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Abstract. We study the propagation of nonlinear waves in non-relativistic electron-
positron plasmas. The waves are assumed to propagate at small angles with respect
to the equilibrium magnetic field. We derive the equation describing the wave prop-
agation under the assumption that the waves are weakly dispersive and also can
weakly depend on spatial variables orthogonal to the equilibrium magnetic field.
We obtain solutions of the derived equation describing solitons. Then we study the
stability of solitons with respect to transverse perturbations.

1. Introduction

The problem of wave propagation in electron-positron plasmas attracted the atten-
tion of theorists for a few decades first of all in relation with astrophysical appli-
cations. It is believed that in astrophysics electron-positron plasmas exist in pulsar
magnetospheres (Sturrock 1971, Ruderman and Sutherland 1975, Chian and Ken-
nel 1983, Arons and Barnard 1986, Aharonian et al. 2012, Cerutti and Beloborodov
2017), active galactic nuclei (Ruffini et al. 2010, El-Labany et al. 2013, Kawakatu et
al. 2016) and early universe (Gailis et al. 1995, Shukla 2003, Tatsuno et al. 2003).
It is believed that large-amplitude low-frequency waves play and important role
in such astrophysical processes as slowing down of pulsars, pulsar radiation, and
cosmic ray acceleration.
The linear theory of wave propagation in electron-positron plasmas was developed

using both hydrodynamic as well as kinetic description (Arons and Barnard 1986,
Sakai and Kawata 1980a, Stewart and Laing 1992). The nonlinear theory of waves
in electron-positron plasmas has been also developed. The Nonlinear Schrödinger
(NLS) equation was derived and used to study the modulational instability and
envelope solitons (Chian and Kennel 1983, Cattaert et al. 2005, Rajib et al. 2015).
The Kortewed-de Vries (KdV) and modified Kortewed-de Vries (mKdV) equations
were obtained and the dependence of width and amplitude of solitons described by
these equations on parameters of an unperturbed state was studied (Verheest and
Lakhina 1996, Lakhina and Verheest 1997, Rajib et al. 2015).
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We aim to study the propagation of nonlinear waves that is quasi-parallel with
respect to the equilibrium magnetic field. In the case of electron-ion plasmas this
problem was intensively studied during a few decades. It was shown that the
one-dimensional quasi-parallel propagation of nonlinear waves is described by the
Derivative Nonlinear Schrödinger (DNLS) equation (Rogister 1971, Mjølhus 1976,
Mio et al. 1976a, Ruderman 2002). This equation was used to study the modu-
lational instability of circularly polarised Alfvén waves (Mjølhus 1976, Mio et al.
1976b). The DNLS equation describes a few kinds of solitons as well as the gener-
ation of rogue waves (Ichikawa et al. 1980, Mjølhus and Hada 1997, Fedun et al.
2008). It was shown that the DNLS equation is completely integrable, the Lax pair
for this equation was found, and the inverse scattering method was used to obtain
exact solutions (Kaup and Newell 1978, Kawata and Inoue 1978).

Later an extension of the DNLS equations to two and three dimensions (3D
DNLS) was derived (Mjølhus and Wyller 1986, Ruderman 1987, Mjølhus and Hada
1997). This extension is similar to that obtained by Kadomtsev and Petviashvili
(1970) (KP equation) for the KdV equation. The 3D DNLS was used to study the
stability of solitons of the DNLS equation with respect to transvers perturbations
(Ruderman 1987, Mjølhus and Hada 1997).

The propagation of large-amplitude Alfvén waves parallel to the external mag-
netic field has been also studied in an electron-positron plasma (Sakai and Kawata
1980a, b, Mikhailovskii et al. 1985a, b, c, Verheest 1996, Lakhina and Verheest
1997). It was shown that, in contrast to the electron-proton plasma, nonlinear
waves propagating parallel to the magnetic field are described by the vector form
of the mKdV equation.

In this paper we aim to extend this vector mKdV equation to two and three
dimensions. First studies of waves in electron-positron plasmas were related to as-
trophysical applications. However, then the progress of experimental physics opened
the possibility of creation of electron-positron plasmas in laboratory (Surko et al.
1989, Surko and Murphy 1990, Greaves et al. 1994, Liang et al. 1998, Gahn et al.
2000, Bell and Kirk 2008, Chen et al. 2009, Sarri et al. 2013). Another example is
the semi-conductor plasma, where holes behave like positive charges with the mass
equal to that of electrons (Shukla et al. 1986). Although in astrophysical appli-
cations an electron-positron plasma is almost always relativistic, a non-relativistic
electron-positron plasma is also of astrophysical interest. It can radiate very ef-
fectively by the cyclotron emission. As a result, it cools and eventually becomes
non-relativistic. As for laboratory plasmas, in many cases they can be describing
in the non-relativistic approximation. This observation inspired Iwamoto (1993)
and Zank and Greaves (1995) to study waves in non-relativistic electron-positron
plasmas.

The propagation of nonlinear waves and, in particular, solitons, electron-ion
plasmas were extensively studied in laboratory experiments (e.g. Ikezi1973, Tran
1979, Lonngren 1983). To our knowledge up to now there have been no experimental
studies of waves in electron-positron plasmas. Apparently it is related to substantial
difficulty of creating electron-positron plasmas in laboratory. Hence, theorists are
ahead of experimentalists in studying waves in these plasmas. The state of affairs
here is the same as was in the case of electron-ion plasmas where nonlinear waves
were studied theoretically much earlier than experimentally. There is no doubt that
waves in electron-positron plasmas will be studied experimentally because they are
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of great importance for understanding physical phenomena both in astrophysical
as well as in laboratory plasmas.
In this article we also use the non-relativistic approximation that strongly simpli-

fies the derivation of the multi-dimensional generalisation of the mKdV equation.
The article is organised as follows. In the next section we formulate the problem
and present the governing equations. In Sect. 3 we briefly discuss the linear the-
ory. In Sect. 4 we derive the equation describing small-amplitude weakly dispersive
quasi-three-dimensional nonlinear waves. In Sect. 5 we obtain the solutions describ-
ing planar one-dimensional solitons. In Sect. 6 we study the soliton stability with
respect to transvers perturbations. Section 7 contains the summary of the obtained
results and conclusion.

2. Problem formulation and governing equations

We consider the propagation of nonlinear waves along the equilibrium magnetic
field in a plasma that consists of electrons and positrons. We treat the electron and
positron components as two charged fluids. We do not consider the annihilation
or pair creation meaning that the particle number is conserved. We use the non-
relativistic approximation meaning that the velocities of the two fluids are much
smaller then the speed of light c, and the pressure of each fluid is much smaller
than the density times c2. We also assume that the phase speed of propagation of
small perturbations is much smaller than c. The plasma motion is describing by
the mass conservation and momentum equations:

∂ns

∂t
+∇ · (nsvs) = 0, (2.1a)

∂vs

∂t
+ (vs · ∇)vs +

∇ps
mns

=
qs
m
(E+ vs ×B). (2.1b)

In these equations ns is the number density, vs the velocity, ps the pressure, m
the electron mass, and s = + and s = − refers to the positrons and electrons,
respectively; E is the electrical field, B is the magnetic field, q+ = q, q− = −q, and
q is the elementary charge. We assume that the motion is adiabatic and take

ps = p0

(
ns

n0

)κ

, (2.2)

where n0 and p0 are the unperturbed number density and pressure (the same for the
electrons and positrons), and κ(= 5/3) is the adiabatic exponent. Equations (2.1a)–
(2.2) must be supplemented with the Maxwell equations. Since we use the non-
relativistic approximation, we can neglect the displacement current and write the
Maxwell equations as

∇ ·E =
ρ

ε 0
, (2.3a)

∇ ·B = 0, (2.3b)

∇×E = −∂B

∂t
, (2.3c)

∇×B = µ0j, (2.3d)
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where ε0 is the permittivity of free space, µ0 is the permeability of free space, and
the total electrical charge and current densities are determined by

ρ = ρ+ + ρ− = q(n+ − n−), (2.4a)

j = j+ + j− = q(n+v+ − n−v−). (2.4b)

Recall that ε0µ0 = c−2.
We assume that in the equilibrium n+ = n− = n0, v+ = v− = 0, E = 0, and

B = B0ex, where ex is the unit vector along the x-axis of Cartesian coordinates
x, y, z.

