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PREFACE.

An earlier report [ 1 ] describes the application of a quasi-optimum

control technique to the design of a control system for a three degree-of-

freedom motion simulator. This technique, developed under this contract,

NAS 2-3636 and an earlier contract, NAS 2-3648, was applied to design

a complete six degree-of-freedom motion simulation in the investigation

described herein. This report contains the analytical results and simulated

time histories that would be obtained with various, parameter settings for

several types of missions. To facilitate experimental evaluation of the

control law, a description and listing of .the washout subroutine is given

in Appendix IV.

The authors are grateful for the assistance provided by Mr. J. G.

Douvillier and by Dr. E. C. Stewart, who served as Contract Technical

Monitor. '
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1. INTRODUCTION

In controlling the motion of an aircraft, the pilot uses both visual and kinesthetic
•

cues. Visual cues provide information about the position of the aircraft with respect

to a suitable frame of reference; kinesthetic cues provide information about the motion ,

(velocity, acceleration) of the aircraft with respect to the reference frame. The

pilot processes the data from the visual and kinesthetic sensors in a sophisticated (and

little understood) manner in such a way that his action upon the aircraft controls ,

causes the aircraft to behave as he desires.

Since the primary objective of the pilot is to control the position of the aircraft,

it is reasonable to suppose that the pilot relies primarily upon visual cues; kinesthetic

cues, although very useful, are not indispensible. Presumably, this is the reason that

fixed-base (non-moving) simulators, which provide accurate visual cues, (but no kinesthetic

cues) have been used with great success in a variety of aircraft and space applications.

Owing to the absence of motion cues in fixed-base simulators, however, the ex-

perience of the pilot in such simulators is not identical to what he would experience in

an actual aircraft, and hence there are many instances in which the pilot's performance

is not the same as it would be in an actual aircraft, and in which he may complain

of the lack of fidelity of the simulation. It is generally believed that in the absence of-

motion cues, the pilot after an initial training period in the simulator, alters his methodi

of mental data processing in an attempt to maintain his performance at the level he would

achieve in the actual aircraft. In effect, the pilot synthesizes or interpolates the in-

formation he expects from his kinesthetic sensors. To accomplish this, however, requires

greater mental effort; accordingly, the pilot becomes more rapidly fatigued, and he

generally describes the task as being more difficult to perform.

The recognized shortcomings of fixed-base simulators hove led to the increasing

use of simulators which can move in response to the pilot's commands. The introduction

of additional motion into simulators, however, has not alleviated all the problems of fixed-

base simulators. There are even situations in which the pilot indicates preference for a



fixed-base simulation over a moving-base simulation. The major difficulty with

moving-base simulators is that their motion is generally not identical to that of

the aircraft being simulated, because the simulator is confined to a physical

volume which is much smaller than the volume in which the aircraft is free to maneuver
'«

(The exception to this general situation is the so-called case of "one-to-one" motion,

in which the pilot's task and aircraft are selected so that the aircraft could be maintained

within a volume not larger than the volume available for motion of the simulator. An

example of such a situation is a helicopter with a hovering task.)

It is evident that fidelity of the motion cues can be increased by increasing

the volume in which the simulator is free to maneuver. The important question in regard

to design of motion simulators is thus how to make most effective use of a given

maneuverability volume.

To make effective use of the volume in which the simulator moves , some knowledge

of the nature of the kinesthetic sensors of motion is required. It is generally believed

that the principal sensors of motion in the human being are in the labyrinth structure of

the ear, and comprise the semicircular canals and the otoliths. The former are believed

to act in the manner of rate gyros to sense the angular velocity of the pilot's head and
•
.the latter act like linear acceleromerers to sense the specific force at the pilot's head. Motion

of the body is also sensed as a result motion of the organs in the abdominal cavity and due to

pressure on the body surface (the "seat of the pants"), but it is believed that the motion cues

derived from other than the ear labyrinth are relatively insignificant.

Various studies have been made to determine the characteristics of the labyrinthine

sensors and it has been concluded that these are fairly complex nonlinear dynamic systems.

Moreover, the characteristics of the physical sensors themselves, even if obtainable,

would not be adequate to determine how the human being senses motion, because the

signals from the sensors are processed by the sophisticated digital computer which is the

brain. Sensor models have been constructed to account for the signal processing in the

brain, but these are not very well established. Hence, for the purpose of this investigation,

we have assumed that the motion cues of significance are simply angular velocity and

specific force. Each are vector quantities and are refered to a set of reference axes fixed



in the pilot and moving with him.

The ideal motion simulator would produce in ti.3 simulator cab the same angular

velocity vector and specific force vector as would result in the aircraft in response

to the pilot's control inputs. The difference between the angular velocity vector of

the simulator and the angular velocity vector in' the aircraft is an error as is the dif-

ference between the specific force vectpr in the cab and in the aircraft. .If these.

error vectors are both zero, the motion simulation is perfect ("one-to-one"). The

objective of the simulator control system design is to. keep these errors as small as

possible.

One of the difficulties in designing an optimum simulator control system is that there

are two (2) vector-valued error components (angular velocity and specific force) or a

total of 6 scalar error signals. It is thus necessary to devise a single scalar measure

of error to account for the 6 components which may be present. Since the typical

pilot is usually able to discriminate between types of motion simulations and can assess

their relative performance, it is possible that such a measure of error exists. If it does

exist, it may depend on the particular task, the pilot's experience, the nature of the

visual cues, and many other factors. Hence determination of the "natural" measure

of error, i.e. the measure of error which governs the pilot's subjective evaluation of

simulator quality, is unrealistic. The only feasible approach is to use a "reasonable"

measure of error. The approach adopted in this study is to regard the total measure of

error as the weighted sum of two scalars, one representing specific force, and one re-

presenting angular velocity, i.e.

E =M +k M

where M is the contribution to the total error due to errors in the specific'force vector,
P

-'M ' is the contribution due to errors in the angular velocity vector and k is a constant
(x) _^ "

"whicrrdeteTmineTThe importance'of angular velocity relative to specific force. The

scalars M and M are determined from the corresponding vectors on the basis of the

following empirical considerations:



The direction of the error is significant. For example, if the true

specific force is 0.5 g and the simulated specific force is 1.5 g

(i.e. the error magnitude is 1 g), this is less serious than when the

simulated specific force is - 0.5 g (i.e.^the error is still 1 g in

magnitude but the simulated specific force is in the opposite direction

to the true specific force). :

The specific force in the vertical direction when the aircraft is not

accelerating vertically is 1 g (which is also the specific force ex-

perienced by a person at rest on the ground). One is not normally

aware of this vertical specific force when standing. In other words,

it is reasonable to assume that the brain "biases-out" the normal 1 g

component of vertical specific force, and hence that the vertical

specific force sensation is the actual specific force less 1 g.

Based on these considerations several alternative analytical expressions for the

measure of error in specific force and angular velocity have been developed and are

described in Section 2. 4-

Using these error measures and the methods of optimum control theory, a set of

control laws were devised.



2. ANALYSIS

2.1 Description of Simulation Problem

In the operation of a moving-base flight simulation, a pilot manipulates a set of flight

controls and the simulator cab in which he is situated moves in a manner which tends to re-

produce the sensation of motion which the pilot would experience if he were in the actual

aircraft and he manipulated the flight controls in the same manner. Ideally, the motion of

the cab should be identical to that of the aircraft. Under conditions which permit t'he cab

motion to reproduce the aircraft motion perfectly ("one-to-one" simulation) the sensation of

motion in the simulator is the same as the sensation of motion in the actual aircraft. Generally,

however, simulators are used to simulate flight tasks in which one-to-one simulation is physically

impossible because the cab is confined to remain inside a fairly small physical volume. The

simulator control system thus must be designed, not to reproduce the motion of the aircraft

being simulated, since this is impossible, but rather to provide a sensation of motion which is

as close as possible to the sensation of motion in the actual aircraft, but without causing the

cab to exceed the physical limits of its motion.

The moving-base simulator of concern in this investigation is of the type currently in use

at the Ames Research Center; the cab is built into a gimbal system which provides three

rotational degrees of freedom and the whole gimbal assembly is in turn provided with three

translational degrees of freedom by a system of three mutually perpendicular tracks. (See

Figure 2-1). Each degree of freedom of the cab motion can be independently controlled by

the cab arive system. A digital computer is used to simulate the dynamics of the aircraft

which permits the dynamics to be modeled to any degree of accuracy desired. The inputs to

this computer are the flight commands resulting from the pilot's manipulation of the flight

controls in the cab. The computer outputs are the state variables (velocity, angular rotation,

and etc.) describing the motion of the aircraft which in turn are used by the simulator control

_tp_cornpjjte_the^signals-needed-to-drive'the""Cdb motion. It is the design of the simulator control

that is the subject of this study. Figure 2-2 shows a functional block diagram of the overall

simulator system.
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Figure 2-1

The Ames All-Axis Motion Simulator
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Since each degree of freedom of the cab is driven by an electromechanical system

which is designed as a high-speed position servo, it is reasonable to assume that the position

(i.e. gimbal angles for rotational degrees of freedom, translations along tracks for trans-

lational degrees of freedom) of the cab is identical to the drive system position commands,

so Ibrig as the latter do not exceed the motion limits. If the motion limits are exceeded,

mechanical switches are operated to engage a system designed to arrest the cab motion safely.

When the safety switches are engaged, the simulation is ended, the cab is returned to a

neutral position, and, after various safety checks are made, the simulation is again initiated.

To avoid engaging the safety switches, the drive system has an electrical system designed to

anticipate the engagement of the mechanical safety system and to cutoff power before cab

motion causes the latter to be engaged. Accordingly, from the operational viewpoint, the

simulator control should be designed so that the cab drive command signals do not cause either

the electrical or mechanical safety limits to.be exceeded.

Because of the physical construction of the simulator, the position of the cab at any

instant of time is approximately described by the three translations of the movable gimbal

structure on the system of rails, and three gimbal angles. These quantities and their time

derivatives (twelve in all) are a set of state variables natural to the motion of the cab. They

are, however, not particularly well-suited for describing the sensible motion of the aircraft.

For the latter, a ,more suitable set of state variables are the components of the vehicle linear

and angular velocity vectors resolved along a set of axes fixed in the aircraft at the pilot's

station (6 quantities) and 3 angles relating the position of these body axes to a set of reference

axes. With regard to the sensation.of motion, the position in space of the aircraft is not im-

portant. For that matter, velocity, per se, is not important; it is acceleration that is re-

sponsible for sensation of motion: linear translation at constant velocity does not contribute

to the sensation of motion. This fact is particularly convenient with regard to simulation of

the forward motion of the aircraft. Under quescent conditions (cruise, for example) the air-

craft moves at constant forward velocity which is not sensible, except through visual reference.

Only changes from this quiescent state are detectable; consequently, the constant forward

component of velocity is not required in the simulation. As a consequence, the simulation is

accomplished by subtracting the forward component of velocity of the aircraft from the total



velocity vector before driving the cab. The effect can be visualized by the assumption that

the aircraft flies in a wind tunnel in which the air mass moves at a constant velocity equal

to that of the forward speed of the aircraft. When the thrust of the engines is adjusted so

that the aircraft is stationary with respect to the wind tunnel, the situation is aerodynamically

identical to the motion of the aircraft in a windless airmass but with constant forward velocity.

In-consequence of these considerations, the control system for the motion simulator in

a situation in which one-to-one motion simulation is possible has the form shown in Figure

2-3. The aircraft acceleration and angular velocity vectors, in body axes are transformed

to accelerations of the cab along its axes of travel and to cab gimbal rates, respectively.

The former are integrated once to provide the velocity components'of the cab. After sub-

tracting the constant forward speed v of the aircraft, the velocity components are again

integrated to produce the position commands for the linear drive system. Concurrently, the

cab gimbal rates are integrated once to yield the cab gimbal angle commands which are used

to drive gimbal servos.
i

When the task or set of tasks to be simulated is such that one-to-one motion is not per-

missible, however, the linear and angular drive signals cannot be generated as shown in

Figure 2-3. Instead, it is necessary to "wash-out" some of the aircraft motion before generating

the cab servo drive signals. The placement of the wash-out system (or "wash-out circuits")

is shown in Figure 2-4. .

In the design of the wash-out circuits, three techniques are conventionally used: scaling,

high-pass filtering, and "residual tilts". Scaling consists of multiplying each component of the

vector acceleration or angular velocity by a constant scale factor less than unity. This causes

an attenuated sensation of motion, but the sensed directions of the vectors in the simulator are

the same as in the aircraft. High-pass filtering is employed to eliminate the d-c and low-

frequency components of acceleration which lead to large excursions. To compensate for the

loss of sustained (i.e. low-frequency)accelerations due to high-pass filtering, residual tilts

are sometimes used. The idea here is to use the components of the gravity vector in the

forward and lateral directions which result when the cab is tilted to simulate the sensation of

sustained acceleration in these directions.
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The amount of scaling, filtering and tilting which is employed in a particular sim-

ulation is currently determined empirically, using a combination rules-of-thumb developed

out of prior experience and adjustments on the simulation of an aircraft in an actual mission.

It has been generally recognized that this design technique may not use the capabilities

of the simulator to the fullest extent: that a more systematic approach might provide greater

fidelity of motion within the confines of the same volume, or might be useful for a larger

variety of tasks. The purpose of this investigation is to study the possibility of using the

techniques.of optimum control theory as a method of systematizing the design of improved

wash-out systems.

If a single control system is to be used for a broad spectrum of tasks, it would appear

that the desired performance is essentially nonlinear (with respect to the functional de-

pendence between the wash-out and the aircraft motion). For those tasks or phases of a

task in which one-to-one simulation is possible, one-to-one motion should be used. When

one-to-one simulation is not possible, the minimum amount of wash-out which keeps the

cab within its permissible motion limits should be used. The basic question in designing

the control system is: What aspects of the aircraft motion must be followed accurately by

the simulator, and what aspects can be sacrificed without degrading the realism of the

simulation? It is generally accepted that one of the most important factors governing the

realism of a simulation is the kinesthetic sensation of motion. Although there is a continuing

discussion of what "sensed" quantities really are, a consensus of the opinion is that the linear

acceleration and the angular velocity, as measured with respect to axes fixed in the pilot

are the most pertinent factors sensed by human kinesthetic sensory organs. Thus, simply

stated, the control problem is to endeavor to find a control law which, while keeping the

cab excursions within specified physical boundaries, minimizes the errors in the motion

sensations. If a suitable cost or penalty function of the errors in the motion sensations can be

determined in addition to an analytical model for representing the errors in the motion sen-

sation, then it is possible to apply the optimum control technique. Since this approach is

considered the most likely candidate to yield the "best" simulator control law, it was adopted

for this investigation.

12



During the initial phase of the investigation of applying the quasi-optimum control

technique to the wash-out circuit design (1968-1969), a relatively simple case of one-degree-

of-freedom longitudinal motion was considered to establish the feasibility of using the technique.

