides the terrain for an efficient data structure. Preprocess the sequence 

of weights along the path, following the method for the partial sum problem 

described in [21]. With this preprocessing, the cumulative weight of any interval 

along the spanning path can be computed in time O(oe(n)), where t~(n) is a 

functional inverse of Ackermann's function (see the Appendix). The storage 

requirement is O(n). Returning to our range-searching problem, we conclude 

that any query can be answered in time O(o'a(n)),  where or is the stabbing 

number of the spanning path. Once again, bear in mind that this solution is 

incomplete because it brushes aside the problem of computing the interval 

decomposition. In the arithmetic model, however, none of that work would be 

charged anyway. Therefore our solution, though unrealistic as it may be, can be 

meaningfully compared against the best lower bounds obtained in the arithmetic 

model. This is what we do next, right after summarizing our results below. 

Theorem 4.4. Given a range space ( X, R)  of  finite VC-dimension and a set P of  
n points in X,  there exists a partition tree for P with a visiting number O(n b log 2 n), 

for some constant b < 1. In the arithmetic model, there also exists a linear-size data 
structure with query time in O(nb ct(n) log n). The constant b can be set to 1 - I /  d, 

where d is the least integer >-1 such that the dual shatter function ¢r*(m) is 

in O(ma).  I f  d =  1, then the visiting number (resp. query time in the arithmetic 
model) is O(log 3 n) (resp. O(oL(n) log 2 n)). All these results are optimal within 

polylogarithmic factors. 

How do we justify our claim of optimality? By calling on Lemmas 3.1 and 3.2 

in the case of  partition trees. But what about the complexity of range searching 

in the arithmetic model? It suffices to prove that for any d > 1 there exists a 

range-searching problem whose dual shatter function ¢r*(m) is in O(ma),  and 

for which any linear-size solution has a worst-case query time of f l (n l - l /d /  log n) 

in the arithmetic model. (Notice that we can ignore the case d = 1.) But this lower 

bound is a particular case of  a space-time tradeoff proven in [3] for simplex 

range searching in d-space over a semigroup: Given a collection P of  n weighted 

points in E d and a query simplex q, compute the cumulative weight of P c~ q. It 
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is easily verified that the dual shatter function of  the primal range space is in 
O(md). 

Observe that the optimality result is stronger for partition trees than for the 

arithmetic model. The reason is that in the former case the lower bound holds 

for any range space of finite VC-dimension, whereas in the latter we must exhibit 

one specific range space. We have already seen that no good partition trees exist 

if the dimension is infinite. We can strengthen this result and prove that no 

linear-size, sublinear query-time solution can exist in the arithmetic model. This 

is actually an immediate consequence of  Theorem 3.2 of  [3]. Adapted to our 

purposes, the theorem implies that given any range space of  infinite VC-dimension 

and any integer function p(n)  (n < p(n) <- 2"), to ensure a query time of  less than 

cn/ tog(p(n) /n)  requires the use of  ~(  p(n))  storage, where c is some appropriate 

constant. This establishes the following characterization. 

Theorem 4.5. In the arithmetic model a range-searching problem admits a linear- 
size, sublinear query-time solution if and only if the underlying range space has finite 
VC-dimension. Furthermore, if  the dimension is finite, then there exists a partition 
tree with a sublinear visiting number. 

5. Simplex and Spherical Range Searching 

We could use our previous results to establish new upper bounds on the complexity 

of  several geometric searching problems. Unfortunately, the stabbing numbers 

of  the resulting spanning trees exceed the lower bound of  Lemma 3.2 by a factor 

of  log n. Lemma 4.2 is the keystone of the construction. Plug in a value for/3(n) 

and a partition tree will automatically result. Finding an appropriate function I3 

is what Lemma 4.1 is all about. We will see, however, that in the particular cases 

of  simplex and spherical range searching the geometry of the problems allows 

us to finetune the bound of  Lemma 4.1 by removing the factor of  log n. This will 

result in similar improvements for partition trees and arithmetic-model solutions. 

