
Discrete Comput Geom 4:467-489 (1989)

G
) i~ ' re te ~ C, nnlmtatk~nl

Quasi-Optimal Range Searching in Spaces of

Finite VC-Dimension*

Bernard Chaze l le I and E m o Welzl 2

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

2 Department of Mathematics, Free University of Berlin, Arnimallee 2-6,

D-1000 Berlin 33, Federal Republic of Germany

Abstract. The range-searching problems that allow efficient partition trees are

characterized as those defined by range spaces of finite Vapnik-Chervonenkis

dimension. More generally, these problems are shown to be the only ones that admit

linear-size solutions with sublinear query time in the arithmetic model. The proof

rests on a characterization of spanning trees with a low stabbing number. We use

probabilistic arguments to treat the general case, but we are able to use geometric

techniques to handle the most common range-searching problems, such as simplex

and spherical range search. We prove that any set of n points in E d admits a

spanning tree which cannot be cut by any hyperplane (or hypersphere) through

more than roughly n ~- t/d edges. This result yields quasi-optimal solutions to simplex

range searching in the arithmetic model of computation. We also look at poly-

gon, disk, and tetrahedron range searching on a random access machine. Given n

points in E 2, we derive a data structure of size O(n log n) for counting how many

points fall inside a query convex k-gon (for arbitrary values of k). The query time

is O(x/k-'ff log n). If k is fixed once and for all (as in triangular range searching),

then the storage requirement drops to O(n). We also describe an O(n log n)-size

data structure for counting how many points fall inside a query circle in O(x/n log 2 n)

query time. Finally, we present an O(n log n)-size data structure for counting how

many points fall inside a query tetrahedron in 3-space.in O(n 2/3 log 2 n) query time.

All the algorithms are optimal within polylogarithmic factors. In all cases, the

* Portions of this work have appeared in preliminary form in "Partition trees for triangle counting

and other range searching problems" (E. Welzl), Proc. 4th Ann. ACM Syrup. Comput. Geom. (1988),

23-33, and "Tight Bounds on the Stabbing Number of Spanning Trees in Euclidean Space" (B.

Chazelle), Comput. Sci. Techn. Rep. No. CS-TR-155-88, Princeton University, 1988. Bernard Chazelle

acknowledges the National Science Foundation for supporting this research in part under Grant

CCR-8700917. Emo Welzl acknowledges the Deutsche Forschungsgemeinschaft for supporting this

research in part under Grant We 1265/1-1.

468 B. Chazelle and E. Welzl

preprocessing can be done in polynomial time. Furthermore, the algorithms can

also handle reporting within the same complexity (adding the size of the output as

a linear term to the query time).

1. Introduction

Here is the traditional view of range searching in computational geometry: Given

a finite collection P of points in E d and a region q c_ E a, report (or count) the

points of P c~ q. It is understood that the points are given once and for all and

that the region q is a query to be answered on-line. There is usually a prescribed

set of allowable queries, called the query domain. A typical example is to take

the set of all hyperrectangles (orthogonal range searching), the set of all simplices

(simplex range searching), the set of all halfspaces (halfspace range searching),

or the set of all d-balls (spherical range searching). To achieve greater generality,

it is customary to assign a weight to each point of P and ask for the cumulative

weight o f P n q (that is, the sum of the weights assigned to the points of Pc~ q).

Weights are usually chosen in some algebraic structure, such as a group or a

semigroup.

Following Haussler and Welzl [11] we can shed the problem of its geometry

and make it purely combinatorial. The pair (E d, query domain) is replaced by

the abstract notion of a range space (X, R), where X is an arbitrary set and R

is a subset of its power-set 2 x. For convenience, the elements of X are still called

points; the members of R are called ranges. As usual, points are assigned weights.

Given a fixed finite subset P of X, the problem is to compute the cumulative

weight of Pc~ q on-line, where q e R. We assume that membership in a range

can be tested in constant time. Then an obvious solution is to store all the weighted

points in a list and scan the entire list for each query. This solution uses linear

space and has linear query time. In this paper we restrict ourselves to linear-size

(or almost linear-size) solutions. Of course, we are primarily interested in sublinear

query t imes)

A popular approach to range searching is the use of partition trees. Willard

[20] introduced that concept in the context of triangular range searching; the

best partition tree for the problem in question was later given in [11]. Applications

of partition trees beyond range searching have been found in [8]. A partition

tree 3 for the input set P is a rooted tree with I P] leaves. Each node v is associated

with a node-set N(v) : if v is a leaf, N (v) is a distinct point of P; otherwise,

N (v) is the union of the node-sets of all the leaves descending from v. To avoid

redundancy we prohibit any node from having exactly one child. As a data

structure, the partition tree need not store its node-sets explicitly but only their

cumulative weights. To answer a query q e R, we set a count variable answer to

the symbolic value null. (This value is not a weight per se, but rather a semaphore

Throughout this paper the term "sublinear" refers to a function of the form f(n) = O(n ~), where

a < 1 is a fixed constant.

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 469

playing the role of an identity element.) Beginning at the root v of ~r, we apply

the following recursive procedure:

(i) I f N(v)c_ q, then we add the cumulative weight of N(v) to the current

value of answer and we return.

(ii) If N(v) c~ q = Q, we simply return.

(iii) If neither N(v)c_ q nor N (v) n q = Q holds, then we recurse in all the

children of v.

The correctness of the algorithm follows very simply from the definition of a

partition tree. The complexity of answering a query depends on how many nodes

are visited and how long it takes to answer questions of the form N(v)c_ q? or

N(v) n q = Q? For the purposes of the first four sections of this paper we sweep

the latter under the rug, and concentrate exclusively on the number of nodes

visited when answering a query. This is the arithmetic view of range searching,

where attention is focused on the number of arithmetic operations needed to

answer a query and not on the number of steps taken by the algorithm. As it

turns out, this restriction is of minor consequence in the geometric applications

we discuss in two and three dimensions.

Given a set A c_ X we say that the query range q stabs A if there exist x, y e A

such that x e q and y ~ q, or, in other words, if neither A_c q nor A n q = C). We

also say that q visits node v if either v is the root of ~r or q stabs the node-set

of v's father. The visiting number of the partition tree S is the maximum number

of nodes visited by any single query.

Informally, the node-sets of a partition tree are building blocks which we use

to rewrite sets of the form P n q (q e R) in a more compact fashion. Given a

query q, the query-answering algorithm identifies a collection of nodes vl v,

such that N(v~) , N(v,) partitions the set P n q. Obviously, the maneuver is

of interest only if the number of blocks, t, is substantially smaller than tP c~ ql-

But this may not always be possible to ensure. The "ult imate" range space,

(X, 2 x) , makes the visiting number of any partition tree linear. Why is that so?

Label the leaves of the tree 1, 2, . . . , I PI from left to right, and form the union

P ' of the node-sets of all odd-numbered leaves. There exists a query q such that

P ' = P c~ q. To be answered, the query requires the visit of each odd-numbered

leaf, which makes the visiting number of 3r proportional to IP]. Intuitively, good

partition trees should exist as long as the range space does not allow queries to

"hit" P in a fairly arbitrary manner.

Remarkably, this existence depends on a single parameter, the Vapnik-
Chervonenkis dimension of the underlying range space. The following definitions

originate in [18], albeit in a ditterent context. Given a range space (X, R) and a

set pc__ X, we define H R (P) = { P n q l q e R}: this characterizes all the ways in

which P can be hit by a query. We say that P is shattered by R if HR(P) is the

power-set of P. The Vapnik-Chervonenkis dimension of (X, R), or VC-dimension

for short, is defined as the size of the largest set P that is shattered by R. If this

size is unbounded, the VC-dimension is infinite, and if R is empty, then the

dimension is -1 . From our previous discussion, it is clear that a range space of

infinite VC-dimension gives rise to arbitrarily large point-sets P which admit no

470 B. Chazelle and E. Wehl

good partition trees. The main contribution of this paper is a proof that the

converse is true. More precisely, if (X, R) has finite VC-dimension, then any

P ~ X of size n admits a partition tree with visiting number in O(n '-lId log 2 n),

where d > 1 is the VC-dimension of the dual range space of (X, R) (a notion

defined below). 2 I f d is equal to 1, the visiting number is O(log 3 n). This should

be contrasted with a result of Alon et al. [1] which establishes the existence of

range spaces of finite VC-dimension for which local properties of partition trees

alone are insufficient to prove such a result.