3. Linear theory

Here we briefly describe the linear theory of wave propagation because below we
use it as a guide for scaling when deriving the equation governing the propagation
of nonlinear waves. Since below we study the nonlinear wave propagation along
the magnetic field, we only consider linear wave propagation in the equilibrium
magnetic field direction. We linearise Eqs. (2.1) and (2.2) and then take perturba-
tions of all quantities proportional to exp[i(kx − ωt)]. As a result, we obtain two
disconnected systems of algebraic equations. The first system is for the perturba-
tions of the number density, pressure, and x-components of the velocity and electric
field. It describes the longitudinal wave mode. We do not study this mode in de-
tail and only state that in the long wavelength approximation its phase speed is
a0 = (κp0/mn0)

1/2. This speed can be considered as the sound speed.
The second system is for the y and z-components of the velocity, electric field, and

magnetic field perturbation. It describes transversal wave modes. Below we derive
the equation describing the nonlinear transversal waves. Hence, here we present a
more detailed study of this wave mode. The transversal waves are described by

ωmv⊥s = iqs(E⊥ −B0ex × v⊥s), (3.1a)

kE⊥ = −ωex ×B⊥, (3.1b)

ikex ×B⊥ = µ0qn0(v⊥+ − v⊥−), (3.1c)

where

v⊥s = (0, vys, vzs), (3.2a)

E⊥ = (0, Ey, Ez), B⊥ = (0, By, Bz). (3.2b)

Introducing the plasma bulk velocity and electrical current,

v⊥ =
1

2
(v⊥+ + v⊥−), j = qn0(v⊥+ − v⊥−), (3.3)

we obtain from Eqs. (3.1a) and (3.1c)

ωmn0v⊥ = − i

2
B0ex × j, (3.4)

E⊥ = B0ex × v⊥ − iωm j

2n0q2
, (3.5)

ikex ×B⊥ = µ0 j. (3.6)

Equation (3.5) is the Ohm’s law. The second term on the right-hand side is similar to
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the Hall term in the Ohm’s law for the electron-ion plasma. However, the Hall term
would be proportional to ex×j rather than j as in Eq. (3.5). This difference is related
to the fact that the masses of positively and negatively charged particles are the
same in the electron-positron plasma, while the mass of positively charged particles
is much larger than the mass of negatively charged particles in the electron-ion
plasma. The dispersion of waves propagating along the magnetic field in electron-
ion plasma is related to the account of ion inertia in the induction equation, while
the electron inertia is neglected. In contrast, in an electron-positron plasma the
inertia of both electrons and positrons is accounted.
Equations (3.1b) and (3.4)–(3.6) constitute the system of linear homogeneous

algebraic equation. It only has non-trivial solutions when its determinant is zero.
This condition gives the dispersion equation

mω2(mk2 + 2µ0q
2n0) = q2k2B2

0 . (3.7)

For small values of k this dispersion equation reduces to the approximate form

ω = kV (1− k2ℓ2), (3.8)

where

V =
B0√

2µ0mn0
, ℓ =

1

2q

√
m

µ0n0
. (3.9)

The wave dispersion is related to the presence of the second term in Eq. (3.5). If
we neglect this term, then the dispersion relation reduces to ω = kV .
The condition that k is small is written as kℓ ≪ 1. In the non-relativistic approx-

imation we must have the phase speed much smaller than the speed of light, V ≪ c.
This condition reduces to B2/µ0 ≪ mn0c

2, that is the magnetic energy density is
much smaller than the rest density of the plasma. We note that the term describing
the wave dispersion (the second term in the brackets in Eq. (3.8)) is proportional
to k2. In the case of electron-ion plasma it is proportional to k.

4. Derivation of equation for small-amplitude nonlinear waves

We consider nonlinear waves propagating along the equilibrium magnetic field. We
expect that the equation describing the nonlinear wave propagation will be similar
to the 3D DNLS equation describing quasi-parallel propagation of nonlinear waves
in an ion-electron plasma with the only difference that the term describing the wave
dispersion will be different. This difference arises from the fact that, as we have
already seen, the term describing the dispersion of waves in an electron-positron
plasma is proportional to k2, while it is proportional to k in the electron-ion plasma.

To derive the nonlinear equation describing the longitudinal propagation of non-
linear waves we use the reductive perturbation method (Taniuti and Wei 1968,
Kakutani et al. 1968). In accordance with this method we introduce the dimension-
less amplitude of the order of ǫ ≪ 1. In the linear theory the characteristic time is
L/V , where L is the characteristic length of perturbation and V is the phase speed
of very long waves. We assume that the ratio of L/ℓ is ǫ−1. The characteristic time
of variation of the perturbation shape caused by the nonlinearity and dispersion is
ǫ−2L/V . We also consider weak dependence of perturbations on y and z with the
characteristic scale ǫ−2L. On the time scale much smaller than ǫ−2L/V a perturba-
tion propagates as a wave with permanent shape with all variables only depending
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on x− V t. In accordance with the above analysis we introduce stretched variables:

ξ = ǫ(x− V t), η = ǫ2y, ζ = ǫ2z, τ = ǫ3t. (4.1)

With the aid of Eqs. (2.4) we transform Eqs. (2.1) and (2.3) in the new variables
to

ǫ2
∂ns

∂τ
− V

∂ns

∂ξ
+

∂(nsvxs)

∂ξ
+ ǫ∇⊥ · (nsv⊥s) = 0, (4.2a)

ǫ2
∂vxs
∂τ

− V
∂vxs
∂ξ

+ vxs
∂vxs
∂ξ

+ ǫv⊥s · ∇⊥vxs

+
1

mns

∂ps
∂ξ

= ǫ−1 qs
m
[Ex + ex · (v⊥s ×B⊥)], (4.2b)

ǫ2
∂v⊥s

∂τ
− V

∂v⊥s

∂ξ
+ vxs

∂v⊥s

∂ξ
+ ǫ(v⊥s · ∇⊥)v⊥s + ǫ

∇⊥ps
mns

= ǫ−1 qs
m
[E⊥ + ex × (vxsB⊥ −Bxv⊥s)], (4.2c)

∂Ex

∂ξ
+ ǫ∇⊥ ·E⊥ = ǫ−1 q

ε0
(n+ − n−), (4.2d)

∂Bx

∂ξ
+ ǫ∇⊥ ·B⊥ = 0, (4.2e)

ǫ2
∂Bx

∂τ
− V

∂Bx

∂ξ
= −ǫ ex · ∇⊥ ×E⊥, (4.2f)

ǫ2
∂B⊥
∂τ

− V
∂B⊥
∂ξ

= −ex ×
(
∂E⊥
∂ξ

− ǫ∇⊥Ex

)
, (4.2g)

ǫex · (∇⊥ ×B⊥) = ǫ−1qµ0(n+vx+ − n−vx−), (4.2h)

ex ×
(
∂B⊥
∂ξ

− ǫ∇⊥Bx

)
= ǫ−1qµ0(n+v⊥+ − n−v⊥−), (4.2i)

where

∇⊥ =

(
0,

∂

∂η
,
∂

∂ζ

)
. (4.3)

Now we look for the solution in the form of expansions in the power series with
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respect to ǫ,

ps = p0 + ǫp
(1)
s + ǫ2p

(2)
s + ǫ3p

(3)
s + . . . ,

ns = n0 + ǫn
(1)
s + ǫ2n

(2)
s + ǫ3n

(3)
s + . . . ,

vxs = ǫv
(1)
xs + ǫ2v

(2)
xs + ǫ3v

(3)
xs + . . . ,

v⊥s = ǫv
(1)
⊥s + ǫ2v

(2)
⊥s + ǫ3v

(3)
⊥s + . . . ,

Bx = B0 + ǫB
(1)
x + ǫ2B

(2)
x + ǫ3B

(3)
x + . . . ,

B⊥ = ǫB
(1)
⊥ + ǫ2B

(2)
⊥ + ǫ3B

(3)
⊥ + . . .

