Quasi-Orthogonal Space-Time Block Codes with Full Diversity

Weifeng Su and Xiang-Gen Xia

Department of Electrical and Computer Engineering
University of Delaware, Newark, DE 19716
Email: $\{w s u, x x i a\} @ e e . u d e l . e d u$

Outline

- Motivations
- Quasi-Orthogonal STBCs without Full Diversity
- Jafarkhani Scheme
- Tirkkonen-Boariu-Hottinen (TBH) Scheme
- Quasi-Orthogonal STBCs with Full Diversity
- Diversity Product Bound
- Optimum Rotation Angles
- Conclusion

Motivation

- Space-time block codes from orthogonal designs (Alamouti, Tarokh-Jafarkhani-Calderbank)
- They have fast ML decoding, i.e., all information symbols can be separately decoded.
- They have full diversity.
- However, the rates of STBC from complex orthogonal designs are upper bounded by $3 / 4$ for two or more transmit antennas.
- Square codes by amicable designs
- General codes by Wang-Xia 02
- It is difficult to construct orthogonal designs with rate higher than $1 / 2$ for more than four transmit antennas.
- To improve the symbol transmission rate, one natural way is to relax the requirement of the orthogonality.
- Recently, Jafarkhani (2001) and Tirkkonen-Boariu-Hottinen (TBH) proposed STBCs from quasi-orthogonal designs, where the orthogonality is relaxed to provide higher symbol transmission rate.
- The ML decoding becomes the pairwise information symbol decoding instead of single information symbol decoding.
- They do not have the full diversity.
- Jafarkhani Scheme:
- For 4 transmit antennas, a quasi-orthogonal STBC with symbol transmission rate 1 was constructed from the Alamouti scheme as follows:

$$
C=\left[\begin{array}{rr}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right]=\left[\begin{array}{rrrr}
x_{1} & x_{2} & x_{3} & x_{4} \\
-x_{2}^{*} & x_{1}^{*} & -x_{4}^{*} & x_{3}^{*} \\
-x_{3}^{*} & -x_{4}^{*} & x_{1}^{*} & x_{2}^{*} \\
x_{4} & -x_{3} & -x_{2} & x_{1}
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{rr}
x_{1} & x_{2} \\
-x_{2}^{*} & x_{1}^{*}
\end{array}\right], \quad B=\left[\begin{array}{rr}
x_{3} & x_{4} \\
-x_{4}^{*} & x_{3}^{*}
\end{array}\right]
$$

- TBH scheme:
- For 4 transmit antennas, a similar scheme is given as follows:

$$
C=\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]=\left[\begin{array}{rrrr}
x_{1} & x_{2} & x_{3} & x_{4} \\
-x_{2}^{*} & x_{1}^{*} & -x_{4}^{*} & x_{3}^{*} \\
x_{3} & x_{4} & x_{1} & x_{2} \\
-x_{4}^{*} & x_{3}^{*} & -x_{2}^{*} & x_{1}^{*}
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{rr}
x_{1} & x_{2} \\
-x_{2}^{*} & x_{1}^{*}
\end{array}\right], \quad B=\left[\begin{array}{rr}
x_{3} & x_{4} \\
-x_{4}^{*} & x_{3}^{*}
\end{array}\right]
$$

- Assume the whole system is

$$
Y=\sqrt{\rho / n} C H+W
$$

then the maximum-likelihood decoding at the receiver is

$$
\begin{gathered}
\arg \min _{\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \in \mathcal{A}^{4}}\|Y-\sqrt{\rho / n} C H\|_{F}^{2} \\
=\left(\arg \min _{\left(s_{1}, s_{3}\right) \in \mathcal{A}^{2}} f_{1}\left(s_{1}, s_{3}\right), \arg \min _{\left(s_{2}, s_{4}\right) \in \mathcal{A}^{2}} f_{1}\left(s_{2}, s_{4}\right)\right) .
\end{gathered}
$$

- In the orthogonal space-time code case,

$$
\begin{gathered}
\arg \min _{\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{A}^{3}}\|Y-\sqrt{\rho / n} C H\|_{F}^{2} \\
=\left(\arg \min _{s_{1} \in \in \mathcal{A}} f_{1}\left(s_{1}\right), \arg \min _{s_{2} \in \in \mathcal{A}} f_{2}\left(s_{2}\right), \arg \min _{s_{3} \in \in \mathcal{A}} f_{3}\left(s_{3}\right)\right) .
\end{gathered}
$$