As we mentioned earlier the visiting number of a partition tree focuses on the

arithmetic (or rather algebraic) component of the query-answering process. We

can go even further in that direction and define the arithmetic complexity of a

range-searching problem [10], [22]. In that model, a data structure is merely a

collection of precomputed cumulative weights. The query time counts only the

minimum number of stored operands needed to form the answer to a given query;

it says nothing about the time to find the operands in the data structure. In truth,

each weight stored is associated with a certain subset of P, called a generator:
the time to answer a query q is equal to the minimum number of generators

whose union gives P c~ q. A range space of infinite VC-dimension gives rise to

arbitrarily large point-sets P which admit no linear-size solutions with sublinear

query time. Conversely, we will prove that if (X, R) has finite VC-dimension,

then any P __q X of size n admits a linear-size solution with an O(n ~-~/d a(n) log n)

query time, where d > 1 is the VC-dimension of the dual of (X, R) and a(n) is

a functional inverse of Ackermann's function. I f d = 1, the query time is

O(a (n) log 2 n).

Section 2 begins with some background material on shatter functions and

e-nets [11]. In Section 3 we define the notion of stabbing numbers and establish

its link with the visiting numbers of partition trees. We also prove a lower bound

on how good partition trees can be. The two main results of this paper are

established in Section 4. We turn to specific geometric problems in Section 5.

We prove that any set of n points in E d admits a spanning tree which cannot

be cut by any hyperplane (or hypersphere) through more than roughly n HId

edges. This result yields quasi-optimal solutions to simplex and spherical range

searching in the arithmetic model of computation. Section 6 is concerned with

polygon, disk, and tetrahedron range searching on a random access machine.

Given n points in E 2 we derive a data structure of size O(n log n) for counting

how many points fall inside a query convex k-gon (for arbitrary values of k).

The query time is O(x/-kff log n). If k is fixed once and for all (as in triangular

range searching), then the storage requirement drops to O(n). We also describe

an O(n log n)-size data structure for counting how many points fall inside a

query circle in O(v/-n log 2 n) query time. Finally, we present an O(n log n)-size

data structure for counting how many points fall inside a query tetrahedron in

3-space in O(n 2/31og 2 n) query time. All the algorithms are optimal within

polylogarithmic factors. In all cases, preprocessing can be done in polynomial

2 All logarithms are taken to the base 2.

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 471

time. Furthermore, the algorithms can also handle reporting within the same

complexity (adding the size of the output as a linear term to the query time).

2. Preliminaries on Range Spaces

Let (X, R) be a range space. For any integer n ->0, let i t(n) be the maximum

size of the collection I IR(P) , over all subsets P of X of size at most n: ~-(n) is

called the (primal) shatter function of (X, R). Roughly speaking, 7r(n) indicates

the maximum number of ways a set of n points can be stabbed. There is a strong

relationship between the VC-dimension of a range space and its shatter function.

For example, if the dimension is infinite we have "tr(n) = 2" (pick any P such

that I IR(P) = 2 p and IP I -> n). The converse is obviously true. Furthermore, if the

dimension is d < +oo, we have r r (n)= O(n d) [18], [16]. We give a proof for

completeness. Let ~d(n) be the maximum size of {P n q lq ~ R}, over all P___ X

of size n. We have qbo(n) = ~d(0) = 1, SO let us assume that d, n > 0 and let p be

a point of P. The number of sets P n q can be written as A + B, where A is the

number of sets of the form (P \ { p }) n q and B is the number of sets P c~ q which

can be expressed as the disjoint union of Pc~ q' (q '~ R) and {p}. In the latter

case, the sets P n q ' cannot shatter any subset of P\{p} of size d, therefore

B <- ~ d - i(n -- 1). Since, obviously A -< ~a (n - 1), we have the recurrence qb d (n) <--

¢ b d (n - - 1) + ~ d - l (n - 1), which proves the claim that ¢bd(n)= O(na). It must be

noted that the shatter function of a range space of finite VC-dimension may not

always be of the form O(na) ; indeed, Welzl and WSginger [19] can construct a

range space with a shatter function in O(n log n). One last property worth

mentioning is that if r r (n)= o(n), then 7r(n)= O(1) and therefore R is finite.

This follows from Proposition 2.19 of [2]. We summarize these facts below.

Lemma 2.1. Let 7r denote the shatter function of a range space (X, R).

(i) (X, R) has infinite VC-dimension if and only if rr(n) = 2", for all n >-0.
(ii) I f (X, R) has VC-dimension d, then It(n) = O(nd).

(iii) I f Tr(n) = o(n), then 7r(n) = O(1) and R is finite.

Dudley [6] has shown that the set of range spaces of finite VC-dimension is

closed under union, intersection, and complementation. We use a special case of

this result in the following. For completeness we include a proof.

Lemma 2.2. Let (X, R) be a range space of finite VC-dimension d and let R =
{(q u q ') \ (q c~ q')lq, q'~ R} be the set of symmetric differences between sets of tL
Then the range space (X, R) has finite VC-dimension.

Proof Since a range of (X,/~) is defined by two ranges of (X, R), its shatter

function cannot exceed the square of the shatter function of (X, R). The proof

follows from Lemma 2.1(i) and (ii). []

472 B. Chazelle and E. Welzl

In some sense it can be argued that X and R play symmetrical roles in the

range space (X, R). In the same way as a range is associated with all the points

in it, we can associate a point with all the ranges that contain it. This suggests

introducing the set X* = {Rx tx ~ X}, where Rx = {q c R lx ~ q}. The pair (R, X*)

is a range space, called the dual of (X, R) [2]. I f every pair of points in X is

stabbed by at least one range of R, then we easily check that, up to isomorphism,

duality is involutory; in other words, the dual of (R, X*) is isomorphic to (X, R).

The shatter function of (R, X*), denoted ~r*(n), is also called the dual shatter
function of (X, R). Let Q be a set of ranges in R. Any maximal subset of X

which is stabbed by no range q ~ Q is called a cell of Q. Equivalently, we can

consider the relation which puts in the same equivalence class the points of X

with the same membership relationship with respect to the ranges of Q. The

equivalence classes are the cells of Q: their set is denoted by I I* (Q) . It is clear

that rr*(n) is equal to the maximum size of H * (Q) , over all subsets Q of R of

size at most n->0. The following lemma is proven in [2]. Again we include a

proof for the sake of completeness.

Lemma 2.3. A range space has finite VC-dimension if and only i f its dual also has

finite VC-dimension.

Proof. Because duality is an involution (under the stabbing conditions described

earlier), it suffices to prove that the dual of a range space (X, R) of infinite

VC-dimension is also of infinite VC-dimension. Let P = {Po,P~ p,_~} be a

subset of X of size n = 2 k which is shattered by R. Define k subsets P ~ , . . . , Pk C p

as follows: P~ contains p~ if and only if the binary representation o f j over k bits

has a 1 as its ith most significant bit. Because P is shattered, each P, can be

matched to a range q~ c Q such that P~ = P n q~. By construction the only qj's that

contain Pi are those whose indices correspond to a 1 in the binary representation

of i. Therefore, all combinations are achieved and I I * ({ q ~ , . . . , qk}) = 2 k- Since

k can be made arbitrarily large we conclude from Lemma 2.1(i) (and the fact

that "all n " and "infinitely many n" are in this case equivalent) that the dual

range space of (X, R) has infinite VC-dimension. []

We now turn to the crucial concept of e-nets introduced in [11]. Let (X, R)

be a range space and let e < 1 be a positive real. Given a nonempty finite subset

P of X, a subset N of P is called an e-net of P for R if, for any q e R, the

inequali ty IP n ql > elPI implies that N n q ~ Q. The notion can be extended to

the case of multisets P without difficulty. In that case, the cardinality is to be

understood with multiplicity counted in, as in I{1, 1}1--2.

