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ABSTRACT

The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron
star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient
quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches
in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires
the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we
model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which
we show is a conservative approach to the problem. We use empirical models to make inferences about the potential
signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques
and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives.
We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516
observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of
the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However,
whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise
is at this point a matter of interpretation.

Key words: methods: data analysis – methods: statistical – pulsars: individual (SGR 0501+4516) – stars: magnetic
field – stars: neutron – X-rays: bursts

Online-only material: color figures

1. INTRODUCTION

Neutron stars present the best test cases for extreme physics
in the high-density regime. A long-standing problem in neutron
star physics is our lack of understanding of the neutron star in-
terior, in particular, the dense matter equation of state (Lattimer
& Prakash 2007). The conditions in both a neutron star’s core
and crust, the composition of its matter and the topology and
strength of the magnetic fields remain mysteries that are very
difficult to tackle with most conventional methods. The detec-
tion of quasi-periodic oscillations (QPOs) in the tails of giant
flares from soft gamma repeaters (SGRs) has opened up the pos-
sibility of studying neutron star interiors using asteroseismology
(see Watts 2012 for a review).

SGRs exhibit regular bursts in the hard X-rays and soft
γ -rays (�100 keV), and very rare giant flares with extremely
high isotropic equivalent radiated energy of up to 1046 erg (see,
e.g., Palmer et al. 2005). Observations of persistent soft X-ray
counterparts showing coherent pulsations with large periods of
5–8 s (Kouveliotou et al. 1998, 1999), and the detection of the
same periodicities in the tails of the giant flares (Hurley et al.
1999; Palmer et al. 2005), suggested that SGRs are neutron stars.
Their behavior is understood within the context of the magnetar
model (Thompson & Duncan 1995): in this paradigm the SGRs
are isolated neutron stars with exceptionally strong external
dipole magnetic fields, largely above the quantum critical limit
Bc = 2πm2

ec
3/he = 4.4 × 1013 G (where me is the mass of

the electron, c the speed of light, h Planck’s constant, and e
the absolute value of the electron charge), with internal fields

that may be as high as7 1016 G. Giant flares are powered by
a catastrophic reordering of the magnetic field (Woods et al.
2001). Since this field is coupled to the solid crust, Duncan
(1998) suggested that such large-scale reconfiguration might
rupture the crust, creating global seismic vibrations that would
be visible as periodic modulations of the X-ray and γ -ray
flux. This idea was confirmed by the detection of QPOs in
the expected range of frequencies (∼10–1000 Hz) in the tails
of giant flares from two different magnetars (Israel et al. 2005;
Strohmayer & Watts 2005, 2006; Watts & Strohmayer 2006).

If the QPO frequencies can be reliably identified with par-
ticular global seismic modes of the neutron star, then they can
in principle be used to constrain both the equation of state and
the interior magnetic field. This exciting possibility has driven
a major effort to develop theoretical models of the vibrations.
One major issue is the effect of the strong magnetic field, which
threads the crust and the core, giving rise to a spectrum of
magneto-elastic oscillation frequencies that includes both con-
tinua (which give rise to unusual dynamical responses; Levin
2007) and discrete modes. At present there is some disagree-
ment about the nature and effects of the continua on the re-
sulting frequencies and their longevity (see, for example, van
Hoven & Levin 2011; Gabler et al. 2011; Colaiuda & Kokkotas
2012). Uncertainties in the composition of the neutron star crust,
and the role of superfluidity, will also have an effect (Watts &

7 Supported by period and period derivative measurements; see
http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html for an up-to-date
reference list on magnetar spin-down properties.
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Reddy 2007; van Hoven & Levin 2008; Steiner & Watts 2009;
Andersson et al. 2009). How stellar vibrations cause high ampli-
tude variations in X-ray emission is also not clear, and processes
in the magnetosphere may play an active role (Timokhin et al.
2008; D’Angelo & Watts 2012).

A major obstruction to this field of research is the sparsity of
data. Since the launch of the first X-ray and γ -ray instruments,
only three giant flares have been observed, with just two
having data with a sufficient time resolution to detect QPOs.
In trying to overcome this lack of observational constraints, it
is therefore a reasonable approach to turn to the much more
numerous short SGR bursts with lengths of usually less than
a second and luminosities around 1040 erg s−1. Hundreds of
SGR bursts have now been observed from many magnetars.8

Additionally, several intermediate flares have been detected,
with observational properties somewhere between those of the
SGR bursts and those shown by giant flares (Ibrahim et al. 2001;
Lenters et al. 2003; Guidorzi et al. 2004; Israel et al. 2008). At
present the nature of the trigger mechanism for both the giant
flares and the shorter bursts is an open question (Thompson &
Duncan 1995; Lyutikov 2003; Duncan 2004; Woods et al. 2005;
Gill & Heyl 2010; Perna & Pons 2011; Watts 2012; Levin &
Lyutikov 2012), but it is certainly possible that the oscillations
detected in giant flares may be excited in the smaller events
as well. The detection of periodic signals in SGR bursts is,
however, restricted by their length: giant flares can last up to
hundreds of seconds, whereas a typical SGR burst is shorter
than one second, restricting the minimum frequency that can be
searched.