In the present phase of the investigation, the general six degree-of-freedom motion

simulation is considered. In order to treat the six degree-of-freedom problem realistically,

it was necessary to modify the analytical approach used inthe first phase because the earlier

approach led to hopelessly complicated calculations in the more realistic problem. The problem

formulation in the present case is substantially more realistic in that a trade-off between the

angular and the linear motions is allowed to utilize the effect of "residual tilt" and that the

washout control system is independent of the aircraft dynamics, although "good" setting of the

parameters in the wash-out circuit may depend on aircraft dynamics as well as the specific

mission.

In the following subsections, the different phases of the analysis leading to the simulator

control design are discussed in detail and these include the following:

, Definition of the various coordinate systems and their mutual transformations.

. Formulation of the problem in a manner suitable for application of the optimum
control technique including a discussion of the notation and pertinent quantities.

Development of various cost or penalty functions of the errors in the sensed
motion which provide a realistic measure of the "goodness" of the performance
and, on the other hand, are mathematically tractable as a performance indices
for the optimum control technique.

. Application of the quasi-optimum control technique to obtain the simulator
control law.

Discussion of an implimentation scheme for realizing the simulator control

design.

13



2.2 Coordinate Systems and Transformations

There are two sets of axes of significance in the motion simulction: a set of "inertial "

axes fixed with respect to the ground and a set of axes fixed in the vehicle and moving

; with it:

(1). - Inertial Coordinates - The assumed "inertial" reference frame is a cartesian co-

ordinate system with its origin at the center of the moving-base simulator track assembly

and oriented so that each axis coincides with one direction of translational motion of the

simulator. The positive directions of the x, y, z axes are chosen, respectively, to coincide

with forward, right side and downward motions. The translational motions of both the cab

and the aircraft are defined with respect to the same inertial coordinate system.

(2) Body Coordinates - The body axis forms a cartesian coordinate system fixed with

respect to the vehicle where the origin is located at the pilot's seat in the cockpit of the

vehicle. The directions of the axes are in the same sense as the inertial reference (i.e.

forward, right, and down), but with respect to the pilot rather than ground. Since there are

two vehicles, the simulator cab and the actual aircraft, there are correspondingly two sets

of body coordinates. The two sets of body coordinates are illustrated in Figure 2~5 where

subscripts "A" and "c" are used to denote "aircraft" and "cab", respectively.

The displacements of the vehicles from the inertial frame are denoted by position vectors

r. and r * . The angular orientations of the vehicles are described by the Euler angles

(yaw, pitch, and roll) relating each respective system of body coordinates to the inertial co-

ordinates. Any vector defined in the inertial coordinates can always be transformed into

either of the systems of body coordinates by means of an orthogonal direction cosine matrix.

Elements in the direction cosine matrix are functions of the Euler angles where the particular

functions depend on the sequence of rotations from-the inertial directions to the directions of

the body axis that have been adopted.

In this report, variables with an arrow (-») on top denote physical vectors with magnitude
and direction (velocity, force, and etc.) whereas variables with a bar ( - ) on top merely
denote column vectors with three elements where the three elements may not be the x, y, z
components of a physical vector.

14



Cab Body
Coordinates

Aircraft Body
r. Coordinates

Forward

Inertial Coordinates

Right Side
Downward

Figure 2-5

Coordinate Systems
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In accordance with the physical structure of the existing gimbal assembly, as

shown in Figure 2-6, the angular orientation of the cab is described by the three gimbal

angles:

Outer gimbal: Pitch ( 0)

Middle gimbal: Yaw(ij))

I nner gimbal: Roll ((f>)

Thus, for computational convenience, the Euler angle transformations in this report for

both the cab and the aircraft are defined according to the following sequence of rotations:

(Pitch — Yaw — Roll). In mathematical notation, let

*<

— Euler angle vector

vhere

n. — a vector in the inertial coordinate system

l^. = the transformed vector of n. in the body coordinate system

i = A for the aircraft

t = c for the cab

then the vector ^. is obtained from n_by the transformation
TJ i,

M . = C ( X . ) n
U L> Is

where the transformation matrix C(x. ) is the orthogonal direction cosine matrix given by
is

(2.1)

cos if). cos 0 .

sin 4>. sin 0. - sin jf). cos <p. cos 0

cos <t>. sin 0. +sin 0. sin if). cos 0.
_ is i/ i/ t> i/

sin i|>.r - cos A sin 0.r

cos <J>. cos 41. sin <t> cos 0. + cos 0. sin jh. sin 0.
t / i / t / i < i / i * i /

- sin O. cos 41. cos <t>. cos 0. - sin 0. sin i|>. sin 0.

(2.2)

16
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Figure 2-6

Gimbal System for the Ames Simulator
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The orthogonal property of C(\ ,)/ i.e.
"L

C (X.) = C ' (x . ) (2.3)
C/ It

is used frequently in subsequent calculations .

It is noted that this particular sequence of rotations is specific to the physical structure

of the existing gimbal system and is not the generally adopted sequence of rotations used in

the description of aircraft motion. The conventional sequence of rotations is (yaw, pitch,

roll). If the conventional set of Euler angles are denoted by \* = (<p* , 9* , jjj* ), then

these are related to the Euler angles XA
 = ^A' ^A' ^A) ' use<* 'iere as Defined 'n (2.1)

and (2.2) by

. / sin <P? cos ih* - cos *Pt sin 0t sin
/ « _ . " ' ! " A A A
«PA - tan

cos <P? cos fy. + sin <P? sin Q* sin fy*

-1 / S?n 9*A
0 . = t a n '[ ] (2.4)

*^ 1 A * I 4

\ cos 0T cos ihl
\ A YP

-]. * . ..
d) . -sin (cos 6A sin jl)*.

Let co be the angular velocity vector of the vehicle with p. , q. and r. as its com-
i/ v i/ is

ponents in forward, right side and downward axis of the body coordinates, respectively. The

components p. /q. and r. , customarily refered to as "roll rate", "pitch rate" and "yaw rate",
It l> ll ^_ ,

respectively, are related to the gimbal angle rates X . = (cp . , 6 . , il). )'by
Z/ i> TJ I/

The superscripts (-1) and (') used in conjunction with a vector or a matrix denote,

respectively, the inverse and the transpose of the particular vector or matrix.
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1 sin 41. 0

0 coscp cos 0. sin cp.

0 -sin (p. cos 0 . cos cp.

(2.5)

For riotational-convenience, let

1

0

0

sin ])) .
It

cos cp cos j£>

-sin cp cos (1).
i i/

0

sincp.
1>

coscp.
.. Is

(2.6)

then (2.5) can be written in vector notation as

= F(X,)X, (2.7)

^ * *

The matrix F(\ .) is not orthogonal in general since the three components <P , Q and
I / « " L I *

i of the Euler angle rate vector X. are not orthogonal components of a physical vector. Thevi _ i> • .
inverse of F(X ) which will be encountered frequently in subsequent calculations, is given by

u

1

0

0

- tan (I), cos cpTi/ l>

COS CO. /COS d).
I/ TZ/

sin <P,
z/

tan 0.sin <p.

-sin <p./cos i|)j

• coscp^

It should be noted that the orientation of all the angular quantities used in this report are

defined in accordance with the right-hand convention as shown in Figure 2-6.
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2.3 Mathematical Formulation of the Control Problem

The general control problem is formulated as a set of first order differential

equations relating the state of the dynamic system to the control variables and also an

explicit expression of the performance index in terms of the state variables and control

variables defined in the differential equations. The objective of the system design is

to find the control law for computing the control variables from the state variables

which minimizes the performance index. The system of differential equations defining

the dynamic system under investigation is described below. Several .choices for the

explicit expression of the performance index is given in the next section.

The first step in the mathematical formulation of the dynamics is to derive the

differential equations describing the motion of the simulator cab plus explicit expressions

relating the sensed motion felt by the pilot in the simulator cab to the actual motion of

the cab. There is a corresponding set of variables and differential equations describing

the actual and sensed motion of the reference aircraft. The equations for each vehicle

are distinguished by the subscript A or c which will be used throughout the report to

indicate reference to the aircraft or to the cab, respectively.

Since we are interested in how well the cab motion duplicates the aircraft motion,

it is convenient to introduce a third set of variables defined as the difference between two

corresponding quantities for the cab and for the aircraft. These variables will be referred '

to as the "error" quantities and will be denoted by the absence of a subscript.

Since we are generally dealing with variables or quantities composed of three com-

ponents, the development will utilize three-component vectors. In the definitions given

below, it should be noted that, for both the cab and the aircraft, some of the quantities

are defined in their respective body coordinates and the other quantities are defined in the.

inertial coordinates fixed with respect to the ground. To express these quantities in a for-

mat convenient for an optimum design approach, we let
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= position vector of vehicle in inertial reference axes.

Ix

v ty

•
= r, = veclocity vector of vehicle in inertial reference axis.

*tz

= Euler angle vector relating vehicle body axes to inertial

reference axes.

te - \ — Euler angle rate

l/x

— r - g =F specific force(pound per unit mass) acting on vehicle

a

— ".__,«JM

"sensed" specific force
reading from accelerometers mounted at the pilot's seat.
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irizj

~ a .+ g - "unbiased" sensed specific force.
. • I / . • ' • • • • ' .

- F(X.)u ,= "sensed" angular velocity vector of vehicle.. , i
Z/ u

= reading of rate gyros.mounted on the vehicle's body axes.

where

i — A for aircraft

i, = c for cab

g =

o

— gravitational acceleration vector in inertial reference

g= 32.2 ft/sec2. = 9.81 m/sec2

C(X . ) = orthogonal transformation matrix which transforms a vector in .

inertial reference axes to a vector in body axes as defined in (2.2)

F(X ) = transformation matrix which transforms an Euler angle rate vector

into an angular velocity vector as defined in (2.6)

The error quantities which indicate the difference between the motion (both actual

and sensed) of the cab and the aircraft are defined by

r = r - r.
c A

v = v - v A = r - r A = r
c A c A

a = a - a A
= r - r . = r

c A c A (2.8)

cu - co - tox
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In the above equations, it is noted that the components of the vectors r , v ,. a. , g
t t &_ _

are defined with respect to the inertial reference axes whereas the components of a , |3.
If If

are defined with respect to the corresponding body axes.

The quantity 0 . / obtained by adding g to & , is considered a more salient
i i

measure of translational acceleration sensed by the human pilot rather than <v / since
1j

it is argued that a pilot who is accustomed to being in a 1 g environment does not really

sense the effect of a 1 g force acting vertically downward with respect to himself. In

other words, the pilot's "vertical accelerometer" only senses deviations in the specific

force from the normal 1 g force. In the subsequent development, the unbiased sensed

specific force j8. will be considered to be the sensed translational acceleration felt by
ij

the pilot.

Obviously, the sensed errors )3 and co are a consequence of the actual motion

errors r and X . The actual motion errors are in turn generated by the presence of the wash-

opt signals. In other words, from (2.8), the relation
• * . . .
—» '-+

:=a (2.9)
X = u

establishes the fact that

a = translational acceleration washout signal

u = angular rate washout signal

From (2.8) and (2.9), it follows that the differential equation governing the actual

motion of the cab are
• • •• „ _. ^__

r = a + r.
c A

(2.10),
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The differential equations (2.9) represent the dynamic system required for the

optimum design procedure where the washout signals u and a* are the control variables.

The differential equations (2.10), which form the basis for the realization of the designed

washout control system, suggest a general control system configuration as shown in Figure

2-7. As indicated in Figure 2-7, the command signals generated as a result of the pilot's

manipulation of the flight controls in the simulator cab are processed by the digital computer

to compute the corresponding motion of the reference aircraft. The variables defining the

motion of the aircraft are in turn processed by the washout circuit to compute a and u.

The washout signals a and u are then combined with the aircraft motion according to

(2.10) to produce the command signals controlling the motion of the cab. The two

integrators shown in Figure 2-7 are necessary since the servomechanisms of the cab drive

system are designed to follow the translational position commands r and the gimbal angle

commands X • A more detailed block diagram showing the physical implementation of

the control system is given in Section 2.6.1 after the equations describing the washout

circuit have been derived, (See Figure 2-19)

As discussed previously, a simulation is regarded as perfect if the sensed motion

errors are zero (0 = w= 0). Consequently, the goal of a wash-out control system is to

minimize g and w . It is noted, however, that since /3 and to are physical vectors with

magnitude and direction, the question of whether a particular value of /} ( or w ) is

smaller than another value of /§ (or to) in the minimization process requires further

interpretation. This question is resolved by introducing two sealer functions, M (0)

and M (w ), which in some sense, measures the "size" of J3 and w with respect to
00

the fidelity of the simulation. If these penalty functions are to be used in the performance

index required for the optimum control technique, then the functions M and M must

possess the following properties:
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3M
M > 0, B ̂  o, 5-2. > 0 for ft

P 3/3 3J3

3M
M > 0, a.

to _ -»9 uj

(2.12)
3M

w 3 w 3 w

From (2.1?) and (2.12), Ft follows that the penalty functions M and M increase
_, ^ w

monotonically with increases in the sensed motion errors ^ and a) , respectively. A more

detailed discussion of the penalty functions, including explicit expressions for M and
8

M is given in the next section.
W

Another aspect necessary to complete the formulation of the control problem is

the consideration of physical constraints. The cab motion is, in general, constrained

by limits on the translational distances and by limits on the gimbal rotations, both the

angles and perhaps the angular rates. Nevertheless, experiences with the existing

simulators has indicated that except for the excursion limits, the other limitations

seldom cause difficulties. For this reason, and for mathematical convenience, only

excursion constraints will be considered.

In order to account in the performance index for the constraints on the cab motion,

a penalty function L(r ) is defined in a similar fashion to M and M except that
C p GO

L(r ) depends only on the magnitude of r . The optimum control technique requires

that the penalty function be chosen to possess the following properties:
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, > 0 . (2.13 )
9r

c

Several specific forms of L(r ) will be considered in a subsequent section.

Based on the penalty functions, introduced above, a performance index S is defined as

t +T

S= I (M +kM +€ L )dT (2. 14 )
.. P w

where t = present time, T = fixed time span, and k, £ are constant adjustable weighting

factors. The control laws a and u are determined by means of the optimum control

technique so that the sealer S is a minimum (or near minimum) for any given values of

k and € • For the trivial case, £ = 0, i.e., when no boundary constraint is imposed on

the cab motion, the control law should provide a perfect simulation. For large 6, the cab

excursions being highly penalized, the control law should generate abnormal motion cues.

In this sense the parameter € can be regarded as,a control.on.the amount of wash-out, ad-

justed in accordance with the available distances permitted for travel of the simulator.