Ex = ǫE
(1)
x + ǫ2E

(2)
x + ǫ3E

(3)
x + . . . ,

E⊥ = ǫE
(1)
⊥ + ǫ2E

(2)
⊥ + ǫ3E

(3)
⊥ + . . .

(4.4)

We impose the boundary conditions at ξ → ∞,

ns → n0, ps → p0, vxs → 0, Bx → B0,

Ex → 0, v⊥s → 0, B⊥ → 0, E⊥ → 0.
(4.5)

It follows from Eq. (4.5) that all quantities with the upper indices 1, 2, and so on
tend to zero as ξ → ∞.

4.1. The zero-order approximation

Substituting the expansions given by Eq. (4.4) in Eqs. (4.2) and collecting terms of
the order of unity in Eqs. (4.2b)–(4.2d), (4.2h), and (4.2i) we easily obtain

n
(1)
+ = n

(1)
− = n(1), v

(1)
x+ = v

(1)
x− = v(1)x , (4.6a)

v
(1)
⊥+ = v

(1)
⊥− = v

(1)
⊥ , (4.6b)

E(1)
x = 0, E

(1)
⊥ = B0 ex × v

(1)
⊥ . (4.6c)

4.2. The first-order approximation

Collecting terms of the order of ǫ in Eqs. (2.4a) and (4.2), and using Eqs. (4.6)
yields

V
∂n(1)

∂ξ
= n0

∂v
(1)
x

∂ξ
, p(1)s = κp0

n(1)

n0
, (4.7a)

1

mn0

∂p
(1)
s

∂ξ
− V

∂v
(1)
x

∂ξ
=

qs
m

[
E(2)

x + ex ·
(
v
(1)
⊥ ×B

(1)
⊥
)]
, (4.7b)

V
∂v

(1)
⊥

∂ξ
= −qs

m

[
E

(2)
⊥ + ex ×

(
v(1)x B

(1)
⊥ −B(1)

x v
(1)
⊥ −B0v

(2)
⊥s

)]
, (4.7c)

n
(2)
+ = n

(2)
− = n(2), v

(2)
x+ = v

(2)
x− = v(2)x , (4.7d)

V
∂B

(1)
⊥

∂ξ
= ex × ∂E

(1)
⊥

∂ξ
,

∂B
(1)
x

∂ξ
= 0, (4.7e)

ex × ∂B
(1)
⊥

∂ξ
= qn0µ0

(
v
(2)
⊥+ − v

(2)
⊥−
)
. (4.7f)
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Equation (4.7b) represents two equations, one for s = +, and the other for s = −.
Adding and subtracting these equations we obtain

1

mn0

∂p
(1)
s

∂ξ
= V

∂v
(1)
x

∂ξ
, (4.8a)

E(2)
x = −ex ·

(
v
(1)
⊥ ×B

(1)
⊥
)
. (4.8b)

It follows from Eqs. (4.7a), (4.8a), the second equation in Eq. (4.7e), and the bound-
ary conditions Eq. (4.5) that

n(1) = 0, p(1)s = 0, v(1)x = 0, B(1)
x = 0. (4.9)

Equation (4.7c) also represents two equation, one for s = +, and the other for
s = −. Adding and subtracting these equations and using Eq. (4.9) we obtain

∂v
(1)
⊥

∂ξ
=

qB0

2mV
ex ×

(
v
(2)
⊥+ − v

(2)
⊥−
)
, (4.10a)

2E
(2)
⊥ = B0ex ×

(
v
(2)
⊥+ + v

(2)
⊥−
)
. (4.10b)

It follows from the first equation in Eq. (4.7e) and the last boundary condition in
Eq. (4.5) that

E
(1)
⊥ = −V ex ×B

(1)
⊥ . (4.11)

Using the second equation in Eq. (4.6c) and Eq. (4.11) yields

B0v
(1)
⊥ + VB

(1)
⊥ = 0. (4.12)

Substituting Eq. (4.12) in Eqs. (4.8b) and (4.10a) yields

E(2)
x = 0, v

(2)
⊥+ − v

(2)
⊥− =

2mV 2

qB2
0

ex × ∂B
(1)
⊥

∂ξ
. (4.13)

Equation (4.7f) and the second equation in Eq. (4.13) constitute a linear homo-

geneous system of equations for ∂B
(1)
⊥ /∂ξ and v

(2)
⊥+ − v

(2)
⊥−. It only has non-trivial

solutions when its determinant is zero. This condition determines that V is given
by Eq. (3.9).

4.3. The second-order approximation

Now we collect terms of the order of ǫ2 in Eqs. (2.2) and (4.2). As a result, we
obtain

p(2)s = κp0
n(2)

n0
, V

∂n(2)

∂ξ
= n0

∂v
(2)
x

∂ξ
+ n0∇⊥ · v(1)

⊥ , (4.14a)

a20
n0

∂n(2)

∂ξ
− V

∂v
(2)
x

∂ξ
=

qs
m

[
E

(3)
3 + ex ·

(
v
(1)
⊥ ×B

(2)
⊥ + v

(2)
⊥s ×B

(1)
⊥
)]
, (4.14b)

V
∂v

(2)
⊥s

∂ξ
= −qs

m

[
E

(3)
⊥ − ex ×

(
B0v

(3)
⊥s − v(2)x B

(1)
⊥ +B(2)

x v
(1)
⊥
)]
, (4.14c)

∂E
(2)
x

∂ξ
+∇⊥ ·E(1)

⊥ =
q

ε0

(
n
(3)
+ − n

(3)
−
)
, (4.14d)
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∂B
(2)
x

∂ξ
+∇⊥ ·B(1)

⊥ = 0, V
∂B

(2)
x

∂ξ
= ex · ∇⊥ ×E

(1)
⊥ , (4.14e)

V
∂B

(2)
⊥

∂ξ
= ex × ∂E

(2)
⊥

∂ξ
, (4.14f)

ex · ∇⊥ ×B
(1)
⊥ = qµ0n0

(
v
(3)
x+ − v

(3)
x−
)

(4.14g)

ex × ∂B
(2)
⊥

∂ξ
= qµ0n0

(
v
(3)
⊥+ − v

(3)
⊥−
)
. (4.14h)

Using Eq. (4.12) we transform the second equation in Eq. (4.14a) to

∂v
(2)
x

∂ξ
− V

n0

∂n(2)

∂ξ
=

V

B0
∇⊥ ·B(1)

⊥ . (4.15)

Equation (4.14b) represents two equations, one for s = +, and the other for s = −.
Adding these equations we obtain

a20
n0

∂n(2)

∂ξ
− V

∂v
(2)
x

∂ξ
=

q

2m
ex ·

(
v
(2)
⊥+ − v

(2)
⊥−
)
×B

(1)
⊥ . (4.16)

Using Eq. (4.13) we transform this equation to

a20
n0

∂n(2)

∂ξ
− V

∂v
(2)
x

∂ξ
= − V 2

2B2
0

∂|B(1)
⊥ |2
∂ξ

. (4.17)

We find from Eqs. (4.15) and (4.17)

∂n(2)

∂ξ
=

n0V
2

B0(V 2 − a20)

(
1

2B0

∂|B(1)
⊥ |2
∂ξ

−∇⊥ ·B(1)
⊥

)
, (4.18a)

∂v
(2)
x

∂ξ
=

V

V 2 − a20

(
V 2

2B2
0

∂|B(1)
⊥ |2
∂ξ

− a20
B0

∇⊥ ·B(1)
⊥

)
. (4.18b)

Using Eq. (4.11) and the first equation in Eq. (4.13) we obtain from Eq. (4.14d)

q
(
n
(3)
+ − n

(3)
−
)
= ε0V ex · ∇⊥ ×B

(1)
⊥ . (4.19)

Finally, Eq. (4.14c) represents two equations, one for s = +, and the other for
s = −. Subtracting the second equation from the first one yields

2E
(3)
⊥ − ex ×

[
B0

(
v
(3)
⊥+ + v

(3)
⊥−
)
− 2v(2)x B

(1)
⊥

+ 2B(2)
x v

(1)
⊥
]
= −mV

q

∂(v
(2)
⊥+ − v

(2)
⊥−)