L e m m a 2 . 4 [l l] . Let (X, R) be a range space of VC-dimension d > l and let e < l
be a positive real. For every multiset P of points in X there exists an e-net of P for
R, with

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 473

The lemma will be applied to a dual range space to argue that, given a range

space of finite VC-dimension (X, R) and two finite sets Pc_ X and Q ~ R, there

are two points p, p ' c P such that the pair {p, p'} is not stabbed by more than

roughly IQI/IPi b ranges of Q, for some constant b > 0.

3. Stabbing Numbers of Spanning Paths

Let P be the input set of a range-searching problem whose underlying range

space (X, R) has finite VC-dimension. We prove in Section 4 that a certain

permutation of P, call it, p~ , p, , is such that no range of R can stab more

than "a few" pairs of the form {Pi, P~÷~}. Consequently, given a query q, the

set P n q can be expressed as the union of a few intervals of the form

p~,pi .~, . . . ,pj_~,pj. Computing the cumulative weights of these intervals and

adding them will give the desired answer. As it turns out, computing a

partial sum, which is the name for the cumulative weight of a query interval,

is a well-studied problem which has a very efficient solution [21]. A permuta-

tion of the input points can be regarded as a one-path spanning tree,

{P~, P2},. • •, {Pn-~, P,}. As we shall see, good spanning paths of the type above

lead to good partition trees as well. We discuss the relationship between spanning

trees, spanning paths, and partition trees below. But we need an additional piece

of terminology. Given a spanning tree T of P and a range q ~ R, let or(q) denote

the number of edges of T stabbed by q (an edge is a set of two points). The

maximum value of tr(q) over all ranges q in R is called the stabbing number of

T and is denoted or(T).

Lemma 3.1. Let (X, R) be a range space and let P be a set of n points in X:

(i) l f T is a spanning tree of P, then there exists a spanning path with a stabbing
number at most twice that of T.

(ii) I f ~ is a spanning path of P, then there exists a balanced binary partition

tree for P with a visiting number at most 2t r (~) [log n] + 1.

(iii) l f f f is a partition tree for P, then there exists a spanning path whose stabbing

number does not exceed the visiting number of ~r

Proof (i) Connect together the vertices of T in the order given by a depth-first

traversal o f the tree. This gives us a spanning path whose stabbing number is at

most twice that of T. Indeed, let e be an edge of the spanning path that is stabbed

by a range q. I f e is not an edge of T, then it creates a cycle in T, at least two

of whose edges are stabbed by q. Because of the depth-first labeling, no edge of

T thus needs to be charged more than twice, which proves our claim.

To prove (ii), build a complete binary tree f f on n leaves and associate the

points of the spanning path, in sequence, with the leaves of f f from left to right.

If the node-set of an internal node of 3 is stabbed by a query range q, then the

subtree rooted at that node must have two consecutive leaves ! and l' such that

the edge {x, x'} of the spanning path is stabbed by q, where N (l) = { x } and

474 B. Chazelle and E. Welzl

N (l ') ={x'}. By definition there are no more than t r (~) stabbed edges, hence

no more than t r (~) [log n] stabbed node-sets. Each stabbed node-set gives rise

to two visited nodes, which accounts for all of them, save the root.

As regards (iii), assign an arbitrary left-to-right order among the children of

every internal node of ~r, and let l ~ , . . . , I, denote the leaves of 3- from left to

right. Next, form the spanning path (x~, x2,. • . , x ,) of P, where {xi} is the node-set

o f li. I f the edge {xi, x++l} is stabbed by a range q, we charge this event to the

unique child of the nearest common ancestor v of l, and l++t that is also

an ancestor of l~ (or li itself). Since N (v) is necessarily stabbed by q, the child

which takes the charge is visited. Furthermore, such a node cannot be charged

twice. D

The problem is now to compute spanning trees of a low stabbing number. But

before doing so, we establish a simple lower bound on the minimum stabbing

number of a spanning tree. This tells us where to set our sights.

[,emma 3.2. Let (X, R) be a range space with a dual shatter function zr*(m) in

f l (md) , for d >- 1. Then, for any no, there exists a set P of n > no points in X such

that every spanning tree o f P has a stabbing number at least cn l-~/d, for some

constant c > O.

Proof Let a > 0 be a constant such that 7r*(m) >- amd for infinitely many integers

m > 0. For such a value of m, there exists a set Q of m ranges in R with at least

am d cells. Now let P be a set of n = [am d] points in X, no two of which lie in

the same cell of Q. Each edge of any spanning tree T of the points is stabbed

by at least one of the m ranges of R, therefore one range must stab at least

(n - 1) /m = ~~(n l - l / d) edges of T. []

From Lemma 3.1(iii) we conclude that under the conditions of Lemma 3.2 no

partition tree can have a stabbing number in o (n H / d) .

4. Computing Spanning Trees of a Low Stabbing Number

Let (X, R) be a range space with dual shatter function 7r*(m) = O(m a), for some

constant d-> 1. Let P be a set of n points in X and let Q be a muttiset of m

ranges in R. There exist two points p, p ' E P such that the set {p, p'} is not stabbed

by more than roughly re(log n)/n~/d ranges of Q (counting multiplicities). This

fact, which is proven below, is the main building block for constructing a spanning

tree of a low stabbing number. The idea is to connect p and p ' by an edge and

discard one of the points from further consideration. I f we iterated in this fashion,

we would obtain a tree T whose edges are guaranteed not to be stabbed by too

many ranges of Q. In turn, this would ensure that most ranges in Q stab only

few edges of T. This technique is similar to the greedy algorithms for computing

minimum spanning trees. To strengthen the result and ensure that all and not

just most ranges stab few edges, we use a weighting mechanism. Once the first

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 475

edge of T is chosen, we identify every range stabbing it and duplicate it. Any

edge chosen subsequently has a similar effect on all the ranges stabbing it,

including those already duplicated. This is a way of influencing the choice of

future tree edges: if a range q stabs a new edge of the tree, each pair of points

stabbed by q is, in effect, moved further apart (in the pseudodistance defined by

the number of ranges stabbing a pair of points) and made less likely to be

subsequently picked as a tree edge. The duplicating process increases the size of

the multiset Q geometrically, but the progression rate is kept fairly small thanks

to the edge-selection process. On the other hand, every time a given range stabs

a new tree edge it is duplicated. This also gives us a geometric progression, but

one of much higher rate. Consequently, no range can be duplicated too much

and the stabbing number is thus kept low.

Lemma 4.1. Let (X, R) be a range space with dual shatter function ~r*(m)=
O(md), for some constant d >- 1. Let P be a set of n points in X and let Q be a

multiset o f m ranges in R. There exists a pair of points in P which is not stabbed
by more than cm(log n) /n |/d ranges of Q, where c is a constant.

Proof. For x~ X, let R,. be the set of ranges in R that contain x, and, for

x, y ~ X (x ~ y), let Rxy be the set of ranges in R that stab {x, y}. The range space

(R , { R x l x e X }) is the dual of (X, R) and is therefore of finite VC-dimension

(Lemma 2.1). Because of Lemma 2.2 and the fact that R~y = (Rx w Ry)\ (Rx n Ry)

we find that the range space ~ = (R, {Rxy Ix, y e X, x # y}) also has finite VC-

dimension. This implies (Lemma 2.4) that for every e (0< e < 1) there exists an

e-net N of Q for ~, with]Nl<-b(1/e) log(1/e) , for some constant b. Since

rr*(m)= O(md), the setting e = c(Iog n) /n lid gives us 7r*(INt)<n, for some

appropriate choice of a constant c. By the pigeonhole principle, two points of P

must fall in the same cell of N, therefore the pair which they form cannot be

stabbed by more than em = cm(Iog n) /n I/d ranges of Q. []

The next result shows how to get the construction of the spanning tree started.