To date there has been no systematic search for periodic
features in the light curves of the SGR bursts. A search for QPOs
in a period of enhanced emission with multiple bursts (a “burst
storm”), from the magnetar SGR J1550−5418, carried out
using data from the Fermi Gamma-ray Burst Monitor (GBM),
found no significant signals (Kaneko et al. 2010). El-Mezeini
& Ibrahim (2010) searched a subset of Rossi X-Ray Timing
Explorer (RXTE) data from SGR 1806−20 for periodic features
and found some tentative signals; however, there are several
points of concern with regard to their methodology, which we
address conceptually in Section 2.1 and in detail in Appendix A.

Searching for QPOs in transient light curves is a non-trivial
task. Standard methods involving Fourier analysis are defined
for infinitely long, stationary processes, owing to the periodic
nature of the sine functions used in the Fourier transform. The
very nature of a transient event—it has a start, one or more peaks,
and an end—complicates the analysis procedure and introduces
additional sources of uncertainty. For transient events where the
shape of the burst envelope is known, many problems arising
from the non-stationarity can be solved either analytically
(Guidorzi 2011) or via Monte Carlo simulations (Fox et al.
2001). However, many astrophysical transients do not show a
well-behaved burst light curve that is easily reproducible by a
simple function. Magnetar bursts in particular exhibit a variety
of shapes in the burst envelope, translating into different power
spectral shapes in the Fourier domain, which need to be taken
into account when deriving significances from the periodogram.
This in itself can be interesting, aside from searching for QPOs:
the different burst envelope shapes must be created by a physical
process in the source, either in the form of noise processes
or non-stochastic emission processes, and characterizing the

8 See, e.g., Woods & Thompson (2006), Mereghetti (2008) for overviews or
http://f64.nsstc.nasa.gov/gbm/science/magnetars/ for a collection of SGR
bursts observed with the Fermi Gamma-Ray Burst Monitor (Fermi/GBM).

differences may tell us more about the emission processes
at work.

This paper presents the application of a Bayesian method,
first derived for long-duration time series data of active galactic
nuclei in Vaughan (2010), to timing analysis of magnetar bursts.
We choose this method for its capabilities in finding periodicities
and QPOs in red-noise dominated periodograms. However, we
attempt to answer not only the question of whether there are
indeed QPOs, but also to characterize the aperiodic timing
behavior of the bursts. Given the uncertainty that exists over
the trigger and emission mechanisms for magnetar bursts, such
an additional diagnostic will be useful. The method that we
develop is general, in the sense that it may be applied to other
transients of similar light curve morphology such as gamma-ray
bursts (GRBs).

In this paper we illustrate the power of this new method
by applying it to timing analysis of a sample of SGR bursts
recorded by Fermi GBM. Specifically, we search observations
taken during an intense flaring episode of the SGR J0501+4516
for periodic and quasi-periodic signals, and characterize the
broadband noise processes seen in the bursts. This SGR was
discovered on 2008 August 22, when a burst triggered the Swift
Burst Alert Monitor (Barthelmy et al. 2008; Holland et al. 2008).
The same burst subsequently triggered the Fermi/GBM, which
then recorded high time-resolution data of a total of 29 bursts
over 13 days (Lin et al. 2011). An RXTE Target of Opportunity
pointing revealed a spin period of 5.76 s (Göğüş et al. 2008).
With a spin-down period of (1.5 ± 0.5) × 10−11 s s−1, the dipole
magnetic field was estimated as 2.0×1014 G (Woods et al. 2008;
Rea et al. 2009; Göğüş et al. 2010).

In Section 2, we give an overview of the general Bayesian
method of searching for periodicities and QPOs in burst data,
including a comparison to previous methods. Section 3 presents
details of the instrument and the data reduction process for this
burst sample. We then characterize both the method’s power and
limitations by applying the method first to a large number of
simulated observations with and without artificially introduced
periodic signals in Section 4. Subsequently, we apply the method
to the Fermi GBM burst sample from SGR 0501+5416. In
Section 5 we first outline the method using one particular burst
as an example, before giving results for the whole sample. In
Section 6, we discuss the significance of our results, and put
them in context with current theoretical models. The purpose
of this paper is to lay out the method and test it thoroughly
on simulated data before applying it to a small burst sample to
demonstrate its power on real data. In future work, it will be
applied to a larger sample of short as well as intermediate bursts
and giant flares.

2. VARIABILITY ANALYSIS METHODS

Our goals are to search for periodic and quasi-periodic signals
in light curves of SGR bursts as well as to characterize the
broadband variability behavior of the bursts. To this end, we
employ Fourier techniques (van der Klis 1989), extending them
for the special case of transient light curves and the presence of
broadband variability in our burst light curves. Note here that,
following Vaughan (2010), we use the expression periodogram
for the squared Fourier transform of the data. We assume that it is
the sampling of the burst envelope as well as one or several noise
processes. We use the expression power spectrum to denote
the underlying physical process of which the periodogram is a
sample, i.e., a realization.
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Figure 1. Fermi GBM observation of burst 0808234789 from SGR J0501+4516; left: light curve with a time resolution of 0.001 s. Structure in the burst profile and
tail is clearly visible. Right: periodogram of the burst light curve shows flat Poisson noise at high frequencies, and an excess of power over the Poisson level at low
frequencies, owing to the complex shape of the light curve.

(A color version of this figure is available in the online journal.)