The main idea is to study the properties of  the pseudodistance defined by the 

number of  ranges stabbing a pair of  points. (We cannot quite call this function 

a distance because two distinct points may be at a distance 0 of each other.) We 

will show that this pseudodistance satisfies packing properties similar to the 

Euclidean metric. 

Let Pl . . . .  , p ,  be n points of  E d, called sites, and let 7r~ . . . .  ,7rm be a finite 

collection of  closed halfspaces (choosing them open would work just the same). 

To avoid dealing with multisets, we assign a positive real number w~ (a weight) 

to each half  space ~r~. The sum of  all the weights is denoted A. Given any two 

points p and p', we define the pseudodistance 8(p, p') as the sum ~ w~, taken 

over all halfspaces ~-~ that stab the pair {p, p'}. Note that A is the (finite) diameter 

of  the entire space. One trivial, yet crucial, property of  8 is that it satisfies the 

triangular inequality. 

Let H be the arrangement formed by the hyperplanes bounding the m half- 

spaces. We assume that the m hyperplanes are in general position and that each 
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weight wi is equal to 1. Because of general position, any vertex of H is the 

intersection of  exactly d hyperplanes. Given a point p and a real r, we define 

the ball B(p, r) as the set of  vertices v of  H such that 8(p, v) < - r. The volume of 

B(p, r) denotes its cardinality. The pseudodistance ~ shares some fundamental 

properties with the Euclidean metric. For example, Lemma 5.1 says that, for r 

not too large, a bali of  radius r has volume ft(rd). More important,  Lemma 5.2 

asserts that in the pseudometric 8 the two nearest sites are only O(A/n ~/~) apart. 

A similar, well-known fact in E d is that if a set of  n points has Euclidean diameter 

A, then the Euclidean distance between the two nearest points is O(A/nl/d).  

Lemma 5.1. Given m halfspaces in general position in E d, let p be a point of E d 

and let r be a real such that 0 ~ r ~ m. I f  the halfspaces are assigned unit weight, 

then the volume of B(p, r) is at least ( [ d ] ) / d ! .  

Proof. I f  p lies on the boundary of some half spaces, we can always perturb p 

toward the intersection of those halfspaces (which, because of general position, 

is nonempty) without changing the pseudodistance between p and any point 
of E d. 

We now proceed by induction on d. Let gd(m, r) be the minimum volume of  

any ball B(p, r) in E d with respect to any arrangement of  m closed halfspaces 

in general position. If  d = 1, then we have gl(m, r) = [rJ. Assume now that d > 1. 

Because of  general position there exists a line L passing through p which does 

not intersect any two bounding hyperplanes at the same point but still intersects 

each of  them. Let q~ . . . .  , qm be the sequence of intersections between L and the 

hyperplanes. The sequence is chosen so that the Euclidean distance between p 

and qi is nondecreasing; thus, 8(p, q~)-< i. Let rr* be the bounding hyperplane 

associated with qk and let Hk denote the arrangement formed by the (d - 2)-flats 

or* c~ ¢r* (l ~ k). Each Hk is an arrangement of  m - 1 unit-weight hyperplanes in 

general position in E d-~, and the restriction of  ~ to 7rk* is itself a pseudodistance 

of the same type in (d - 1)-space. Therefore, using the monotonicity of  gd-~(m, r) 
in r and the facts that ~ satisfies the triangular inequality and that every vertex 

lies on exactly d hyperplanes, we have 

dgd(m,r)>-- Y~ gd_ l (m- - l , r - - k )  > -- 
1--<k~ [rj 

from which it follows that 

E ( d - l ) ! ,  
l~k~tr ] d - 1  

gd(m, r)>_--~, ~ = 
u.0~k~trJ-1 d - 1  d [ \  d ]" 

[] 

Lemma 5.2. Given m weighted halfspaces and n points p~ . . . .  ,p ,  in E d, if n is 
large enough, there exist two points p~ and pj ( i < j )  such that 8 ( p~, p~ ) <- 2 IdA~ n t / d ], 
where A is the sum of all the weights. 
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Proof. We begin by assuming that each weight w: is equal to 1 and that the set 

of  halfspaces is in general position. If 

(?)i (°) n d ! >  d ' (5.1) 

then there are two points Pi and p~ (i < j )  such that both 8(p~, q) <- r and 8(p~, q) <-- 

r, for some point q ~ E d. The reason is that, otherwise, the n balls B(p~, r) would 

be disjoint and, by Lemma 5.1, their combined volume would exceed the total 

number o f  vertices. From the triangular inequality it follows that 8(p~, pj)-< 2r. 