The technique is used in several different contexts, so we have expressed the

lemma in terms of a parameter function/3.

Lemma 4.2. Let (X, R) be a range space of finite VC-dimension and let f l(n) be

a decreasing function (for n > no) which tends to 0 as n goes to infinity. Assume
that, for any finite set P c_ X and any finite multiset Q c_ R, there exists a pair of

points in P which is not stabbed by more than IQI/3(IPI) ranges of Q. Given a set

P of n points in X, it is then possible to form a forest of trees with at least n/2
edges, such that every range of R stabs O(nfl (n / 2) + log n) edges.

Proof. Let P be a set of n points in X and let Qo be a minimum set of ranges

in R such that {P c~ q t q ~ R} = { P c~ q I q ~ Qo}. If (X, R) has VC-dimension d, we

know from Lemma 2.1 that [Qo[= O(na). Let {p, p'} be a pair of points in P that

is not stabbed by more than IQol/3(n) ranges of Q0. We make the pair {p, p'} the

first edge of our forest. The ranges of Q0 that stab this edge are not nearly as

476 B. Chazelle and E. Welzl

fresh and young as the others, so we duplicate each of them, thus producing a

multiset Q~. Next, we iterate the whole procedure with respect to the set of points

P\{p} and the new multiset of ranges. Note that to duplicate a range with

multiplicity/a, means to give it multiplicity 2tz. All in all, we iterate through the

procedure p = In /2] times. The size of the final multiset Q~ is at most

(1 +/3(n - p + 1))'lOof-< IOol e p~(#/2> --- tQot e"~(~/2).

Because of the duplication policy, no range can stab more than log IOp[edges.

The fact that IQol = O(rid) completes the proof. []

We conclude with the main result of this section: the existence of spanning

paths of a low stabbing number for range spaces of finite VC-dimension. This

existence is characteristic of finite VC-dimensionality.

Theorem 4.3. Let (X, R) be a range space with a dual shatter function 7r*(m) in
O(md), for some constant d >- 1. Any nonempty set of n points in X admits a
spanning path with the stabbing number O(n t-~/d log n) , / f d > 1, and O(log 2 n),

i f d = l .

Proof. Let P be a set of n points in X. From Lemma 4.1 we easily check that

the function fl(n) = c(log n) /n ~/d satisfies all the conditions of Lemma 4.2. In

particular, we derive the finite VC-dimensionality of (X, R) from the fact that

its dual shatter function is bounded by a polynomial (Lemmas 2.1 and 2.3).

Therefore, there exists a forest spanning at least half the points of P, with a

stabbing number in O(n 1-1/d log n). Keep one point per tree of the forest and

apply the same construction to the remaining points. Iterate on this process until

the number of points left falls below n H / d log n. Finally, connect the remaining

points via an arbitrary spanning path. This procedure produces a spanning tree

of P with a stabbing number at most proportional to

Y~ ((n/2k) HId log(n/2k)).
k ~ O

This gives O (n H / a l o g n) , if d > l , and O(log2n), if d = l . Lemma 3.1(i)

completes the proof. []

Theorem 4.3 not only characterizes the existence of good spanning trees, it

also shows how to construct them. First, compute a set Qo of representative

ranges (hopefully, in time polynomial in 7r(n), where ~r(n) is the primal shatter

function of (X, R)). If testing membership in a range is tractable, then we easily

construct a good spanning tree (along the lines of Theorem 4.3) in polynomial

time. Note that the duplication mechanism might generate weights of exponential

size. We can cope with that difficulty by using linear-size arrays to emulate long

computer words. From Lemma 3.1 we conclude to the existence of a balanced

binary partition tree with sublinear visiting number, if and only if the range-

searching problem is defined over a range space of finite VC-dimension. Recall

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 477

that this result is mostly of theoretical interest. Indeed, the visiting number is a

realistic complexity measure only if testing intersection between a node-set and

a query range can be performed in constant time (or at least reasonably fast).

Sometimes that problem alone might be almost as difficult as the original range-

searching problem (cL our discussion of simplex range searching in the next

section).

What about the complexity of range searching in the arithmetic model

[10], [22]? Recall that in that model, a data structure is a collection of precom-

puled weights, each associated with a certain subset of P, called a generator. The

query time is measured as the maximum, over all queries q e R, of the minimum

number of generators whose union is P c~ q. In this way, note that a data structure

essentially works for all weight assignments: if we change the weights of the

input points, all we have to do is re-evaluate the cumulative weight of each

generator and the new data structure will work just the same. A spanning path

of P provides the terrain for an efficient data structure. Preprocess the sequence

of weights along the path, following the method for the partial sum problem

described in [21]. With this preprocessing, the cumulative weight of any interval

along the spanning path can be computed in time O(oe(n)), where t~(n) is a

functional inverse of Ackermann's function (see the Appendix). The storage

requirement is O(n). Returning to our range-searching problem, we conclude

that any query can be answered in time O(o'a(n)), where or is the stabbing

number of the spanning path. Once again, bear in mind that this solution is

incomplete because it brushes aside the problem of computing the interval

decomposition. In the arithmetic model, however, none of that work would be

charged anyway. Therefore our solution, though unrealistic as it may be, can be

meaningfully compared against the best lower bounds obtained in the arithmetic

model. This is what we do next, right after summarizing our results below.

Theorem 4.4. Given a range space (X, R) of finite VC-dimension and a set P of
n points in X, there exists a partition tree for P with a visiting number O(n b log 2 n),

for some constant b < 1. In the arithmetic model, there also exists a linear-size data
structure with query time in O(nb ct(n) log n). The constant b can be set to 1 - I / d,

where d is the least integer >-1 such that the dual shatter function ¢r*(m) is

in O(ma). I f d = 1, then the visiting number (resp. query time in the arithmetic
model) is O(log 3 n) (resp. O(oL(n) log 2 n)). All these results are optimal within

polylogarithmic factors.

How do we justify our claim of optimality? By calling on Lemmas 3.1 and 3.2

in the case of partition trees. But what about the complexity of range searching

in the arithmetic model? It suffices to prove that for any d > 1 there exists a

range-searching problem whose dual shatter function ¢r*(m) is in O(ma), and

for which any linear-size solution has a worst-case query time of f l (n l - l /d / log n)

in the arithmetic model. (Notice that we can ignore the case d = 1.) But this lower

bound is a particular case of a space-time tradeoff proven in [3] for simplex

range searching in d-space over a semigroup: Given a collection P of n weighted

points in E d and a query simplex q, compute the cumulative weight of P c~ q. It

478 B. ChazeUe and E. Welzt

is easily verified that the dual shatter function of the primal range space is in
O(md).

Observe that the optimality result is stronger for partition trees than for the

arithmetic model. The reason is that in the former case the lower bound holds

for any range space of finite VC-dimension, whereas in the latter we must exhibit

one specific range space. We have already seen that no good partition trees exist

if the dimension is infinite. We can strengthen this result and prove that no

linear-size, sublinear query-time solution can exist in the arithmetic model. This

is actually an immediate consequence of Theorem 3.2 of [3]. Adapted to our

purposes, the theorem implies that given any range space of infinite VC-dimension

and any integer function p(n) (n < p(n) <- 2"), to ensure a query time of less than

cn/ tog(p(n) /n) requires the use of ~(p(n)) storage, where c is some appropriate

constant. This establishes the following characterization.