The parameter k which weighs M in the performance index S in (2.14) provides
CO

a means of adjusting the trade-off between translational and angular motions, since the

effect of "residual tilt" is embodied in the linear combination of the penalty functions

M and M . The technique of residual tilt can be illustrated by an example where the
p co _ .

reference aircraft is flying at a trim attitude (\. = 0) with a forward acceleration of'x .
A A

( y . = z. - 0) as illustrated in Figure 2-8a . Suppose that the simulator cab has no trans-

lational motion, but is pitched downward by an angle 0 as illustrated in Figure 2-8b. In

the pitched down condition, the simulator pilot will sense a forward translational acceleration

of g sin 0 as a result of gravity. If the pitch angle 0 is chosen so that x . = 9 sin 0
c c /^ c

then-the simulator pilot would .sense the same motion as felt in the actual aircraft,if it is

assumed that the simulator pilot is unaware of or ignores the fact that the cab is pitched down

ward. There is.also an upward translational acceleration of g (1 - cos 0 ) sensed by the
C

simulator pilot as a result of pitching downward, but this upward translational. acceleration
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is much smaller than the forward translational acceleration as long as the pitch angle does

not become too large and thus can be ignored. Therefore, by pitching the cab upward or

downward, it is possible to simulate a translational acceleration along the longitudinal axis

(x) of the aircraft. Similarly, by rolling the cab, it is possible to simulate a translational

acceleration along the lateral axis (y) of the aircraft. Clearly, residual tilt can only sim-

ulate translational accelerations which are smaller than 1 g (g = 32.2 ft/sec2 = 9.81 m/sec2).

The disadvantage of residual tilt is the unrealistic angular motion required to im-

pliment the technique. In cases where high fidelity of translational motion sensing is de-

manded, but the limited cab motion imposes a severe handicap, the technique of residual

tilt may result in a better overall simulation of the sensed motion even though abnormal angular

motion is imposed in order to compensate for the limited translational accelerations. The

problem of determining the optimum trade-off between translational and angular cab motion

which yields the greatest fidelity of the simulation forms the primary basis for using the

optimum control approach.

ex

0

0

(a) Reference Aircraft

13 =
c

g sin 0

0

- g (i - cos e )
L C

(b) Simulator Cab

Figure 2-8

Illustration of the Effect of Residual Tilt
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To summarize, the equations describing the optimum control problem for de-

signing the washout control are

Dynamic System;

* *

" = ° (2.15)
•

X = u

Performance Index:

t +T
S=f (M +kM + € L ) d T (2.16)

t
j 0 -w

Find:

a and u so that S is minimized

Simulator Motion :

r = rA + a
(2. 17 )

c 'A

In solving the optimum control problem, it will be assumed that a flight simulation

always starts from a trim condition and the cab attitude is aligned so that the initial
. •

conditions 7(t) = r^(t), 7(t) =7A(t), and \(0 = 0 hold. It is also assumed that all

aircraft quantities needed for the control law can be obtained from the computer sim-

ulating its motion.
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2.4 Performance Indices

One of the major task in attempting to apply an optimum control method to the

control of the six degree-of-freedom simulator' is the search for an appropriate perfor-

mance index. 'To start with, the state-of-the-art dictates that a precise definition of

what constitutes a sensed motion cue is still an open physiological question. Even with

the assumption that the motion cues sensed by the pilot are the same quantities as can

be measured by three linear accelerometers and by three rate gyros, the fact that these

quantities are vector valued makes it difficult, if not impossible, to find a single functional

expression which provides a realistic measure of how well the simulator is able to duplicate

the motion sensations. The search for a realistic performance index in functional form is

further compounded by the necessary requirement of mathematical tractability. As often

the case in the application of the optimum control technique, a final form of the per-

formance index is chosen among other promising candidates because of its functional

simplicity.

As indicated previously, the basic form assumed for the performance index is

t +T ,

S = J ( M + k M + 6 L ) d T (2/18 )
t p to

In this section, analytical expressions for the penalty functions M , M and L will be
: - - P 00

defined in accordance with (2.11) - (2.1.3), and their properties analyzed. It is emphasized

that the penalty functions discussed below were selected from a larger set of candidates,

some of which may appear physically more realistic but were excluded from further con-

sideration because of their functional complexity. .
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2.4.1 Sensed Acceleration Penalty M
_____^_ p

To establish a meaningful penalty function in terms of the measurable sensed quantities/ .

8. and ft (Figure 2-9 ), it is observed that the following properties should be considered:

(a) M should be scaled relative to p1., i.e. if all vectored quantities
P . A . • • • • , -

in M are multiplied by the same constant, the value of M should
P • • .8 '. - • .

remain unchanged. In other words, for a given error 3, the penalty

is higher for small B. and lower for large p\ .

(b) M should depend only on the orientation of 8 relative
P • c . . . • . . ' . . • • • •

to 8,. and not upon the absolute orientation per se.

(c) It should be possible to represent M as a function of the magnitude of the
P

error vector | J3 \ and the phase angle £ between J3 and 8» •

Based on these propositions, a general form of M which thus would be suitable as
P

(2. 19 )

where the functional f and f account, respectively, for the magnitude and phase errors, .

and the weighting factor K is used to adjust the relative importance between the magnitude
P

and phase errors. The effect of the parameter K on the penalty imposed by M for differences
.P • • 0 • •

between the sensed motion of the cab and the aircraft, can be shown by a vector diagram

comparing the sensed acceleration vectors )3 and ft. . An example of such a vector diagram is
C A

given in Figure 2-10 where the vectors )3 and (}> are normalized with respect to the magnitude 0 . of

2-10, six different possible values of the normalized vector J3 /j3 » denoted by the indices 1

through 6 are shown for comparison with ^./^ . . The circles with their center at the tip of the vector

jg . /j3 depict the contours for which the magnitudes of the error vector /3/p\ rema'n constant.

Obviously, if K were zero, the penalty imposed on sensed cab motions represented by the vectors
P
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*A 4 \ ?'
and

are the same despite the fact that cases 1 and 4 have a phase error of £ / while cases

5 and 6 have zero phase error. With nonzero K , however, the penalty corresponding to
P

1 and4 is greater than the penalty corresponding to cases 5 and 6 by an amount of K f (£).

In Figure 2-10, the cab motions depicted by case 1 and case 4 have the same

magnitude error and phase error; the same is also true for the pair of cases 2 and 3

and the pair of cases 5 and 6 . For cases 1 , 2 •/ 5 , the magnitude of the cab motion

is smaller than that of the aircraft, whereas the corresponding cases 4, 3, 6 have larger mag-

nitude of motion as shown from the lengths of the vectors. In practice, however, the

magnitudesof the cab motion is in general smaller than that of the aircraft. An excessively

large magnitude of cab motion at a particular time interval will have to be compensated

by an excessively small or even negative motion thereafter in order that the position of the

cab does not cross the boundary limits. Thus, it would appear logical to place higher penalties

on cases 3, 4, 6 where the magnitudes of the sensed cab motion are larger than for the aircraft.

The above discussion can be summarized by sketching contours of constant penalty,

M = constant, as shown in Figure 2- 11 .
P ' . ' • ' . '

Another important property that should be considered in selecting M. is .that of
• . . . . . . .... - r . '

assigning greater penalty for large phase errors. This is related to the notion.that main-

taining ,8 in the same general direction as £ A is at least as significant, if rot more so,

than magnitude errors. Thus, in the region where the phase error is greater than, say,-r-,

the contours of M should display a pattern as shown in Figure 2-12.
p

With these requirements in mind, various choices of M are discussed below.
P
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u>

to*

Figure 2-9

Vector Diagram for Sensed Quantities

constant •=-
PA

contours

Figure 2-10

Normalized Vector Diagram to Illustrate Relative Motions
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I— contours of
constant M

Figure 2-11

Contours of Constant M

contours of constant M /
P

~~ contours of
constant g

M < M < M
px Pa

Figure 2-12

Contours of Constant M
P
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(A). Penalty Function "A"

(2. 20 )

where

= 1,8 |, etc.

To aid in plotting the constant M contours, let
. P

(2.2? )

then (2. 20 ) is rewritten as

(2. 22 )

Figure 2- 13 shows the M contours for n = 1, K = 0.02, 0.5 and 12.5
P B .

(2. 23 )

Figure 2~« 14 shows the case for n = 2 and K = 0.5
P
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-» -10 -1.0 0.0 l.o l.o 1.0 4.0 to

Figure 2-14

Contours of Constant M for Penalty

Function "A" (n=2, K =0.5)
$

Figure 2-13

Contours of Constant M for Penalty
0

Function "A" (n=1.0)
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Figure 2-15

Contours of Constant M for Penalty

Function "B" (K =0.5)
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(B) Penalty Function "B"

V V

(2.25 )

Let
,

cos 4'=

y = f- s]n
-«- -x2

* o ™ X (2. 26 )

then

1 +x

>
\ /0+x)2+ ;

2
(2.27 )

and the set of curves for n = 1 and K =0.5 is shown jn Figure 2-15
P

(C) Penalty Function "C"

(2.28 )

2*A

In termi of x and y.

(2.29 )

37



Figure 2- 16 shows the M contours for different combinations of K and K .

(D) Penalty Function "D"

.2

(2. 30 )

In terms of x and y.

= - j ( x 2 +y 2 ) [ l +K (I - K j x (2.31 )

Figure 2- 17 shows the M contours for different combinations of K and K.
p P '

2.4.2 Sensed Angular Penalty M
00

It is assumed that the angular penalty M takes the same form as the acceleration

penalty M . Therefore, all of the discussions concerning M also applies to M . The
P P . W

various possible choices used for the functi.on M ^ are summarized below:

2 / -*» -* \ n

M'.= ^-_ +K
W W

n = 1, 2, ..., (2.32 )

"B" : M = -^. + K I 1
(A) r\ ^ tO

fc (jO A

A

n = 1, 2, ... (2.33 )
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1C) Kf'2.0, Ki-g>

• 4.5

Figure 2-16

Contours of Constant M for Penalty
/5

Function "C"

Figure 2-17

Contours of Constant M for Penalty

Function "D"
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»C" : M = -£* + K
co ~ i0

2co

2 /
/*) A

A

1 -K,

co/
1 (2.34 )

co/

"D" .- M = -^
co 0 2

2wA

(2:35 )

2.4.3 Excursion Penalty L(r )

The basic requirement in the choice of L(r ) is that of assigning heavy penalty

for large cab excursions and small penalty when travelling well within the allowable

boundary. There are two possible types of the limiting penalty described below.

(a) "Soft" Limiting Penalty;

U \ — '
r } -

2n 2n

(2. 36 )

where d , d , d are adjustable parameters, whose values depend on the actual lengths
x y z

of the allowable excursion limits. For h = 1, (2. 36 ) reduces to

with

D =

(2.37)

1

d 2
X

0

0

0

1

d 2

y

0

0

0

i

72
z_
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(b) "Hard" Limiting Penalty:

where

L(r ) = L +L +L
c x y z

L =
x -d |

C X1

(2.38)

L. =
y

Lz =

1
1 1 1 * 1

y C - d y l '

0 ,

ivU -

1 c

lyc

I* 11 c '

I'.

y

y

< d
z

z

(2.39)

Figure 2- 18 illustrates these two types of penalty functions.
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\

large n

small n

(a) Soft Limiting Case

L(T)

-d o

(b) Hard Limiting Case

Figure 2-18

Excursion Penalty Functions
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2.5 QuasirOpMmum Washout System Design

In this section, the optimum control problem, as formulated in Sections 2.3 and

2.4, will be solved using the quasi-optimum control technique. Although it would be de-

sirable to consider all the penalty functions defined in Section 2.4 so that the relative merits

of the resulting washout systems could be evaluated by actual flight simulation, only one

case will be considered in detail due to the limited amount of time available. In particular,

the penalty functions considered in this report are (2.20), (2.32) and (2.36) with n = 1, i.e.

(2-40

M (5 (u ,X ) ,w A (T ) )= -^ + K . ( -2 Q- ) (2.41 )

Ur-c)= - y D ? (2.42 )

In subsection 2.5.1, the maximum principle is applied to reduce the optimum control

problem too two-point boundary value problem whose physical interpretation is discussed in

subsection 2.5.2. Finally, in subsection 2.5.3, the quasi-optimum control technique is

applied to solve the two-point boundary value problem for the controls a and u in closed form.

2.5.1 The Two-Point Boundary Value Problem

*.
The-control-problerrrto be~treated~cJonsists~6f~the error dynamics'

r - a

.1 (2.43 )
X = u
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and the performance index

S = f + T ( M +kM + < = L ) d T ( 2 . 4 4 )
« 8 toT ^^

which is rewritten in state variable form, by letting r_ = S

'r. = M +kM + £ L
0 /J a:

*
—* —»

r = v

*

v = a (2. 45 )

X = u

T = 1

6 = 0

The initial time is taken as the present time t and the time interval T is assumed fixed.

The assumed initial conditions are

rfl(t) =0

v(t) =vA(t) (2. 46

X(t)=0

T(t)= t

and the assumed terminal conditions are

r0( t+T)=free , X ( t + T ) = free

7 ( t + T ) = f r e e , r(t+T) = t+T ( 2 . 4 7 )

v( t + T) = free , £ (t + T) = free
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The Hamiltonian for the dynamic system described by (2.45 ) is

h = pn(M +kM + € L ) + p ' v + p' a + p' u + p (2.48
U j8 co r r X T

where the adjoint variables p are defined by

v°
3L(M

'0

p = ~ P
v r /

/3M Q (a , X , T ) 3M (u, X, T)

P X - - P 0 ^ +k'^ ) ( 2 - 4 9 )
X \ 3X 3X

'3M0(^, X , T ) 3M (u, X , T ) 3L(t, r)

* " € p o T7—

subject to the boundary conditions

P r ( t +T ) = 0

p y ( t+T) = 0 (2.50

p ( t+T)=free

The solution of the two-point boundary value problem defined by (2. 45 ) — (2. 50 )

is highly complicated in its original form due to the irrational form of the penalty functions

(2. 40 ) and (2.41). It will be shown that by means of a nonlinear transformation, the original

problem can be reduced to one which may be more readily solved and which in turn provides

physical insight into the structure of the system.
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The first step is to apply the maximum principle to obtain the optimum controls

a and u. This entails computing the partial derivatives of .the hamiltonian. h, .given

by (2. 48 ) with respect to a and u , respectively, and then setting the derivatives to

zero. The resulting equations are

—4 =P» . (2. 51 )

9M
w _ --P. A (2.52 )

where the adjoint variable p was easily found to be pn = - 1 from (2.49) and (2.50).

Substitution of M and M from (2. 40 ) and (2. 41 ) into (2. 51 ) and (2. 52 ), re-

spectively, results in an expression which can be solved for a* and u. The final equations

for a and u (see Appendix I for the details of the derivation) are

K

a = i -
,1

^

u = 1 -

J2 P; f~\x HF'U )]"' P. A2 +2K 5' [F'(x j]"1 p A +K
2

V"A C C A tO" C \ ( j j

-1

or, In functional form

, X, XA(T), a A ( T ) )

u =u(p , X,

(2. 53 )

(2. 54 )

(2.55 )
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Using the optimum control laws (2. 53 ) and (2. 54 ), the closed-loop

two-point boundary value problem can be obtained by substituting these controls into '

(2. 45 ) and (2. 49 ). It is noted from (2. 45 ), (2. 49 ) and (2. 55 ) that the pertinent

variables are ?, v*, X, p , p and p and that they are uncoupled from the rest of the state
r v A.

and adjoint variables. In order to obtain the closed-loop equations in terms of the pertinent

variables, we evaluate the partial derivatives in (2. 49 ) by noting that

(2. 56 )

9X 9co

But, from (2. 51 ) and (2. 52 ), we have

3M,

9a>

' 9M,

9a / . 9/3

or

(2. 57 )

9M

9?