- The diversity product of the TBH scheme can be calculated as follows:

$$
\begin{aligned}
\zeta= & \frac{1}{4} \min _{\Delta C \neq 0}\left|\operatorname{det}\left[(\Delta C)^{\mathcal{H}}(\Delta C)\right]\right|^{1 / 8} \\
= & \frac{1}{4} \min _{S \neq \tilde{S}}\left(\sum_{i=1}^{2}\left|\left(s_{i}-\tilde{s}_{i}\right)+\left(s_{i+2}-\tilde{s}_{i+2}\right)\right|^{2}\right)^{1 / 4} \\
& \left(\sum_{i=1}^{2}\left|\left(s_{i}-\tilde{s}_{i}\right)-\left(s_{i+2}-\tilde{s}_{i+2}\right)\right|^{2}\right)^{1 / 4} \\
= & \frac{1}{4} \min _{1 \leq i \leq 2} \min _{(u, v) \neq(\tilde{u}, \tilde{v})}\left|(u-\tilde{u})^{2}-(v-\tilde{v})^{2}\right|^{1 / 2},
\end{aligned}
$$

in which $u, \tilde{u} \in \mathcal{A}_{i}$ and $v, \tilde{v} \in \mathcal{A}_{i+2}$. Moreover, $S=\left(s_{1}, s_{2}, s_{3}, s_{4}\right), \tilde{S}=\left(\tilde{s}_{1}, \tilde{s}_{2}, \tilde{s}_{3}, \tilde{s}_{4}\right)$, and $s_{i}, \tilde{s}_{i} \in \mathcal{A}_{i}$.

- If all of the signal constellations \mathcal{A}_{i} are the same, then $\zeta=0$, i.e., the TBH scheme does not have full diversity.

2. Quasi-Orthogonal STBCs with full diversity

- In both the Jafarkhani scheme and the TBH scheme, all information symbols are chosen in a single signal constellation. Thus, after modulation, the modulated signals do not have full diversity.
- The main idea of our new scheme is to choose the signal contellations properly to ensure the full diversity.
- For convenience, let us define the minimum ζ-distance between two signal constellations \mathcal{A} and \mathcal{B} as follows:

$$
d_{\min , \zeta}(\mathcal{A}, \mathcal{B}) \triangleq \min _{(u, v) \neq(\tilde{u}, \tilde{v})}\left|(u-\tilde{u})^{2}-(v-\tilde{v})^{2}\right|^{1 / 2}
$$

where $u, \tilde{u} \in \mathcal{A}$ and $v, \tilde{v} \in \mathcal{B}$.

- Obviously, we have

$$
d_{\min , \zeta}(\mathcal{A}, \mathcal{B}) \leq \min \left\{d_{\min }(\mathcal{A}), d_{\min }(\mathcal{B})\right\}
$$

where $d_{\min }(\mathcal{A})$ and $d_{\text {min }}(\mathcal{B})$ are the minimum Euclidean distances of the signal constellations \mathcal{A} and \mathcal{B}, respectively.

- Then the diversity product of the TBH scheme can be rewritten as

$$
\begin{aligned}
\zeta & =\frac{1}{4} \min _{1 \leq i \leq 2} d_{\min , \zeta}\left(\mathcal{A}_{i}, \mathcal{A}_{i+2}\right) \\
& \leq \frac{1}{4} \min _{1 \leq i \leq 2} d_{\min }\left(\mathcal{A}_{i}\right)
\end{aligned}
$$

- The diversity product is determined by the minimum ζ-distance of each pair of signal constellations \mathcal{A}_{i} and \mathcal{A}_{i+2}.
- Problem: How to design the signal constellation pair \mathcal{A}_{i} and \mathcal{A}_{i+2} such that

$$
d_{\min , \zeta}\left(\mathcal{A}_{i}, \mathcal{A}_{i+2}\right)>0
$$

i.e., the quasi-orthogonal STBC has full diversity?

How to design the signal constellations?

- Problem: how to design signal constellations \mathcal{A} and \mathcal{B} such that $d_{\min , \zeta}(\mathcal{A}, \mathcal{B})>0$?
- We found that for an arbitrary signal constellation \mathcal{A}, if

$$
\mathcal{B}=e^{j \phi} \mathcal{A} \triangleq\left\{e^{j \phi} s: s \in \mathcal{A}\right\}
$$

then $d_{\min , \zeta}\left(\mathcal{A}, e^{j \phi} \mathcal{A}\right)>0$ for some specific rotation angle ϕ.