Theorem 4.5. In the arithmetic model a range-searching problem admits a linear-
size, sublinear query-time solution if and only if the underlying range space has finite
VC-dimension. Furthermore, if the dimension is finite, then there exists a partition
tree with a sublinear visiting number.

5. Simplex and Spherical Range Searching

We could use our previous results to establish new upper bounds on the complexity

of several geometric searching problems. Unfortunately, the stabbing numbers

of the resulting spanning trees exceed the lower bound of Lemma 3.2 by a factor

of log n. Lemma 4.2 is the keystone of the construction. Plug in a value for/3(n)

and a partition tree will automatically result. Finding an appropriate function I3

is what Lemma 4.1 is all about. We will see, however, that in the particular cases

of simplex and spherical range searching the geometry of the problems allows

us to finetune the bound of Lemma 4.1 by removing the factor of log n. This will

result in similar improvements for partition trees and arithmetic-model solutions.

The main idea is to study the properties of the pseudodistance defined by the

number of ranges stabbing a pair of points. (We cannot quite call this function

a distance because two distinct points may be at a distance 0 of each other.) We

will show that this pseudodistance satisfies packing properties similar to the

Euclidean metric.

Let Pl , p , be n points of E d, called sites, and let 7r~ ,7rm be a finite

collection of closed halfspaces (choosing them open would work just the same).

To avoid dealing with multisets, we assign a positive real number w~ (a weight)

to each half space ~r~. The sum of all the weights is denoted A. Given any two

points p and p', we define the pseudodistance 8(p, p') as the sum ~ w~, taken

over all halfspaces ~-~ that stab the pair {p, p'}. Note that A is the (finite) diameter

of the entire space. One trivial, yet crucial, property of 8 is that it satisfies the

triangular inequality.

Let H be the arrangement formed by the hyperplanes bounding the m half-

spaces. We assume that the m hyperplanes are in general position and that each

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 479

weight wi is equal to 1. Because of general position, any vertex of H is the

intersection of exactly d hyperplanes. Given a point p and a real r, we define

the ball B(p, r) as the set of vertices v of H such that 8(p, v) < - r. The volume of

B(p, r) denotes its cardinality. The pseudodistance ~ shares some fundamental

properties with the Euclidean metric. For example, Lemma 5.1 says that, for r

not too large, a bali of radius r has volume ft(rd). More important, Lemma 5.2

asserts that in the pseudometric 8 the two nearest sites are only O(A/n ~/~) apart.

A similar, well-known fact in E d is that if a set of n points has Euclidean diameter

A, then the Euclidean distance between the two nearest points is O(A/nl/d).

Lemma 5.1. Given m halfspaces in general position in E d, let p be a point of E d

and let r be a real such that 0 ~ r ~ m. I f the halfspaces are assigned unit weight,

then the volume of B(p, r) is at least ([d]) / d ! .

Proof. I f p lies on the boundary of some half spaces, we can always perturb p

toward the intersection of those halfspaces (which, because of general position,

is nonempty) without changing the pseudodistance between p and any point
of E d.

We now proceed by induction on d. Let gd(m, r) be the minimum volume of

any ball B(p, r) in E d with respect to any arrangement of m closed halfspaces

in general position. If d = 1, then we have gl(m, r) = [rJ. Assume now that d > 1.

Because of general position there exists a line L passing through p which does

not intersect any two bounding hyperplanes at the same point but still intersects

each of them. Let q~ , qm be the sequence of intersections between L and the

hyperplanes. The sequence is chosen so that the Euclidean distance between p

and qi is nondecreasing; thus, 8(p, q~)-< i. Let rr* be the bounding hyperplane

associated with qk and let Hk denote the arrangement formed by the (d - 2)-flats

or* c~ ¢r* (l ~ k). Each Hk is an arrangement of m - 1 unit-weight hyperplanes in

general position in E d-~, and the restriction of ~ to 7rk* is itself a pseudodistance

of the same type in (d - 1)-space. Therefore, using the monotonicity of gd-~(m, r)
in r and the facts that ~ satisfies the triangular inequality and that every vertex

lies on exactly d hyperplanes, we have

dgd(m,r)>-- Y~ gd_ l (m- - l , r - - k) > --
1--<k~ [rj

from which it follows that

E (d - l) ! ,
l~k~tr] d - 1

gd(m, r)>_--~, ~ =
u.0~k~trJ-1 d - 1 d [\ d]"

[]

Lemma 5.2. Given m weighted halfspaces and n points p~ ,p , in E d, if n is
large enough, there exist two points p~ and pj (i < j) such that 8 (p~, p~) <- 2 IdA~ n t / d],
where A is the sum of all the weights.

480 B. Chazelle and E. Welzl

Proof. We begin by assuming that each weight w: is equal to 1 and that the set

of halfspaces is in general position. If

(?)i (°) n d ! > d ' (5.1)

then there are two points Pi and p~ (i < j) such that both 8(p~, q) <- r and 8(p~, q) <--

r, for some point q ~ E d. The reason is that, otherwise, the n balls B(p~, r) would

be disjoint and, by Lemma 5.1, their combined volume would exceed the total

number o f vertices. From the triangular inequality it follows that 8(p~, pj)-< 2r.

We easily check that (5.1) holds for the assignment

r= [dmlnl/d],

provided that d->2 and m>-n 1/a. If d = l , the lemma is trivial. If d > l and

m < n ~/d, then there are more points than there are cells (i.e., d-faces) in the

arrangement defined by the m half spaces: indeed, for m not too small, the number

of cells is at most 2o<_k<_a (k) < - m a [7]. Because the halfspaces are in general

position we can always perturb the points away from the bounding hyperplanes

without altering the pseudodistances between points. Having done that, we now

find that at least two points belong to the same cell and therefore lie at a

pseudodistance 0 of each other. The proof is now complete under our restrictive

assumptions.

Let us now turn to the case of positive integral weights w l , . . . , w,,. The idea

is to make w~ copies of each rg and perturb them a little. Given the nature of

this operation we might as well assume that the original halfspaces are not

necessarily in general position (this will kill two birds with one stone). We perturb

the halfspaces in two steps. First, we move each bounding hyperplane by a small

random translation directed toward the outside of the half space. This will remove

all possible contact between sites and bounding hyperplanes. It will also guarantee

that no more than d hyperplanes can intersect in one point. To complete the

general positioning, we perturb each halfspace with a (very small) random

rotation. This rotation should be small enough so that no site leaves any halfspace

in the process. In this way, we achieve general position without changing the

pseudodistance between any pair of sites.

For the sake of generality we now consider the case of arbitrary positive real

weights. Pick some large integer k and replace each w~ by the integral weight

w~ = [kwiJ. Our previous generalization shows that there exist two sites p~ and

pj (i < j) such that 8'(p~,pj)<--2[dA'/nl/d], where A'=~<~_< m [kw~J and 8' is the

pseudometric 8 modified in the obvious way. Let J be the set of indices 1 such

that ~s stabs the pair {p~, Pi}. We have

E [kwtJ <--2[dA'/nt/a],
l~J

therefore

8(p,,pj)= Y, wl<-2[da/n~/~]+e(k),
I~J

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 481

where e (k) goes to 0 with 1/k. Since the inequality holds for arbitrarily large k,

the proof is now complete. []

In light of the previous section (especially Lemma 4.2), Lemma 5.2 allows us

to conclude to the existence of a spanning tree of P with stabbing number in

O(n~-~/d). Lemma 3.2 shows that this result is optimal. Since a simplex is the

intersection of d + 1 halfspaces, the spanning tree will have the same stabbing

number, up to within a constant factor (dependent on d), with respect to simplices.

This is a general principle which holds for any range space defined by a constant

number of set-theoretic operations over a given range space. Applying the ideas

leading to Theorem 4.4, we have the following result.

Theorem 5.3. Simplex range searching on n points in E d can be performed in

O(n~-l/d ct(n)) query time and O(n) storage in the arithmetic model. It can also

be solved with a partition tree with a visiting number O(n l-1/d log n). These bounds

are optimal within logarithmic factors.