9M
CO _

9 co*

[ / » ? V 1
[\ ** l\

1 9oT \'
I \
I - /
\ 9u /

-i

P
_»

V

(2. 58 )

~]

PXA

ft nAone

-^ = C ( X )
95* (2.59 )

^ = F ( X )
9u
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ac(xc) ^
'— • 0*

ax ax

9£ 9p^c) .
—~ = —z— u

ax ax c

(2. 60 )

8 - -,— - a
c

i.

" 3C(X c )

ax .
c(xc)

Substitution of (2. 58 ) — (2.60 ) into (2. 56 ) yields

3M

ax

3M
I

ax

Further substitution of (2. 61 ) into (2. 49 ) obtains the closed-loop two-point boundary

value problem for the pertinent variables

(2.61 )

r - v
•^ ^^

v" = a

X =u

Pr =

(2.62 )

3 L(

P = ~ Pv r
(2.63 )

3F(X c )

3X

a c ( x )

ax
. c(x

where a* and u are given by (2. 53 ) and (2. 54 ), respectively, and where the initial

conditions and boundary conditions are given, respectively, in (2. 46 ) and (2. 50 ). The

objective is to solve for p and p in terms of the state vectors r*, v*and X from the coupled
V \

differential equations (2. 62 ) and (2. 63 ). Substitution of the expressions for p and p

into the control laws for a* and u shown in (2. 53 ) and (2. 54 ), will result in the feedback

configuration necessary to realize the washout circuit.
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The nonlinear transformation required to solve the two-point boundary value

problem involves the introduction of a new adjoint vector y and a new angular washout

vector n that are related to p and u by
A

-1

y = [ F ' ( x c ) l p
*• A

n = F(X c )u

(2. 64 )

(2. 65 )

Multiplying both sides of (2.64) by F'(\c) and differentiating with respect to time, we have

P\ = F'(X )y + u' —y (2.66 )
X ° C 3X

Equate (2.66) to the last equation in (2.63), gives

-1 9C ' (X )

y = [F '<x c ) l ?; __^C(xc)pv (2.67 )

After performing the sequence of matrix multiplications in (2. 67 ), the differential

equation for the new adjoint vector simplifies to

--ac xC(X c )p v

(2.68 )

where the symbol "x" denotes the "cross product" of two vectors. For mathematical con-

venience, (2. 68 ) can be rewritten as (see Appendix D

(2. 69 )

where

1
n - 2 (

K

, _ P

Kp->APv 2 +2K/

«A + K
f l^AA p^A

<- v p

(2.70 )
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The two-point boundary value problem given by (2. 62 ) and (2. 63 ), is next

rewritten in terms of the new variables to give

v — a

X = F~ ' (X c )S

(2.71 )

X ( 0 = 0

Pr = 6

p = • Pv r

y =

p (t + T) = 0

P v ( t+T) =

(2.72 )

where the translational control a* is shown in (2. 53 ) and the transformed angular control

n is rewritten from (2. 54 ) as

K
n = 1 -

"
(2.73 )

2.5.2 Physical Implication of the Mathematical Formulation

As a result of'the theoretical developments in the proceeding subsection, the optimal

control problem was reduced to a problem of solving a set of differential equations given

by (2.7] ) and (2. 72 ) for the ad joint .vectors p , p and y in the terms of the state

vectors *, v" and X . Before proceeding further with the theoretical solution of the problem,

we will pause at this point to examine the physical .implications of the equations (2.71 )

and (2. 72 ).
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First, for reasons of simplicity, we will consider the-"linear" case in which

no "phase" penalty is imposed, i.e. K = K =0. For this case, it follows from
p CO

(2. 53 ), (2. 70 ) and (2. 73 ), that the system equations given by (2. 71 ) and

(2. 72 ) reduce to

r = v

2 -
(2-74 )

x =

3 L(?*)

9 r

p = ~ pr >*• (2.75 )

Also from the linearity assumption, the closed-loop cab dynamics (2.17) reduces to

*c = F~1(*c>

2
•°A

(2.76 )

(2.77 )

in which the adjoint. variables pi and y are obtained from the solution of- (2.74) and (2.75),

>As noted' previously, the parameter k is designed to account for the relative im-

portance between the angulartand the translational motion errors. Thus, it is of interest

to see how the cab motion would behave for extreme values of k.



U ) k -. "» :

This case heavily weights errors in angular motion which for the limiting situation

gives that the angular motion of the cab will be identical to the aircraft. This is indeed

the case, since for k =<» , (2. 77 ) reduces to

which, upon substitution of the assumed .initial condition \ (t) = \A(t), further reduces to
C f\

XA " A ~ X A (2-78

The translafional motion equation (2. 76 ), with X = X „ / can be written as
c A

' ' '

which shows that the cab acceleration differs from the aircraft acceleration by the amount
2 *• o

^A P
v ' The wash~out s'gnal 0A Py which can be obtained from (2. 75 ) is dependent on

the excursion penalty L(r* ) and its adjustable weighting 6 . '

Direct visualization of the effect of k = 0 is not obvious from the closed-loop

equations since the terms involving k tend to <*> as k-»0. Referring to the performance

index, given by (2.44), it is intuitively obvious that, since no penalty is imposed on the

angular motion error for k = 0, the cab should assume whatever angular motion is necessary

to minimize the translational motion error. It is derived in the AppendixlH that this is indeed

the case. In fact, as k-0, the optimal trajectory tends to approach a "singular" subarc for

which the adjoint variable y = 0 and for which
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( 2 . 8 0 )

The implication of (2.80) is that along the singular trajectory the cab attitude

X should be so maintained to keep the sensed translational accelerations a and a»
c . c A

co-linear for any specific force a being exerted on the cab. The fact that the two

vectors are co-linear provides that the cab motion is either completely in phase, or com-

pletely out of phase relative to the aircraft. The possibility of the motion being completely

out of phase arises because K was set to zero and no phase error penalty was imposed.
vP

Substitution of \ , obtained from the solution of (2.80), into (2.76) yields the

corresponding translational motion for the cab.

Thus, for intermediate values of k, the cab motion will always have some translational

and angular motion errors, and it is a subject of experimental study to determine what

particular values of k will give an acceptable compromise between the two extremes.

2.5.3 Quasi-Optimum Solution of the Two-Point Boundary Value Problem

Simplified Control;

In applying the quasi-optimum control technique, the system is first approximated

by a simpler model for which the exact optimum solution can be expressed in closed form.

This simplified control law is then corrected to account for the difference between the

original system and its simplified model. A convenient simplified system in the present

application is ojafained_for__€_5.J3./Ji..e..-byJgnor-ing-the~physicol constraint.—For~€~-~07^

the two-point boundary value problem, given by (2. 71 ) and (2. 72 ) reduces to
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• (2.81

7 5 = ° s .

p ( t + T ) = 0

p- =0 " rs (2.82 )

p ( t+T) -0
1 _ ^ vs
P., ' " Prs

^=-« c s xC(X

Where the subscript "s" has

f n 82 ) immediately yields
Solution of (2. »/ I

p =0 (2. 83 )
•rs .

,, the sl

r *
Consequently,^ .

(2.84

- _ r ' + x we get the closed-

•,. . (ofl! ) and noting that X ~ \ AA'
c fo 84 ) >nto ^2'8Substitution ot U-o* '

|00p error state equations

r *»v $ - \ ( 2 . 85 )

s
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It is noteworthy to observe that the simplified controls in (2.84) and the correspond-

ing error states in (2.85) are not zero, even though no excursion limits are imposed on the

cab motion. However, the "sensed" errors are zero which can be seen by substituting

(2.84) into the definitions of J3 and 60 given by (2.8) .

An examination of the error state equations (2.85) reveals that the nonzero simplified

controls and the nonzero error states are a consequence of a nonzero initial attitude error

\s- If it happens that \^ is initially zero, then the solution of the last equation in (2.85)

yields \s (T ) = 0 which upon substitution into the remaining equations in (2.85) and in

(2.84) results in the errors and the controls being zero.

In summary, when no boundary limitations are considered (simplified control problem),

a one-to-one simulation, i.e. fl - co = 0, can be achieved for arbitrary initial conditions

by using the wash-out controls in (2. 84 )•

The solution of the simplified problem is required to calculate the quasi-optimum

control law to be derived in the next section. Unfortunately, there are two major dif-

ficulties that arise when attempting to obtain analytical solutions to the simplified problem:

(A) The transformation matrices C and F , as defined in (2. 2 )

and ( 2 . 6 ' ) are nonlinear.

(B) In order to solve the two-point boundary value problem, the

quantities % . , a . , to. and \. describing'the aircraft motion

must not only be known for the current time t but for time in

the future of t.
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To overcome these difficulties it will be assumed that the attitude error A. between
s

the cab and the aircraft is sufficiently small to permit the approximation

„ c
(2. 86

Such an approximation is not unreasonable since, with no excursion limits imposed on the

simplified system the attitude error will tend to decrease from its initial value. If the initial

attitude error is zero, then it will remain at zero.

From (2. 86 ), (2.85) can easily be solved to give

(2.87

XS (T) = Xs(t)

Quasi-Optimum Control:

The quasi-optimum controls are obtained by first deriving the correction factors

lj) , jij and jjj so that the adjoint variables p , p and y of the original system can

V '

be approximated by

p "=• p +115 = irr rrs Tr rr

p = p +S =* (2.88 )
v vs ~v rv

y = y + i = S
' 's *y ry

Next, p and y are substituted into the control laws for a* and Pi given by (2. 53 ) and

(2. 73 ), respectively.
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It is shown in Appendix H that the quasi-optimum solutions for the c
costate variables

p and y are given by

t + T _
y = y(0~ f (a >

t c

(2.89 )

(2'.90 )

In order to evaluate the integral in (2.89), where the analytical expression for the

function L( r) is given in (2.42), knowledge of aircraft's position r*A(r) for time T in the
.._. . -( . . , . f\ •• .,

future of the current time t(r 2 t) is required. To resolve this problem, a weighted Taylor's

series expansion of r. (T) is used to extrapolate the future position of the aircraft from its

current value r . (t). The resulting expansion is

wlhere
20'

(2.91 )

^A max 'S t'16 maximum va'ue of j

Utilizing (2. 91 ), gives •

A max

that must be determined (approximately) a priori.

9L

€ = 0 ~ U r c 6 = 0

€ = 0

cs cs 2

A max

(T-

'el max-

(2. 92 )



Therefore, dropping the subscript "s" we have from (2. 89 )

r2 T3 . T4

Pv = - 2 c 3 V
max

(2.93 )

The evaluation of (2. 90 ) will be done numerically during the simulation because of

the complicated expression for the integrand.
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2.6 Summary and System Implementation

In this section the simulator control system designed previously using the quasi-

optimum control technique is summarized and its implementation is discussed. A block

diagram showing how the required computations can be implemented during an actual

flight simulation is given. A FORTRAN IV subroutine which performs the computations

shown in the block diagram is also described.

2.6.1 Summary of the Simulator Control System Design . .

Recalling from Figure 2-2, the complete six degree-of-freedom simulator consists

of the simulator cab, aircraft computer simulation, simulator control system, and cab

drive system. The flight commands resulting from the pilot's manipulation of the cab con-

trols are fed into the computer simulation of the aircraft. The computed aircraft motion,

in particular, the translational acceleration r, and the angular velocity V. are the

inputs to the simulator control system which in turn generates the drive command signals

.used to control the motion of the cab. In the problem formulation it was assumed that

the cab drive system consists of perfect servos so that the outputs from the simulator control

system are the cab position r and the cab attitude \ • The basic input-output equations

for the simulator control system are

" _" +- "translation" (2.94)
C f^

T =7 +- "rotation" (2.95)

where

i = c,A

as illustrated in Figure 2-4. Thus, the simulator control system has a total of 6 inputs and

6 outputs.
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The washout signals a and u are included in (2. 94) and (2.95), respectively, in order

to compensate for the limits on the cab excursions. The purpose of this study is to design the

control laws for computing a and u . The performance index used in section 2.5 for

determining a and u was

rT
S = / (M +kM + e L ) d T (2.96)

Jf 0 OJ

where M^ = ?2/2p\ + K^/ ^ -~ffA8 / fy

M =

i _ 1 -• / rv~*
L = jrr Or

2 c c

D = Diag [1 /d2,! /d2,! /d2}
x y z

This performance index minimizes the sensed motion errors while penalizing large

cab excursions. This performance index gives rise to 8 sealer parameters T, k, f, K , K ,
8 cd

d , d , d . A large portion of the computer simulation study described subsequently is

concerned with an investigation of the effects of using different values of these adjustable

parameters in order to arrive at a range of values that may optimize the performance of the

moving base simulator.

In Section 2.5, the quasi-optimum technique was used to design a washout system

that minimizes the performance index in (2.96). The resulting equations for computing

a and u are summarized below.

Translational Washout Signals:

a = 0 - K88A/£)4 + C'(Ic)5A - aA

(2.97)
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Rotational Washout Signals:

u = F'1 (xc)n

(2.98)

Adjoint Variables

).

. + (T3/3)7.
max c

-ac x 77 (2.99)

Sensed Motion Variables

aA = r - g Q c = r c

(2.100)

8 A ~ ° A + 9 cuA=KXAAA

g' = [ 0 , 0 , g ] (g = 32.2 ft/sec2 = 9.81 m/sec2)

Transformation Matrices

C(X) =

COS il) COS sn ( - cos 0 sfn 0

sin 0 sin Q - sin 0 cos 0 cos 0 cos 0 cos 0 sin 0 cos 0 + cos 0 sin 0sin 0

cos 0 sin 0 + sin 0 sin 0 cos 0 - sin 0 cos 0 cos 0 cos 0 - sin 0 sin 0sin 0

(2rl 01-)

F(X) =

1 sin 0 0

0 cos 0 cos 0 sin 0

0 - sin 0 cos 0 cos 0

-/ = I<t> , 0/0]

J - tan 0cos 0 tan 0sin 0

0 cos 0 sec 0 - sin 0 sec

0 sin 0 cos 0
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A block diagram of the simulator control system showing the implementation of (2.94),

(2.95)/ and (2.97) - (2.101) is given in Figure 2-19. Each arrow or path in the block diagram

corresponds to a 3-component vector quantity. A total of 3 x 5 = 1 5 integrators are required

to realize the simulator control system. The boxes in the block diagram represent gains

multiplying the various vector quantities with the one exception of a single vector cross product

indicated by a bold face X . The gains are composed of both sealer and matrix multiplication

of the vector inputs to the boxes. The boldface letters C, D, and F indicate matrix operations.

