Quasi-Orthogonal Space-Time Block Codes with Full Diversity

Weifeng Su and Xiang-Gen Xia

Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Email: {wsu, xxia} @ee.udel.edu

Outline

- Motivations
- Quasi-Orthogonal STBCs *without* Full Diversity
 - Jafarkhani Scheme
 - Tirkkonen-Boariu-Hottinen (TBH) Scheme
- Quasi-Orthogonal STBCs with Full Diversity
 - Diversity Product Bound
 - Optimum Rotation Angles
- Conclusion

Motivation

- Space-time block codes from orthogonal designs (Alamouti, Tarokh–Jafarkhani-Calderbank)
 - They have fast ML decoding, i.e., all information symbols can be separately decoded.
 - They have full diversity.
- However, the rates of STBC from complex orthogonal designs are upper bounded by 3/4 for two or more transmit antennas.
 - Square codes by amicable designs
 - General codes by Wang-Xia 02
- It is difficult to construct orthogonal designs with rate higher than 1/2 for more than four transmit antennas.

- To improve the symbol transmission rate, one natural way is to relax the requirement of the orthogonality.
- Recently, Jafarkhani (2001) and Tirkkonen-Boariu-Hottinen (TBH) proposed STBCs from quasi-orthogonal designs, where the orthogonality is relaxed to provide higher symbol transmission rate.
 - The ML decoding becomes the **pairwise** information symbol decoding instead of single information symbol decoding.
 - They do not have the full diversity.

- Jafarkhani Scheme:
 - For 4 transmit antennas, a quasi-orthogonal STBC with symbol transmission rate 1 was constructed from the Alamouti scheme as follows:

$$C = \begin{bmatrix} A & B \\ -\overline{B} & \overline{A} \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ -x_2^* & x_1^* & -x_4^* & x_3^* \\ -x_3^* & -x_4^* & x_1^* & x_2^* \\ x_4 & -x_3 & -x_2 & x_1 \end{bmatrix},$$

where

$$A = \begin{bmatrix} x_1 & x_2 \\ -x_2^* & x_1^* \end{bmatrix}, \quad B = \begin{bmatrix} x_3 & x_4 \\ -x_4^* & x_3^* \end{bmatrix}$$

- TBH scheme:
 - For 4 transmit antennas, a similar scheme is given as follows:

$$C = \begin{bmatrix} A & B \\ B & A \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ -x_2^* & x_1^* & -x_4^* & x_3^* \\ x_3 & x_4 & x_1 & x_2 \\ -x_4^* & x_3^* & -x_2^* & x_1^* \end{bmatrix},$$

where

$$A = \begin{bmatrix} x_1 & x_2 \\ -x_2^* & x_1^* \end{bmatrix}, \quad B = \begin{bmatrix} x_3 & x_4 \\ -x_4^* & x_3^* \end{bmatrix}$$

• Assume the whole system is

$$Y = \sqrt{\rho/n} \, CH + W,$$

then the maximum-likelihood decoding at the receiver is

$$\arg \min_{(s_1, s_2, s_3, s_4) \in \mathcal{A}^4} ||Y - \sqrt{\rho/n} CH||_F^2$$
$$= (\arg \min_{(s_1, s_3) \in \mathcal{A}^2} f_1(s_1, s_3), \arg \min_{(s_2, s_4) \in \mathcal{A}^2} f_1(s_2, s_4))$$

- In the orthogonal space-time code case,

$$\arg \min_{(s_1, s_2, s_3) \in \mathcal{A}^3} ||Y - \sqrt{\rho/n} CH||_F^2$$
$$= \left(\arg \min_{s_1 \in \mathcal{A}} f_1(s_1), \arg \min_{s_2 \in \mathcal{A}} f_2(s_2), \arg \min_{s_3 \in \mathcal{A}} f_3(s_3)\right)$$