This improves upon previous work on this problem [20], [9], [23], [24], [11].

It must be mentioned that the solutions just quoted also hold on a random access

machine. See also [8] for probabilistic variants. The best previous partition tree

[11] has a visiting number of O(na¢d-1)/~a~d-l~+l~+~), for any e >0 .

Let us now generalize our technique to spherical range searching. The range

space (X, R) now consists of X = E a and the set R of all closed d-balls. As

shown in [24] spherical range searching in E d is a special case of halfspace range

searching in E d+l. Theorem 5.3 is thus ready for action. Also, it is easy to see

that the range space is of finite VC-dimension, which makes the problem amenable

to Theorem 4.4. We will obtain better results, however, if we can treat d-balls as

we did halfspaces and stay in d-space. As halfspaces are bounded by hyperplanes,

d-balls are bounded by (d - 1)-spheres, which we call hyperspheres. The difficulty

with hyperspheres is that any d of them should not be expected to intersect

always, as was the case with hyperplanes in general position. This will necessitate

a revision of our volume-based argument.

We now have n sites p l , . . . , p, and m d-balls ~r~, . . . , 7r,, in E d. For con-

sistency, we assume that the sites themselves lie on a d-sphere S d in E a+~. This

does not really matter since S d can always be chosen very big. On the other

hand, it allows us to redefine each 7r~ as the intersection of S d with some hatfspace.

As usual, each "d-bal l" 7ri is assigned a real weight wi > 0. The reason for switching

to S d is to salvage the induction used in the proof of Lemma 5.1. The pseudodist-

ance 6 is still defined exactly the same way, that is, 6(p ,p ') is the cumulative

weight of all the d-balls stabbing the pair of points {p, p'}. Note that the sum of

the weights is no longer the diameter of the space (at least not always).

Let H be the arrangement formed by the m bounding hyperspheres, denoted

7r* ,7r* . For the time being we assume that the set of defining halfspaces is

in general position and that each of the m d-balls is assigned unit weight (wi = 1).

The ball B(p, r) is defined just as before, but its volume is not. The reason is

that the volume of S d might no longer be on the order of md. I f things went

482 B. Chazelle and E. Welzl

nicely, then every set of d hyperspheres would intersect in exactly two points

and the volume o f S d would be precisely 2 (d) . Unfortunately, we might have

much fewer intersections. To cope with this problem, we put H in normal form

by adding dummy vertices to it. A normalized arrangement consists of real and

dummy vertices. The volume of the ball B(p, r) is now defined as the number

of dummy vertices that it contains. But what are those dummy vertices, anyway?

We define the normalization procedure by induction on the dimension d. If

d = 1, an arrangement of m 0-spheres in general position on S t has precisely 2m

real vertices: we place a dummy vertex at each real vertex. Assume now that

d > 1. For each hypersphere 7r* in turn, consider the arrangement of (d - 2) -

spheres formed by intersecting ~r* with each It* (j ~ i). If the intersection is

empty, then we replace rr* by a new hypersphere that intersects ~* and leaves

the current set of intersections {~* n ~r* t 1 ~ l <-j (l ~ i)} in general position. The

replacement of ~* is called its i.substitute. We can now carry out the normalization

procedure recursively with respect to the new set of m - 1 (d - 2) - s p h e r e s of the

form ~r* c~ zr* (j # i). Note that this process may produce several dummy vertices

with the same location in S d. We easily verify that a normalized arrangement of

m h y p e r s p h e r e s i n S d has exactly 2 (d) d ! dummy vertices. (A simple interpreta-

tion of this number is that each sequence of d hyperspheres produces exactly

two dummy vertices.) Recall that dummy vertices do not affect the definition of

8 and that the volume of B(p, r) counts only dummy vertices. We are now ready

to revisit Lemma 5.1.

Lemma 5.4. Given a normalized arrangement of m d.balls in S a in general position,

let p be a point o f S d and let r be a real such that 0 <- r <- m. I f the d-balls are

assignedunitweight, t h e n t h e v o l u m e o f B (p , r , i sa t l eas t 2(Lr])." "
\ a /

Proof. By using a perturbation argument similar to the one used in the proof

of Lemma 5.1 we can assume that p does not lie on any of the m hyperspheres.

As usual, we now proceed by induction on d. Let ga(m, r) be the minimum

volume of any ball B(p, r) in S d. If d = 1, then we have 2m -> 2r vertices on S ~.

This implies that we can walk clockwise from p until we cross Jr] vertices, and

then do the same counterclockwise without interference. It follows that g~(m, r) ~-

2 [rJ (which is tight). Assume now that d > 1 and let p' be a point of S d which

maximizes the distance p = 8(p ,p ') . Because the hyperspheres are in general

position we can always assume that p' does not lie on any of them. If p - r, then

the volume o f B (p , r) i s that o f S d, that is, 2 (7) d , > - 2 ([d J) . " " " - - " Assuming now

that p > r, consider a circle (that is, the intersection of S d with a two-dimensional

flat of E d+l) which contains both p and p' and avoids any ~r* n zr* (i < j) . Think

now of a point q moving continuously along the circle from p to p' in some given

direction. The distance 8(p, q) goes from 0 to p by steps of +1 or -1 . Therefore,

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 483

q crosses at least [rJ distinct hyperspheres at points q ~ , . . . , q~, such that t~(p, qk) <-

k (1-<k<-l). The hypersphere rr* passing through each qk is now regarded as

the underlying space S d- ~ of an arrangement Hk of unit-weight (d - 2)-spheres.

To ensure that the arrangement consists of m - 1 spheres, we include all the

k-substitutes defined in the normalization of /4. Note that, by inheriting the

dummy vertices of H, the arrangement Hk is itself normalized. Let 8k be the

usual pseudodistance in S d-~ defined with respect to Ilk. It is interesting to

observe that because of the k-substitutes 8k is not, in general, the restriction of

to 7r* However, the g-distance between any two points of zr* cannot exceed

their ~k-distance. Using the monotonicity of gd_~(rn, r) in r and the fact that ~5

satisfies the triangular inequality, we have

gd(m,r)~-- ~, gd_ , {m- - l , r - - k)>- -2 ~ /tl\/Lr-k~/
~ k ~ , j ~k~t,J \ d - 1]

[]

Lemma 5.5. Given m weighted d-balls and n points p~ , . . . , p~ in Ed, i f n is large

enough, there exist two points p, and pj (i < j) such that tS(p, ,pj)-<-2[dA/nl/d],

where A is the sum o f all the weights.

Proof. It is almost identical to that of Lemma 5.2. We briefly sketch it. As usual,

we first assume that each weight wi is equal to 1 and that the set of d-balls is in

general position. Our first task is to normalize the arrangement of the hyper- (m)
spheres. Since the total number of dummy vertices is 2 d d! , satisfying the

inequality (5.1) again ensures the existence of two points p~ and pj (i < j) such

that both ~(p,, q) _< r and ~(pj, q) ~ r, for some point q e E a (Lemma 5.4). From

the triangular inequality it follows that ~3(p~, pj)<_ 2r. As we saw earlier, (5.1) is

satisfied for

provided that d - 2 and m >- n 1/d. If d = 1, then, for accounting purposes, let us

embed the supporting line in S ~. That way we have n fundamental intervals, one

of which, p~pj, contains at most 2 m / n endpoints of 1-balls. Obviously, ~ (p~, pj) -<

2re~n, which proves the lemma. Assume now that d > 1 and m < n ~/d. We need

to evaluate the maximum number f (d , m) of cells in an arrangement of rn

hyperspheres in S d, We have the recurrence f (1 , m) = 2 m and f (d , m) =

f (d , m - 1) + f (d - 1, m - 1). Using a path-counting method (e.g., [14]), we easily

find that, for m large enough,

m - l \ a
f(d,m)=2O~_k~a~, k]<-m <n.