The matrix D is a constant, diagonal matrix (see (2.96)). The matrices C and F denote co-

ordinate transformations which are a function of either XA or X ; the particular choice is
" . f\ C

indicated in the block diagram. Thus, the matrices C and F are nonlinear gains which must

be computed continuously. To simplify the block diagram, arrows connecting the integrator

outputs X* and \ to the corresponding boxes containing C and F are not shown.
' f\ C " •

Of the sealer gains, some are linear, constant gains while the others are nonlinear,

time-varying gains which must be computed at each iteration. The nonlinear gains require

computation of ft^ , ^ , £ , J} which are the magnitudes of the vectors g^, Jo^' £' O/

respectively. These magnitudes are obtained by computing at each iteration the square root

of the vector dot product. Again for simplicity purposes, the computation of these magnitudes

is not explicitly shown in the block diagram.

In summary, the block diagram shows that the washout signals a and u are a function

of

• • •

where

X A / ^ "r / X / y ' state variables of the simulator control system (outputs of the
r\ C f C C

integrators).

~f . , XA : inputs to the simulator control system.

r , X : outputs from the simulator control system,
c c
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Block Diagram of the Simulator Control System
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2.6.2 Analysis of the Linear Design Case ' • •

1 The general characteristics of the simulator control system shown'in Figure 2-19 are

of interest and would be valuable in selecting the optimum values of-the parameters. Unfortu-

nately, a detailed analytical analysis is.very difficult to perform because .of the nonlinear

cross-coupling between the six degrees-of-freedom. Consequently, the selection of the

parameters must be performed by computer simulation. However, for the special case of the

quadratic performance index to be discussed below, it is possible analytically to gain some

insight into the characteristics of the simulator control system.

If K = K = 0 in the performance index shown in (2.96) then the equations for the
8 iii

simulator control system given by (2.94), (2.95), (2.97) - (2.101) can.be simplified. In

this case it can be shown that the equations for computing r and \ from "r . and \. are
C • C f\ r\

A,? = (j - A. )? + [ C' (\ )C (\.) - j] a. (2.102)
£ C «j r\ C r\ r\

2 /•*-"„-

(2.103)

where matrix coefficients in the first equation describing the translational motion of the cab

are given by

The second equation (2.103) for the angular motion of the cab can be rewritten as
t

2
0 flt

(2.104)
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If € = 0 then A = A = A = 0 and from (2.100) it can be shown that (2.102)

reduces to a s ou or a = 0. Substituting rv = «. . t ,„ ....» . ,. , •
c A • . a "c : A into (2.104) immediately gives

that to = ox or a)=0. In other words, if no penalty is imposed on the cab excursions

then the simulator control system will cause the cab to move so that there is no error in the

sensed motion. For £>0 there will be errors in the sensed motion.

y
An examination of (2.102) shows that the translation motion of the cab is governed by a

• • • •

second order system with two forcing terms r. and a. ="? A + 9- The second forcing term

on the right hand side of (2.102) makes adjustments in the translational cab motion due to

differences in the cab and aircraft attitudes. If \ = \. then the second forcing term
C r\

vanishes. The second forcing term occurs because the objective is to minimize the sensed

errors rather than the actual motion errors. .

«•
Ignoring.the second forcing term in (2.102)/ the computation of r from r. is almost a second

c /^
order linear system with constant coefficients; it would be a fime<-invariant, linear system except

2
for the 0. term in the matrix coefficients AI , A-, A.. Assuming for the sake of argument

that ft . is a constant, then the transfer function from 7. to r is a high pass filter. To

illustrate, suppose the characteristic equation of the left hand side of (2.102) has real roots

too tnen the Bode plot of the frequency response would appear as shown in Figure2-20.

Figure 2-20

High Pass Filtering Characteristics

of the Simulator Control System

(rad/sec)
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The high pass filtering characteristics that evolved from minimizing the performance index

are intuitively reasonable since one of the common approaches is to attenuate the low frequency

portionof the aircraft motion while passing the high frequencies. Another feature incorporated

in the translational equation (2.102) is the presence of the scaling factor (p-Aj multiplying

the aircraft acceleration. Equation (2.102) shows that the magnitude of the cab position

will tend to vary linearly with difference between jand A,. Thus, the adjustment of the

constant parameter €/ T, D and 3 A , that affect the values of A], A^ and A^' in yurn

amounts to the trade-off between the high pass characteristics and the degree of scaling.

The rotational motion of cab governed by (2.103) or (2.104) encompasses the idea of

residual tilt. An examination of (2.104) shows that as long as the sensed translational motion

vectors for the cab and aircraft remain colinear (i.e., # x a* = 0) then the cab attitude
C r^

identically follows the aircraft attitude. As the phase error between a and a^ deviates

from zero, (2.104) induces an angular error in order to help reduce the error "j? and & "n

the sensed translational motion. The trade off between angular and translational errors in the

sensed motion is governed by the parameter k . As k increases, the level of angular

error decreases according to (2.104).

2.6.3 Computer Simulation Program

In order to study the performance of the simulator control system design, a FORTRAN

computer program was developed to simulate the complete six degree-of-freedom motion

simulator. The simulated time histories shown in Section 3 were obtained by use of this

program. The computations required to implement the simulator control system design shown

in Figure 2-19 were performed in a subroutine entitled WASHFL.

The inputs to the WASHFL subroutine consists of the aircraft motion given by ~\ , £> ,

and 7A , the integration step size $ , and an index variable governing the mode of

operation. The outputs from WASHFL are the cab motion command signals given by 7 and

\c . The adjustable parameters in the performance index may be entered as input data to

the program or stored internally in the subroutine in DATA statements. The latter storage option

permits WASHFL to be used on the NASA AMES computer facility in order to generate the drive

commands during an actual flight simulation.
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A more detailed description of the WASHFL subroutine, including a program listing and

description of all computer variables, is given in Appendix IV. Two other subroutines required

by WASHFL to perform the numerical integration of the state variables are also given in- '• .

Appendix IV.
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3. PERFORMANCE SIMULATION

3.1 Description of the Reference Aircraft Motions

To have a realistic assessment of the performance of the washout circuit designed in

the preceding sections it ultimately would be necessary to conduct a full-fledged pilot simu-

lation using the simulation facilities at the Ames Research Center. As a preliminary step

toward such a simulation, digital computer simulation studies were conducted to evaluate

possible performance of the quasi-optimum washout circuit and to determine suitable ranges

of the values for the adjustable parameters in the washout circuit.

The first phase of the computer simulation study was to generate examples of the aircraft

motion that result in several distinctive "tasks'^which the simulator cab attempts to duplicate,

during typical operations of the motion simulator. The second phase, discussed in the next

section, was to examine the cab motion resulting from the application of the washout circuit

for the reference aircraft motion generated in the first phase.

The dynamics used to compute the reference aircraft motion are for a medium sized

twin jet transport whose aerodynamic characteristics are summarized in Table 3.1.

To generate the reference aircraft motion, a general six degree-of-freedom aircraft

motion simulation program (SIXDOF) was used. This program was developed at the Kearfott

Research Center and has been used extensively for a variety of studies. The SIXDOF program

incorporates an autopilot, also developed by the Kearfott Research Center as part of an

automatic landing study. This autopilot was used to simulate the behavior of a human

pilot. To use the SIXDOF program, a nominal trajectory for a given typical flight task is

first defined in the manner required by the program. The autopilot then computes the aircraft

control-surface deflections required to minimize the difference between the actual aircraft

flight path and that of the defined nominal trajectory at each instant after the inception of

simulation run. From the control-surface deflections, the reference aircraft motion is generated

by the model of the aircraft dynamics.

The three flight tasks considered in this study are the following:

Task 1 ' Tracking Maneuver - This task was created for the purpose of simulating such

flight operations as mid-air refueling, formation flying, etc. It is also a useful task for evalu-

ation of quantitative pilot followup error. The reference trajectory of the aircraft and the

time histories of 24 dynamic variables of the aircraft are shown in Fig. 3-1 for 30 seconds
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of flight time. These variables are:

x, y/ 2 = inertial x, y, z excursions

x, y, z = inertial x, y/ z velocities •

= inertial x, y, z accelerations
x, y, z ' /' .

: a / a /'a = sensed x, y, z specific forces :

•' (O/ ft 0 = Euler angles i

<p/ 9 /J) = Euler angle rates

p, q, r = angular rates

6 / 6 / 6 = elevator, aileron and rudder deflections
e a r . . ,

It is seen from these trajectories that the flight is quite hectic. This is intentional

and designed to give the washout circuit a good workout.

Task 2 Approach Landing Maneuver -Aircraft landing operation is another typical ex-

ample of simulator application. To generate a reference aircraft motion, it is assumed that

during a landing approach, at about 50 seconds before touchdown, the pilot "suddenly" realizes

that the aircraft is 200 ft' (61 m) and to the right of a prespecified nominal landing tra-

jectory and that, instead of aborting the landing as he would normally do under these circum-

stances, he tries to complete the landing. In view of the relatively large course error, just

50 seconds prior to touchdown, a rather severe maneuver is called for. The autopilot that

simulates the pilot performance completes the desired landing successfully 55 seconds after the

maneuver is initiated. '

Figure 3-2 shows the resulting reference aircraft trajectory for those dynamic variables

listed in the preceding section.

Task 3 Emergency Pull-up Maneuver - The last simulation mission selected was an

emergency pull-up maneuver during a final landing approach. In this mission the aircraft was

assumed to be initially flying the ILS beam. At an altitude of about 50 ft (15.2m) above the runway

the pilot decided to abort the landing and excuted the pull-up maneuver, in which the aircraft

pitched up sharply while simultaneously turning away to the right side of the runway.

A particular feature of this flight operation is the large yaw and pitch angles it induces,

and, as a consequence, the large deviation in forward (x) acceleration. Figure 3-3 shows the

resulting trajectories.
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TABLE 3.1

CHARACTERISTICS OF SIMULATED AIRCRAFT

(a) Physical Properties

c

b

s

m

V

11.08ft (3.377m)

71.2 ft (21.70 m)

690. ft (210. m)

777.5 slug (11347. kg)

236.4 ft/sec (72.05m/sec)

X

I
V

I
z

J
xz

Pilot's
Seat

125000,slug ",ft2 (169477. kg-m2)

120312.slug.ft2 (163121. kg-m2)

234375.slug -ft2 (317770. kg-m2)

8125.slug 'ft2 ( 11016. kg-m2)

30ft (9.14m) ahead of
vehicle CG

(b) Stability Derivatives
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Figure. 3-1

Reference Aircraft Trajectory - Tracking Maneuver
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3.2 Simulated Time Histories of Cab Motion

The washout control law as summarized in (2.97) - (2.101) contains nine adjustable

parameters, namely:

£ - adjust the amount of linear translational magnitude washout

k - adjust the amount of linear angular magnitude washout

K - adjust the amount of nonlinear translational phase washout
( 3 • . . .

K - adjust the amount of nonlinear angular phase washout
CO

T - adjust the "filtering" characteristics between high-cut-off-and-low-scaling

and low-cut-off-and-high-scaling

d ,d d - adjust the weighting of £ in x, y, z directions
* y' ^ . •

2
a.- - limits the maximum scaling • .
PA max

The task of choosing a suitable combination of these parameters is highly complicated in view

of the multidimensional performance requirements and the interrelationship between these

parameters and performance. For the purpose of facilitating a systematic determination of

the performance and the adjustable parameters, the following sequence of cases were con-

sidered during the course of simulation study,

Case 1 Linear translational washout only (K = K =0, k-»a>)
j3 w

Case 2 Linear trc.islational and angular washout ( K = K =0)
(3 a)

Case 3 Nonlinear translational and linear angular washout (K =0)
u>

Case 4 Nonlinear translational and angular washout

It should be noted that these cases were studied in consecutive order and a parameter which was

found suitable for a previous case was not altered for the following case unless it was necessary

to maintain the cab excursions to stay within confinement. In other words, the simulation is

not exhaustive for every case due to limitation in available computer time. It is conceivable

that better results than those shown in this section may be achieved by a more exhaustive

simulation.

Of the three tasks considered, the tracking and landing maneuvers received a fairly

thorough investigation but only Case 1 and Case 2 were considered for the emergency pull-up
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maneuver. Typical time histories of the cab motion and that of corresponding aircraft motion

for these tasks and cases are shown in the following pages and their corresponding values of

the parameters and figure numbers are tabulated in Tables 3.2-3.4.

In the Figures 3-4-3-29, the cab motion is represented by solid lines and the corresponding

aircraft motion, by solid lines with circles. The dynamic quantities shown in these figures are

x,y, z = inertial x, y, z excursions

8 i ft i B = "unbiased"x, y, z sensed specific forces

<p/ fl/ ii)= gimbal angles

p, q, r = angular rates

The cab excursions shown in these figures are all confined to within ± 10.0 ft. (3.05m) and

aircraft excursions, which are in the order of 1000ft (300m), were purposely "trimmed" down

from the actual values shown in Figs. 3-1-3-3 in order to permit plotting both cab and air-

craft excursions by the same scale. Let xc. , Vf. , z,. be the aircraft excursions shown7 fig' 'fig ' f i g

in Fig. 3-4-3-29 and x , , y , z , be the actual aircraft excuisions as shown in
act 'act act

Fig. 3-1^3-3, then for

Tracking task:

Landing task;

x L =Xf. +30.0+236.7t (ft) [x,. + 9.14 + 72.15t (m)]
act rig tig

Xact = Xfig

Zact= Z f ig-5 0 0 1 -5 ( f t ) C z f |g- 1524.5 (m)]

x = xc. + 30.0+243.Ot (ft) [xr. + 9.14 + 74.0t(m)]
act tig rig

Pull-up task;

---------- x - =-XT. - +-7320. 5 -+-1 20. 0 1 (ft) tx~ + 223 1 .3~+ 36.58 1 '(m) ]
act tig tig

z = Zf. - 127.2- 13. 5t (ft) [z.. - 38.77- 4.1 1 1 (m)]
act fig fig
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Figure 3-4

Relative Motions of the Aircraft and the Cab - Tracking Maneuver
- Case 1 (linear translational washout only). - T = 500.0
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Relative Motions of the Aircraft and the Cab - Tracking Maneuver
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Relative Morions of the Aircraft and the Cab - Tracking Maneuver
- Case 3 (nonlinear translational and linear angular washout). - T = 2.0
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Relative Motions of the Aircraft and the Cab - Tracking Maneuver
- Case 4 (nonlinear translational and angular washout). T = 500.0

90



(6) Z-SENSEO flCCELERRTION

1*
.-
iR

U
*8

5.0 T o C o C o i o T o U N O Co IB.O i» .o».o

(5) T-SENSED RCCELERflTION .