• The *diversity product* of the TBH scheme can be calculated as follows:

$$\begin{aligned} \zeta &= \frac{1}{4} \min_{\Delta C \neq 0} \left| \det \left[(\Delta C)^{\mathcal{H}} (\Delta C) \right] \right|^{1/8} \\ &= \frac{1}{4} \min_{S \neq \tilde{S}} \left(\sum_{i=1}^{2} \left| (s_i - \tilde{s}_i) + (s_{i+2} - \tilde{s}_{i+2}) \right|^2 \right)^{1/4} \\ &\qquad \left(\sum_{i=1}^{2} \left| (s_i - \tilde{s}_i) - (s_{i+2} - \tilde{s}_{i+2}) \right|^2 \right)^{1/4} \\ &= \frac{1}{4} \min_{1 \leq i \leq 2} \min_{(u,v) \neq (\tilde{u},\tilde{v})} \left| (u - \tilde{u})^2 - (v - \tilde{v})^2 \right|^{1/2} \end{aligned}$$

in which $u, \tilde{u} \in \mathcal{A}_i$ and $v, \tilde{v} \in \mathcal{A}_{i+2}$. Moreover, $S = (s_1, s_2, s_3, s_4), \tilde{S} = (\tilde{s}_1, \tilde{s}_2, \tilde{s}_3, \tilde{s}_4)$, and $s_i, \tilde{s}_i \in \mathcal{A}_i$.

• If all of the signal constellations A_i are the same, then $\zeta = 0$, i.e., the TBH scheme does not have full diversity.

2. Quasi-Orthogonal STBCs with full diversity

- In both the Jafarkhani scheme and the TBH scheme, all information symbols are chosen in a single signal constellation. Thus, after modulation, the modulated signals do not have full diversity.
- The main idea of our new scheme is to choose the signal contellations properly to ensure the full diversity.

• For convenience, let us define the *minimum* ζ -*distance* between two signal constellations \mathcal{A} and \mathcal{B} as follows:

$$d_{\min,\zeta}(\mathcal{A},\mathcal{B}) \stackrel{\triangle}{=} \min_{(u,v)\neq(\tilde{u},\tilde{v})} \left| (u-\tilde{u})^2 - (v-\tilde{v})^2 \right|^{1/2},$$

where $u, \tilde{u} \in \mathcal{A}$ and $v, \tilde{v} \in \mathcal{B}$.

• Obviously, we have

$$d_{\min,\zeta}(\mathcal{A},\mathcal{B}) \leq \min \left\{ d_{\min}(\mathcal{A}), d_{\min}(\mathcal{B}) \right\},$$

where $d_{\min}(\mathcal{A})$ and $d_{\min}(\mathcal{B})$ are the minimum Euclidean distances of the signal constellations \mathcal{A} and \mathcal{B} , respectively.

• Then the diversity product of the TBH scheme can be rewritten as

$$\zeta = \frac{1}{4} \min_{1 \le i \le 2} d_{\min,\zeta}(\mathcal{A}_i, \mathcal{A}_{i+2})$$
$$\leq \frac{1}{4} \min_{1 \le i \le 2} d_{\min}(\mathcal{A}_i).$$

- The diversity product is determined by the minimum ζ -distance of each pair of signal constellations \mathcal{A}_i and \mathcal{A}_{i+2} .
- Problem: How to design the signal constellation pair A_i and A_{i+2} such that

$$d_{\min,\zeta}(\mathcal{A}_i, \mathcal{A}_{i+2}) > 0,$$

i.e., the quasi-orthogonal STBC has full diversity?

How to design the signal constellations? • Problem: how to design signal constellations \mathcal{A} and \mathcal{B} such that $d_{\min,\zeta}(\mathcal{A},\mathcal{B}) > 0$? • We found that for an arbitrary signal constellation \mathcal{A} , if $\mathcal{B} = e^{j\phi} \mathcal{A} \stackrel{\triangle}{=} \{ e^{j\phi} s \, : \, s \in \mathcal{A} \},\$ then $d_{\min,\zeta}(\mathcal{A}, e^{j\phi}\mathcal{A}) > 0$ for some specific rotation angle ϕ . • We know that the minimum ζ -distance is upper bounded by

$$d_{\min,\zeta}(\mathcal{A}, e^{j\phi}\mathcal{A}) \le d_{\min}(\mathcal{A}).$$

So, the problem remaining is how to choose the rotation angle ϕ ?