- We know that the minimum ζ-distance is upper bounded by

$$
d_{\min , \zeta}\left(\mathcal{A}, e^{j \phi} \mathcal{A}\right) \leq d_{\min }(\mathcal{A})
$$

So, the problem remaining is how to choose the rotation angle ϕ ?

- For example, if \mathcal{A} is $\operatorname{BPSK}\{1,-1\}$, and the rotation angle ϕ is chosen as $\pi / 2$, then

$$
d_{\min , \zeta}\left(\mathcal{A}, e^{j \pi / 2} \mathcal{A}\right)=d_{\min }(\mathcal{A})
$$

- If \mathcal{A} is chosen as 4-QAM,

\bullet	
01	\bullet
11	$\bullet 0$

then the optimum rotation angle ϕ is $\pi / 4$.

- If \mathcal{A} is chosen as 16 -QAM,

1000	$\stackrel{\bullet}{100}$	$\stackrel{\bullet}{0100}$	0000
1001	1101	0101	0001
1011	1111	0111	0011
1010	$11 \stackrel{\bullet}{10}$	0110	$\stackrel{\bullet}{0010}$

the optimum rotation angle ϕ ?

Theorem 1: Assume \mathcal{A} is a signal constellation drawn from a square lattice, where the side length of the squares in the lattice is equal to $d_{\min }(\mathcal{A})$. Then, the minimum ζ-distance between \mathcal{A} and $e^{j \pi / 4} \mathcal{A}$ is $d_{\min }(\mathcal{A})$, i.e.,

$$
d_{\min , \zeta}\left(\mathcal{A}, e^{j \pi / 4} \mathcal{A}\right)=d_{\min }(\mathcal{A})
$$

- Recall that the minimum ζ-distance is upper bounded by $d_{\text {min }}$, i.e.,

$$
d_{\min , \zeta}\left(\mathcal{A}, e^{j \phi} \mathcal{A}\right) \leq d_{\min }(\mathcal{A})
$$

If \mathcal{A} is r-QAM, then the optimum rotation angle ϕ is $\pi / 4$, and

$$
d_{\min , \zeta}\left(\mathcal{A}, e^{j \pi / 4} \mathcal{A}\right)=d_{\min }(\mathcal{A})
$$

- It is desired to have the signal constellation \mathcal{A} with $d_{\text {min }}$ as large as possible, meanwhile the minimum ζ-distance between \mathcal{A} and $e^{j \phi} \mathcal{A}$ achieving $d_{\text {min }}$.
- Notice that for any number of points in two dimensions, the best constellations known by now, from a minimum Euclidean distance point of view, are drawn from the lattices of equilateral triangles (Foschini et al 1974, Conway and Sloane 1983, Forney et al 1984). For example,

Theorem 2: Assume \mathcal{A} is a signal constellation drawn from a lattice of equilateral triangles, where the side length of the equilateral triangles is equal to $d_{\min }(\mathcal{A})$. Then, the minimum ζ-distance between \mathcal{A} and $e^{j \pi / 6} \mathcal{A}$ is $d_{\min }(\mathcal{A})$, i.e.,

$$
d_{\min , \zeta}\left(\mathcal{A}, e^{j \pi / 6} \mathcal{A}\right)=d_{\min }(\mathcal{A})
$$

3. Simulation Results

- For 4 transmit antennas, the quasi-orthogonal STBC with full diversity is given by

$$
C=\left[\begin{array}{rrrr}
x_{1} & x_{2} & x_{3} & x_{4} \\
-x_{2}^{*} & x_{1}^{*} & -x_{4}^{*} & x_{3}^{*} \\
x_{3} & x_{4} & x_{1} & x_{2} \\
-x_{4}^{*} & x_{3}^{*} & -x_{2}^{*} & x_{1}^{*}
\end{array}\right],
$$

where $x_{1}, x_{2} \in \mathcal{A}$, and $x_{3}, x_{4} \in e^{j \phi} \mathcal{A}$ for some signal constellation \mathcal{A}, and the rotation angle ϕ is determined by the signal constellation \mathcal{A}, which is specified in Theorem 1 and 2.

Figure 1: Performances of the new scheme (line with $*$) and the TBH scheme (line with \triangle).

Figure 2: Performances of the new scheme (line with $*$), the TBH scheme (line with \triangle), and the orthogonal design (line with o for 16-QAM and dash line for $16-\mathrm{TRI})$.