∂ξ
. (4.20)

4.4. The third-order approximation

In the third-order approximation we collect the terms of the order of ǫ3 in Eqs. (4.2c),
(4.2g), and (4.2i) to obtain

∂v
(1)
⊥

∂τ
+ v(2)x

∂v
(1)
⊥

∂ξ
− V

∂v
(3)
⊥s

∂ξ
+
(
v
(1)
⊥ · ∇⊥

)
v
(1)
⊥ +

a20
n0

∇⊥n
(2) =

qs
m

[
E

(4)
⊥

+ ex ×
(
v(2)x B

(2)
⊥ + v(3)xs B

(1)
⊥ −B0v

(4)
⊥s −B(2)

x v
(2)
⊥s −B(3)

x v
(1)
⊥
)]
, (4.21a)
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∂E
(3)
⊥

∂ξ
= ex ×

(
∂B

(1)
⊥

∂τ
− V

∂B
(3)
⊥

∂ξ

)
+∇⊥E

(2)
x , (4.21b)

ex ×
(
∂B

(3)
⊥

∂ξ
−∇⊥B

(2)
x

)
= qµ0

[
n0

(
v
(4)
⊥+ − v

(4)
⊥−
)
+ n(2)

(
v
(2)
⊥+ − v

(2)
⊥−
)]
. (4.21c)

Equation (4.21a) represents two equations, one for s = +, and the other for s = −.
Adding these equations we obtain

∂v
(1)
⊥

∂τ
+ v(2)x

∂v
(1)
⊥

∂ξ
− V

2

∂(v
(3)
⊥+ + v

(3)
⊥−)

∂ξ
+

a20
n0

∇⊥n
(2) +

(
v
(1)
⊥ · ∇⊥

)
v
(1)
⊥

=
q

2m
ex ×

[
B

(1)
⊥
(
v
(3)
x+ − v

(3)
x−
)
−B(2)

x

(
v
(2)
⊥+ − v

(2)
⊥−
)
− B0

(
v
(4)
⊥+ − v

(4)
⊥−
)]
. (4.22)

Using Eqs. (4.7f), (4.11), (4.13), and (4.14g) we transform Eqs. (4.20) and (4.21b)–
(4.22) to

2ex × ∂E
(3)
⊥

∂ξ
+ B0

∂(v
(3)
⊥+ + v

(3)
⊥−)

∂ξ
=

mV

qn0µ0

∂3B
(1)
⊥

∂ξ3

+
2

B0

∂

∂ξ

[
B

(1)
⊥
(
V B(2)

x +B0v
(2)
x

)]
, (4.23a)

∂E
(3)
⊥

∂ξ
+ V ex × ∂B

(3)
⊥

∂ξ
= ex × ∂B

(1)
⊥

∂τ
, (4.23b)

∂B
(3)
⊥

∂ξ
+ qµ0n0ex ×

(
v
(4)
⊥+ − v

(4)
⊥−
)
=

n(2)

n0

∂B
(1)
⊥

∂ξ
+∇⊥B

(2)
x , (4.23c)

qB0

2m
ex ×

(
v
(4)
⊥+ − v

(4)
⊥−
)
− V

2

∂(v
(3)
⊥+ + v

(3)
⊥−)

∂ξ
=

V 2

B2
0

[
B(2)

x

∂B
(1)
⊥

∂ξ

+
(
ex ×B

(1)
⊥
)
ex · ∇⊥ ×B

(1)
⊥

]
+

V

B0

∂B
(1)
⊥

∂τ
+

V v
(2)
x

B0

∂B
(1)
⊥

∂ξ

− a20
n0

∇⊥n
(2) − V 2

B2
0

(
B

(1)
⊥ · ∇⊥

)
B

(1)
⊥ . (4.23d)

The system of Eqs. (4.23) is the system of linear inhomogeneous algebraic equations

for ∂E
(3)
⊥ /∂ξ, ∂B

(3)
⊥ /∂ξ, ∂(v

(3)
⊥+ + v

(3)
⊥−)/∂ξ, and v

(4)
⊥+ − v

(4)
⊥−. Using the expression

for V it is straightforward to show that the determinant of this system is zero. Then
the system of Eqs. (4.23) has non-trivial solution only if the compatibility condition
is satisfied. This condition is

∂B
(1)
⊥

∂τ
+ V ℓ2

∂3B
(1)
⊥

∂ξ3
+

1

2
B

(1)
⊥

(
∂v

(2)
x

∂ξ
+

V

B0

∂B
(2)
x

∂ξ

)
+

∂B
(1)
⊥

∂ξ

(
V

B0
B(2)

x

− V n(2)

2n0
+ v(2)x

)
− V

2
∇⊥B

(2)
x − a20B0

2n0V
∇⊥n

(2)

+
V

2B0

(
ex ×B

(1)
⊥
)
ex · ∇⊥ ×B

(1)
⊥ − V

2B0

(
B

(1)
⊥ · ∇⊥

)
B

(1)
⊥ = 0. (4.24)

The following identities can be verified by the direct calculation:
(
ex ×B

(1)
⊥
)
ex · ∇⊥ ×B

(1)
⊥ = −B

(1)
⊥ ×

(
∇⊥ ×B

(1)
⊥
)
, (4.25a)
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(
B

(1)
⊥ · ∇⊥

)
B

(1)
⊥ = 1

2∇⊥|B(1)
⊥ |2 −B

(1)
⊥ ×

(
∇⊥ ×B

(1)
⊥
)
. (4.25b)

Using Eqs. (4.14e), (4.18a), and (4.18b) we obtain

∂v
(2)
x

∂ξ
+

V

B0

∂B
(2)
x

∂ξ
=

V 3

B0(V 2 − a20)

(
1

2B0

∂|B(1)
⊥ |2
∂ξ

−∇⊥ ·B(1)
⊥

)
, (4.26a)

v(2)x − V n(2)

2n0
+

V

B0
B(2)

x =
V 3|B(1)

⊥ |2
4B2

0(V
2 − a20)

− V 3Φ

2B0(V 2 − a20)
, (4.26b)

where Φ is defined by

∂Φ

∂ξ
= ∇⊥ ·B(1)

⊥ , Φ → 0 as ξ → ∞. (4.27)

Using Eqs. (4.25)–(4.27) we trasform Eq. (4.24) to

∂B
(1)
⊥

∂τ
+ α

∂

∂ξ

[
B

(1)
⊥
(
|B(1)

⊥ |2 − 2B0Φ
)]

− αB0∇⊥
(
|B(1)

⊥ |2 − 2B0Φ
)
+ V ℓ2

∂3B
(1)
⊥

∂ξ3
= 0, (4.28)

where

α =
V 3

4B2
0(V

2 − a20)
. (4.29)

Introducing the notation

b = ǫB
(1)
⊥ , ∇̃⊥ =

(
0,

∂

∂y
,
∂

∂z

)
, ϕ = ǫ2Φ, (4.30)

returning to the original independent variables, and dropping the tilde we rewrite
Eqs. (4.27) and (4.28) as

∂ϕ

∂x
= ∇⊥ · b, ϕ → 0 as x → ∞, (4.31)

∂b

∂t
+ V

∂b

∂x
+ α

∂

∂x

[
b(b2 − 2B0ϕ)

]
− αB0∇⊥(b

2 − 2B0ϕ) + V ℓ2
∂3b

∂x3
= 0. (4.32)

This equation only differs from the 3D DNLS equation describing quasi-parallel
propagation of MHD waves in an ion-electron plasma derived by Mjølhus andWyller
(1986) and Ruderman (1987) by the last term describing the dispersion. This dif-
ference is related to the difference in the dispersion relations for ion-electron and
electron-positron plasmas as was pointed out in Sect. 3.
When b is independent of y and z Eq. (4.32) reduces to the vector mKdV equa-

tion in a complete agreement with the result obtained by Verheest (1996) and
Lakhina and Verheest (1997). In this equation the coefficient at the nonlinear term
is α. Khanna and Rajaram (1982) derived the DNLS equation in a collisionless
electron-ion plasma with anisotropic pressure. They used the Chew, Goldberger
and Low equations (1956) modified by including the account of Hall current in the
induction equations and terms related to the finite Larmor radius in the momentum
equation (Yajima 1966). While the general form of the equation remains the same,
the expressions for its coefficients are quite different. In particular, while α < 0
when a0 < V , in the case of plasma with anisotropic pressure the coefficient at
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the nonlinear term is negative only in a relatively narrow interval of parameters.
It is possible that the account of plasma pressure anisotropy can cause a similar
modification of the coefficient at the nonlinear term in the vector mKdV equation.