484 B. Chazelle and E. Welzl

But if d > 1, f (d , m) is no less than the maximum number of cells in an arrange-

ment of m hyperspheres in E a. The remainder of the proof is identioal to that

of Lemma 5.2. []

From Lemmas 5.4 and 5.5 we draw the same conclusions as expressed in

Theorem 5.3. But to begin with we state a nice geometric result of independent

interest.

Theorem 5.6. Any set o f n points in E d admits a spanning path, only O (n l-I /d)

of whose edges can be stabbed by any d-ball (or halfspace). This upper bound is

optimal in the worst case.

Theorem 5.7. Spherical range searching on n points in E d can be performed in

O(n~-Uda(n)) query time and O(n) storage in the arithmetic model. It can also

be solved with a partition tree with a visiting number O(n 1- ~/ e log n). These bounds

are optimal within logarithmic factors.

6. Disk, Tetrahedron, and Polygon Range Searching

What happens if we have a more realistic model of computation such as a random

access machine or a pointer machine? Let us look at spherical range searching

in two dimensions, which is often called disk or circular range searching. Given

n points in E 2, count how many points lie inside a query circle. We can use the

partition tree of Theorem 5.7. But this requires implementing the operation: given

a query disk D and a node-set N(v) , check whether N(v) lies (i) entirely inside

D, (ii) entirely outside D, or (iii) neither of the above. This can be done by

building both the nearest- and furthest-neighbor Voronoi diagrams and prepro-

cessing them for fast point location [7], [13], [15]. Checking the furthest-neighbor

diagram will tell us about (i), while the nearest-neighbor diagram will handle

(ii), and therefore (iii). Each operation will cost O(log n) time, which will bring

the query time to log n times the visiting number of the partition tree, that is,

O(¢-ff log 2 n).

Here is an equivalent way of doing things, which illustrates the kinship between

Voronoi diagrams and convex hulls (see [7] for details on this relationship).

Following Yao [24], we lift the problem to E 3 and reduce it to intersecting a

query plane with a polygonal curve C = (p ~ , . . . , p.) : map the site (x, y, 0) to the

point (x, y, z), where z = x2+y 2, and map the query circle (x - a)2+ (y - b) : = r:

to the plane z = a (2 x - a)+ b (2 y - b)+ r 2. The sites contained in a query circle

are precisely those mapping below the plane associated with the circle. The

question is now: given a plane ~r, find all the edges of C split by ~r. To do so,

we set up a complete binary tree of n leaves. The leaves are associated with

P l , - - . , P, , from left to right. Each internal node v of the tree is associated with

the set S(v) consisting of all the points whose corresponding leaves are descen-

dants o f v. The idea is to store in v a pointer to the convex hull of S(v) . Using

a linear-size data structure [5] we can check if a query halfspace stabs the set

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 485

S(v) in O(log n) time. Using straightforward arguments, we conclude to the

existence of an O(n log n)-size data structure for computing all k intersections

between C and a query plane in time O ((k + 1) log 2 n).

Theorem 6.1. Disk range searching on n points can be performed in O(x/-ff log 2 n)

query time and 0 (n log n) storage on a random access machine or a pointer machine.

Let us now go up one dimension and consider simplex range searching in

3-space (also known as tetrahedron range searching). Using the partition tree of

Theorem 5.3, we need the following primitive: given a finite set S of points in

3-space and a tetrahedron q, determine whether S lies entirely inside q, or entirely

outside q, or neither of the above. As it turns out, this is not so easy to decide.

Instead, we simply check whether S is stabbed by any of the halfspaces bounding

q, which can be done in logarithmic time and linear space [5]. If the answer is

no, then we can immediately answer the previous question. Otherwise, we cannot

conclude, but it is safe to proceed down the recursion anyway, since the stabbing

numbers of the four planes add up to O(n2/3). We easily derive the following result.

Theorem 6.2. Tetrahedron range searching on n points can be performed in
O(n 2/3 log 2 n) query time and O(n log n) storage on a random access machine or

a pointer machine.

Finally, we consider the polygon range-searching problem. Given a set P of

n weighted points in E ~ and a query convex k-gon K, compute the cumulative

weight of P c~ K. We still assume that the underlying model of computation is a

random access machine or a pointer machine. Let Pl , p, be the input points

ordered along the spanning path provided by Theorem 5.6. This gives us an n-gon

II which, unfortunately, might not be simple. It is obvious, however, that the

diagonal-switching trick of the traveling salesman problem will make the polygon

1I simple without increasing the stabbing number. This idea is developed in [8]

to which we refer the reader for details. The gist of the method is to take all

intersecting edges (a, b) and (c, d) and replace them by either (a, c) and (b, d),

or (a, d) and (b, c), whichever choice keeps the polygonal line connected.

It has been shown in [4] that ray-shooting in II can be performed in O(log n)

time, using O(n) space. (Ray-shooting means finding the first hit of a ray directed

toward II.) This allows us to find the intersections o f l I and K in time proportional

to kx/-ff log n, which gives us the desired interval decomposition of the vertices

of II. From there, we complete the computation in an overall time of

O(kv/-ffiog n), This is a simple exercise, so let us move on. The factor kv/-ff is

an asymptotic upper bound on the maximum number of intersections between

the boundaries of II and K. We show below that a clever choice of II can limit

this number to O(x/k--ff).

Let k be a fixed integer between 1 and n. We subdivide the set of n points

into k subsets of size In~k] or less. The first subset includes the [n / k] leftmost

points, the second subset includes the points whose x-coordinates have ranks

ranging between I n / k] + 1 and 2In~k] , etc. Apply Theorem 5.6 to each subset

and turn the polygonal curves into simple polygons C ~ , . . . , Ck.

486 B. Chazelle and E. Welzl

We claim that the edges of any convex k-gon K can stab only a total of

O(x/-k-ff) edges among C 1 , . . . , Ck. Why is that so? Imagine k - I vertical lines

separating the Ci%. We can cut up edges of K so as to fit between two consecutive

vertical lines without introducing more than 2 (k - 1) new edges. Then we can

ray-shoot each edge separately and collect the pieces in the obvious way. Adding

partial sums, as described in Section 3, provides the desired answer in time

O(x/-kn log n). Note that the convexity of K is used only to keep the number of

preprocessing cuts small. The same method works if, say, K is monotone in a

fixed direction. By building [log nJ data structures, one for each value of k = 2' -<

n, we achieve the following result.

Theorem 6.3. Polygon range searching on n points (with convex k-gons as queries

and k <- n) can be performed in O(x/-~ log n) query time and O(n log n) storage
on a random access machine or a pointer machine; k is the number of vertices of

the convex query polygon. The same result holds if the polygon K is monotone in a
fixed direction. I l k is fixed once and for all, then the storage requirement is only 0 (n).

We have shown that for a fixed value of k, a set of n points in E 2 admits a

spanning tree of stabbing number O(~k-~) with respect to polygon range search-

ing. We can generalize the proof of Lemma 3.2 and prove the optimality of this

result in the asymptotic sense. We construct a set of n points by carefully arranging

k building blocks. A building block is any set affinely equivalent to the m 2 vertices

of an m - x - m square grid, with m = [nv~-~/kJ. Given a direction l and a small

angle 0, we define an (l, O)-block as a building block whose diagonal has direction

i and whose grid axes form an angle 0 (Fig. 1).

Now take a regular 9k-gon centered at the origin and pick k consecutive edges

in the northeast quadrant. On each edge chosen, place a small (I, 0)-block, where

! is the direction of the edge and 0 is a very small angle, say, 7r/9 9'. The block

should extend over, say, a ninth of the edge (Fig. 2). We define the canonical

lines of the grid { (i , j) tO<- i , j<-m-1} to be the m + l horizontal lines y- -

i - ½ (0 <- i < m) and the m + 1 vertical lines x = i - ~ (0 <- i -< m). The two extreme

vertical and horizontal lines form a square enclosing the grid, which we call its

box. By affinity, every block has a box and a set of canonical lines.

l

Fig. 1. An (l, O)-btock is affinely equivalent to an m - x - m grid: the angle between its axes is 0 and

its tong diagonal is parallel to / .