- For 8 transmit antennas, the quasi-orth. STBC with full diversity is given by

$$
C=\sqrt{\frac{4}{3}}\left[\begin{array}{rrrrrrrr}
x_{1} & x_{2} & x_{3} & 0 & x_{4} & x_{5} & x_{6} & 0 \\
-x_{2}^{*} & x_{1}^{*} & 0 & x_{3} & -x_{5}^{*} & x_{4}^{*} & 0 & x_{6} \\
-x_{3}^{*} & 0 & x_{1}^{*} & -x_{2} & -x_{6}^{*} & 0 & x_{4}^{*} & -x_{5} \\
0 & -x_{3}^{*} & x_{2}^{*} & x_{1} & 0 & -x_{6}^{*} & x_{5}^{*} & x_{4} \\
x_{4} & x_{5} & x_{6} & 0 & x_{1} & x_{2} & x_{3} & 0 \\
-x_{5}^{*} & x_{4}^{*} & 0 & x_{6} & -x_{2}^{*} & x_{1}^{*} & 0 & x_{3} \\
-x_{6}^{*} & 0 & x_{4}^{*} & -x_{5} & -x_{3}^{*} & 0 & x_{1}^{*} & -x_{2} \\
0 & -x_{6}^{*} & x_{5}^{*} & x_{4} & 0 & -x_{3}^{*} & x_{2}^{*} & x_{1}
\end{array}\right]
$$

where $x_{1}, x_{2}, x_{3} \in \mathcal{A}$, and $x_{4}, x_{5}, x_{6} \in e^{j \phi} \mathcal{A}$ for some signal constellation \mathcal{A}, and the rotation angle ϕ is determined by the signal constellation \mathcal{A}, which is specified in Theorem 1 and 2.

Figure 3: Performances of the new scheme (line with $*$), the Jafarkhani scheme (line with \triangle), and the orthogonal design (line with \circ for 8-QAM and dash line for 8 -TRI).

Conclusion

- We proposed quasi-orthogonal STBCs with full diversity.
- We also studied the optimality of the signal constellations. The optimum rotation angles were given for some commonly used signal constellations.

On Optimal Quasi-Orthogonal Space-Time Block Codes with Minimum Decoding

Complexity

Haiquan Wang, Dong Wang, and Xiang-Gen Xia
Department of Electrical and Computer Engineering
University of Delaware
Email: \{hwang, dwang, xxia\}@ee.udel.edu

Outline

- Background
- Linear Transformations for Quasi-Orthogonal Space-Time Block Codes (QOSTBC) with Minimum Decording Complexity
- Optimal Linear Transformations for Square QAM
- Optimal Linear Transformations for Retangular QAM
- Simulation Results
- Conclusion

Background

- Orthogonal space-time block codes from complex orthogonal designs (Alamouti, Tarokh-Jarfarkhani-Calderbank)
- Full diversity
- Complex symbol-wise (equivalently real symbol pair-wise) ML decoding
- Rates are upper bounded by $3 / 4$ for more than 2 Tx antennas (Wang-Xia)
- Quasi orthogonal space-time block codes (Jafarkhani, Tirkkonen-Boariu-Hottinen, Papadias-Foschini) without information symbol rotations
- Not full diversity
- Rates are 1 for 4 Tx antennas
- Complex symbol pair-wise ML decoding
- Full diversity QOSTBC with information symbol rotation (Tirkkonen, Sharma-Papadias, Su-Xia)
- Full diversity and diversity products are maximized (Su-Xia) over all possible linear transformations of information symbols arbitrarily located on square or equal-literal triangular lattices
- Rates 1 for 4 Tx antennas
- Complex symbol pair-wise ML decoding
- Faster ML decoding QOSTBC with information symbol rotation (Yuen-Guan-Tjhung'04)
- Real symbol pair-wise ML decoding
- Full diversity and diversity products are maximized among orthogonal rotations of information symbols
- Rates 1 for 4 Tx antennas
- Co-ordinate interleaved orthogonal designs (CIOD) (Khan-Rajan-Lee'03) with information rotations
- Real symbol pair-wise ML decoding
- Full diversity and diversity products are maximized among orthogonal
rotations of square QAM information symbols
- Rates 1 for 4 Tx antennas
- Goals of this work
- Use the most general setting of linear transformations of information symbols for both QOSTBC and CIOD (NOT limited to orthogonal rotations as studied by Khan-Rajan-Lee and Yuen-Guan-Tjhung)
- Present if and only if conditions on the linear transformations for QOSTBC to possess the real symbol pair-wise ML decoding
- Present the optimal linear transformations for QOSTBC (optimal rotations of rectangular QAM for CIOD) with real symbol pair-wise ML decoding such that the diversity products are maximized (optimized)