2.1. Monte Carlo Simulations of Light Curves:
Advantages and Shortcomings

Monte Carlo simulations of light curves are a standard tool
in timing analysis (see, for example, Fox et al. 2001). The
underlying idea is simple: one fits an empirically derived (or
physically motivated) function to the burst profile. One then
generates a large number of realizations of that burst profile,
including appropriate sources of (usually white) noise, such as
Poisson photon counting noise. The periodograms computed
from these fake light curves form a basis against which to
compare the periodogram of the real data. For each frequency
bin, a distribution of powers is produced, with a mean that
depends both on the Fourier-transformed burst envelope shape
and the noise processes introduced into the light curve, while
the scatter around that mean follows the noise processes only (a
χ2 distribution with two degrees of freedom—denoted χ2

2 —for
a wide range of noise processes, as long as the central limit
theorem holds).

Comparing the observed power in each bin with the distribu-
tion of simulated powers in the same bin allows us to make a
statement about the probability of the observed power in a par-
ticular bin being due to a noise process: if the observed power
in a particular bin is a high outlier compared with the distri-
bution of simulated powers in that bin, then the probability of
observing the data under the (null) hypothesis of a noise process
is 1/N , where N is the number of simulations performed. If N
is large, the observed outlier is unlikely to be produced by the
noise process alone.

It should be noted, however, that this test only rejects
the null hypothesis, it does not directly give evidence for
the alternative hypothesis, i.e., the hypothesis we test the
null hypothesis against, to be true. As we will explain in
more detail in this section, a faulty assumption for the noise
model may well produce significant detections that are, in
fact, due to a noise process we have not taken into account
appropriately. Conversely, a power that does not exceed the
maximum simulated power may still be a significant signal, if
the maximum simulated power is a rare event.

9 Fermi/GBM bursts are numbered by date in the format YYMMDDFFF
with YY, the year minus 2000; MM, the two-digit month; DD, the two-digit
day of the month; and FFF, the fraction of the day.

Note that the probability derived from the Monte Carlo
simulations must be subjected to a correction for the number
of frequencies and bursts searched (the number of trials, also
called Bonferroni correction or “look-elsewhere effect”), since
for a large number of frequencies and light curves searched,
we would expect a number of outliers that would otherwise be
counted as (spurious) detections.

The Monte Carlo method outlined above is versatile and
powerful, but it has limitations. The most important limitation
comes from our lack of knowledge of the underpinning physical
processes producing the observed light curve. Only if the
null hypothesis accurately reflects the data—apart from the
(quasi-) periodic signal for which we would like to test—is
the test meaningful. If important effects that distort either shape
or distribution of the powers are missed, then the predictions
made will not be accurate, leading to either spurious detections
or real signals not being found.

More often than not, especially in the case of short magnetar
bursts, we do not have complete information about the emis-
sion mechanism. Short magnetar bursts are extremely diverse,
varying in light curve shape as well as burst intensity and du-
ration (see, for example, Göğüş et al. 1999, 2000). Unlike for
thermonuclear X-ray bursts, where the Monte Carlo technique
is widely employed (see, for example, Fox et al. 2001 and Watts
et al. 2005), we do not know the underlying aperiodic shape of
the light curve (see, e.g., Figure 1 for an illustration of a com-
plicated SGR light curve and periodogram). In order to apply
this method, we therefore have to fit the light curve using a
parametric approach involving, e.g., higher-order polynomials
or splines, and then use this as a template for the Monte Carlo
simulations. There is an essential degeneracy in that problem
originating from our lack of knowledge: Which features do we
fit? Which do we consider to be part of the burst envelope,
or potential candidates for a periodic signal on top? This is
an arbitrary decision, however one that greatly influences the
probability of detecting spurious signals.

The situation is further complicated by the potential pres-
ence of so-called red noise: random processes that produce
broadband, aperiodic variability, frequently with power-law type
shapes in the Fourier domain. Red noise supplies large powers at
low frequencies and little at high frequencies, and a realization
of a red noise process can appear to the naked eye in the light
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Figure 2. This figure illustrates the effect that inadequate fitting of a light curve containing red noise can have on estimating the significance of potential QPO signals
from Monte Carlo simulations. Here, we followed the routine laid out in Timmer & Koenig (1995) to create a light curve from a red noise power spectrum with
power-law index of ≈−2 with Poisson noise added (left panel, solid dark blue line). The input model contains no periodic or quasi-periodic signal. We then binned
the resulting light curve to a very coarse time resolution (10 data points) and fit the resulting binned function with a spline (left figure, orange curve). Note that the
choice of resolution for the fit is arbitrary: we cannot know a priori from the light curve which features are created by a broadband noise process or a quasi-periodic
signal. The binned light curve was used as the basis for Monte Carlo simulations. The figure on the right side shows the periodogram of the fake light curve (dark blue
line), with the maximum (red downward triangles) and minimum (green upward triangles) simulated power in each bin. The maximum and minimum powers at each
frequency were found by sampling the distribution of powers at that frequency in 1000 Monte Carlo simulations of the light curve fit (orange line in the left panel)
with added Poisson noise, i.e., not taking into account red noise, and taking the minimum and maximum samples. Note the spurious detections at 25 Hz and 70 Hz,
where peaks in the periodogram clearly stick above the distribution of expected noise powers, even though there is no QPO feature at this frequency: it is entirely
created by red noise.

(A color version of this figure is available in the online journal.)

curve like a possibly periodic process (the four peaks in the light
curve of Figure 1, for example, seem to mimic periodic behav-
ior, but there is only a very broad bump in the periodogram, and
it is impossible to distinguish between a broken power law and
a very broad quasi-periodicity in this case). The presence of red
noise will significantly alter the distribution of powers in each
frequency bin from what it would be if the light curve consisted
of a purely deterministic envelope and Poisson-distributed de-
tector noise. Thus, even when the shape of the burst envelope
can be adequately modeled by a single, deterministic function,
there may nevertheless be false positive detection of single-bin
QPO features that are purely due to scatter in low-frequency
bins owing to the presence of red noise that has not been taken
into account.