- For example, if ${\cal A}$ is BPSK $\{1,-1\},$ and the rotation angle ϕ is chosen as $\pi/2,$ then

$$d_{\min,\zeta}(\mathcal{A}, e^{j\pi/2}\mathcal{A}) = d_{\min}(\mathcal{A}).$$

• If \mathcal{A} is chosen as 4-QAM,

then the optimum rotation angle ϕ is $\pi/4$.

• If \mathcal{A} is chosen as 16-QAM,

•	•	0100	•
1000	1100		0000
• 1001	• 1101	0101	0001
• 1011	• 1111	0111	0011
•	•	•	•
1010	1110	0110	0010

the optimum rotation angle ϕ ?.

Theorem 1: Assume \mathcal{A} is a signal constellation drawn from a square lattice, where the side length of the squares in the lattice is equal to $d_{\min}(\mathcal{A})$. Then, the minimum ζ -distance between \mathcal{A} and $e^{j\pi/4}\mathcal{A}$ is $d_{\min}(\mathcal{A})$, i.e.,

$$d_{\min,\zeta}(\mathcal{A}, e^{j\pi/4}\mathcal{A}) = d_{\min}(\mathcal{A}).$$

• Recall that the minimum ζ -distance is upper bounded by d_{\min} , i.e.,

$$d_{\min,\zeta}(\mathcal{A}, e^{j\phi}\mathcal{A}) \le d_{\min}(\mathcal{A}).$$

If ${\cal A}$ is r-QAM, then the optimum rotation angle ϕ is $\pi/4$, and

$$d_{\min,\zeta}(\mathcal{A}, e^{j\pi/4}\mathcal{A}) = d_{\min}(\mathcal{A}).$$

• It is desired to have the signal constellation \mathcal{A} with d_{\min} as large as possible, meanwhile the minimum ζ -distance between \mathcal{A} and $e^{j\phi}\mathcal{A}$ achieving d_{\min} .

 Notice that for any number of points in two dimensions, the best constellations known by now, from a minimum Euclidean distance point of view, are drawn from the lattices of equilateral triangles (Foschini *et al* 1974, Conway and Sloane 1983, Forney *et al* 1984). For example,

 $(a) 8 - TRI \qquad (b) 16 - TRI \text{ or } Voronoi \ code$

Theorem 2: Assume \mathcal{A} is a signal constellation drawn from a lattice of equilateral triangles, where the side length of the equilateral triangles is equal to $d_{\min}(\mathcal{A})$. Then, the minimum ζ -distance between \mathcal{A} and $e^{j\pi/6}\mathcal{A}$ is $d_{\min}(\mathcal{A})$, i.e.,

 $d_{\min,\zeta}(\mathcal{A}, e^{j\pi/6}\mathcal{A}) = d_{\min}(\mathcal{A}).$

3. Simulation Results

 $\bullet\,$ For 4 transmit antennas, the quasi-orthogonal STBC with full diversity is given by

$$C = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ -x_2^* & x_1^* & -x_4^* & x_3^* \\ x_3 & x_4 & x_1 & x_2 \\ -x_4^* & x_3^* & -x_2^* & x_1^* \end{bmatrix}$$

where $x_1, x_2 \in \mathcal{A}$, and $x_3, x_4 \in e^{j\phi}\mathcal{A}$ for some signal constellation \mathcal{A} , and the rotation angle ϕ is determined by the signal constellation \mathcal{A} , which is specified in Theorem 1 and 2.

Figure 1: Performances of the new scheme (line with *) and the TBH scheme (line with \bigtriangleup).