Complex Orthogonal Designs

A complex orthogonal design (COD) in complex variables $z_{1}, z_{2}, \cdots, z_{k}$ is a $T \times n$ matrix $G\left(z_{1}, \cdots, z_{k}\right)$ such that
any entry of $G\left(z_{1}, \cdots, z_{k}\right)$ is a complex linear combinations of $z_{1}, z_{2}, \cdots, z_{k}, z_{1}^{*}, z_{2}^{*}, \cdots, z_{k}^{*}$.
G satisfies the orthogonality

$$
\begin{equation*}
G^{\dagger} G=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\cdots+\left|z_{k}\right|^{2}\right) I_{n} \tag{1}
\end{equation*}
$$

for all complex values $z_{1}, z_{2}, \cdots, z_{k}$.

QOSTBC

- Let $G_{n}\left(z_{1}, \cdots, z_{k}\right)$ be a $T \times n$ complex orthogonal design in complex variables z_{1}, \cdots, z_{k}.
- Let $A=G_{n}\left(z_{1}, \cdots, z_{k}\right)$ and $B=G_{n}\left(z_{k+1}, \cdots, z_{2 k}\right)$.
- We consider the following quasi-orthogonal space-time block code (QOSTC) $Q_{2 n}\left(z_{1}, \cdots, z_{2 k}\right)$:

$$
Q_{2 n}\left(z_{1}, \cdots, z_{2 k}\right)=\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right)
$$

Encoding for QOSTBC with General Linear Transformations of Information Symbols

Encoding for QOSTBC with General Linear Transformations of Information Symbols

- Let \mathcal{S} be a signal constellation, i.e., a set of complex numbers on the complex plane.
- A binary information sequence is mapped to points z_{i} in \mathcal{S} as $z_{i}=r_{i}+\mathbf{j} s_{i}$ for $1 \leq i \leq 2 k$.
- For each $i, 1 \leq i \leq k$, take a pre-designed real linear transform U_{i} and the real vector $\left(r_{i}, s_{i}, r_{k+i}, s_{k+i}\right)^{t}$ of dimension 4 is transformed to another real vector $\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right)^{t}$ of dimension 4 :

$$
\begin{equation*}
\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right)^{t}=U_{i}\left(r_{i}, s_{i}, r_{k+i}, s_{k+i}\right)^{t} \tag{2}
\end{equation*}
$$

where U_{i} is non-singular.

- Form complex variables $x_{i}=p_{i}+\mathbf{j} q_{i}$ for $1 \leq i \leq 2 k$.
- With these complex variables x_{i}, form a QOSTBC $Q_{2 n}\left(x_{1}, x_{2}, \cdots, x_{2 k}\right)$ that is used as a space-time block code and transmitted through $2 n$ transmit
antennas.

Question: how to design a real linear transformations U_{i} of size 4×4 for a QOSTBC such that it possess a real symbol pair-wise ML decoding and to have full diversity (or optimal diversity product).

Real Symbol Pair-wise ML Decoding

- Let

$$
\begin{aligned}
g_{i}\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right) & \triangleq p_{i}^{2}+q_{i}^{2}+p_{k+i}^{2}+q_{k+i}^{2} \\
f_{i}\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right) & \triangleq 2\left(p_{i} p_{k+i}+q_{i} q_{k+i}\right)
\end{aligned}
$$

- Then the quadratic term in the ML decoding objective function is

$$
Q_{2 n}^{\dagger} Q_{2 n}=\left(\begin{array}{cc}
a I_{n} & b I_{n} \\
b I_{n} & a I_{n}
\end{array}\right)
$$

where

$$
\begin{aligned}
a & =\sum_{i=1}^{2 k}\left|x_{i}\right|^{2}=\sum_{i=1}^{k} g_{i} \\
b & =\sum_{i=1}^{k}\left(x_{i} x_{k+i}^{*}+x_{k+i} x_{i}^{*}\right)=\sum_{i=1}^{k} f_{i}
\end{aligned}
$$