In Figure 2, we set up a model that contains only red noise, and
find a significant detection despite the fact that there was no QPO
introduced into the light curve. This illustrates the fundamental
problem with simulating light curves that have an unknown
underlying shape. Features may be due to broadband noise
features in the light curve, which are not accurately represented
by the coarse light curve, and thus not adequately modeled
by our null hypothesis. Hence, these features are flagged as
a significant detection (with a single-trial probability of 10−3),
despite not being due to an underlying (quasi-) periodic process.
In the absence of a well-known underlying burst envelope shape
or physically motivated models of both noise and burst envelope,
it is thus not advisable to apply this method to magnetar bursts
(or any transient events with complex light curve shape) in
order to derive meaningful conclusions about the presence of
QPOs in the light curve. This is one of several shortcomings of
the procedure presented in El-Mezeini & Ibrahim (2010). We
comment on this paper in the context of our new procedure in
greater detail in Appendix A.

We note that the distinction between QPOs and some forms
of noise is not clear cut. By convention, one usually defines an
upper boundary for the full width at half-maximum (FWHM) <
ν0/2 (where ν0 is the QPO’s centroid frequency; van der

Klis 2006) for the feature to be called a QPO, however, this
is a somewhat arbitrary decision. In this work, we consider
aperiodic noise only in the form of power laws or broken power
laws, as opposed to QPO features, which we assume to be
fairly narrow features (following the convention for the FWHM
mentioned above) on top of this process. It should be noticed
that in principle, one could fit a broadband feature with a wide
Lorentzian, thus there is some degeneracy in the modeling. In
Section 2.2, we explore whether other simple, plausible models
can fit the data, and will describe an alternative, conservative
method, based on the assumption that red noise dominates the
power spectrum. This is unlikely to be completely true, although
many bursts seem to have a red noise component of varying
strength, but as we will lay out in the following sections, this
assumption is less prone to producing false positive detections,
at the cost of increased risk of false non-detections.

2.2. Modeling the Periodogram

Another approach to the problem uses models of the observed
periodogram rather than the light curve and assumes any
low-frequency broadband variability to be due to a noise process.
In a way, this is the other extreme to the approach of using
Monte Carlo simulations of light curves: the former is based
on the null hypothesis that any power in the periodogram is
due to a combination of a deterministic burst envelope, photon
counting (white) noise, and a putative (quasi-) periodic signal
that is to be detected. When modeling the periodogram, we
instead assume that there is no deterministic contribution from
the burst envelope and the entire observed emission is due to
a noise process. Unless the emission process itself is a noise
process, this may not be a valid assumption either. In effect,
assuming pure red noise while the light curve has both a noise
component and a non-stochastic envelope will cause us to miss
weak signals at low frequencies, because they are buried in the
much higher variance at low frequencies in a broadband noise
process compared with a deterministic burst envelope with only
white noise on top.
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For the power spectral modeling, we closely follow the
Bayesian approach developed by Vaughan (2010). One advan-
tage of the Bayesian framework is the inclusion of our uncer-
tainty in the model parameters (of the assumed low-frequency
noise process) in the error estimate of any final quantity, al-
though this still assumes that the functional shape of the spec-
trum is known; this must be determined separately, as we will
lay out below. In addition it provides a statistically rigorous
framework to test whether additional model components (such
as Lorentzian QPOs) are required by the data (Protassov et al.
2002). In the following, we give only a short outline of the
method, and refer the reader to Vaughan (2010) for a thorough
discussion.

Following Bayes’ rule, the posterior probability of a set of
model parameters θ of interest, given the observed data I and a
model H, is defined as

p(θ |I,H ) = p(I|θ,H )p(θ |H )

p(I|H )
. (1)

Here, p(I|θ,H ) is called the likelihood, p(θ |H ) the prior and
p(I|H ) the marginal distribution of the data. Note that the latter
is often difficult to compute in practice, and only depends on
the data. For ratios of posterior probabilities utilizing the same
data, the marginal distribution of the data will drop out of the
equation, and will consequently be ignored in the following.

We use the Bayesian analog to maximum likelihood estima-
tion (MLE) to fit models to the observed periodogram data and
obtain the maximum a posteriori (MAP) estimates of the model
parameters. The MAP estimate of a parameter set is defined as

θMAP = arg max
θ

p(θ |I,H ), (2)

where arg is the argument of the maximized posterior probabil-
ity, i.e., θmax. The MLE of a given model S(θ ) is computed by
maximizing the probability of a data set I given parameters θ
and a model H:

p(I|θ,H ) =
N/2
∏

j=1

p(Ij |Sj ), (3)

where Ij are the individual powers in the observed power
spectrum, and Sj are the powers in the chosen models for a
parameter set θ . This is equivalent to minimizing the following
function:

D(I, θ,H ) = −2 log p(I|θ,H ) = 2

N/2
∑

j=1

{

Ij

Sj

+ log Sj

}

, (4)

sometimes called the deviance (Gelman et al. 2004). Note that
Equation (4) is only a valid form of Equation (3) if the data are
χ2-distributed.