Figure 2: Performances of the new scheme (line with *), the TBH scheme (line with \triangle), and the orthogonal design (line with \circ for 16-QAM and dash line for 16-TRI).

• For 8 transmit antennas, the quasi-orth. STBC with full diversity is given by

$$C = \sqrt{\frac{4}{3}} \begin{bmatrix} x_1 & x_2 & x_3 & 0 & x_4 & x_5 & x_6 & 0 \\ -x_2^* & x_1^* & 0 & x_3 & -x_5^* & x_4^* & 0 & x_6 \\ -x_3^* & 0 & x_1^* & -x_2 & -x_6^* & 0 & x_4^* & -x_5 \\ 0 & -x_3^* & x_2^* & x_1 & 0 & -x_6^* & x_5^* & x_4 \\ x_4 & x_5 & x_6 & 0 & x_1 & x_2 & x_3 & 0 \\ -x_5^* & x_4^* & 0 & x_6 & -x_2^* & x_1^* & 0 & x_3 \\ -x_6^* & 0 & x_4^* & -x_5 & -x_3^* & 0 & x_1^* & -x_2 \\ 0 & -x_6^* & x_5^* & x_4 & 0 & -x_3^* & x_2^* & x_1 \end{bmatrix},$$

where $x_1, x_2, x_3 \in \mathcal{A}$, and $x_4, x_5, x_6 \in e^{j\phi}\mathcal{A}$ for some signal constellation \mathcal{A} , and the rotation angle ϕ is determined by the signal constellation \mathcal{A} , which is specified in Theorem 1 and 2.

Figure 3: Performances of the new scheme (line with *), the Jafarkhani scheme (line with \triangle), and the orthogonal design (line with \circ for 8-QAM and dash line for 8-TRI).

Conclusion

- We proposed quasi-orthogonal STBCs with full diversity.
- We also studied the optimality of the signal constellations. The optimum rotation angles were given for some commonly used signal constellations.

On Optimal Quasi-Orthogonal Space-Time Block Codes with Minimum Decoding Complexity

Haiquan Wang, Dong Wang, and Xiang-Gen Xia Department of Electrical and Computer Engineering University of Delaware Email: {hwang, dwang, xxia}@ee.udel.edu

Outline

- Background
- Linear Transformations for Quasi-Orthogonal Space-Time Block Codes (QOSTBC) with Minimum Decording Complexity
- Optimal Linear Transformations for Square QAM
- Optimal Linear Transformations for Retangular QAM
- Simulation Results
- Conclusion

Background

- Orthogonal space-time block codes from complex orthogonal designs (Alamouti, Tarokh-Jarfarkhani-Calderbank)
 - Full diversity
 - Complex symbol-wise (equivalently real symbol pair-wise) ML decoding
 - Rates are upper bounded by 3/4 for more than 2 Tx antennas (Wang-Xia)
- Quasi orthogonal space-time block codes (Jafarkhani, Tirkkonen-Boariu-Hottinen, Papadias-Foschini) without information symbol rotations
 - Not full diversity
 - Rates are 1 for 4 Tx antennas
 - Complex symbol pair-wise ML decoding
- Full diversity QOSTBC with information symbol rotation (Tirkkonen, Sharma-Papadias, Su-Xia)

- Full diversity and diversity products are maximized (Su-Xia) over all possible linear transformations of information symbols arbitrarily located on square or equal-literal triangular lattices
- Rates 1 for 4 Tx antennas
- Complex symbol pair-wise ML decoding
- Faster ML decoding QOSTBC with information symbol rotation (Yuen-Guan-Tjhung'04)
 - Real symbol pair-wise ML decoding
 - Full diversity and diversity products are maximized among orthogonal rotations of information symbols
 - Rates 1 for 4 Tx antennas
- Co-ordinate interleaved orthogonal designs (CIOD) (Khan-Rajan-Lee'03) with information rotations
 - Real symbol pair-wise ML decoding
 - Full diversity and diversity products are maximized among orthogonal

rotations of square QAM information symbols

- Rates 1 for 4 Tx antennas
- Goals of this work
 - Use the most general setting of linear transformations of information symbols for both QOSTBC and CIOD (NOT limited to orthogonal rotations as studied by Khan-Rajan-Lee and Yuen-Guan-Tjhung)
 - Present if and only if conditions on the linear transformations for QOSTBC to possess the real symbol pair-wise ML decoding
 - Present the optimal linear transformations for QOSTBC (optimal rotations of rectangular QAM for CIOD) with real symbol pair-wise ML decoding such that the diversity products are maximized (optimized)