We emphasise that the system of Eqs. (4.31) and (4.32) was derived under the
assumption that the perturbations decay as |x| → ∞. A natural question that arises
is if this system of equations also describes perturbations periodic with respect to
x. One-dimensional nonlinear sound waves are described by a very simple equation
sometimes called the inviscid Burgers’ equation (e.g. Whitham 1974, Rudenko and
Soluyan 1977). This equation also describes magnetosonic waves propagating at not
very small angles with respect to the equilibrium magnetic field. It is valid both
for perturbations decaying at infinity as well as for periodic perturbations. The
same is true for its multi-dimensional generalisation, the Khokhlov-Zabolotskaya
equation (Zabolotskaya and Khokhlov 1969). The generalisations of the inviscid
Burgers’ and Khokhlov-Zabolotskaya equation taking into account either dissipa-
tion or dispersion, which are the Burgers’, KdV, and KP equation, also describe
both perturbations decaying at infinity as well as spatially periodic perturbations.
The general and very important property of all these equations is that the nonlin-
earity that they describe is quadratic.

In contrast, magnetohydrodynamic waves propagating either along or at small
angles with respect to the equilibrium magnetic field are characterised by cubic non-
linearity. In the one-dimensional case they are described in the framework of ideal
MHD by the Cohen-Kulsrud equation (Cohen and Kulsrud 1974). Although this
equation describing periodic waves is slightly different from that describing waves
decaying at infinity, the former equation is easily reduced to the latter by a simple
change of independent variables. The situation is the same with the extension of
this equation to dissipative media, the so-called Cohen-Kulsrud-Burgers’ equation,
and to dispersive media, which is the DNLS equation. Hence, we conclude that in
the one-dimensional case both the periodic waves as well as the waves decaying at
infinity are described by the same equation.

The situation is drastically different in the multi-dimensional case. Ruderman
(1986) studied the quasi-longitudinal propagation of MHD waves in the multi-
dimensional case. In this case the mean over the period of the transverse magnetic
field magnitude squared cannot be eliminated from the equation describing the
evolution of the magnetic field perturbation because, in general, this mean varies
in the transverse direction. As a result, the equation describing periodic perturba-
tions differs substantially from that describing perturbations decaying at infinity.
Passot and Sulem (1993) investigated a similar problem, but using the Hall MHD.
As a result they obtained the analog of the 3D DNLS equation valid for periodic
perturbations. If we neglect the last term in the equation derived by Passot and
Sulem (1993) (see their equation (2.33)), then their equation can be reduced to the
equation similar to one derived by Ruderman (1986). However, this reduction is
not straightforward. The problem is that Ruderman (1986) considered the spatial
variation of waves. He assumed that they are driven at x = 0 and propagate in the
positive x-direction. Passot and Sulem (1993) considered the temporal evolution of
the waves. However, the equation derived by them with the term describing disper-
sion dropped looks very similar to the equation derived by Ruderman (1986). On
the basis of this similarity we can make a conjecture that we can obtain an ana-
log of Eq. (4.32) by changing the term describing dispersion in equation (2.33) in
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the paper by Passot and Sulem (1993). However, to prove this conjecture a formal
derivation is needed.

5. Obliquely propagating solitary waves

We look for solitary waves propagating at a small angle with respect to the equi-
librium magnetic field. In accordance with this we look for solutions to Eq. (4.32)
that depends of X = x+kyy+kzz− (C+V )t, where C is a constant, and |ky| ≪ 1
and |kz| ≪ 1. It follows from Eq. (4.31) that

ϕ = k⊥ · b, k⊥ = (0, ky, kz). (5.1)

Using this result and the condition that b → 0 as X → ∞ we obtain from Eq. (4.32)

V ℓ2b′′ = Cb− α(b2 − 2B0k⊥ · b)(b−B0k⊥), (5.2)

where the prime indicates the derivative with respect to X. We can write down this
equation in the Hamiltonian form,

g′y = −∂H
∂by

, g′z = −∂H
∂bz

, h′
y =

∂H
∂gy

, h′
z =

∂H
∂gz

, (5.3)

where b = (by, bz), gy = b′y, gz = b′z, and the Hamiltonian H is given by

H =
1

2

(
g2y + g2z

)
+

1

4V ℓ2
[
α(b2 − 2B0k⊥ · b)2 − 2Cb2

]
. (5.4)

Below we only consider solutions to the system of Eq. (5.3) describing planar
solitary waves. In these solutions b ‖k⊥. In accordance with this we write

b =
k⊥
k⊥

h. (5.5)

Since H is independent of X it follows that the energy equal to H is conserved.
Since b → 0 and b′ → 0 as X → ∞, the energy conservation law is H = 0. Then
in the case of plane solitary waves we obtain

2V ℓ2h′2 = h2
[
2C − α(h− 2B0k⊥)

2
]
. (5.6)

In the one-dimensional planar case Eq. (4.32) reduces to the modified Korteweg-de
Vries equation, which is completely integrable. This implies that planar solitary
waves are solitons (recall that solitons are solitary waves that are solutions of com-
pletely integrable nonlinear equations). The integral curves of Eq. (5.4) correspond-
ing to solitons must start and end at h = 0, which is a critical point in the phase
plane. In addition, h must take either maximum or minimum value, which implies
that there should be the second critical point where the right-hand side of Eq. (5.4)
is zero. The necessary condition of the existence of a solution to Eq. (5.6) describing
a soliton is that its right-hand side must be non-negative when |h| varies from zero
to its maximum, which is defined by the condition that the right-hand side is zero.
When α > 0 this condition reduces to

C > 2αB2
0k

2
⊥, α > 0, (5.7)

while when α < 0 it reduces to

2αB2
0k

2
⊥ < C < 0, α < 0. (5.8)

For α > 0 there are two solitons. In one of them h > 0 and we call it the bright
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soliton, while in the other h < 0 and we call it the dark soliton. These solitons are
described by

h =
±2(C − 2αB2

0k
2
⊥)√

2αC cosh(X/L+Θ)∓ 2αB0k⊥
, (5.9)

where the upper and lower signs correspond to the bright and dark soliton, re-
spectively. When α < 0 there is only one soliton, so we do not use the notion
“bright” or “dark” in this case. It is described by Eq. (5.9) with the upper sign.
The characteristic soliton thickness is given by

L = ℓ

√
V

C − 2αB2
0k

2
⊥
. (5.10)

Equation (5.10) is valid both for α > 0 as well as for α < 0. The phase shift Θ is
defined by

tanhΘ =





√
1− 2αB2

0k
2
⊥

C
, α > 0,

√
1− C

2αB2
0k

2
⊥
, α < 0.

(5.11)

The soliton amplitude is given by

A = max |h| =
∣∣∣∣

√
2C

α
± 2B0k⊥

∣∣∣∣, (5.12)

where for α > 0 the upper and lower signs correspond to the bright and dark soliton,
respectively. For α < 0 the bright soliton amplitude is given by Eq. (5.12) with the
lower sign.
In this section we only obtained the solutions describing planar solitons. Al-

though, at present, there is no rigorous study of the existence of non-planar solitary
waves, we expect that there should be a whole three-parametric family of non-planar
solitary waves. The two parameters are the same as in the planar solitons, that are
C and k⊥. The third parameter is the angle between the plane defined by k⊥ and
ex and the integral curve near the critical point corresponding to |X| → ∞.