Similarly, we can compute the logarithmic MAP as a combi-
nation of prior and likelihood, using Equations (1), (2), and (4):

θMAP = arg max
θ

(p(I|θ,H )p(θ |H )) (5)

= arg min
θ

(− log p(θ |H ) + D(I, θ,H )/2). (6)

Equation (6) computes the mode of the posterior distribution
over parameter space, i.e., the most likely parameters given the

observed data and the model. We use the formalism above for
any analysis done in this work.

Without a physically motivated burst emission mechanism,
we cannot know what shape the analytic part of the burst
envelope takes, or the existence and characteristics of a potential
red noise component in the data. Since both the burst envelope
and any red noise processes supply power over a large range of
frequencies (unlike QPOs, which are confined to narrow regions
of frequency space), there is an essential degeneracy in any
model we attempt to fit, adding a number of assumptions about
the burst shape and red noise properties to whatever inference
we try to make. In the absence of any physical motivation, we
make a simple, yet probably overly conservative assumption: all
broadband power in the periodogram is supplied by a red noise
process. The limitations on our inferences that come from this
assumption will be further discussed in Section 4, but its main
disadvantage is the fact that weak signals in the low-frequency
part of the spectrum are likely to be missed. We see this as an
acceptable trade-off in return for having a very low false positive
detection rate. The advantage of this assumption is that we can
treat the entire broadband variability seen in the periodogram as
a realization of a noise process and follow an entirely empirical
approach to modeling the periodogram: if we find a function that
describes the underlying power spectrum well, we can use this
as a basis to compute many realizations of this power spectrum
and compare these to our observed data. A very broad class
of power spectral shapes well represented in nature are power
laws:

P (ν) = βν−α + γ, (7)

where α is the power-law index, and broken power laws, which
can be reduced to Equation (7) by setting ρ = 0:

P (ν) = βν−α1

(

1 +
{ν

δ

}(α2−α1)/ρ
)−ρ

+ γ, (8)

where α1 and α2 are the power-law indices at low and high
frequencies, respectively, and we require α2 < α1. δ is the
break frequency at which the power-law index changes. In
both models, β is a normalization term and γ is a constant
to account for the presence of white (Poisson) noise in the
periodogram. Note that the broken power law is a more general
expression of the bent power law used in Vaughan (2010),
including the additional smoothness parameter ρ to account
for the smoothness of transition between the two power-law
components.

Our lack of knowledge of the emission processes in magnetar
bursts leads us to choose uninformative prior probability distri-
butions for all model parameters: a p(θ ) = 1/θ dependence for
all scale parameters β, γ , and δ (a Jeffreys prior; see Vaughan
2010, and references therein), and flat priors p(θ ) = constant for
all other parameters. Together, these two classes describe a large
range of broadband variability, and are likely to be sufficient in
describing the low-frequency behavior of most magnetar burst
periodograms. In what follows, we choose our broadband noise
model from one of these two. However we include an overall
goodness-of-fit test and comment where the model fails this test
for individual bursts.

There are several ways to distinguish between models. One
often used statistic for nested models, i.e., models where one
is a special case of the other, is the likelihood ratio test (LRT).
The LRT statistic is based on the ratio of the likelihood values
for the two models, the null hypothesis H0 and the alternative
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hypothesis H1:

TLRT = − 2 log
p
(

I|θ̂0
MAP,H0

)

p
(

I|θ̂1
MAP,H1

)

= Dmin(H0) − Dmin(H1). (9)

In order to decide whether a data set is adequately described
by the null hypothesis or not, one often resorts to Monte Carlo
simulations of the null hypothesis. In the Bayesian framework,
one can employ a certain type of Monte Carlo simulations,
so-called Markov chain Monte Carlo simulations (MCMCs), to
draw parameter sets from the posterior distribution of possible
parameters and generate predictive (fake) periodogram data this
way. MCMCs have the advantage that for a stable chain that has
converged, the samples generated in that chain will always ap-
proximate the posterior distribution of parameters, i.e., the distri-
bution for each parameter that summarizes our entire knowledge
of the problem. The posterior distribution for each parameter is
obtained by marginalizing (i.e., integrating) over all other model
components. In the case where the parameter distributions are
non-Gaussian, this allows for far more accurate modes and er-
rors on the individual parameters than standard methods like
the covariance matrix. Probably the most widely known and
employed MCMC algorithm is the Metropolis–Hastings algo-
rithm (Metropolis et al. 1953; Hastings 1970). However, in many
situations, convergence of this algorithm is slow and hence com-
putationally expensive. In this work, we employ the so-called
stretch-move algorithm as implemented in python by Foreman-
Mackey et al. (2013) in the module emcee. emcee uses so-called
ensemble walkers: a set of Markov chains that is split in two,
where each half is evolved using the state of the other half as
an input, thereby increasing efficiency in converging toward the
posterior distribution of parameters.

The MCMC produces a sample of parameter values (of the
null hypothesis, e.g., a continuum model) drawn from the pos-
terior distribution of the data. From this sample we randomly
draw parameter vectors and use these to generate fake peri-
odograms. We can then compute a distribution for a statistic T
to compare with the same statistic derived from the observed
data, Tobs. In the case of model selection, the faked data are fit
with both a simple and a more complex model (e.g., a power law
and a broken power law), H0 and H1, identical to the procedure
performed on the observed data. This generates a distribution of
TLRTs, which is then used to calculate the corresponding tail area
probability (i.e., the probability of obtaining a value of the test
statistic that is at least as extreme as the one observed under the
assumption of the null hypothesis, also called p-value) for the
observed value of T obs

LRT. If this probability is very small (the ac-
tual detection level is subject to choice, for example, p < 0.05),
then the observed reduction in Dmin between H0 and H1 is larger
than can be expected by chance if H0 were true. More clearly,
we reject the null hypothesis in this case, although this test can-
not be seen as direct evidence that the alternative hypothesis is
true. Conversely, if the probability is not very small, then H0 is
sufficient to describe the data.