We easily check that (5.1) holds for the assignment 

r= [dmlnl/d],  

provided that d->2 and m>-n 1/a. If d = l ,  the lemma is trivial. If  d > l  and 

m < n ~/d, then there are more points than there are cells (i.e., d-faces) in the 

arrangement defined by the m half spaces: indeed, for m not too small, the number 

of  cells is at most 2o<_k<_a ( k ) < - m a  [7]. Because the halfspaces are in general 

position we can always perturb the points away from the bounding hyperplanes 

without altering the pseudodistances between points. Having done that, we now 

find that at least two points belong to the same cell and therefore lie at a 

pseudodistance 0 of  each other. The proof  is now complete under our restrictive 

assumptions. 

Let us now turn to the case of positive integral weights w l , . . . ,  w,,. The idea 

is to make w~ copies of each rg and perturb them a little. Given the nature of 

this operation we might as well assume that the original halfspaces are not 

necessarily in general position (this will kill two birds with one stone). We perturb 

the halfspaces in two steps. First, we move each bounding hyperplane by a small 

random translation directed toward the outside of the half space. This will remove 

all possible contact between sites and bounding hyperplanes. It will also guarantee 

that no more than d hyperplanes can intersect in one point. To complete the 

general positioning, we perturb each halfspace with a (very small) random 

rotation. This rotation should be small enough so that no site leaves any halfspace 

in the process. In this way, we achieve general position without changing the 

pseudodistance between any pair of  sites. 

For the sake of  generality we now consider the case of  arbitrary positive real 

weights. Pick some large integer k and replace each w~ by the integral weight 

w~ = [kwiJ. Our previous generalization shows that there exist two sites p~ and 

pj ( i < j )  such that 8'(p~,pj)<--2[dA'/nl/d], where A'=~<~_< m [kw~J and 8' is the 

pseudometric 8 modified in the obvious way. Let J be the set of indices 1 such 

that ~s stabs the pair {p~, Pi}. We have 

E [kwtJ <--2[dA'/nt/a], 
l~J 

therefore 

8(p,,pj)= Y, wl<-2[da/n~/~]+e(k), 
I~J 
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where e (k )  goes to 0 with 1/k. Since the inequality holds for arbitrarily large k, 

the proof  is now complete. [] 

In light of  the previous section (especially Lemma 4.2), Lemma 5.2 allows us 

to conclude to the existence of a spanning tree of  P with stabbing number  in 

O(n~-~/d). Lemma 3.2 shows that this result is optimal. Since a simplex is the 

intersection of  d + 1 halfspaces, the spanning tree will have the same stabbing 

number, up to within a constant factor (dependent on d),  with respect to simplices. 

This is a general principle which holds for any range space defined by a constant 

number of  set-theoretic operations over a given range space. Applying the ideas 

leading to Theorem 4.4, we have the following result. 

Theorem 5.3. Simplex range searching on n points in E d can  be performed in 

O(n~-l/d ct(n)) query time and O(n)  storage in the arithmetic model. It can also 

be solved with a partition tree with a visiting number O(n l-1/d log n). These bounds 

are optimal within logarithmic factors. 

This improves upon previous work on this problem [20], [9], [23], [24], [11]. 

It must be mentioned that the solutions just quoted also hold on a random access 

machine. See also [8] for probabilistic variants. The best previous partition tree 

[11] has a visiting number  of  O(na¢d-1)/~a~d-l~+l~+~), for any e >0 .  