Complex Orthogonal Designs

A complex orthogonal design (COD) in complex variables z_1, z_2, \cdots, z_k is a $T \times n$ matrix $G(z_1, \cdots, z_k)$ such that

any entry of $G(z_1, \dots, z_k)$ is a complex linear combinations of $z_1, z_2, \dots, z_k, z_1^*, z_2^*, \dots, z_k^*$.

G satisfies the orthogonality

$$G^{\dagger}G = (|z_1|^2 + |z_2|^2 + \dots + |z_k|^2)I_n$$
(1)

for all complex values z_1, z_2, \cdots, z_k .

QOSTBC

- Let $G_n(z_1, \dots, z_k)$ be a $T \times n$ complex orthogonal design in complex variables z_1, \dots, z_k .
- Let $A = G_n(z_1, \dots, z_k)$ and $B = G_n(z_{k+1}, \dots, z_{2k})$.
- We consider the following quasi-orthogonal space-time block code (QOSTC) $Q_{2n}(z_1, \dots, z_{2k})$:

$$Q_{2n}(z_1,\cdots,z_{2k}) = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$$

Encoding for QOSTBC with General Linear Transformations of Information Symbols

- Let \mathcal{S} be a signal constellation, i.e., a set of complex numbers on the complex plane.
- A binary information sequence is mapped to points z_i in S as $z_i = r_i + \mathbf{j}s_i$ for $1 \le i \le 2k$.
- For each $i, 1 \le i \le k$, take a pre-designed real linear transform U_i and the real vector $(r_i, s_i, r_{k+i}, s_{k+i})^t$ of dimension 4 is transformed to another real vector $(p_i, q_i, p_{k+i}, q_{k+i})^t$ of dimension 4:

$$(p_i, q_i, p_{k+i}, q_{k+i})^t = U_i(r_i, s_i, r_{k+i}, s_{k+i})^t,$$
 (2)

where U_i is non-singular.

- Form complex variables $x_i = p_i + \mathbf{j}q_i$ for $1 \le i \le 2k$.
- With these complex variables x_i , form a QOSTBC $Q_{2n}(x_1, x_2, \cdots, x_{2k})$ that is used as a space-time block code and transmitted through 2n transmit

antennas.

Question: how to design a real linear transformations U_i of size 4×4 for a QOSTBC such that it possess a real symbol pair-wise ML decoding and to have full diversity (or optimal diversity product).

Real Symbol Pair-wise ML Decoding

• Let

$$g_i(p_i, q_i, p_{k+i}, q_{k+i}) \stackrel{\Delta}{=} p_i^2 + q_i^2 + p_{k+i}^2 + q_{k+i}^2,$$

$$f_i(p_i, q_i, p_{k+i}, q_{k+i}) \stackrel{\Delta}{=} 2(p_i p_{k+i} + q_i q_{k+i}).$$

• Then the quadratic term in the ML decoding objective function is

$$Q_{2n}^{\dagger}Q_{2n} = \left(\begin{array}{cc} aI_n & bI_n \\ bI_n & aI_n \end{array}\right),$$

where

$$a = \sum_{i=1}^{2k} |x_i|^2 = \sum_{i=1}^{k} g_i$$

$$b = \sum_{i=1}^{k} (x_i x_{k+i}^* + x_{k+i} x_i^*) = \sum_{i=1}^{k} f_i.$$

• To possess a real symbol pair-wise ML decoding, the linear transformation U_i needs to be chosen such that one of the following three cases holds