Verheest (1996) studied solitary waves of the vector mKdV equation with α > 0.
He showed that only a planar soliton exists. Below we will call this soliton the
standard mKdV soliton. However, Verheest considered solitary waves propagating
exactly along the equilibrium magnetic field. His proof is not valid in the case
of oblique propagation. It is straightforward to verify that both bright and dark
solitons tend to the standard mKdV soliton as k⊥ → 0.
Since the vector mKdV equation has some similarities with the DNLS equation it

is expedient to compare solitons of the two equation. The DNLS equation possesses
not only solitons that only depend on the linear combination of the spatial variable
and time, but also solitons in the form of an envelope with the magnetic field
vector rotating inside this envelope with constant angular velocity. Below we only
consider the first type of solitons. There are no solitons of this type propagating
exactly along the equilibrium magnetic field. All of them propagate at some angle
with respect to this field. And, in addition, all these solutions are non-planar. The
family of solitons is three-parametric (Ruderman 1987). The two parameters are
k⊥ determining the propagation direction, the propagation velocity C. The third
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parameter, ϑ, determines the type of soliton. When 0 < ϑ < π/2 the component of
the magnetic field orthogonal to the equilibrium magnetic field makes one full turn
about the equilibrium magnetic field direction in the positive direction when α > 0
and in the negative direction when α < 0. In accordance with the nomenclature
introduced by Ruderman this soliton is called the compression Alfvén soliton. When
π/2 < ϑ < 2π/3 the component of the magnetic field orthogonal to the equilibrium
magnetic field makes one full turn about the equilibrium magnetic field direction
in the negative direction when α > 0 and in the positive direction when α < 0. In
accordance with the nomenclature introduced by Ruderman this soliton is called
the rarefaction Alfvén soliton. Finally, when 2π/3 < ϑ < π the component of the
magnetic field orthogonal to the equilibrium magnetic field rotates by some angle
and then returns back to the initial position. This soliton is called magnetosonic,
fast when α > 0 and slow when α < 0.
We see that the properties of solitons of the DNLS equation are very much differ-

ent from those of solitons of the vector mKdV equation. Ruderman (1987) showed
that compression Alfvén solitons are stable with respect to transverse perturbations,
while rarefaction Alfvén solitons and magnetosonic solitons are unstable.

6. Soliton stability

In this section we study the stability of solitons described in the previous section
with respect to transverse perturbations. This study is similar to those carried out
for the stability of the KdV solitons by Kadomtsev and Petviashvili (1970) and for
the stability of the DNLS solitons by Ruderman (1987). We write

b = bs + b̃, ϕ = k⊥ · bs + ϕ̃, (6.1)

where bs corresponds to the soliton defined by Eqs. (5.5) and (5.9). It describes
either the bright or dark soliton. We substitute Eq. (6.1) in Eq. (4.32) and then
linearise the obtained equation with respect to b̃ and ϕ̃. This gives

∂b̃

∂t
+ V

∂b̃

∂x
+ α

∂

∂x

[
b̃(h2 − 2B0k⊥h) +

2h

k⊥
k⊥

(
h

k⊥
k⊥ · b̃−B0ϕ̃

)]

− 2αB0∇⊥

(
h

k⊥
k⊥ · b̃−B0ϕ̃

)
+ V ℓ2

∂3b̃

∂x3
= 0. (6.2)

Equation (4.31) is transformed to

∂ϕ̃

∂x
= ∇⊥ · b̃, ϕ̃ → 0 as x → ∞. (6.3)

Equation (4.32) was derived under the assumption that the ratio of characteristic
spatial scale in the y and z-direction to that in the x-direction is ǫ−1. Now we assume
that this ratio is even larger and is equal to (ǫδ)−1, where δ ≪ 1. We also study
the stability with respect to normal modes and take b̃ ∝ exp(λt+ iδKyy+ iδKzz).
Finally, we use the variable X instead of x. As a result, we transform Eqs. (6.2)
and (6.3) to

d

dX
L(b̃) = −λb̃+ 2αB0

{
k⊥

[
d

dX

(
h

k⊥
(ϕ̃− k⊥ · b̃)

)

− iδB0(K · b̃)
]
+ iδK

(
h

k⊥
(k⊥ · b̃)−B0ϕ̃

)}
, (6.4)
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dϕ̃

dX
= iδK · b̃+ k⊥ · db̃

dX
, (6.5)

where K = (0,Ky,Kz), and

L(b̃) = b̃
[
αh(h− 2k⊥B0)− C] +

2α

k2⊥
k⊥(k⊥ · b̃)(h− k⊥B0)

2 + V ℓ2
d2b̃

dX2
. (6.6)

We look for the solution to Eqs. (6.4) and (6.5) in the form of expansions

b̃ = b0+ δb1+ δ2b2+ . . . , ϕ̃ = ϕ0+ δϕ1+ δ2ϕ2+ . . . , λ = δλ1+ δ2λ2+ . . . (6.7)

6.1. The zero-order approximation

Substituting Eq. (6.7) in Eqs. (6.4) and (6.5) and using the condition that b̃ → 0
as X → −∞ we obtain in the zero-order approximation

L(b0) = 0, ϕ0 = k⊥ · b0. (6.8)

Differentiating Eq. (5.2) and using the second equation in Eq. (6.8) we obtain that

b0 = ℓ
k⊥
k⊥

dh

dX
, ϕ0 = ℓ k⊥

dh

dX
. (6.9)

The multiplier ℓ is introduced in the expression for b0 to have the same dimension
of the left and right sides. We obtain the general solution to the first equation in
Eq. (6.8) multiplying this expression by an arbitrary constant. Since we solve a
linear problem we can take this constant equal to unity without loss of generality.

6.2. The first-order approximation

Now we collect the terms of the order of δ in Eq. (6.4) and (6.5) to obtain

d

dX
L(b1) = −λ1b0 + 2αB0

{
k⊥

[
d

dX

(
h

k⊥
(ϕ1 − k⊥ · b1)

)

− iB0(K · b0)

]
+ iK

(
h

k⊥
(k⊥ · b0)−B0ϕ0

)}
, (6.10a)

dϕ1

dX
= iK · b0 + k⊥ · db1

dX
. (6.10b)

Using Eq. (6.9) we transform Eq. (6.10b) to

ϕ1 − k⊥ · b1 =
iℓh

k⊥
(k⊥ ·K). (6.11)

With the aid of Eqs. (6.9) and (6.11) we transform Eq. (6.10a) to

L(b1) = −ℓλ1h
k⊥
k⊥

+ iℓαB0h

[
2k⊥
k2⊥

(h− k⊥B0)(k⊥ ·K) +K(h− 2k⊥B0)

]
. (6.12)

Differentiating Eq. (5.2) with respect to C and k⊥ we obtain

L
(
k⊥
k⊥

∂h

∂C

)
=

k⊥
k⊥

h, (6.13a)

L
((

K · ∂

∂k⊥

)
k⊥
k⊥

h

)
= αB0h

[
2k⊥
k2⊥

(h−B0k⊥)(k⊥ ·K)+K(h−2B0k⊥)

]
. (6.13b)
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It follows from Eqs. (6.13a) and (6.13b) that the solution to Eq. (6.12) is given by

b1 = −ℓλ1
k⊥
k⊥

∂h

∂C
+ iℓ

(
K · ∂

∂k⊥

)
k⊥
k⊥

h. (6.14)

6.3. The second-order approximation

Collecting the terms of the order of δ2 in Eqs. (6.4) and (6.5), and using Eqs. (6.9)
and (6.11), yields

d

dX
L(b2) = −λ1b1 − λ2ℓ

k⊥
k⊥

dh

dX
+ 2αB0

{
k⊥

[
d

dX

(
h

k⊥
(ϕ2 − k⊥ · b2)

)

− iB0(K · b1)

]
+

K

k⊥
[i(h−B0k⊥)(k⊥ · b1) + ℓB0h(k⊥ ·K)]

}
, (6.15a)

dϕ2

dX
= iK · b1 + k⊥ · db2

dX
. (6.15b)

The homogeneous counterpart of Eq. (6.15a) has a non-trivial solution

b2 = ℓ
k⊥
k⊥

dh

dX
.