Just as data were simulated for assessing the probability of
T obs

LRT, we can generate fake data in the form of MCMCs to
calculate the distribution of any test statistic we choose. One
is particularly sensitive to the kind of model features we are
interested in detecting, namely, breaks/bends in the smooth
continuum, in that it indicates whether the model provides
a good overall fit to the data, or whether additional model
components may be needed. This simple statistic for goodness

of fit of aperiodic features, based on the traditional χ2 statistic,
i.e., the sum of the squared standard errors (Anderson et al.
1990; Vaughan 2010), is

TSSE = χ2(I, θ̂ ), (10)

where

χ2(I, θ ) =
N/2
∑

j=1

(Ij − E[Ij |θ ])2

E[Ij |θ ]
=

N/2
∑

j=1

(

Ij − Sj (θ )

Sj (θ )

)2

and E[] indicates expectation. This is a good test of overall
goodness of fit which will be sensitive to inadequacies in
the continuum modeling since all data points are included (as
opposed to the TR statistic, i.e., the biggest outlier in the data,
which we will present below in Section 2.2.1).

We have now characterized the broadband noise properties.
This information will be the basis for any modeling of the data
done in the remainder of this section. In the following, we define
a test statistic for outliers in the data, show how to compute
posterior predictive p-values for this statistic, and lay out a
method to find broader signals, i.e., QPOs, in the data.

2.2.1. Searching for (Quasi-)Periodicities

The procedure for searching for periodicities and QPOs in
the data follows the same basic logic applied to the selection
of a broadband noise model above. We compute a statistic
from the periodogram, then generate a large number (e.g., 1000)
of simulated periodograms from an MCMC sample, compute
the desired statistic from each simulated periodogram in turn,
and finally compare the observed value of the statistic to the
distribution generated from the sample of simulations.

In what follows, we have to distinguish very narrow fea-
tures (with scale parameter, i.e., half-width at half-maximum
(HWHM) smaller than or close to the frequency resolution
of the periodogram) from broader QPO signals with HWHM
that are significantly larger than the periodogram’s frequency
resolution.

In order to investigate narrow features, a sensible statistic to
use is the maximum ratio of observed to model power, or

TR = maxj (R̂j ), (11)

where
R̂j = 2Ij/Sj

and Ij and Sj are observed and model powers as defined above.
The factor of two normalizes the residuals in such a way that

R̂j will be distributed as χ2
2 . Drawing from many MCMC

simulations, we can compute the tail area probability of TR

from its distribution, or the probability that the observed power
Ij,max was produced purely by noise generated by a broadband
model. This probability need not be corrected for the number
of frequencies searched, as this is already taken into account
by the fact that we search the entire frequency range for each
simulated periodogram, but if several bursts are searched, it is
necessary to correct for the number of bursts searched.

Using the posterior distribution of TR from the simulations,
we can also easily compute the sensitivity to a periodic signal
that could have been present in the data, but would have been
missed. Sensitivities will be independent of frequency in the
white noise range, but strongly depend on frequency in the
red noise range, for a simple reason: a signal that would be
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highly significant in the white noise range could be buried
under strong red noise of equal or larger strength in the
low-frequency part of the spectrum, rendering it invisible to our
detection methods. We compute sensitivities for the amplitude
of a potentially missed periodic signal by finding that value
of TR in our simulated posterior distribution that corresponds
to a posterior predictive p-value of 5% or lower. We then
compute the corresponding signal powers Ij = RjSj/2 and
convert these to fractional rms amplitudes at four representative
frequencies—40 Hz, 70 Hz, 100 Hz, and 500 Hz—two of which
are, for typical magnetar bursts, in the red noise dominated part
of the spectrum, one of which is right on the boundary to white
noise, and the last of which is safely in the white noise dominated
part of the spectrum. It is, in principle, possible to compute
sensitivities for every frequency in the periodogram, however
for brevity we decided to restrict ourselves to four frequencies
where QPOs may be found as an indicator of the rms amplitude
a signal would have to have in the different parts of the spectrum
in order to be detectable. Note that the sensitivities computed
here are different from an upper limit in the sense that they do
not require the actual observation of the highest power in the
spectrum: the quantity is derived entirely from the simulations,
and thus presents a theoretical upper limit to what we could have
measured, independent of what we have actually measured in
the observed burst itself (see Kashyap et al. 2010 for a discussion
on the real meaning of upper limits).

One shortcoming of the TR statistic is that it optimally detects
periodic signals confined to one frequency bin, i.e., either strictly
sinusoidal signals or QPOs with a width that is smaller than the
frequency resolution of the periodogram. It should be noted
that even a strictly sinusoidal signal will distribute power in
more than one bin, unless its frequency is exactly the Fourier
frequency. This redistribution of the power can account for an
average loss of roughly 30% (assuming random distribution
of the sinusoidal frequency within a bin) in the frequency bin
containing the sinusoid. Broader signals may well be detected,
if they are strong enough, but since the power is spread over
several bins, this is not an optimal way of detecting broad
signals. There are several ways around this restriction. One
is to bin (or smooth) the data in some way, and compute TR

for the binned data, assuming that any tentative signal power
will now be concentrated in each bin. If we bin the simulated
periodograms in the same way, then the test statistic TR for the
binned data is comparable to the distribution approximated by
our simulations, and the latter can be used to derive posterior
predictive p-values. One can either bin the periodogram with
several frequency resolutions and search for QPOs in each,
assuming that for a QPO of a given width, all its power will
be confined to the central one or two frequency bins if the
frequency resolution is coarse enough. Alternatively, one can
bin the periodogram geometrically, where the bin size grows
with frequency. This way, using the (fairly arbitrary) definition
that a QPO must have a FWHM ∆ν narrower than ν0/2, with ν0

the centroid frequency of the QPO (see, e.g., van der Klis 2006),
one accounts for the fact that QPOs at higher frequencies can
have a larger range of widths.