Wo To SS Co Co 10.0 12.0 n.o i».o it.o 20.0
TIME -(SECl

8 (U) X-SENSEO RCCELERflTION
2
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Relative Motions of the Aircraft and the Cab - Tracking Maneuver
- Case 4 (nonlinear translational and angular washout). T = 40.0
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Figure 3-16

Relative Motions of the Aircraft and the Cab - Landing Maneuver
- Case 1 (linear translational washout only). T = 30.0
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Relative Motions of the Aircraft and the Cab - Landing Maneuver

- Case 1 (linear translational washout only). T = 10.0
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RelaMve AAotions of the Aircraft pnd the Cab - Landing Maneuver
- Case 1 (linear translatio'nal washout only). T = 2.0
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Relative Motions of the Aircraft and the Cab - Landing Maneuver
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Relative Motions of the Aircraft and the Cab - Landing Maneuver
- Case 2 (linear trahslational and angular washout). T = 2.0
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Relafive Mofions of the Aircraft' and the Cab - Landing Maneuver
- Case 3 (nonlinear translational and linear angular washout). T = 30.0
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Relative Motions of the Aircraft and the Cab - Landing Maneuver
- Case 3 (nonlinear translational and linear angular washout). T - 10.0
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Figure 3-24

Relative Motions of the Aircraft and the Cab - Landing Maneuver
- Case 3 (nonlinear translational and linear angular washout). T = 2.0
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Relative Motions of the Aircraft and the Cab - Landing Maneuver
- Case 4 (nonlinear translational and angular washout). • T = 30.0
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Relative Motions of the Aircraft and the Cab. - Landing Maneuver
- Case 4 (nonlinear translational and angular washout). T= 10.0
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Relative Motions of the Aircraft and the Cab - Landing Maneuver
- Case 4 (nonlinear translational and angular washout). T = 2.0
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Relative Motions of the Aircraft and the Cab - Pull-up Maneuver
- Case 1 (linear translational washout only). T = 10.0
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Relative Motions of the Aircraft and the Cab - Pull-up Maneuver
- Case 2 (linear translational and angular washout). T = 10.0
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3.3 Summary and Discussion of Simulation Results

2
Of the nine adjustable parameters £, k, K , K , T, d , d , d and ft . , the three

j? a> x X z KA max
parameters k, K / K were used to define the four cases in Section 3.2, the parameters

P 6> 2
€, d , d , d were used as direct control of the cab excursions, fl>A , which limits the

x y z PA max

the magnitude of maximum scaling, were kept constant throughout the simulation study

after initial trial runs, whereas the remaining parameter T was used to alter the nonlinear

filtering characteristics of washout circuit for the translational motion.

It is noted from Section 2.6.2 that for large T, the system tends to behave as a high-

pass filter with low cut-off frequency and high scaling of the input aircraft accelerations,

while for small T, the system is more like a high-pass filter with higher cut-off frequency

and low scaling effect. In general, the low-cut-off-and-high-scaling effect is reflected in

the sensed cab motion with good phase and poor amplitude relations with that of sensed air-

craft motion. On the other hand, the high-cut-off-and-low-scaling effect tends to give poor

phase but with better amplitude relations. These effects are visibly evident for all the tasks

and cases considered in the present study as will be pointed out in the sequel.

Another important property for assessing performance is the "onset" characteristic, i..e.,

the ability of the cab to follow the initial aircraft translational acceleration. The onset

motion generally occurs in the vertical (z) direction since the turns are normally well co-

ordinated and forward speed variation is more often kept at low level. A glance at the

part (6) of the Figs S--4-3-29 reveals excellent onset following characteristics of the washout

system for all tasks.

As for the angular motion, it is generally agreed that the deviation between the sensed

angular motion (i.e., angular rates) of the cab and the aircraft should be preferably kept small

since the human motion sensor tends to be more sensitive to the deviation in the angular motion

than to the deviation in the translational motion. In the present washout system, the amount of

angular motion deviation is controlled by the adjustment of parameter k, which has been kept

at a value that keeps angular motion error small.

Thus, the major effort in the simulation study is to obtain a range of the adjustable

parameters to provide suitable choice of translational motion with limited motion deviation.
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In the discussion that follows, attention will be directed to the response of the sensed

translational motion ft, fl , and ft in part (4), (5) and (6)> respectively, of Fig. 3-4-

3-29. ..- . . . . . . . - • : . -

Tracking Tosk; . . .

three values of the parameter T were considered in each case to illustrate the trade-

off between th e good-phase-poor-amplitude and poor-phase-good-amplitude responses. Take

Case I (Figs. 3-4, 3-5 and 3-6) for example: at the initiation of the simulation, all cases

show excellent onset following; after I sec, however, small T (Fig. 3-6 (6)) is'seen to cause the

sensed cab motion ft to go in an opposite direction to that of sensed aircraft motion ft.
. . . . . " c z ^ A z
(phase error) while for large T (Fig. 3-4 (6)), ft remains at the same direction as that of

8Az • On the other hand, at about 4 seconds, large T causes ft to reach a magnitude

of 8 ft/sec/sec whereas, for small T, the peak ft reaches only 4 ft/sec/sec. Again >

during the following period of 4 sec, large T provides, better amplitude ..response with the

cost of phase error while small T provides better phase relation with the cost of larger

amplitude attenuation. An intermediate value of T (Fig. 3-5 (6)) results in a compromise

between the two extremes. •

The reduced peak amplitude response caused by large T , which may not be favorable in

z-direction, is definitely favorable in y and x-directions. Because of well coordinated

turns, the aircraft has a small lateral sensed acceleration 0A , but the cab motion which can-
y ,,

not be coordinated within the available maneuvering region shows some spurious lateral

acceleration £ . It is seen that the peak fl for large T (Fig. 3-4 (5)) is significantly

smaller than that for small T (Fig. 3-6 (5)). The same effect is also true for the forward

acceleration ft as can'be seen from Fig. 3-4 'W'), 3—5 (4), and 3-6 (4). .

The effect of the adjustment of T on the cab motion discussed above for Case j

(Figs. 3-4, 3-5, 3-6) can be extended to cover Case 2 (Figs. 3-7, 3-8, 3-9), Case 3

(Figs. 3-10, 3-11, 3-12), and Case 4 (3-13, 3-14, 3-15).

The introduction of angular washout by the adjustment of k in Case 2 is designed to

utilize the residual tilt for the purpose of improving translational motion. This effect can

be visualized by comparing the corresponding time-histories for Case 1 (Figs. 3-4, 3^5, 3-6)

and Case 2 (Figs. 3-7, 3-8, 3-9). For the limited amount of washout provided, a general
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improvement in x and y directions are visible from the figures.

In Case 3 (Figs. 3-10, 3-11, 3-12) an additional nonlinear washout signal was pro-

vided for the purpose of improving phase relations in the translational motion. The effect is

relatively moderate for the combination of parameters used in the simulation, however, the

nonlinear washout does provide an alternative to the linear cases.

In addition to the translational nonlinear washout in Case 3, a nonlinear angular

washout signal was utilized in Case 4 (Figs. 3-13, 3-14, 3-15) for the purpose of improving

angular phase relations. Since the angular phase relations are nearly perfect in all cases, no

significant improvement can be expected from the nonlinear signal. The figures are presented

here for the sake of completeness.

Landing Task;

The response characteristics of the washout system discussed in the foregoing paragraphs

for the tracking task also applies to this task in general. A major difference between the

tracking task and the landing task is that the former has a relatively symmetric vertical

acceleration whereas the latter is asymmetric as can be seen from part 6 of the figures. For

a motion with asymmetric acceleration profile, the high-cut-off, low-scaling characteristics

of the filter can be utilized more advantageously to eliminate the d-c component of the

acceleration. Thus, substantially smaller values of T can be used in the present task than

had to be used in the previous task.

Another consideration in the determination of suitable combinations of the adjustable

parameters is that because of the larger vertical excursion than the lateral excursion in

the landing task, the weighting on the amount of translational washout (d , d , d ) need
x y z

not be equal in all three directions as was the case in the tracking task. In a direction in

which large excursion occurs a larger weighting is needed to restrain the cab from moving

beyond the physical boundary, and in a direction with small aircraft excursion the weighting

can be smaller to permit the cab to move in a larger volume.

Again, three values of T were considered in each of the four cases and its effect to

the cab response is similar to that in the tracking task as can be observed by comparing the

three figures in each case: Figs. 3-16. 3-17, 3-18 for Case 1, Figs. 3-19, 3-20, 3-21 for
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Case 2, Figs. 3-22, 3-23, 3-24 for Case 3 and Figs 3-25, 3-26, 3-27 for Case 4. Good

vertical onset following and improved lateral and forward performance are visible in all

cases.

Pull-up Task: « • • •

Substantially different aircraft motion, reflected in the presense of large forward accel-

eration variation, in this task from the preceding tasks provides a good test of the adaptability

of the washout system. Only Case 1 and Case 2 were considered and only one value of

T was simulated for both cases.

Referring to Figs. 3-28 and 3~29, a perfect following of the aircraft motion by the cab

for the first 6 sec, in which the aircraft was descending at a trim condition, is as expected.

After the commencement of the pull-up maneuver/ the sensed cab accelerations display a good

onset following before subsequent deviation from that of aircraft motion. The effect of high-

pass characteristics is most visible after 20 sec: the high frequency component of the aircraft

vertical acceleration was faithfully preserved by the cab motion, while d-c component of

the acceleration was effectively removed. The effect of residual tilt can be seen by comparing

Figs. 3-28 and 3-29. A general improvement in cab acceleration is visible in Fig. 3-29

particularly during the period beyond 20 sec.
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4. CONCLUSION AND RECOMMENDATION

This investigation is concerned with the design of a six degree-of-freedom motion

simulator control system. The problem considered herein is a generalization of the problem

considered in an earlier study [ 1] in which control systems for a two degree-of-freedom

motion simulator were designed by applying the quasi-optimum control technique described

in [2.3] . Although the same general method was employed in the present investigation, the

mathematical formulation of the physical problem here is substantially more general and more

convenient, in that, (a) the reference aircraft dynamic was not necessary in the formulation,

(b) the effects of residual tilt and phase error were incorporated in the nonlinear performance

i ndex.

The results of this investigation may be interpreted as demonstrating that:

• The quasi-optimum washout control system can be effectively used for a

wide variety of flight simulation tasks,

• For each simulation task, the cab excursions can be readily confined to

within any specified value and the characteristics of motion sensation can

be varied by adjustment of constant parameters.

It is believed, however, that the adaptability of the washout system has not been

fully explored in the simulation study reported here. The general presence of spurious

lateral sensed acceleration ft throughout the simulations, for instance, may

be an inherent limitation of motion simulation in a finite volume and may have to be

present irrespective of the manner in which the washout signals are generated. On the

other hand, the possibility of improvement through better combination of adjustable param-

eters cannot be discounted. Another option, which is logically promising but has not been

simulated in this study, is the employment of different filtering charactistics of the washout

system in each direction. It was pointed out in Section 3.3 that, to achieve an appropriate

washout effect, the filtering characteristics embodied in the washout system should be altered

by adjustment of parameters from task to task. But for any one task, the filtering characteristics

were maintained the same in all x, y, and z directions despite the fact that the acceleration pro-

files are significantly different in each direction. Thus it is conceivable that tailoring the

filtering characteristics in each direction in accordance with each acceleration component may

ultimately provide improved performance.
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Based on a comparison of the results obtained in the present study and those achieved for

the two degree-of-freedom case which has received favorable comments from pilots who made

actual flight tests/ it is not unreasonable to conclude that we have achieved a design which

may be preferable to those achieved by use of conventional washout techniques.

In view of these results the following further effort can be recommended:

• More exhaustive simulation study of the washout system design reported here.

• Experimental assessment of the washout system by means of actual flight

simulation at the Ames Research Center.

• Extension of present design approach to include the consideration of

human (anesthetic sensor models.

The importance of experimental evaluation with actual pilots cannot be minimized.

It is possible to scrutinize an unending number of time histories without knowing for certain

whether one design is better than another, because the characteristics that are being sought

in the time-history have not been pinpointed. Thus, actual pilot experiments are ultimately

indispensible for complete evaluation of washout system performance.
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APPENDIX I

Derivation of Optimum Controls a*, u

In this Appendix, analytical expressions for the optimum controls a and u will be

obtained from (2.51) and (2.52), respectively,

J-=P. a-i)

a-2)

for the penalty functions in (2-40 ) and (2-41 ),

.2

X) , /S A ( T ) )= ~V + K< (8

M l -» / - -r \ -» / \\_ a) , v i CO A
(co(u, X), COA(T;;~ o- +^ I —5co .A 2 co V CO A 2

L cc A \ " CO/

(T-4)

Since the solution of u from (t~2) and (1-4) is essentially the same as the solution

of a* from ([-!) and d~3), we will first solve (1-1) and (1-3) for a*.

Applying chain rule to (1-1), we have

3a

' «_ _ e

da ] df?

where use of the following relation was made

a-6)
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Equating the right hand sides of (1-1) and 0-5) gives

?A
• • _ -

- °A

Next substituting (1-6) into (1-7) and solving fora*, yields

a-?;

a -
.2 -

To eliminate the 0 term in (T-8), (1-7) is rewritten as

, t K. \ K

a-9)

Next, compute the inner products of the vectors on either side of equal sign in (t-9); the re

sulting sealer equation may then be solved for /3 to obtain

- K + a-io)

Substitution of (1-10) into (t~8) gives the desired result

K.

a = 1 - a

a-n)
Following the same procedure results in a similar expression for the angular wash-out, given below

K
u - 1 -

<2

10
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APPENDIXH

Derivation of Quasi -Optimum Correction Factors

The optimum control problem defined in (2. 94 ) ~ (2. 97 ) is summarized below:

r Q =M +kMw +6L ; rQ(t) = 0 , rQ(t + T) = free

F * = v . ; r-(t) = rA(t), - F*( t+T)=free

fr =a ; v*(t) =v*A(t), v*(t+T) = free (E-l)

X =u ; X(t). = 0 , \(t +T) =free

r =] ; r(t) =t , T(t +T)=. t +T

€=0 ; €fr) =6 , € ( t + T ) = free

01-2)

; p y ( t + T ) = 0

; p ( t + T) = free

; p^ (t + T ) = 0

Let the vectors x and p represent all the state variables and the corresponding

adjoint variables, respectively,
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x -

'0
-•

V*

X

T

P = OT-4)

The corresponding quantities for the "simplified" problem (6 = 0) are denoted by

the subscript "s":

x -
s

rs

vs

Xs

P7

0

01-5)

In this appendix, we will derive a correction matrix M so that the original adjoint

vector p is given by

p -p

=
01-6)

where fy is the correction to adjoint vector p and £ is the correction to state vector x.

x =x +f
s '

at-7)
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The matrix M is conveniently partitioned as follows:

M =

mOO

m _ M
r 0 rr

m _ M
vO vr

rri ..
X O \r

m _ m
€0 6

m Ov

M
r v

M

AA
X v

m _. m m
TO r f TV

m

m
OX

M
rX

M
v X

M
XX

m

m

m
0T

m

m
V T

m
'Xr

m.

m

m

m
X€

m m
TT T

(n-8)

The elements denoted by capital M are n x n matrices, and m's denote vectors. The elements

appearing in (U.-8) — not all of which are required for quasi-optimum control law— are to

be found with the aid of the auxiliary equations for IJj and £

= H £ +H
xp * pp

£ - H
xx s px

cn-9)

or, by use of the matrix Riccati equation:

- d M/d r = M H +H M + MH M+H
xp px pp xx

OHO)

The coefficient matrices H , H , H and H in (TI-9) and (II-]0) are obtained by
xp px pp xx '

partial differentiation of the Hamiltonian h in (H-2) with respect to x and p where the

resulting derivatives are evaluated at x and p . The first partials of h are:
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9h
= 0

p € 8JLpo€ Tr

ah

h

9r

= M

9h

- u
01-12)

8h

9p

= 1

9P,
= 0

]22



In order to evaluate the second partial matrices about the "simplified" solution, it

is noted that for the simplified problem we have

£ — Q

01-13)

a.c

P0(r)-l

Pr(T) =

Px(r) = 0

p (T )=p ( t+T )
T

= J L(rlT))dT

t

T(T) =

OH 5)
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where the subscript "s" has been omitted in (H-13) — (tt.~16). In the subsequent

development, we will be using only the "simplified" solution, and hence for con-

venienc the subscript "s" will be omitted unless otherwise indicated. Thus,

H = 9h

px a - ~ -r 9x 3p

= H

€ =0
xp

0

0

0

0

0

L

0

0

I

0

0

0

0

0

0

-0-M'c
c l a x j

M'LarJ

0

0

0

0

-*K
Paul '
L9 TJ

0

0

0

0

0

0

0

0

0

0

0

0

0
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u -n — —T.
pp

=0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

as*
3p

V

0

0

0

0

0

0

3u

»"x

0

0

0

0

0

0

0

0

0

0

0

0

0

0

tt-18)

H =
xx

6 = 0

0

0

0

0

0

0

0

0

0

0

0

3L

ar

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3L

3T

0

3L

3r*

0

0

3L

3T

0

UE-19)
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Substitution of (H-17) — Cff-19) into the auxiliary equations (R-9).

results in

i = 4- (b)
sr *v .

f.-l*.Bf]'cK^^^ - w -
01-20)

9u - / ,v
— iK (d) , -

" rx

= 0 ' ' (e)

= 0 ' (0

(a)

5,-^ . . -

(c)

01-21)

v^a^jc*»;^utJ[F'r*v (d>

*T--^«e-[fe]'Jv"-[ifr»x"'
*V- ; !r«, '* ' f7«r-L^ (f)

9 r
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with boundary conditions

t0(t+T) = - f y ( t + T ) d ( t + T ) = 0 (a)

$(t + T) = - p ( t +T)d(t + T ) = 0 (b)

0 v ( t + T ) = - p v ( t + T ) d ( t + T ) = 0 (c)

T) = 0- : (d)

= - T ( t + T ) d ( t + T ) = - d ( t + T ) (f)

and p'(t +T) |" (t + T)=x" ' ( t +T)0 ( t + T)or

<, T ( t+T)=0 (g)

Since the optimum control laws a and u in (2. 53 ) and (2. 54 ) are only a function

p and p , respectively, the elements in the M matrix (H-8) of primary interest are

those affecting the correction of p and p . The correction factors $ and fy are
v__ \ r \

written in terms of the elements of M from (H-6) to give

lj> = M 1 dT-23)

^ = ̂ f + M r + M € + M 4 + - l + S 4 01-24)

Those elements of the matrix M , appearing in (H-24) and (TJ-25) will be evaluated

as follows:
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From (H-21a ), (E-22a ) and (E- 23 ), and the fact that M is symmetric; it is

evident that the first row and column of M vanish. Hence:

(11-26 )

mvd ~mxo

From (TJ-21b ) and the fact that £ = € , we have:

r T r r 3r~

and hence, from (H-21c ), we have:

T Moi

v v r t t 37

Using boundary conditions (H-22b ) and (EL-22c ) in (H- 27 ) and (H- 28 ) yields:

(H-27 )

, (n-28 )

= - € = m , €

and

t+T , t+T T ..

Tj ~ d X - j j —
t 3?* t t ar*

€ '; 01-29 )

A comparison of (11-29 ) and (It- 24 ) indicates that,

M =M =M =M =0
v r vv v X v T

Therefore/ from (IT- 6 ) and (II~ 15 )/ we have the quasi-optimum solution for p
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Pv •-

t + T

t a

t + TaL r aiT r J-L.dx-j. r ,-Uj j
d , x d - T

,t .t a
. (E- 30 )

To obtain ty , it is observed from (H-21d ) that the differential equation govern-
__ A.

ing ijj is exactly the same as the original equation for p in QZ- 3 ), which, as was
A A

shown in Section 2. 5. 1/ can be simplified by the transformation defined in (2- 64 )•

Therefore, proceed by letting

;q=[F'ac)] ;x 01-31 )

then, from (2. 66 ) - (2. 68 ), (TI- 21 d ) is transformed into,

01- 32 )

and integration of (TJ- 32 ) yields

01-33 )

Since from (H- 6 ) and (H- 15 )/ we have the original p. as
A

it immediately follows that

y (T )= y (T )= y (t) - T C(x )[? x p ] dr 01-34 )
'q fo c c v

The quasi-optimum approximations of p and y in (TJ- 30 ) and (TJ- 34 ) respectively
/ v

are the necessary terms in deriving the quasi-optimum control law in Section 2.5.3.
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APPENDIX JE

Singular Optimum Control

Consider the optimum control problem described by (2. 45 ) - (2. 50 ). If

k = 0, then the Hamiltonian becomes

h = L) + p an-

Using (2. 61 ), the adjoint equation (2. 49 ) can now be rewritten as

3r

•

P.. =" P,

p = —- = <T
X 3X

8M.

3C(\C)

3X
c(xc) PV

an- 2 )

an- 3 >

cm- 4 )

an- 5 )

an- 6 )

an- 7 )

The optimum controls a* and u are obtained by computing the partial derivatives of the

Hamiltonian h with respect to a and u and equating the derivatives to zero.

9L

3M,

p =0
v

an-

an- 9
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Substitution of (TTT- 9 ) into (Iff- 5 ) results in the relation

9C(X
a*'

c
C(XC )PV =o on-10)

which can be rewritten as

S'c c(xc) C(X C )P V =0

or, using (2. 71 ) with K = 0, it becomes
p

3C(X )

ax
-.0 (fflr 11 )

After performing the matrix multiplication, (El- 11 ) can be reduced to the component

form

'cy*A:z
-0

S''n ^c COS *c + (aczaAx ' acx «

(Iff- 12 )

a* - cy a* ) cos <t> +(a
Ay acy Ax . c cz a aAex "Az

Since the set of equations in (ID- 12 ) should be satisfied for all values of <J> and $

it follows that

acx aAy" a
&y° !Ax

= 0

= 0
(EL- 13 )

a cz a Ax" a cx a Az
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which implies that

a*, x o^ = 0 (Iff- 14 )

I .

It is noted that for the singular case, the control a is solved from (HE- 8 ) in

exactly the same way as for the nonsingular case. The control 0, however, can not

be obtained by a direct application of the maximum principle. The equation (TJI- 9 )

obtained by the maximum principle results in an indeterminate value of y. To obtain

u for the singular case, first solve the set of equations (TII-12) for the cab attitude

0 , <J> and jb • Next, differentiate the expressions for Q , <J> , and jh and use the
C C C C C C ' .

definition (2. 8 ) to obtain u .

It is noted that the cross product relation (ffl- 14 ) can also be obtained by-

neglecting the angular error dynamics and treating the angle error \ as a control variable.

In this case, the system dynamics (2. 45 ) become

(TJT- 15 )

€ =0

for which a* and \ (which is implicit in M ) are the control variables. The formulation
P ' — ,

given by (HI- 15 ) can be interpreted as determining a* and X so that good translational per-

ception of the motion is obtained without regard to angular perception!
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APPENDIX IV

FORTRAN SUBROUTINE OF THE SIMULATOR CONTROL SYSTEM

A FORTRAN subroutine called WASHFL was developed for implementing the simulator

• control system design shown in Figure 2-19 and given by (2.94), (2.95), (2.97) - (2.101).

This subroutine was used in the computer simulation study described in Section 3 and also

has trî  capability of being used on the computer facility at NASA-AMES to generate the actual

drive commands for the moving base simulator.

this appendix contains program listings of the WASHFL subroutine and two other sub-

routines, GINTR and DRPRC, required by WASHFL to perform the numerical integration of

state variables of the simulator control system. In addition to the program listings, a brief

description of how to use the WASHFL subroutine and a description of all computer variables

are given.

SUBROUTINE WASHFL

Purpose; Implement the simulator control system design.

Procedure t See the block diagram of the simulator control system design in Figure 2-19.

Usage; CALL WASHFL (IMODE, H, APHI, ATHT, APSI, AXFM, AYFM, AZFM,

PA,QA, RA, CPX, CPY, CPZ, CPHI, CTHT, CPSI)

where the inputs are

IMODE index controlling the mode of operation;

= 0, bypass; =-l, initialization; = + l, simulation.

H integration step size (sec).

, ' APHI aircraft roll angle (rod).

ATHT aircraft pitch angle (rad).

APSI aircraft yaw angle (rad).
2

. . . . . . AXFM aircraft inertial acceleration in the x direction (ft/sec ).
":-- ' ' . ' . ' ' • ' • ' ' . o

: vV ; • / - . . ' AYFM aircraft inertial acceleration in the y direction (ft/sec ).
'.:'*'•'.'-: : . . • " ' - . 2

" /;' AZFM aircraft inertial acceleration in the z direction (ft/sec ).

..' PA aircraft roll rate (rad/sec).

QA aircraft pitch rate (rad/sec).

RA aircraft yaw rate (rad/sec).
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and where the outputs are

CPX cab'inertial displacement, command in the x direction (ft).

CPY cab inertial displacement command in the y direction (ft).'

CPZ cab inertial displacement command in the z direction (ft).

CPHI cab roll angle command (rod).

CTHT cab pitch, angle command (rod). •<•

CPSI cab yaw angle command (rod).

Remarks : . : : . • • • . . •

The input aircraft Euler angles APHI, ATHT, and APSI are defined according to the
1 ' . * . • ' ' . " • r

conventional sequence of rotations: yaw-pitch-roll. Since the simulator control system was

designed using the sequence'of rotations: pitch-yaw-roll, a transformation is included in

WASHFL to convert the aircraft Euler angles from the former sequence to the latter sequence.

The FORTRAN statements containing the transformation are designated by the word MAYBE

in columns 74-78. If the aircraft Euler angles defined according to latter sequence are

available in the computer simulation of the aircraft then, by deleting the FORTRAN state-

ments identified by MAYBE in columns 74-78, those Euler angles can be used in the calling

argument. ., -,.:...

The output cab Euler angles are defined according to the rotational sequence: pitch-

yaw-rol I.

An improved first-order Euler method is used to perform the numerical integration. An

integration step size of H = 0.05 sec was used in computer simulation studies.

Subroutines required: GINTR

A list of all computer variables used in the WASHFL subroutine is given below where the

variables are partitioned according to sealer or array type.

Sealer Computer Variables

Computer Mathematical Description

Variable Symbol . /. -• - * ••.

TIME t Double precision value of T.

H2 At Double precision value of H.

TFIN T t + T is the terminal time in the performance index.
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Sealer Computer Variables/ contd

Computer .
Variable

CK

FK

EPS

WEIGT

XMAX

YMAX

ZMAX

FN*RM

RCA

APHI ,

RSA

PCA

ATHT ;

PSA

YCA

APSI

YSA

RNUM

RDEN

PNUM

PDEN

YARG

IMODE

Mathematical
Symbol

K Weighting factor in
8 . .

K Weighting factor in

£ Weighting factor in

k Weighting factor in

d Translation limit of
X

d Translation limit of
X - ••-,., • • . . . • •

. d Translation limit of
z •• •• . . .

Description

the performance index,

the performance index.

the performance index.

the performance index.

the cab motion in the x direction.- • • - ' •

the cab motion in the .y direction.

the cab motion in the z. direction.

. - -. - '2 • • i . • . • •' . • • . ' ' ' • ' —
ft. Normalization factor used in the approximation of P •
A max . . . , . v .

= cps<t>A-

0. Aircraft roll angle.

. - ' . : - - :=>*A'. - : • •

= cos9A.

0A Aircraft pitch angle

= sin 0A.

= cos4,A.

0. Aircraft yaw angle.

= sin4,A.

. -

. • - • ' I " ' - . . ' • . - • ; • . •

• . . .

•

'

1

= sin<DAcos1|)A - cos<t>AsineA sin(j)A. >

= cosO . cos^ . +s

= sin0A.

= co89Acos0A.

= coseAsin^.

Index for control of

inO . sin ft. sin ft . .
A °A ^A

> See (2.4)
1

„

i

subroutine computational mode.
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Computer

Variable

T

H

IFRST

TF2

TF3

TF4

CPX

CPY

CPZ

CVX

CVY

CVZ

CPHI

CTHT

CPSI

GAMM1

GAMM2

GAMM3

ATO

APHID

PA

QA

RA

ATHTD

APSID

Mathematical

Symbol

t

At

x
c

yc

X
c

X
c

yc

z
c

0
C

ec

«>c

yx

•y

*V

0

PA

qA

rA
•

ft*

Sealer Computer Variables, contd

Description

Current time.

,Time increment used for numerical integration.

Index used to initialize the numerical integration.

= T2.

= T3. See TFIN

Cab inertial displacement command in x direction.

Cab inertial displacement command in y direction.

Cab inertial displacement command in z direction.

Cab inertial velocity in x direction.

Cab inertial velocity in y direction.

Cab inertial velocity in z direction

Cab roll angle command.

Cab pitch angle command.

Cab yaw angle command.

x - component of the new costate variable y.

y - component of the new costate variable y.

z - component of the new costate variable y.

-P . - (q, cos0 * ~ rA s'n * A^ tan0A' ro" 9'mDa' rate' (See 2 .7)

Aircraft roll rate.

»* •

Aircraft pitch rate.

Aircraft yaw rate.

= (q . cos0 A " rA ̂ "^A ^ / cos $A' P'*cfl 9imDa' rate.

+ f^ cos 0 A' Xaw gimbal rate.
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Computer Mathematical

Variable Symbol

AXFM

AYFM

AZFM

CTO

ABETA2

Sealer Computer Variables, contd :,.,. .

Description

Aircraft inertial acceleration in x direction.

Aircraft inertial acceleration in y direction.

Aircraft inertial acceleration in z direction.

CK2

PV2

XXX

I
CAX

CAY

CAZ

CAZZ

GAM1

GAM2

GAMS

PQR2

FK2

GAMMM2

PQRGAM

V
c

z*
X

ac(3)

2
*A

K2

to

Do loop index.

x - component of the cab acceleration.

y - component of the cab acceleration,

z - component of the cab acceleration.

= zc 9*

= Y / k. :

Magnitude squared of the aircraft angular rate.

Square of the weighting factor in the performance index.