This implies that Eq. (6.15a) has solutions only if its right-hand side satisfies the
compatibility condition. To obtain this condition we take the scalar product of
Eq. (6.15a) with (k⊥/k⊥)h and integrate with respect to X. Using the integration
by parts we obtain that the left-hand side is zero, which implies that the right-hand
side must be equal to zero. Then, using Eq. (6.15b) and the integration by parts to
transform the term containing ϕ2 we obtain the compatibility condition

λ1

k⊥

∫ ∞

−∞
h(k⊥ · b1) dX = αB0

∫ ∞

−∞
h

[
i(h− 2k⊥B0)(K · b1)

+
2i

k2⊥
(k⊥ ·K)(h − k⊥B0)(k⊥ · b1) +

2ℓ

k2⊥
B0(k⊥ ·K)2h

]
dX. (6.16)

Now we introduce the notation

I1 =

∫ ∞

−∞
h2 dX, I2 =

∫ ∞

−∞
h3 dX. (6.17)

Then, using Eq. (6.14) and the identity

K · ∂

∂k⊥

[
k⊥ ·K
k⊥

(I2 − 2k⊥B0I1)

]
= (k⊥ ·K)

(
1

k⊥
K · ∂I2

∂k⊥

− 2B0K · ∂I1
∂k⊥

)
− 2B0K

2I1 +

(
K2 − (k⊥ ·K)2

k2⊥

)
I2
k⊥

, (6.18)

we transform Eq. (6.16) to

λ2
1

∂I1
∂C

− iλ1

[
K · ∂I1

∂k⊥
+

2α

k⊥
B0(k⊥ ·K)

(
∂I2
∂C

− 2k⊥B0
∂I1
∂C

)]

− 2αB0K · ∂

∂k⊥

[
k⊥ ·K
k⊥

(I2 − 2k⊥B0I1)

]
= 0. (6.19)

When the discriminant of quadratic equation Eq. (6.19) is positive it has two com-
plex roots, and one of these roots has the positive real part. This implies that in
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this case the soliton is unstable. On the other hand, when the discriminant is neg-
ative, Eq. (6.17) has two purely imaginary roots and the soliton is neutrally stable.
Hence, the instability condition is written as

8αB0
∂I1
∂C

K · ∂

∂k⊥

[
k⊥ ·K
k⊥

(I2 − 2k⊥B0I1)

]

>

[
K · ∂I1

∂k⊥
+

2α

k⊥
B0(k⊥ ·K)

(
∂I2
∂C

− 2k⊥B0
∂I1
∂C

)]2
. (6.20)

Now we consider two cases, one with α > 0, and the other with α < 0. First we
assume that α > 0. It is shown in Appendix A that I1 and I2 are given by

I1 = 4ℓB0k⊥

√
2V

α
F1(σ), I2 = 4ℓB2

0k
2
⊥

√
2V

α
F2(σ), (6.21)

where σ = C(2αB2
0k

2
⊥)

−1 and

F1(σ) =
√
σ − 1± π

2
+ arctan

1√
σ − 1

, (6.22a)

F2(σ) = (σ + 2)

(
± π

2
+ arctan

1√
σ − 1

)
+ 3

√
σ − 1. (6.22b)

Using Eqs. (6.21) and (6.22) we transform Eq. (6.20) to

D± ≡
[
k2⊥K

2 − (k⊥ ·K)2
]
Q±(σ)− (k⊥ ·K)2S±(σ) > 0, (6.23)

where

Q±(σ) = σ

(
± π

2
+ arctan

1√
σ − 1

)
+

√
σ − 1, (6.24a)

S±(σ) =
2σ√
σ − 1

(
± π

2
+ arctan

1√
σ − 1

)2

+ 2
√
σ − 1. (6.24b)

Obviously Q+(σ) > 0 meaning that D+ > 0 when k−1
⊥ K−1|k⊥ · K| is sufficiently

small. This implies that the bright soliton is unstable.
Now we note that Q−(0) = 0 and

dQ−
dσ

= arctan
1√
σ − 1

− π

2
< 0, (6.25)

which implies that Q−(σ) < 0. Since S−(σ) > 0 it follows that D− < 0 implying
that the dark soliton is stable.
Next we proceed to the case where α < 0. It is shown in Appendix A that now

I1 and I2 are given by

I1 = 4ℓB0k⊥

√
2V

|α| G1(σ), I2 = 4ℓB2
0k

2
⊥

√
2V

|α| G2(σ), (6.26)

where

G1(σ) =
1

2
ln

1 +
√
1− σ

1−
√
1− σ

−
√
1− σ, (6.27a)

G2(σ) =

(
1 +

σ

2

)
ln

1 +
√
1− σ

1−
√
1− σ

− 3
√
1− σ. (6.27b)
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Using Eqs. (6.26) and (6.27) we transform Eq. (6.21) to

D ≡
[
k2⊥K

2 − (k⊥ ·K)2
]
Q(σ)− (k⊥ ·K)2S(σ) > 0, (6.28)

where

Q(σ) = σ ln
1−

√
1− σ

1 +
√
1 + σ

+ 2
√
1− σ, (6.29a)

S(σ) =

(
ln

1−
√
1− σ

1 +
√
1 + σ

)2

+ 4
√
1− σ. (6.29b)

Since Q(0) = 0 and

dQ

dσ
= ln

1−
√
1− σ

1 +
√
1 + σ

< 0, (6.30)

it follows thatQ(σ) > 0. This implies thatD > 0 when k−1
⊥ K−1|k⊥·K| is sufficiently

small. Consequently, the soliton existing when α < 0 is unstable.
As we have already point out in Sect. 5, both the bright and dark soliton become

the standard mKdV soliton propagating exactly along the equilibrium magnetic
field when κ⊥ → 0. This soliton only exists when α > 0. It is obvious that the
previous stability analysis is not valid for κ⊥ = 0. Hence, the stability of solitons
propagating along the equilibrium magnetic field must be studied separately. How-
ever, while the expression describing the standard mKdV soliton is simpler than
those describing the obliquely propagating soliton, the study of stability of this soli-
ton with respect to transverse perturbations turns out to be much more involved.
The complexity of this study is related to the fact that, while obliquely propagating
solitons are two-parametric, the standard soliton is only one-parametric. As a re-
sult, while we can obtain the relation similar to Eq. (6.13a) for the standard mKdV
soliton, we cannot obtain an analog of Eq. (6.13b). Hence, we cannot get a relatively
simple expression for b1 similar to one given by Eq. (6.14). To calculate b1 we need
to solve a second order ordinary differential equation with variable coefficients. At
present it is even not clear that the analytical expression for b1 can be obtained.
Quite possible that this problem can be only solved numerically.

7. Summary and conclusions.

In this article we studied the propagation of nonlinear waves along the equilib-
rium magnetic field in a non-relativistic electron-positron plasma. We assumed that
the waves can weakly depend on the spatial coordinates orthogonal to the equi-
librium magnetic field. Using the reductive perturbation method we derived the
three-dimensional generalisation of the vector modified Kortewed-de Vries (mKdV)
equation. We call this equation the 3D vector mKdV equation.
We obtained solutions to the 3D vector mKdV equation in the form of one-

dimensional planar solitons propagating at a small angle with respect to the equi-
librium magnetic field. The propagation direction is defined by the vector ex +k⊥,
where ex is the unit vector in the direction of the equilibrium magnetic field,
k⊥ ⊥ ex, and k⊥ ≪ 1. In planar solitons the magnetic field perturbation is ev-
erywhere in the direction of k⊥. We found that in the case where the Alfvén speed
V is larger than the sound speed a0 there are two kinds of solitons, bright and dark.
In the bright solitons the magnetic field perturbation is parallel to k⊥, and in the
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dark solitons it is antiparallel to k⊥. In the case where V < a0 there is only one
kind of solitons with the magnetic field parallel to k⊥.

We used the 3D vector mKdV equation to study the soliton stability with respect
to transverse perturbations similar to that carried out by Kadomtsev and Petvi-
ashvili (1970) for solitons described by the KdV equation. We found that only the
dark solitons are stable, while both the bright solitons in the case where V > a0 as
well as solitons in the case where V < a0 are unstable.