An entirely different approach to the problem, which we
also include in our analysis, starts out from a model selection
point of view, addressing it in a similar fashion to the way
one chooses between broadband noise models. Assuming that
a quasi-periodicity is simply another type of random process,
one may fit the periodogram simultaneously with a broadband
noise process as well as a Lorentzian representing a QPO and

compare the resulting fit with that of the broadband noise model
only. Following Protassov et al. (2002), we can utilize the
likelihood ratio in this case if we compare it to the distribution
of likelihood ratios as approximated by MCMC simulations.
It is important to note that fitting narrow features with a
Lorentzian is statistically challenging (Park et al. 2008; Barret
& Vaughan 2012). For quasi-periodic features broader than a
single bin, but only distributed over a few bins, we smooth the
periodogram with a Wiener filter over 3, 5, and 11 frequency
bins and compare the maximum power in each of the resulting
smoothed spectra via the same method used for searching for
single-bin periodicities presented above. Subsequently, we use
the method of fitting Lorentzians only for features broader
than five times the frequency resolution of the periodogram.
Additionally, we cross-check our detection method for QPOs
by searching binned spectra of lower frequency resolution than
the original periodogram.

We begin by fitting a Lorentzian plus a constant to the
residuals of the data divided by the preferred broadband noise
model. At each frequency, we fix the centroid of the Lorentzian
to that frequency and let the code fit the scale parameter
(HWHM) and the normalization of the Lorentzian. This way,
we generate an estimate of the deviance at every frequency. We
define the frequency where the MAP estimate is largest as our
tentative QPO identification. Note that we use a Jeffrey’s prior
(p(x) ∝ 1/x) on the QPO normalization, and a flat prior on the
QPO HWHM that rules out widths outside the range 5∆ν to ν0/2,
where ∆ν is the frequency resolution of the periodogram and
ν0 the frequency at which we are currently fitting (the centroid
frequency). This should help us avoid some of the problems
with fitting narrow signals as laid out in Park et al. (2008).
Restricting ourselves to HWHM larger than 5∆ν is consistent
with our choice of fitting the smoothed data: we do not expect the
HWHM to be narrower than the binning we have chosen, thus
we do not allow optimization to smaller widths. Additionally,
we exclude the first and last three frequency bins in order to
avoid effects introduced by trying to fit a Lorentzian to one of
the edges of the periodogram.

Subsequently, we combine the results from the broadband
model fitting and the residual fit that yielded the highest estimate
for the deviance, and use both as a starting point for a mixed
model to the observed data. We use the same priors as before,
but use the best-fit parameter sets of the broadband model fitting
and the residual fitting as inputs to the optimization routine. We
expect that this will put us fairly close to the global minimum
and help us avoid some of the problems associated with trying
to minimize a multimodal likelihood function.

Finally, we form a likelihood ratio between the broadband
plus QPO model and the broadband model alone. The above
procedure is repeated in exactly the same way on a large
sample of MCMC generated fake periodograms in order to
produce a distribution of likelihood ratios from the broadband
model alone. Comparison of the observed likelihood ratio then
allows the derivation of a tail area probability that the observed
tentative QPO could be generated from the broadband noise
model alone. It should be noted that because the model fitting of
Lorentzians on the residuals on many simulated periodograms
is computationally expensive, we restrict the analysis to a
smaller number of simulations (usually N ∼ 500). The resulting
distribution of likelihood ratios will be less reliable, but reliable
enough to rule out most cases where there is no QPO present.
If the fraction of simulations exceeding our criterion follows
a binomial distribution, we can compute the error on the
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p-value from the standard deviation of our p-value estimate:
for p < 0.05 and 500 simulations, the error on the p-value
is ∆p =

√
p ∗ (1 − p)/N = 0.0097. For all borderline cases

where the posterior predictive p-value drops below ∼0.1, we
repeat the analysis with a larger number of simulations (∼1000,
decreasing the error on the p-value to ∆p =

√
p ∗ (1 − p)/N =

0.0069) to make our estimate of the posterior p-value on the
likelihood ratio more reliable. Since the error on the p-value is
not high enough to bring a signal at the 5% level up to p = 0.1,
we should be able to catch all significant QPOs in this way.

2.3. Summary of Procedure

The Bayesian procedure laid out above has three parts: (1)
find the preferred broadband noise model to represent the low-
frequency part of the periodogram, (2) search the periodogram
for the highest outlier and compare this outlier to those dis-
tributed by pure broadband noise to find narrow features, and
(3) search for QPOs in the data, using binned data as well as
an identical approach for the model selection in the first step. A
step-by-step description can be found in Appendix B.