Quasi-Optimal Range Searching in Spaces of Finite VC.Dimension 487

Fig. 2. The set of sites is obtained by arranging k blocks along a regular convex polygon.

Let T be a spanning tree of the set of km 2 sites. Consider the sites of one of

the blocks. Each of them is entirely separated from the other sites by canonical

lines. On the other hand, each site is connected to at least one other site by an

edge of T. This implies that the 2(m + l) canonical lines of the block have a total

of at least m~/2 intersection points with T. By the pigeonhole principle, one

canonical line intersects at least m/5 edges of T (for m large enough). Note that

the intersections lie in the box of the block. Let us mark this canonical line and

do the same for each block. The crucial observation is that these chosen lines

form the edges of an unbounded convex k-gon K, each line contributing exactly

one edge. Furthermore, all the intersections with T associated with each canonical

line happen to lie on its contributed edge. This implies that K stabs at least ink~5

edges of T, which is on the order of v/k-n.

Theorem 6.4. Let k and n be two integers, with k <<- n. Any set of n points in E 2

admits a spanni;,~g path, only O(v/-~) o f whose edges can be stabbed by any given

convex k-gon. This upper bound is optimal in the worst case.

7. Conclusions

In our entire discussion we have implicitly assumed that each operation on

weights could be performed in constant time. This is not the case in the reporting

version of the problems, where the cumulative weight of P n q is the set itself.

It is easy to see, however, that all our upper bounds hold just the same in the

reporting case: the only adjustment to be made is adding a term O (I P n qt) in

the expression of the query times.

We have carefully evaded the issue of preprocessing. It is elementary to check

that all the data structures given in this paper can be constructed in polynomial

time. This includes--and we add this as a word of c a u t i o n I t h e manipulation of

large numbers required by the weighting mechanism. The real challenge is to

determine how efficiently the construction can be made to be. Recently, Matou~ek

[12] has given efficient algorithms for the two-dimensional case. Another interest-

ing problem is to determine whether the algorithms of Theorems 5.3 and 5.7 can

488 B. Chazelle and E. Welzl

be por ted to a r a n d o m access machine . The difficulty here is to de te rmine efficiently

the edges o f the par t i t ion tree that are cut by the query. By using s t andard

techniques we can reduce this p rob lem to that of de tec t ing whether a fixed convex

p o l y t o p e intersects a query hyperp lane , using only l inear (or quas i - l inear) space.

To do this in logar i thmic or po ly ioga r i thmic t ime in d imens ion h igher than three

seems elusive. F ina l ly , the ques t ion of p rov id ing spa c e - t ime t radeot ts match ing

the lower b o u n d s o f [3] remains open.

Acknowledgments

W e wish to thank the two a n o n y m o u s referees for their he lpfu l suggest ions which

h e l p e d to improve the p resen ta t ion of this paper .

Appendix

Below is a def ini t ion o f the inverse Acke rmann funct ion , de no t e d a (n) [17]. Let

A (i , j) be the funct ion def ined recurs ively as fol lows:

A (O , j) = 2 j for any j - > 0 .

A (i , O) = O a n d A (i , 1) = 2 for any i - 1 .

A (i , j) = A (i - l , A (i , j - 1)) f o r a n y i - > l and j > - 2 .

We define a (n) = rain{i] i >_ 1, A(i , i) > n}. Fo r any m -> n -> 1, we also define the

funct ion a (m , n) by a (m , n) ~ m i n { i l i > _ 1 ,A(i , 4 [m / n]) > l o g n}. Yao [21] has

given a l inear-s ize da ta s t ructure for par t ia l sum computa t ion : each query is

answered in t ime O (a (c n , n)) , where c is an a p p r o p r i a t e constant . We easily

check that a(cn , n) = O (a (n)) , therefore we are just i f ied to say that the query

t ime is O (a (n)) .

References

1. Alon, N., Haussler, D., Welzl, E., WSginger, G. Partitioning and geometric embedding of range

spaces of finite Vapnik-Chervonenkis dimension, Proc. 3rd Ann. ACM Syrup. Comput. Geom.
(1987), 331-340.

2. Assouad, P. Densit6 et dimension, Ann. Inst. Fourier (Grenoble) 33 (1983), 233-282.

3. Chazelle, B. Polytope range searching and integral geometry, Proc. 28th Ann. tEEE Syrup. Found.
Comput. Sci. (1987), 1-10. To appear in J. Amer. Math. Soc.

4 Chazelle, B., Guibas, L. J. Visibility and intersection problems in plane geometry, Proc. 1st Ann.
ACM Syrup. Comput. Geom. (1985), 135-146. To appear in Discrete Comput. Geom.

5. Dobkin, D. P., Kirkpatrick, D. G. Fast detection of polyhedral intersection, Theoret. Comput.
Sci. 27 (1983), 241-253.

6. Dudley, R. M. Central limit theorems for empirical measures, Ann. Probab. 6 (1978), 899-929.
7. Edelsbrunner, H. Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.

8. Edelsbrunner, H., Guibas, L. J., Hershberger, J., Seidel, R., Sharir, M., Snoeyink, J., Welzl, E.

Implicitly representing arrangements of lines or segments. Proc. 4th Ann. ACM Syrup. Comput.
Geom. (1988), 56-69.

Quasi-Optimal Range Searching in Spaces of Finite VC-Dimension 489

9. Edelsbrunner, H., Welzl, E. Halfplanar range search in linear space and O(n °695) query time,

Inform. Process. Left. 23 (1986), 289-293.

10. Fredman, M. L. Lower bounds on the complexity of some optimal data structures, SIAM J.
Comput. 10 (1981), 1-10.

11. Haussler, D., Welzl, E. Epsilon-nets and simplex range queries, Discrete Comput. Geom. 2 (1987),

127-151.

12. Matougek, J. Spanning trees with low stabbing numbers, manuscript, 1988.

13. Mehlhorn, K. Data Structures and Algorithms 3: Multidimensional Searching and Computational
Geometry, Springer-Verlag, Heidelberg, 1984.

14. Monier, L. Combinatorial solutions of multidimensional divide-and-conquer recurrences, J.

Algorithms 1 (1980), 60-74.

15. Preparata, F. P., Shamos, M. 1. Computational Geometr); Springer-Verlag, New York, 1985.

16. Sauer, N~ On the density of families of sets, J. Combin. Theory Ser. A 13 (t972), 145-147.

17. Tarjan, R. E~ Efficiency of a good but not linear set union algorithm, Z Assoc. Comput. Geom.
22 (1975), 215-225.

18. Vapnik, V. N., Chervonenkis, A. Ya. On the uniform convergence of relative frequencies of events

to their probabilities, Theory Probab. Appl. 16 (1971), 264-280.

19. Welzl, E., W/Sginger, G. On shatter functions of range spaces, manuscript, 1987.

20. Willard, D. E. Polygon retrieval, SIAMJ. Comput. 11 (1982), 149-165.

21. Yao, A. C. Space-time tradeoff for answering range queries, Proc. 14th Ann. ACM Syrup. Theory
Comput. (1982), 128-136.

22. Yao, A. C. On the complexity of maintaining partial sums, SIAM J. Comput. 14 (1985), 277-288.

23. Yao, A. C., Yao, F. F. A general approach to d-dimensional geometric queries, Proc. 17th Ann.
ACM Syrup. Theory Comput. (1985), 163-168.

24. Yao, F. F. A 3-space partition and its applications. Proc. 15th Ann. ACM Syrup. Theory Comput.
(1983), 258-263.

Received August 20, 1988, and in revised form January 15, 1989.