- To possess a real symbol pair-wise ML decoding, the linear transformation U_{i} needs to be chosen such that one of the following three cases holds

Case 1. Functions g_{i} and f_{i} can be separated as

$$
\begin{aligned}
g_{i}\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right) & =g_{i 1}\left(r_{i}, s_{i}\right)+g_{i 2}\left(r_{k+i}, s_{k+i}\right) \\
f_{i}\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right) & =f_{i 1}\left(r_{i}, s_{i}\right)+f_{i 2}\left(r_{k+i}, s_{k+i}\right)
\end{aligned}
$$

Case 2. Functions g_{i} and f_{i} can be separated as

$$
\begin{aligned}
g_{i}\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right) & =g_{i 1}\left(r_{i}, r_{k+i}\right)+g_{i 2}\left(s_{i}, s_{k+i}\right) \\
f_{i}\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right) & =f_{i 1}\left(r_{i}, r_{k+i}\right)+f_{i 2}\left(s_{i}, s_{k+i}\right)
\end{aligned}
$$

Case 3. Functions g_{i} and f_{i} can be separated as

$$
\begin{aligned}
g_{i}\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right) & =g_{i 1}\left(r_{i}, s_{k+i}\right)+g_{i 2}\left(s_{i}, r_{k+i}\right), \\
f_{i}\left(p_{i}, q_{i}, p_{k+i}, q_{k+i}\right) & =f_{i 1}\left(r_{i}, s_{k+i}\right)+f_{i 2}\left(s_{i}, r_{k+i}\right)
\end{aligned}
$$

Linear Transformation Characterization for Real Symbol Pair-wise ML Decoding

Theorem 1: Let U_{i} be a 4×4 non-singular matrix with all real entries. Then, we have the following results.

- Case 1 holds if and only if U_{i} can be written as

$$
U_{i}=\left(\begin{array}{cc}
U_{i 1} & U_{i 2} \\
U_{i 1} R_{i 1} & U_{i 2} R_{i 2}
\end{array}\right)
$$

where $U_{i 1}, U_{i 2}, R_{i 1}, R_{i 2}$ are 2×2 matrices of real entries, $R_{i 1}^{2}=I_{2}$ and $R_{i 2}^{2}=I_{2}$, and

$$
R_{i 1}^{t} U_{i 1}^{t} U_{i 2}+U_{i 1}^{t} U_{i 2} R_{i 2}=0
$$

- Case 2 holds if and only if U_{i} can be written as

$$
U_{i}=\left(\begin{array}{cc}
U_{i 1} & U_{i 2} \\
U_{i 1} R_{i 1} & U_{i 2} R_{i 2}
\end{array}\right) P_{1}
$$

where $U_{i 1}, U_{i 2}, R_{i 1}, R_{i 2}$ are the same as in (i) for Case 1 and

$$
P_{1}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Case 3 holds if and only if U_{i} can be written as

$$
U_{i}=\left(\begin{array}{cc}
U_{i 1} & U_{i 2} \\
U_{i 1} R_{i 1} & U_{i 2} R_{i 2}
\end{array}\right) P_{2}
$$

where $U_{i 1}, U_{i 2}, R_{i 1}, R_{i 2}$ are the same as in (i) for Case 1 and

$$
P_{2}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Optimal Linear Transformation for Square QAM

- We want to determine the optimal linear transformation that maximize the following normalized diversity product of the QOSTBC $Q_{2 n}$ in terms of the mean signal power

$$
\bar{\zeta}\left(Q_{2 n}\right) \triangleq \frac{\zeta\left(Q_{2 n}\right)}{\left(\prod_{i=1}^{k}\left|\operatorname{det}\left(U_{i}\right)\right|\right)^{1 /(4 k)}}
$$

where $\zeta\left(Q_{2 n}\right)$ is the diversity product of QOSTBC $Q_{2 n}\left(x_{1}, \cdots, x_{2 k}\right)$.

Optimal Linear transformation for Square QAM

Theorem 2: Let

$$
\alpha=\arctan (2) \text { and } R=\left(\begin{array}{rr}
\cos (\alpha) & \sin (\alpha) \\
\sin (\alpha) & -\cos (\alpha)
\end{array}\right)
$$

and P_{1} and P_{2} be the 4×4 matrices defined in (ii) and (iii) in Theorem 1, respectively. For the three cases, we have the following results,respectively.