Let us now generalize our technique to spherical range searching. The range 

space (X, R) now consists of  X = E a and the set R of all closed d-balls. As 

shown in [24] spherical range searching in E d is a special case of  halfspace range 

searching in E d+l. Theorem 5.3 is thus ready for action. Also, it is easy to see 

that the range space is of  finite VC-dimension, which makes the problem amenable 

to Theorem 4.4. We will obtain better results, however, if we can treat d-balls as 

we did halfspaces and stay in d-space. As halfspaces are bounded by hyperplanes, 

d-balls are bounded by (d - 1)-spheres, which we call hyperspheres. The difficulty 

with hyperspheres is that any d of  them should not be expected to intersect 

always, as was the case with hyperplanes in general position. This will necessitate 

a revision of  our volume-based argument. 

We now have n sites p l , . . . ,  p,  and m d-balls ~r~, . . . ,  7r,, in E d. For con- 

sistency, we assume that the sites themselves lie on a d-sphere S d in E a+~. This 

does not really matter since S d can always be chosen very big. On the other 

hand, it allows us to redefine each 7r~ as the intersection of  S d with some hatfspace. 

As usual, each "d-bal l"  7ri is assigned a real weight wi > 0. The reason for switching 

to S d is to salvage the induction used in the proof  of  Lemma 5.1. The pseudodist- 

ance 6 is still defined exactly the same way, that is, 6(p ,p ' )  is the cumulative 

weight of  all the d-balls stabbing the pair of  points {p, p'}. Note that the sum of  

the weights is no longer the diameter of  the space (at least not always). 

Let H be the arrangement formed by the m bounding hyperspheres, denoted 

7r* . . . .  ,7r* .  For the time being we assume that the set of  defining halfspaces is 

in general position and that each of the m d-balls is assigned unit weight (wi = 1). 

The ball B(p,  r) is defined just as before, but its volume is not. The reason is 

that the volume of  S d might no longer be on the order of  md. I f  things went 
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nicely, then every set of  d hyperspheres would intersect in exactly two points 

and the volume o f S  d would be precisely 2 ( d  ) .  Unfortunately, we might have 

much fewer intersections. To cope with this problem, we put H in normal form 

by adding dummy vertices to it. A normalized arrangement consists of real and 

dummy vertices. The volume of the ball B(p, r) is now defined as the number 

of  dummy vertices that it contains. But what are those dummy vertices, anyway? 

We define the normalization procedure by induction on the dimension d. If 

d = 1, an arrangement of m 0-spheres in general position on S t has precisely 2m 

real vertices: we place a dummy vertex at each real vertex. Assume now that 

d > 1. For each hypersphere 7r* in turn, consider the arrangement of ( d - 2 ) -  

spheres formed by intersecting ~r* with each It* ( j  ~ i). If  the intersection is 

empty, then we replace rr* by a new hypersphere that intersects ~* and leaves 

the current set of  intersections {~* n ~r* t 1 ~ l <-j (l ~ i)} in general position. The 

replacement of  ~* is called its i.substitute. We can now carry out the normalization 

procedure recursively with respect to the new set of  m -  1 ( d - 2 ) - s p h e r e s  of  the 

form ~r* c~ zr* ( j  # i). Note that this process may produce several dummy vertices 

with the same location in S d. We easily verify that a normalized arrangement of 

m h y p e r s p h e r e s i n S  d has exactly 2 ( d )  d ! dummy vertices. (A simple interpreta- 

tion of this number is that each sequence of d hyperspheres produces exactly 

two dummy vertices.) Recall that dummy vertices do not affect the definition of 

8 and that the volume of  B(p, r) counts only dummy vertices. We are now ready 

to revisit Lemma 5.1. 

Lemma 5.4. Given a normalized arrangement of  m d.balls in S a in general position, 

let p be a point o f  S d and let r be a real such that 0 <- r <- m. I f  the d-balls are 

assignedunitweight,  t h e n t h e v o l u m e o f B ( p , r ,  i sa t l eas t  2(Lr])." " 
\ a /  

Proof. By using a perturbation argument similar to the one used in the proof 

of Lemma 5.1 we can assume that p does not lie on any of the m hyperspheres. 

As usual, we now proceed by induction on d. Let ga(m, r) be the minimum 

volume of  any ball B(p, r) in S d. If d = 1, then we have 2m -> 2r vertices on S ~. 