Case 1. Functions g_i and f_i can be separated as

$$g_i(p_i, q_i, p_{k+i}, q_{k+i}) = g_{i1}(r_i, s_i) + g_{i2}(r_{k+i}, s_{k+i}),$$

$$f_i(p_i, q_i, p_{k+i}, q_{k+i}) = f_{i1}(r_i, s_i) + f_{i2}(r_{k+i}, s_{k+i}).$$

Case 2. Functions g_i and f_i can be separated as

$$g_i(p_i, q_i, p_{k+i}, q_{k+i}) = g_{i1}(r_i, r_{k+i}) + g_{i2}(s_i, s_{k+i}),$$

$$f_i(p_i, q_i, p_{k+i}, q_{k+i}) = f_{i1}(r_i, r_{k+i}) + f_{i2}(s_i, s_{k+i}).$$

Case 3. Functions g_i and f_i can be separated as

$$g_i(p_i, q_i, p_{k+i}, q_{k+i}) = g_{i1}(r_i, s_{k+i}) + g_{i2}(s_i, r_{k+i}),$$

$$f_i(p_i, q_i, p_{k+i}, q_{k+i}) = f_{i1}(r_i, s_{k+i}) + f_{i2}(s_i, r_{k+i}).$$

Linear Transformation Characterization for Real Symbol Pair-wise ML Decoding

Theorem 1: Let U_i be a 4×4 non-singular matrix with all real entries. Then, we have the following results.

• Case 1 holds if and only if U_i can be written as

$$U_i = \begin{pmatrix} U_{i1} & U_{i2} \\ U_{i1}R_{i1} & U_{i2}R_{i2} \end{pmatrix}$$

,

where $U_{i1}, U_{i2}, R_{i1}, R_{i2}$ are 2×2 matrices of real entries, $R_{i1}^2 = I_2$ and $R_{i2}^2 = I_2$, and

$$R_{i1}^t U_{i1}^t U_{i2} + U_{i1}^t U_{i2} R_{i2} = 0.$$

• Case 2 holds if and only if U_i can be written as

$$U_i = \begin{pmatrix} U_{i1} & U_{i2} \\ U_{i1}R_{i1} & U_{i2}R_{i2} \end{pmatrix} P_1,$$

where $U_{i1}, U_{i2}, R_{i1}, R_{i2}$ are the same as in (i) for Case 1 and

$$P_1 = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

• Case 3 holds if and only if U_i can be written as

$$U_i = \begin{pmatrix} U_{i1} & U_{i2} \\ U_{i1}R_{i1} & U_{i2}R_{i2} \end{pmatrix} P_2,$$

where $U_{i1}, U_{i2}, R_{i1}, R_{i2}$ are the same as in (i) for Case 1 and

$$P_2 = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

Optimal Linear Transformation for Square QAM

• We want to determine the optimal linear transformation that maximize the following normalized diversity product of the QOSTBC Q_{2n} in terms of the mean signal power

$$\bar{\zeta}(Q_{2n}) \stackrel{\Delta}{=} \frac{\zeta(Q_{2n})}{\left(\prod_{i=1}^{k} |\det(U_i)|\right)^{1/(4k)}},$$

where $\zeta(Q_{2n})$ is the diversity product of QOSTBC $Q_{2n}(x_1, \cdots, x_{2k})$.

Optimal Linear transformation for Square QAM

Theorem 2: Let

$$\alpha = \arctan(2) \text{ and } R = \left(\begin{array}{cc} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{array}\right),$$

and P_1 and P_2 be the 4×4 matrices defined in (ii) and (iii) in Theorem 1, respectively. For the three cases, we have the following results, respectively.