= (VA)
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Sealer Computer Variables, contd

Computer
Variable

OOO

PC

QC

RC

CPHID

CTHID

CPSID

Computer
Variable

VC

YC

AF

A ALFA

A BETA

ACO

ASO

TFM

CCO

CSO

CFM

CALF A

Mathematical
Symbol

= o/«A-

Description

p Cab roll rate.

q Cab pitch rate .

r Cab yaw rate.
c '

• Derivative of the cab roll angle command,

c
•
<t> Derivative

c

0 Derivative

Array

Mathematical Dimension
Symbol

12

9

°A 3

«A 3

^A 3

3

3

C(XA) 3x3

3

3

C(XC) 3x3

3

of the cab pitch angle command.

of the cab yaw angle command.

Computer Variables

Description

Simulator control system state vector.

Derivative of the simulator control system state vector.

Specific force acting on the aircraft.

Sensed specific force acting on the aircraft.

Unbiased sensed specific force acting on the aircraft.

= cosXA .

= sinXA .

Coordinate transformation of the aircraft Euler angles.

= cos'Xc.

= sinxc.

Coordinate transformation of the cab Euler angles.

Sensed specific force acting on the cab.
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Array Computer Variables, contd

Computer Mathematical Dimension Description

Variable Symbol

PV p 3 Costate of the velocity error.

ROA 3 = C'(\;)«A'

ROB 3 =C'(x )flA.
c *»

W a 3 Error in the specific force.

ETA fj 3 Intermediate variable used in the angular washout

computation.

D 3 Diagonal elements of the matrix D in the penalty

function L (7 ).
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Listing of Subroutine WASHFL

APHl , ATHT, APSI , AXFMf AYFM, AZFMf
CPX,CPY,CPZ, CPHI,GTHT,GPSI )

C
C
C
C
C

SUBROUTINE WASHFLdMODE, H,
PA,QA,RA,

VC(.12),YC(9)
AF(3),AALFA(3),ABETA(3),ACO(3),ASO(3),tFM(3,3)
CCO(3),CSO(3),CFM(3,3),CALFA(3)
PV(3),ROA(3),ROB(3),M(3),ETA(3),D(3)

,0
.0
.0
,16

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DOUBLE PRECISION
RCA= COSIAPHI)

SIN(APHI)
COStATHT)
SIN(ATHT)
COS(APS I)
SIN(APSI)
= -RCA*PSA*YSA
= RSA*PSA*YSA
= PSA
= PCA*YCA
= PCA*YSA

ATAN2(RNUM,RDEN)

TFIN/5,
CK/C,
FK/C,

EPS/C,
WEIGT/1.0
XMAX/10.0
YMAX/10.0
ZMAX/10.0

FNORM/350.0
TlMEtH2

RSA =
PCA =
PSA =
YCA =
YSA =
RNUM
RDEN
PNUM
PDEN
YARG
APHI =

RSA*YCA
RCA*YCA

ATHT = ATAN2(PNUMtPDEN)
APSI = ASIN(YARG)

IF (IMODE) lOOCt 3000, 2000

INITIALIZATION
**************

1000 CONTINUE
T = 0.0
TIME = OBLE(T)
T = SNGL(TIME)
H2 = DBLE(H)
IFRST = 0

TF2 = TFIN**2
TF3 = TFIN**3
TF4 = TF2**2

D(l) = 1.0/(XMAX**2)
0(2) = 1.0/(YMAX**2)
D(3) = 1.0/(ZMAX**2)

MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
MAYBE
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Listing of Subroutine WASHFL (Continued)

CPX =
CPY- =
CPZ =
cvx =
CVY =
cvz =
CPHI =

0.0
C.O '
0.0
0.0
0.0
0.0
APHI

CTHT = ATHT
CPSI = APSI
GAMM1
GAMM2
GAMM3
GO TO

= 0.0
= 0.0
= 0.0
3000

C
c
C
c
c
c
c

DEFINING AIRCRAFT VARIABLES
#********#*###****#****###*

2000 CONTINUE
ACO(l)
ACO(2)
ACO(3)
ASO(l)
ASO(2)
AS013)
ATO =

= COS(APHI)
= COS(ATHT)
= COS(APSI)
= SIN(APHI)
= SIN(ATHT)
= SINIAPSI)

TANIAPSI»
APHID = PA - (GA*ACO(1) - RA*ASO11))*ATO
ATHTD = <QA*ACO(1) - RA*ASO(1))/ACO(3)
APSID = QA*ASC(1) + RA*ACO(1)

TFMd.l)
TFM(2,1)
TFM(3,1)
TFM(1,2)
TFM(2,2)
TFM(3,2)
TFM{1,3)
TFM(2,3)
TFM(3,3)

ACO(2)*ACO(3)
ASO(1)*ASO(2) -
ACO(1)*ASO(2) *
ASO(3)
ACC(1)*ACO<3)
-ASO(1)*ACO(3)
-ACO(3)*ASO(2)
ASO(1)*ACO(2) +
ACO(1)*ACO(2)

ACO(1)*ASO(3)*ACO(2)
ASO(1)*ASO(3)*ACO(2)

+ ACC(1)*ASO(3)*ASO(2)
- ASO(1)*ASO(3)*ASO(2)

AF(1) = AXFM
AF{2) = AYFM
AF(3) = AZFM - 32.2
AALFA(l) = TFMd, 1)*AF(1)
AALFA(2) = TFM(2,l)*AF(l)
AALFA(3) = TFM(3,1)*AF(1)

TFM(1,2)*AF(2)
TFM(2,2)*AF<2)
TFM(3,2)*AF(2)

TFM{1,3)*AF(3)
TFM(2,3)*AF(3)
TFM(3,3)*AF(3)
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Listing of Subroutine WASHFL (Continued)

C
C
C
C
C
C

C
C
C
C
C
C

ABETA< 11 .=
ABETA(2) =
ABETA(3) =

AALFA(l)
AALFAI2)
AALFAO) 32.2

##***#***#*#**********
DEFINING CAB VARIABLES

CCO(l)
ccom
CCO(3)
CSO(l)
CSQ(2>
CSO<3)
CTOs =

= COS(CPHI)
= COS(CTHT)
= COS(CPSI)
= SIN(CPHI)
=.SIN(CTHT)
= SIN(CPSI)

TAN(CPSI)
CFM<1,1)
CFM(2,1)
CFK(3t1)
CFfMl,2)
CFM(2,2)
CFM(3,2)
CFM(1,3)
CFM(2,3)
CFM(3,3)

CCO(2)*CCO(3)
CSO(1)*CSO(2)
CCO(1)*CSO(2) +
cscm
CCC(1)*CCO<3)
-CSO(1)*CCO(3>
-CCO(3)*CSO(2)
CSOtl)*CCOt2) +
CCQ(1)*CCO(2) -

- CCOm*CSO(3)*CCO<2)
+ GSO,(1)*CSO(3)*CCO(2)

CCO(1)*CSO(3)*CSO(2)
CSO(1)*CSO(3)*CSO(2)

COMPUTES TRANSLATIONAL WASHOUT CONTROLS

PV(1) = -EPS*D(1 )*(CPX*TF2/2.0 +CVX*JF3/3.0
PV(2) = -EPS*D(2)*(CPY*TF2/2.0 fCVY*TF3/3.0
PV(3) = -EPS*D(3)*(CPZ*TF2/2.0 +CVZ*TF3/3.0
ROA(l) = AALFA(1)*CFM(1,1) + AALFA(2)*CFM(2fl) +
ROA(2) = AALFA(1)*CFM(1,2) + AALFA ( 2 ) *CFM ( 2 , 2 ) +
ROA(3) = AALFAm*CFMU,3) + AALFA (2 ) *CFM< 2 , 3 ) +
ABETA2 = ABETA(1)**2 + ABETA(2)**2 + ABETA(3)**2

+AXFM*TF4/
+AYFM*TF4/

8 .0*FNORM ) )
8.0*FNORM ) )
8.0*FNORM ) )

AALFA ( 3 ) *CFM ( 3, 1 )
AALFA ( 3 ) *CFM ( 3 , 2 )
AALF.Al 3 ) *CFM i 3, 3 )

IF (CK.EQ.0.0) GO TO 100
CK2 = CK**2
PV2 = PV(1)**2 + PV(2)**2
ROB(l) = ABETA(1)*CFM(1,1)
ROB(2) = ABETA(1)*CFM(1,2)
ROBI3) = ABETA(1)*CFM(1,3)
XXX = ABETA2*PV2 + CK2 + 2..*CK

XXX = SQRT(XXX)

PV(3)**2
+ ABETA ( 2 ) *CFM ( 2 ,1 )
+ ABETA ( 2 ) *CFM( 2 f 2 )
+ ABETA ( 2 ) *CFM ( 2 , 3 )

ABETA( 3 )*CFM ( 3 , 1 )
ABETA( 3 ) *CFM( 3 , 2 )
ABETA ( 3 ) *CFM < 3, 3 )

* ( PV ( 1 ) *ROB ( 1 ) +PV( 2 ) *ROB( 2 )
;+PV<:3)*ROB(.3)Y
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Listing of Subroutine WASHFL (Continued)

100

6
200

DO 5 1=1,3
ETA(I) = -((1.0 + CK/(-CK+XXX))*AALFA(I) + CK*ABETA(IM/ABETA2
W(I) = (1.0 - CK/XXX)*(ABETA2*PV(I) + CK*ROB(IM * ROA(I) - AF(I)
GO TO 200
CONTINUE

DC 6 1=1,3
ETA(I) = -AAIFA(IJ/ABETA2
W(I) = ABETA2*PV(I) + ROA(I)
CONTINUE
CAX = AXFM + W(l)
CAY = AYFM + fc(2)
CAZ = AZFM •«• W(3)
CAZZ = CAZ - 32.2
CALFA(l) = CFM(1,1)*CAX +
CALFA(2) = CFM(2,1)*CAX +
CALFAI3) = CFM(3,1)*CAX +

- AF(I)

CFM(1,2)*CAY
CFM(2,2)*CAY
CFM(3,2)*CAY

CFM(1,3)*CAZZ
CFM(2,3)*CAZZ
CFM(3,3>*CAZZ

C
C
C
C
C
C
C

COMPUTES ANGULAR WASHOUT CONTROLS

GAM1 = GAMM1/WEIGT
GAM2 = GAMM2/HEIGT
GAM3 = GAMM3/WEIGT
PGR2 = PA*PA + QA*QA RA*RA

IF (FK.EQ.0.0) GO TO 700
FK2 = FK*FK
GAMM.M2 = GAM1**2
PQRGAM = PA*GAf l
000 = PQR2*GAMPI*2
000 = S Q R T ( O O O )

GAM2**2 * GAM3**2
QA*GAM2 + RA*GAM3

2.0*FK*PCRGAK + FK2

700

800

PC =' PA +
QC = QA +
RC = RA -f
GO TO 800
CONTINUE

PC = PA +
GC = QA +
RC = RA +
CONTINUE

(1.0 - FK/000)*
(1.0 - FK/000)*
(1.0 - FK/000)*

PQR2*GAM1
PQR2*GAM2
PQR2*GAM3

CPHID =PC - QC*CCO(1)*CTO
CTHTO =QC*CCO( 1)/CCO(3) -

(PQR2*GAM1
(PQR2*GAM2
(POR2*GAM3

+ RC*CSO(
RC*CSO(1)

+ FK*PA)
+ FK*QA)
* FK*RA)

1)*CTO
/CCO(3)
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Listing of Subroutine WASHFL (Continued)

CPSID =QC*CSO(1) + RC*CCO(1)
c
c
c
c
c
c

c

**********************************
COMPUTES INPUTS TO THE INTEGRATORS
**********************************

YC(i) = CAX
YC(2) = CAY
YC(3) = CAZ
YC(A) = CPHID
YC(5) = CTHTD
YC(6) = CPSID
YC(7) = CALFA(3)*ETA(2) - CALFA(2
YC(8) = CALFA(1)*ETA(3) - CALFA(3
YC(9) = CALFA(2)*ETA(1) - CALFAd

VC(1) = CPX
VC(2) = CVX
VC<3) = CPY
VC(A) = CVY
VC(5) = CPZ
VC<6) = CVZ
vcm = CPHI
VC(8J = CTHT
VC(9) = CPSI

)*ETA(3)
)*ETA(1)
)*ETA(2)

VC(10) = GAHM1
VC(ll) = GAMM2
VC(12) = GAMM3

C
C
C **********************
C PERFORMING INTEGRATION
C **********************
C

CALL GINTRIT, H, VCt YC, IFRST)
C

CPX = VC(1)
CPY = VC(3)
CPZ = VC(5)
CVX = VC(2)
CVY = VC(A)
CVZ = VC(6)
CPHI = VC(7)
CTHT = VC(8I
CPSI = VC(9)
GAMM1 = VC(10)
GAMM2 = VC(ll)
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Listing of Subroutine WASHFL (Continued)

GAMM3 = V C ( 1 2 ) :,'
c • ; , * , . ' . ;

TIME = TIME •»• H2
T = SNGL(TIME)

C
3000 CONTINUE

RETURN
END
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Listing of Subrouting GINTR

SUBROUTINE GINTRJT, H, Y, YC, IFRST)
DIMENSION Yd 2) ,YD(12) ,YC<9),XXX(12)
DIMENSION STATEU2), STATET(12)
COMMON/DOUBLE/ STATE, STATET
DOUBLE PRECISION STATE, STATET, DTT, DBLT
TMAX = T + H
IF (IFRST.NE.O) GO TO 900
IFRST = 1
EPSIL = l.E-4
CALL DRPRCUO, Y, YC)

900 CONTINUE
101 CONTINUE

DBLT = DBLE(T)
DTT = DBLT + 0.5DO * DBLE(H)
TT = SNGL ( DTT )
DO 105 1=1,12
STATE!I) = DBLE(Y(I))
XXX ( I ) = 0.5*H*YD(I)
STATETtI)=STATE(I)+DBLE(XXX( I ) )
Y( I )=SNGL(STATET(I))

105 CONTINUE
CALL ORPRCIYD, Y, YC)
DO 205 1=1,12
XXX(I) = H*YO(I)
STATE(I)=STATE(I)+DBLE(XXX< I ))
Y( I ) = SNGL1STATEU ) )

205 CONTINUE
DBLT = DBLT + DBLE(H) !
T = SNGL ( DBLT )
CALL DRPRCIYU, Y, YC)
IF ( T. LT . ( TMAX - EPSIL H GO TO 101
RETURN
END
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Listing of Subroutine DRPRC

C
C

C
C

SUBROUTINE ORPRC(DXP,ZP , VP )
DIMENSION DXP(12)iZP(12),VP(9)

DXP
DXP
DXP
DXP
DXP
DXP
DXP
DXP
DXP

(
(
(
(
(
(
(
(
(

1)
2)
3)
4)
5)
6)
7)
8)
9}

=

ZP
VP
ZP
VP
ZP
VP

VP
VP

(2
(1
U
(2
(6
(3

(5
(6

DXP(IO) = VP(7)
DXPdl j * VP(8)
DXPI12) = VP(9)

RETURN
END
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