This implies that we can walk clockwise from p until we cross Jr] vertices, and 

then do the same counterclockwise without interference. It follows that g~(m, r) ~- 

2 [rJ (which is tight). Assume now that d > 1 and let p'  be a point of  S d which 

maximizes the distance p = 8(p ,p ' ) .  Because the hyperspheres are in general 

position we can always assume that p' does not lie on any of them. If  p - r, then 

the volume o f B ( p , r ) i s  that o f  S d, that is, 2 ( 7 ) d , > - 2 ( [ d J  ) . "  " " - - "  Assuming now 

that p > r, consider a circle (that is, the intersection of S d with a two-dimensional 

flat of  E d+l ) which contains both p and p' and avoids any ~r* n zr* (i < j ) .  Think 

now of  a point q moving continuously along the circle from p to p' in some given 

direction. The distance 8(p, q) goes from 0 to p by steps of  +1 or -1 .  Therefore, 
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q crosses at least [rJ distinct hyperspheres at points q ~ , . . . ,  q~, such that t~(p, qk ) <- 

k (1-<k<-l).  The hypersphere rr* passing through each qk is now regarded as 

the underlying space S d- ~ of an arrangement Hk of unit-weight ( d -  2)-spheres. 

To ensure that the arrangement consists of m - 1  spheres, we include all the 

k-substitutes defined in the normalization of /4. Note that, by inheriting the 

dummy vertices of H, the arrangement Hk is itself normalized. Let 8k be the 

usual pseudodistance in S d-~ defined with respect to Ilk. It is interesting to 

observe that because of the k-substitutes 8k is not, in general, the restriction of 

to 7r* However, the g-distance between any two points of zr* cannot exceed 

their ~k-distance. Using the monotonicity of gd_~(rn, r) in r and the fact that ~5 

satisfies the triangular inequality, we have 

gd(m,r)~-- ~, gd_ , {m- - l , r - - k )>- -2  ~ /tl\/Lr-k~/ 
~ k ~ , j  ~k~t,J \ d - 1  ] 

[] 

Lemma 5.5. Given m weighted d-balls and n points p~ , . . . , p~ in Ed, i f  n is large 

enough, there exist two points p, and pj ( i < j )  such that tS(p, ,pj)-<-2[dA/nl/d],  

where A is the sum o f  all the weights. 

Proof. It is almost identical to that of Lemma 5.2. We briefly sketch it. As usual, 

we first assume that each weight wi is equal to 1 and that the set of d-balls is in 

general position. Our first task is to normalize the arrangement of the hyper- (m) 
spheres. Since the total number of dummy vertices is 2 d d! ,  satisfying the 

inequality (5.1) again ensures the existence of two points p~ and pj ( i < j )  such 

that both ~(p,, q) _< r and ~(pj, q) ~ r, for some point q e E a (Lemma 5.4). From 

the triangular inequality it follows that ~3(p~, pj)<_ 2r. As we saw earlier, (5.1) is 

satisfied for 

provided that d - 2 and m >- n 1/d. If d = 1, then, for accounting purposes, let us 

embed the supporting line in S ~. That way we have n fundamental intervals, one 

of which, p~pj, contains at most 2 m / n endpoints of 1-balls. Obviously, ~ (p~, pj) -< 

2re~n, which proves the lemma. Assume now that d > 1 and m < n ~/d. We need 

to evaluate the maximum number f ( d ,  m)  of  cells in an arrangement of rn 

hyperspheres in S d, We have the recurrence f ( 1 ,  m ) = 2 m  and f ( d , m ) =  

f (d ,  m - 1 ) + f ( d  - 1, m - 1). Using a path-counting method (e.g., [14]), we easily 

find that, for m large enough, 

m - l \  a 
f(d,m)=2O~_k~a~, k ]<-m <n.  
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But if d > 1, f (d ,  m) is no less than the maximum number of  cells in an arrange- 

ment of  m hyperspheres in E a. The remainder of  the proof  is identioal to that 

of  Lemma 5.2. [] 

From Lemmas 5.4 and 5.5 we draw the same conclusions as expressed in 

Theorem 5.3. But to begin with we state a nice geometric result of  independent 

interest. 