• For Case 1, let

$$U_i = \frac{1}{\sqrt{2}} \begin{pmatrix} I_2 & I_2 \\ R & -R \end{pmatrix}$$

Then, the above orthogonal matrices U_i satisfy (i) for Case 1 in Theorem 1, i.e., the quadratic forms f_i and g_i of 4 variables can be separated as Case 1, and furthermore, U_i are optimal in the sense that the normalized diversity product $\overline{\zeta}(Q_{2n})$ is maximized among all other non-singular linear

transformations U_i that satisfy (i) in Theorem 1 and

$$\max_{U_i \text{ in (i) Theorem 1}} \bar{\zeta}(Q_{2n}) = \frac{1}{2\sqrt{2T}} (\frac{4}{5})^{1/4}.$$

• For Case 2, let

$$U_i = \frac{1}{\sqrt{2}} \begin{pmatrix} I_2 & I_2 \\ R & -R \end{pmatrix} P_1.$$

Then, the above orthogonal matrices U_i satisfy (ii) for Case 2 in Theorem 1 and they are optimal, and the same maximum normalized diversity product in above case is achieved.

• For Case 3, let

$$U_i = \frac{1}{\sqrt{2}} \begin{pmatrix} I_2 & I_2 \\ R & -R \end{pmatrix} P_2.$$

Then, the above orthogonal matrices U_i satisfy (iii) for Case 3 in Theorem 1 and they are optimal, and the same maximum normalized diversity product in above is achieved.

Remark: For the above square QAM case, the above optimal normalized diversity product coincides with the one obtained by Yuen-Guan-Tjhung from optimal orthogonal rotation.

Optimal Linear Transformation for Retangular QAM

• Consider a finite-point retangular QAM (RQAM) signal constellations:

$$\mathcal{S} = \left\{ z_i = \frac{n_1 d}{2} + \mathbf{j} \frac{n_2 d}{2} : n_i \in \mathcal{N}_i \text{ for } i = 1, 2 \right\},\$$

where

$$\mathcal{N}_i \stackrel{\Delta}{=} \{-(2N_i - 1), \cdots, -1, 1, \cdots, 2N_i - 1\},\$$

where N_1 and N_2 are two positive integers and d is a real positive constant that is used to adjust the total signal energy.

• Let us only consider Case 1 and the other two cases are similar.

Optimal Linear Transformation for RQAM

• Theorem 3: For Case 1 and an RQAM with total energy 1. Let

$$\varepsilon_{1} = \frac{4N_{1}^{2}-1}{2(2N_{1}^{2}+2N_{2}^{2}-1)}, \quad \varepsilon_{2} = \frac{4N_{2}^{2}-1}{2(2N_{1}^{2}+2N_{2}^{2}-1)}, \quad \alpha = \arctan(2),$$

$$\rho = \sqrt{\frac{5}{12(1+\varepsilon_{1}\varepsilon_{2})}}, \text{ and}$$

$$R_{1} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$\Sigma = \begin{pmatrix} 1+\varepsilon_{1} & 1-2\varepsilon_{1} \\ 1-2\varepsilon_{1} & 2-\varepsilon_{1} \end{pmatrix}.$$

Denote a diagonalization of symmetric matrix Σ as $\Sigma = V^t DV$, where $D = \text{diag}(\lambda_1, \lambda_2)$, λ_1, λ_2 are the eigenvalues of Σ and V is an orthogonal matrix.

Let

$$U_{i1} = \rho V^t \begin{pmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{pmatrix} V;$$
$$U_{i2} = \rho V^t \begin{pmatrix} \sqrt{\lambda_2} & 0 \\ 0 & \sqrt{\lambda_1} \end{pmatrix} VP; \quad R_2 = -PR_1P_2$$

Then,

$$U_{i} = \begin{pmatrix} U_{i1} & U_{i2} \\ U_{i1}R_{1} & U_{i2}R_{2} \end{pmatrix} \quad i = 1, 2, \cdots, k,$$

satisfy (i) for Case 1 in Theorem 1, and are optimal in the sense that the diversity product ζ of the QOSTBC is maximized among all U_i under (i) in