Appendix A. Calculation of I1 and I2

In this appendix we calculate I1 and I2. We start from the case where α > 0. Using
Eq. (5.9) we obtain

I1 =

∫ ∞

−∞

4(C − 2αB2
0k

2
⊥)

2 dX

[
√
2αC cosh(X/L+Θ)± 2αB0k⊥]2

. (A 1)

Using the variable substitution

u = exp(X/L+Θ)±B0k⊥
√
2α/C (A 2)

we transform Eq. (A 1) to

I1 =
8L(C − 2αB2

0k
2
⊥)

2

αC

(∫ ∞

±B0k⊥(2α/C)1/2

u du

(u2 + 1− 2αB2
0k

2
⊥/C)2

∓ B0k⊥

√
2α

C

∫ ∞

±B0k⊥(2α/C)1/2

du

(u2 + 1− 2αB2
0k

2
⊥/C)2

)
. (A 3)

We easily obtain
∫ ∞

±B0k⊥(2α/C)1/2

u du

(u2 + 1− 2αB2
0k

2
⊥/C)2

=
1

2
. (A 4)

Next we calculate the second integral in Eq. (A 3). Using the variable substitution

w = u

√
C

C − 2αB2
0k

2
⊥

(A 5)

we transform it to
∫ ∞

±B0k⊥(2α/C)1/2

du

(u2 + 1− 2αB2
0k

2
⊥/C)2

=

(
C

C − 2αB2
0k

2
⊥

)3/2 ∫ ∞

±B0k⊥

√

C

C−2αB2
0
k2

⊥

dw

(1 + w2)2
. (A 6)

Then the integration by parts yields
∫

dw

(1 + w2)2
=

∫
dw

1 + w2
−
∫

w2 dw

(1 + w2)2
=

w

2(1 + w2)

− 1

2

∫
dw

1 + w2
=

w

2(1 + w2)
+

1

2
arctanw, (A 7)
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where we dropped the arbitrary constant. Using Eqs. (A 4), (A 6), and (A 7) we
obtain from Eq. (A 3)

I1 =
4L(C − 2αB2

0k
2
⊥)

2

α

[
1∓

√
2αB2

0k
2
⊥

C − 2αB2
0k

2
⊥

(
π

2
∓ arctan

√
2αB2

0k
2
⊥

C − 2αB2
0k

2
⊥

)]
.

(A 8)
Substituting C = 2ασB2

0k
2
⊥ in this expression we eventually obtain the first expres-

sion in Eq. (6.21).
Now we proceed to the calculation of I2. Using Eq. (5.9) we obtain

I2 = ±
∫ ∞

−∞

8(C − 2αB2
0k

2
⊥)

3 dX

[
√
2αC cosh(X/L+Θ)∓ 2αb0k⊥]3

. (A 9)

Using the variable substitution defined by Eq. (A 2) we transform Eq. (A 9) to

I2 = ±64L(C − 2αB2
0k

2
⊥)

3

(2αC)3/2

∫ ∞

±B0k⊥(2α/C)1/2

u2 ∓ 2uB0k⊥
√
2α/C + 2αB2

0k
2
⊥/C

(u2 + 1− 2αB2
0k

2
⊥/C)3

du.

(A 10)
We easily obtain

∫ ∞

±B0k⊥(2α/C)1/2

u du

(u2 + 1− 2αB2
0k

2
⊥/C)3

=
1

4
. (A 11)

Using the variable substitution defined by Eq. (A 5) yields

∫ ∞

±B0k⊥(2α/C)1/2

u2 + 2αB2
0k

2
⊥/C

(u2 + 1− 2αB2
0k

2
⊥/C)3

du =

(
C

C − 2αB2
0k

2
⊥

)3/2

×
∫ ∞

±B0k⊥

√

C

C−2αB2
0
k2

⊥

w2 + 2αB2
0k

2
⊥(C − 2αB2

0k
2
⊥)

−1

(1 + w2)3
dw. (A 12)

Using the integration by parts and Eq. (A 7) yields
∫

w2 + 2αB2
0k

2
⊥(C − 2αB2

0k
2
⊥)

−1

(1 + w2)3
dw =

2αB2
0k

2
⊥

C − 2αB2
0k

2
⊥

∫
dw

(1 + w2)2

− C − 4αB2
0k

2
⊥

C − 2αB2
0k

2
⊥

∫
w2 dw

(1 + w2)3
= − C − 4αB2

0k
2
⊥

4(C − 2αB2
0k

2
⊥)

w

(1 + w2)2

+
C + 4αB2

0k
2
⊥

4(C − 2αB2
0k

2
⊥)

∫
dw

(1 + w2)2
=

C + 4αB2
0k

2
⊥

8(C − 2αB2
0k

2
⊥)

arctanw

+
w[(C + 4αB2

0k
2
⊥)w

2 − C + 12αB2
0k

2
⊥]

8(C − 2αB2
0k

2
⊥)(1 + w2)2

. (A 13)

With the aid of this result and Eqs. (A 11)–(A 13) we obtain from Eq. (A 10)

I2 =
2ℓ

α

√
2V

α

[
(C + 4αB2

0k
2
⊥)

(
± π

2
− arctan

√
2αB2

0k
2
⊥

C − 2αB2
0k

2
⊥

)

− 3
√
2αB2

0k
2
⊥(C − 2αB2

0k
2
⊥)

]
. (A 14)

Substituting C = 2ασB2
0k

2
⊥ in this expression we arrive at the second expression

in Eq. (6.21).
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Now we consider the case where α < 0. I1 is given by Eq. (A 1) with the upper
sign. Using the variable substitution

u = eX/L +
1√
σ

(A 15)

we transform the expression for I1 to

I1 = −8ς3
√
−V C

α

∫ ∞

1/
√
σ

u− 1/
√
σ

(u2 − ς2)2
du, (A 16)

where ς =
√

1/σ − 1. Using the expansion

u−√
σ

(u2 − ς2)2
=

1

4ς3
√
σ

(
1

u− ς
− 1

u+ ς

)
+

(
1

4ς
− 1

4ς3
√
σ

)
1

(u− ς)2

−
(

1

4ς
+

1

4ς3
√
σ

)
1

(u+ ς)2
(A 17)

we obtain
∫ ∞

1/
√
σ

u−√
σ

(u2 − ς2)2
du =

1

4ς3
√
σ
ln

1 +
√
1− σ

1−
√
1− σ

− 1

2ς2
. (A 18)

Using Eqs. (A 11), (A 16), and (A 18), and the expression for C and ς in terms of σ
we obtain the first expression in Eq. (6.26).

Now we proceed to calculating I2. I2 is given by Eq. (A 9) with the upper sign.
Using the variable substitution defined by Eq. (A 15) we transform it to

I2 =
16ℓCς5

α

√
2V

|α|

∫ ∞

1/
√
σ

(u− 1/
√
σ)2

(u2 − ς2)3
du. (A 19)

Using the expansion

(u− 1/
√
σ)2

(u2 − ς2)3
=

(
1− 3

ς3
√
σ

)(
1

u+ ς
− 1

u− ς

)
+

1

16ς2

(
1− 2

ς
√
σ

− 3

ς2

)
1

(u+ ς)2
+

1

16ς2

(
1 +

2

ς
√
σ
− 3

ς2

)
1

(u− ς)2

− 1

8ς

(
1 +

1

ς
√
σ

)2
1

(u+ ς)3
+

1

8ς

(
1− 1

ς
√
σ

)2
1

(u− ς)3
(A 20)

we obtain
∫ ∞

1/
√
σ

(u− 1/
√
σ)2

(u2 − ς2)3
du =

1

16ς3

(
1− 3

σς2

)
ln

1− ς
√
σ

1 + ς
√
σ

+

√
σ

16ς2

(
1− 2

ς
√
σ
− 3

ς2

)
1

1 + ς
√
σ
+

√
σ

16ς2

(
1 +

2

ς
√
σ
− 3

ς2

)
1

1− ς
√
σ

− σ

16ς

(
1 +

1

ς
√
σ

)2
1

(1 + ς
√
σ)2

+
σ

16ς

(
1− 1

ς
√
σ

)2
1

(1− ς
√
σ)2

. (A 21)

Using Eqs. (A 19) and (A 21), and the expression for C and ς in terms of σ we
obtain the second expression in Eq. (6.26).
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