Theorem 5.6. Any set o f  n points in E d admits a spanning path, only O ( n  l-I /d)  

of  whose edges can be stabbed by any d-ball (or halfspace). This upper bound is 

optimal in the worst case. 

Theorem 5.7. Spherical range searching on n points in E d can be performed in 

O(n~-Uda(n))  query time and O(n)  storage in the arithmetic model. It can also 

be solved with a partition tree with a visiting number O( n 1- ~/ e log n ). These bounds 

are optimal within logarithmic factors. 

6. Disk, Tetrahedron, and Polygon Range Searching 

What happens if we have a more realistic model of  computation such as a random 

access machine or a pointer machine? Let us look at spherical range searching 

in two dimensions, which is often called disk or circular range searching. Given 

n points in E 2, count how many points lie inside a query circle. We can use the 

partition tree of  Theorem 5.7. But this requires implementing the operation: given 

a query disk D and a node-set N(v) ,  check whether N(v )  lies (i) entirely inside 

D, (ii) entirely outside D, or (iii) neither of  the above. This can be done by 

building both the nearest- and furthest-neighbor Voronoi diagrams and prepro- 

cessing them for fast point location [7], [ 13], [ 15]. Checking the furthest-neighbor 

diagram will tell us about (i), while the nearest-neighbor diagram will handle 

(ii), and therefore (iii). Each operation will cost O(log n) time, which will bring 

the query time to log n times the visiting number  of  the partition tree, that is, 

O( ¢-ff log 2 n). 

Here is an equivalent way of doing things, which illustrates the kinship between 

Voronoi diagrams and convex hulls (see [7] for details on this relationship). 

Following Yao [24], we lift the problem to E 3 and reduce it to intersecting a 

query plane with a polygonal curve C = ( p ~ , . . . ,  p.) :  map the site (x, y, 0) to the 

point (x, y, z), where z = x2+y  2, and map the query circle ( x -  a )2+ ( y -  b ) : =  r: 

to the plane z = a ( 2 x -  a )+  b ( 2 y -  b)+ r 2. The sites contained in a query circle 

are precisely those mapping below the plane associated with the circle. The 

question is now: given a plane ~r, find all the edges of  C split by ~r. To do so, 

we set up a complete binary tree of  n leaves. The leaves are associated with 

P l , - - . ,  P, ,  from left to right. Each internal node v of  the tree is associated with 

the set S(v)  consisting of  all the points whose corresponding leaves are descen- 

dants o f  v. The idea is to store in v a pointer to the convex hull of  S(v) .  Using 

a linear-size data structure [5] we can check if a query halfspace stabs the set 
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S(v)  in O(log n) time. Using straightforward arguments, we conclude to the 

existence of  an O(n log n)-size data structure for computing all k intersections 

between C and a query plane in time O ( ( k +  1) log 2 n). 

Theorem 6.1. Disk range searching on n points can be performed in O(x/-ff log 2 n ) 

query time and 0 ( n log n) storage on a random access machine or a pointer machine. 

Let us now go up one dimension and consider simplex range searching in 

3-space (also known as tetrahedron range searching). Using the partition tree of 

Theorem 5.3, we need the following primitive: given a finite set S of points in 

3-space and a tetrahedron q, determine whether S lies entirely inside q, or entirely 

outside q, or neither of  the above. As it turns out, this is not so easy to decide. 

Instead, we simply check whether S is stabbed by any of  the halfspaces bounding 

q, which can be done in logarithmic time and linear space [5]. If  the answer is 

no, then we can immediately answer the previous question. Otherwise, we cannot 

conclude, but it is safe to proceed down the recursion anyway, since the stabbing 

numbers of  the four planes add up to O(n2/3). We easily derive the following result. 

Theorem 6.2. Tetrahedron range searching on n points can be performed in 
O(n 2/3 log 2 n) query time and O(n log n) storage on a random access machine or 

a pointer machine. 