- For Case 1, let

$$
U_{i}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I_{2} & I_{2} \\
R & -R
\end{array}\right)
$$

Then, the above orthogonal matrices U_{i} satisfy (i) for Case 1 in Theorem 1, i.e., the quadratic forms f_{i} and g_{i} of 4 variables can be separated as Case 1, and furthermore, U_{i} are optimal in the sense that the normalized diversity product $\bar{\zeta}\left(Q_{2 n}\right)$ is maximized among all other non-singular linear
transformations U_{i} that satisfy (i) in Theorem 1 and

$$
\max _{U_{i} \text { in (i) Theorem } 1} \bar{\zeta}\left(Q_{2 n}\right)=\frac{1}{2 \sqrt{2 T}}\left(\frac{4}{5}\right)^{1 / 4}
$$

- For Case 2, let

$$
U_{i}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I_{2} & I_{2} \\
R & -R
\end{array}\right) P_{1}
$$

Then, the above orthogonal matrices U_{i} satisfy (ii) for Case 2 in Theorem 1 and they are optimal, and the same maximum normalized diversity product in above case is achieved.

- For Case 3, let

$$
U_{i}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I_{2} & I_{2} \\
R & -R
\end{array}\right) P_{2}
$$

Then, the above orthogonal matrices U_{i} satisfy (iii) for Case 3 in Theorem 1 and they are optimal, and the same maximum normalized diversity product in
above is achieved.
Remark: For the above square QAM case, the above optimal normalized diversity product coincides with the one obtained by Yuen-Guan-Tjhung from optimal orthogonal rotation.

Optimal Linear Transformation for Retangular QAM

- Consider a finite-point retangular QAM (RQAM) signal constellations:

$$
\mathcal{S}=\left\{z_{i}=\frac{n_{1} d}{2}+\mathbf{j} \frac{n_{2} d}{2}: n_{i} \in \mathcal{N}_{i} \text { for } i=1,2\right\}
$$

where

$$
\mathcal{N}_{i} \triangleq\left\{-\left(2 N_{i}-1\right), \cdots,-1,1, \cdots, 2 N_{i}-1\right\}
$$

where N_{1} and N_{2} are two positive integers and d is a real positive constant that is used to adjust the total signal energy.

- Let us only consider Case 1 and the other two cases are similar.

Optimal Linear Transformation for RQAM

- Theorem 3: For Case 1 and an RQAM with total energy 1. Let

$$
\begin{aligned}
& \varepsilon_{1}=\frac{4 N_{1}^{2}-1}{2\left(2 N_{1}^{2}+2 N_{2}^{2}-1\right)}, \varepsilon_{2}=\frac{4 N_{2}^{2}-1}{2\left(2 N_{1}^{2}+2 N_{2}^{2}-1\right)}, \alpha=\arctan (2) \\
& \rho=\sqrt{\frac{5}{12\left(1+\varepsilon_{1} \varepsilon_{2}\right)}}, \text { and }
\end{aligned}
$$

$$
\begin{gathered}
R_{1}=\left(\begin{array}{rr}
\cos (\alpha) & \sin (\alpha) \\
\sin (\alpha) & -\cos (\alpha)
\end{array}\right), P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\Sigma=\left(\begin{array}{cc}
1+\varepsilon_{1} & 1-2 \varepsilon_{1} \\
1-2 \varepsilon_{1} & 2-\varepsilon_{1}
\end{array}\right)
\end{gathered}
$$

Denote a diagonalization of symmetric matrix Σ as $\Sigma=V^{t} D V$, where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right), \lambda_{1}, \lambda_{2}$ are the eigenvalues of Σ and V is an orthogonal matrix.

Let

$$
\begin{gathered}
U_{i 1}=\rho V^{t}\left(\begin{array}{rr}
\sqrt{\lambda_{1}} & 0 \\
0 & \sqrt{\lambda_{2}}
\end{array}\right) V \\
U_{i 2}=\rho V^{t}\left(\begin{array}{rr}
\sqrt{\lambda_{2}} & 0 \\
0 & \sqrt{\lambda_{1}}
\end{array}\right) V P ; \quad R_{2}=-P R_{1} P .
\end{gathered}
$$

Then,

$$
U_{i}=\left(\begin{array}{cc}
U_{i 1} & U_{i 2} \\
U_{i 1} R_{1} & U_{i 2} R_{2}
\end{array}\right) \quad i=1,2, \cdots, k
$$

satisfy (i) for Case 1 in Theorem 1, and are optimal in the sense that the diversity product ζ of the QOSTBC is maximized among all U_{i} under (i) in