Theorem 1 and the optimal diversity product is

$$\zeta_{\text{optimal}} = \frac{1}{2\sqrt{2T}} \sqrt{\frac{3}{N_1 N_2}} \times \frac{1}{(16N_1^4 + 16N_2^4 + 48N_1^2N_2^2 - 20N_1^2 - 20N_2^2 + 5)^{1/4}}$$

• Optimal normalized diversity product comparison:

$$\begin{split} \zeta_{\text{optimal,SX}} &= \frac{1}{2\sqrt{2T}} d > \frac{1}{2\sqrt{2T}} \left(\frac{1}{1+\varepsilon_1\varepsilon_2}\right)^{1/4} d = \zeta_{\text{optimal,WWX}} \\ &\geq \frac{1}{2\sqrt{2T}} \left(\frac{4}{5}\right)^{1/4} d = \zeta_{\text{optimal,YGT}}, \end{split}$$

where the equality "=" holds if and only if $\varepsilon_1 = \varepsilon_2 = 1/2$, i.e., $N_1 = N_2$ or square QAM.

Optimal Rotations for Co-ordinate Interleaved Orthogonal Designs (CIOD)

- Khan-Rajan-Lee have proposed CIOD that has the same rate as QOSTBC for 4 Tx antrennas.
- Khan-Rajan-Lee found the optimal rotations for CIOD to possess the real symbol pair-wise ML decoding and maximized diversity product for square QAM signal constellations.
- We also obtained the optimal rotations for CIOD to possess the real symbol pair-wise ML decoding and maximized diversity product for rectangular QAM (RQAM) signal constellations
- As a consequence of our results, it is shown that the optimal normalized diversity products of QOSTBC and CIOD with the real symbol pair-wise ML decoding are the same in both square and rectangular QAM cases.

Some Examples

Table 1: Diversity product comparison

Constellations	4-QAM	8-QAM	32-QAM
Su-Xia	0.1768	0.0801	0.0198
Case 1	0.1672	0.0757	0.0187
CIOD	0.1672	0.0757	0.0187
RQAM with new optimal transform	0.1672	0.0699	0.0167
RQAM with optimal rotation	0.1672	0.0683	0.0164

Some Examples

Table 2: ML decoding complexity comparison: Number of trials

Constellations	4-QAM	8-QAM	32-QAM
Su-Xia (complex symbol pair-wise)	32	128	2048
Case 1 (real symbol pair-wise)	16	32	128
CIOD (real symbol pair-wise)	16	32	128
RQAM (real symbol pair-wise)	16	32	128

Some Simulation Results

Conclusion

- Presented if and only if conditions for linear transformations of information symbols for QOSTBC to possess real symbol pair-wise ML decoding.
- Presented optimal linear transformations of information symbols for QOSTBC to possess real symbol pair-wise ML decoding such that the normalized diversity products are maximized for both square QAM and rectangular QAM cases.
- It turns out that the optimal normalized diversity products of QOSTBC among all linear transformations we obtained coincide with the ones among only orthogonal rotations obtained by Yuen-Guan-Tjhung for square QAM constellations.
- The optimal normalized diversity products of QOSTBC among all linear transformations we obtained are greater than the ones among only orthogonal rotations obtained by Yuen-Guan-Tjhung for non-square rectangular QAM constellations.

• We also obtained optimal rotations for CIOD for non-square rectangular QAM constellations.

Some Papers to Read

- W. Su and X.-G. Xia, <u>Signal Constellations for Quasi-Orthogonal Space-Time Block Codes with Full Diversity</u>, *IEEE Trans. on Information Theory*, Oct. 2004.
- H. Wang, D. Wang, and X.-G. Xia, <u>Optimal Quasi-Orthogonal Space-Time Block Codes with Minimum Decoding Complexity</u>, *IEEE Trans. on Information Theory*, March 2009.
- D. Wang and X.-G. Xia, Optimal Diversity Product Rotations for Quasi-Orthogonal STBC with MPSK, *IEEE Communications Letters*, May, 2005.