Finally, we consider the polygon range-searching problem. Given a set P of  

n weighted points in E ~ and a query convex k-gon K, compute the cumulative 

weight of  P c~ K. We still assume that the underlying model of computation is a 

random access machine or a pointer machine. Let Pl . . . .  , p, be the input points 

ordered along the spanning path provided by Theorem 5.6. This gives us an n-gon 

II which, unfortunately, might not be simple. It is obvious, however, that the 

diagonal-switching trick of the traveling salesman problem will make the polygon 

1I simple without increasing the stabbing number. This idea is developed in [8] 

to which we refer the reader for details. The gist of the method is to take all 

intersecting edges (a, b) and (c, d) and replace them by either (a, c) and (b, d),  

or (a, d) and (b, c), whichever choice keeps the polygonal line connected. 

It has been shown in [4] that ray-shooting in II can be performed in O(log n) 

time, using O(n)  space. (Ray-shooting means finding the first hit of  a ray directed 

toward II.) This allows us to find the intersections o f l I  and K in time proportional 

to kx/-ff log n, which gives us the desired interval decomposition of the vertices 

of II. From there, we complete the computation in an overall time of 

O(kv/-ffiog n), This is a simple exercise, so let us move on. The factor kv/-ff is 

an asymptotic upper bound on the maximum number of intersections between 

the boundaries of II and K. We show below that a clever choice of  II can limit 

this number to O(x/k--ff). 

Let k be a fixed integer between 1 and n. We subdivide the set of  n points 

into k subsets of  size In~k]  or less. The first subset includes the [ n / k ]  leftmost 

points, the second subset includes the points whose x-coordinates have ranks 

ranging between I n / k ]  + 1 and 2In~k] ,  etc. Apply Theorem 5.6 to each subset 

and turn the polygonal curves into simple polygons C ~ , . . . ,  Ck. 



486 B. Chazelle and E. Welzl 

We claim that the edges of  any convex k-gon K can stab only a total of 

O(x/-k-ff) edges among C 1 , . . . ,  Ck. Why is that so? Imagine k - I  vertical lines 

separating the Ci%. We can cut up edges of  K so as to fit between two consecutive 

vertical lines without introducing more than 2 ( k - 1 )  new edges. Then we can 

ray-shoot each edge separately and collect the pieces in the obvious way. Adding 

partial sums, as described in Section 3, provides the desired answer in time 

O(x/-kn log n). Note that the convexity of  K is used only to keep the number  of 

preprocessing cuts small. The same method works if, say, K is monotone in a 

fixed direction. By building [log nJ data structures, one for each value of k = 2' -< 

n, we achieve the following result. 

Theorem 6.3. Polygon range searching on n points (with convex k-gons as queries 

and k <- n) can be performed in O( x/-~ log n) query time and O( n log n) storage 
on a random access machine or a pointer machine; k is the number of  vertices of 

the convex query polygon. The same result holds if  the polygon K is monotone in a 
fixed direction. I l k  is fixed once and for all, then the storage requirement is only 0 ( n ). 

We have shown that for a fixed value of  k, a set of  n points in E 2 admits a 

spanning tree of  stabbing number  O(~k-~) with respect to polygon range search- 

ing. We can generalize the proof  of  Lemma 3.2 and prove the optimality of  this 

result in the asymptotic sense. We construct a set of  n points by carefully arranging 

k building blocks. A building block is any set affinely equivalent to the m 2 vertices 

of  an m - x - m  square grid, with m = [ nv~-~/kJ. Given a direction l and a small 

angle 0, we define an (l, O)-block as a building block whose diagonal has direction 

i and whose grid axes form an angle 0 (Fig. 1). 

Now take a regular 9k-gon centered at the origin and pick k consecutive edges 

in the northeast quadrant. On each edge chosen, place a small (I, 0)-block, where 

! is the direction of  the edge and 0 is a very small angle, say, 7r/9 9'. The block 

should extend over, say, a ninth of the edge (Fig. 2). We define the canonical 

lines of the grid { ( i , j ) tO<- i , j<-m-1}  to be the m + l  horizontal lines y- -  

i - ½ (0 <- i < m) and the m + 1 vertical lines x = i - ~ (0 <- i -< m). The two extreme 

vertical and horizontal lines form a square enclosing the grid, which we call its 

box. By affinity, every block has a box and a set of  canonical lines. 

l 

Fig. 1. An (l, O)-btock is affinely equivalent to an m - x - m  grid: the angle between its axes is 0 and 

its tong diagonal is parallel to / .  
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Fig. 2. The set of sites is obtained by arranging k blocks along a regular convex polygon. 