Theorem 1 and the optimal diversity product is

$$
\begin{aligned}
& \zeta_{\text {optimal }}=\frac{1}{2 \sqrt{2 T}} \sqrt{\frac{3}{N_{1} N_{2}}} \times \\
& \quad \frac{1}{\left(16 N_{1}^{4}+16 N_{2}^{4}+48 N_{1}^{2} N_{2}^{2}-20 N_{1}^{2}-20 N_{2}^{2}+5\right)^{1 / 4}}
\end{aligned}
$$

- Optimal normalized diversity product comparison:

$$
\begin{aligned}
\zeta_{\mathrm{optimal}, \mathrm{SX}}= & \frac{1}{2 \sqrt{2 T}} d>\frac{1}{2 \sqrt{2 T}}\left(\frac{1}{1+\varepsilon_{1} \varepsilon_{2}}\right)^{1 / 4} d=\zeta_{\mathrm{optimal}, \mathrm{WWX}} \\
& \geq \frac{1}{2 \sqrt{2 T}}\left(\frac{4}{5}\right)^{1 / 4} d=\zeta_{\mathrm{optimal}, \mathrm{YGT}}
\end{aligned}
$$

where the equality " $=$ " holds if and only if $\varepsilon_{1}=\varepsilon_{2}=1 / 2$, i.e., $N_{1}=N_{2}$ or square QAM.

Optimal Rotations for Co-ordinate Interleaved Orthogonal Designs (CIOD)

- Khan-Rajan-Lee have proposed CIOD that has the same rate as QOSTBC for 4 Tx antrennas.
- Khan-Rajan-Lee found the optimal rotations for CIOD to possess the real symbol pair-wise ML decoding and maximized diversity product for square QAM signal constellations.
- We also obtained the optimal rotations for CIOD to possess the real symbol pair-wise ML decoding and maximized diversity product for rectangular QAM (RQAM) signal constellations
- As a consequence of our results, it is shown that the optimal normalized diversity products of QOSTBC and CIOD with the real symbol pair-wise ML decoding are the same in both square and rectangular QAM cases.

Some Examples

Table 1: Diversity product comparison

Constellations	4-QAM	8-QAM	32-QAM
Su-Xia	0.1768	0.0801	0.0198
Case 1	0.1672	0.0757	0.0187
CIOD	0.1672	0.0757	0.0187
RQAM with new optimal transform	0.1672	0.0699	0.0167
RQAM with optimal rotation	0.1672	0.0683	0.0164

Some Examples

Table 2: ML decoding complexity comparison: Number of trials

Constellations	4-QAM	8-QAM	32-QAM
Su-Xia (complex symbol pair-wise)	32	128	2048
Case 1 (real symbol pair-wise)	16	32	128
CIOD (real symbol pair-wise)	16	32	128
RQAM (real symbol pair-wise)	16	32	128

Some Simulation Results

Figura-1: 2 bits/channoluse

Figure-2: 5-bits/channoluso.

Conclusion

- Presented if and only if conditions for linear transformations of information symbols for QOSTBC to possess real symbol pair-wise ML decoding.
- Presented optimal linear transformations of information symbols for QOSTBC to possess real symbol pair-wise ML decoding such that the normalized diversity products are maximized for both square QAM and rectangular QAM cases.
- It turns out that the optimal normalized diversity products of QOSTBC among all linear transformations we obtained coincide with the ones among only orthogonal rotations obtained by Yuen-Guan-Tjhung for square QAM constellations.
- The optimal normalized diversity products of QOSTBC among all linear transformations we obtained are greater than the ones among only orthogonal rotations obtained by Yuen-Guan-Tjhung for non-square rectangular QAM constellations.
- We also obtained optimal rotations for CIOD for non-square rectangular QAM constellations.

Some Papers to Read

- W. Su and X.-G. Xia, Signal Constellations for QuasiOrthogonal Space-Time Block Codes with Full Diversity, IEEE Trans. on Information Theory, Oct. 2004.
- H. Wang, D. Wang, and X.-G. Xia, Optimal QuasiOrthogonal Space-Time Block Codes with Minimum Decoding Complexity, IEEE Trans. on Information Theory, March 2009.
- D. Wang and X.-G. Xia, Optimal Diversity Product Rotations for Quasi-Orthogonal STBC with MPSK, IEEE Communications Letters, May, 2005.