Let T be a spanning tree of  the set of  km 2 sites. Consider the sites of  one of 

the blocks. Each of them is entirely separated from the other sites by canonical 

lines. On the other hand, each site is connected to at least one other site by an 

edge of T. This implies that the 2(m + l) canonical lines of  the block have a total 

of at least m~/2 intersection points with T. By the pigeonhole principle, one 

canonical line intersects at least m/5  edges of  T (for m large enough). Note that 

the intersections lie in the box of  the block. Let us mark this canonical line and 

do the same for each block. The crucial observation is that these chosen lines 

form the edges of  an unbounded convex k-gon K, each line contributing exactly 

one edge. Furthermore, all the intersections with T associated with each canonical 

line happen to lie on its contributed edge. This implies that K stabs at least ink~5 

edges of T, which is on the order of v/k-n. 

Theorem 6.4. Let k and n be two integers, with k <<- n. Any set of  n points in E 2 

admits a spanni;,~g path, only O( v/-~) o f  whose edges can be stabbed by any given 

convex k-gon. This upper bound is optimal in the worst case. 

7. Conclusions 

In our entire discussion we have implicitly assumed that each operation on 

weights could be performed in constant time. This is not the case in the reporting 

version of the problems, where the cumulative weight of  P n q is the set itself. 

It is easy to see, however, that all our upper  bounds hold just the same in the 

reporting case: the only adjustment to be made is adding a term O ( I P n  qt) in 

the expression of  the query times. 

We have carefully evaded the issue of  preprocessing. It is elementary to check 

that all the data structures given in this paper  can be constructed in polynomial 

time. This includes--and we add this as a word of c a u t i o n I t h e  manipulation of 

large numbers required by the weighting mechanism. The real challenge is to 

determine how efficiently the construction can be made to be. Recently, Matou~ek 

[12] has given efficient algorithms for the two-dimensional case. Another interest- 

ing problem is to determine whether the algorithms of  Theorems 5.3 and 5.7 can 
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be  por ted  to a r a n d o m  access  machine .  The difficulty here is to de te rmine  efficiently 

the  edges o f  the par t i t ion  tree that  are cut by the query. By using s t andard  

techniques  we can reduce  this p rob lem to that  of  de tec t ing  whether  a fixed convex 

p o l y t o p e  intersects  a query  hyperp lane ,  using only l inear  (or  quas i - l inear)  space.  

To do  this in logar i thmic  or  po ly ioga r i thmic  t ime in d imens ion  h igher  than three 

seems  elusive. F ina l ly ,  the ques t ion  of  p rov id ing  spa c e - t ime  t radeot ts  match ing  

the  lower  b o u n d s  o f  [3] remains  open.  
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Appendix 

Below is a def ini t ion o f  the inverse Acke rmann  funct ion ,  de no t e d  a (n)  [ 17]. Let 

A ( i , j )  be the funct ion def ined  recurs ively as fol lows:  

A ( O , j )  = 2 j  for any  j - > 0 .  

A ( i , O ) = O a n d A ( i ,  1 ) = 2  for  any i - 1 .  

A ( i , j ) = A ( i - l , A ( i , j - 1 ) )  f o r a n y  i - > l  and  j > - 2 .  

We define a (n)  = rain{i] i >_ 1, A(i ,  i ) >  n}. Fo r  any m -> n -> 1, we also define the 

funct ion  a ( m ,  n) by a ( m ,  n ) ~ m i n { i l i > _  1 ,A( i ,  4 [ m / n ] ) > l o g  n}. Yao [21] has 

given a l inear-s ize  da ta  s t ructure  for par t ia l  sum computa t ion :  each query is 

answered  in t ime O ( a ( c n ,  n)) ,  where c is an a p p r o p r i a t e  constant .  We easily 

check  that  a(cn ,  n) = O ( a ( n ) ) ,  therefore  we are just i f ied to say that  the query 

t ime  is O ( a ( n ) ) .  
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