Every step in the analysis follows the same logic: assume a
null hypothesis and an alternative hypothesis, compute statistics
to summarize the data-model fits for the two different models,
generate a sample from this null hypothesis using MCMC, and
then compare the distribution of the relevant statistic derived
from the sample generated from the null hypothesis to the
observed value of that statistic. If the observed value lies in
the high-end tail of the distribution, then it is an outlier with
respect to the null hypothesis.

Since the entire procedure rests on the correct choice of
broadband model, this is the first step of the analysis. The
data are fitted with two continuum noise models, which, by
definition of the LRT, are required to be nested. The likelihood
ratio is the statistic we use to decide which model is preferred
by the data. We simulate a large number of fake periodograms
from parameter sets drawn from the posterior distribution of
parameters, as approximated by a large number of MCMC
simulations. Then these fake periodograms are fit with both
models again to build a distribution of likelihood ratios from
the simple model. We can compute the tail-area probability
(p-value) of the observed likelihood ratio to be typical of the
distribution (equivalent to asking whether the observed data is
sufficiently described by the simpler model) by integrating over
the tail of the distribution. If this probability is lower than a
chosen significance threshold, then the data is more likely to be
drawn from the more complex model hypothesis, which should
then be adopted for the rest of the analysis.

Finding periodicities with widths equal to or smaller than a
single bin (both smoothed or unsmoothed) follows the same
principle. We find the highest outlier in the residuals of the
data divided by the best-fit broadband model, and compare this
to a distribution of outliers computed in the same way from a
large number of periodograms created from an MCMC sample.
These fake periodograms do not have a periodic signal (our
null hypothesis), thus if the observed outlier were far away
from the simulated distribution of outliers, it is unlikely that the
outlier has come from this distribution, and we hence favor the
alternative hypothesis: that the outlier was indeed produced by
a separate physical process.

Finally, we approach the QPO search as a model selection
problem. In order not to bias ourselves to a frequency, we fit
a Lorentzian at every frequency to the periodogram residuals
smoothed over five bins, keeping the centroid frequency of

the Lorentzian fixed while allowing the other parameters to
vary. This will give us the MAP estimate for that model at
each frequency. We pick the frequency with the highest MAP
estimate, and fit a combined broadband model plus Lorentzian to
the actual data set. In this case, however, we leave all parameters
free, although we use the best-fit parameters from the residual
fit as input to the simulations. This minimizes the risk of
getting stuck at a local maximum of a multimodal likelihood
function. This way, we can compute a likelihood ratio between
the broadband noise model with an added Lorentzian component
to the pure broadband model fit. We repeat this procedure on a
large number of fake periodograms without a QPO and compare
the distribution of likelihood ratios to the observed likelihood
ratio. Again, if that probability is very small, the observed data
are unlikely under the null hypothesis, and the observed feature
is unlikely the result of a chance fluctuation from an aperiodic
noise spectrum alone.

3. DATA REDUCTION

We now turn to a sample of magnetar bursts and illustrate our
method on simulations as well as a small data set as described
below.

3.1. Fermi/GBM

The GBM is one of two instruments on board the Fermi
Gamma-ray Space Telescope, launched in 2008 June (Meegan
et al. 2009). With its wide field of view and continuous broad-
band energy coverage between 8 keV and 40 MeV, Fermi GBM
is well-suited for observing magnetar bursts. The instrument
triggers on magnetar bursts, providing high time-resolution data
for 30 s before and up to 300 s after the trigger. Three data types
were routinely output: CTIME data provide a higher time reso-
lution (64 ms), but low energy resolution (8 channels), whereas
CSPEC data provide high energy resolution (128 channels) at
low time resolution (1024 ms). Note that CTIME and CSPEC
data are available in lower resolution continuously; the quoted
numbers are valid for trigger mode only. In this paper, only data
of the third type, so-called time-tagged event (TTE) data, were
used, since they provide the high time resolution (2 µs) required
for timing analyses, while retaining full spectral resolution as
well. For a detailed description of the available data modes and
their properties, see Meegan et al. (2009).

3.2. Observations

Fermi/GBM triggered 26 times on SGR J0501+4516 between
2008 August 22 and 2008 September 3, observing 29 bursts.
Two of these (080824054 and 080825200) had saturated parts,
and were therefore excluded from the analysis due to the
rather complicated effects saturation can have on periodograms.
Following Lin et al. (2011), we used only Na i detectors with an
angle to the source smaller than 50◦ for each of the 24 triggered
and three untriggered bursts. The data were barycentered and
channels converted to the mid-energy of each energy bin. The
observations were then energy-selected to include only counts
between 8 and 100 keV. The lower limit to the energy is set by
the detector response (Meegan et al. 2009), the upper limit was
found by inspecting energy-resolved light curves and finding no
source counts above 100 keV (as indicated by the counts being
consistent with the Poisson distribution expected from counting
noise). Burst start times and lengths (T90 durations) were taken
from Lin et al. (2011), and are summarized in Table 1 of that
paper. We added 20% of the burst duration to both ends of the
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Figure 3. Light curves of six example bursts from the magnetar SGR J0501+4516 recorded by Fermi/GBM. We combined data from all Na i detectors with source
angles smaller than 50◦ to the source. The time resolution corresponds to 0.005 s. Note the strong component of aperiodic variability after the main burst in 080823478
and the differences in peak count rate by almost one order of magnitude between the upper three bursts and the lower three.

(A color version of this figure is available in the online journal.)

burst in order to ensure that we caught the entire burst, and all
burst start times and durations in the remainder of this article
are to be understood this way. A selection of six bursts is shown
in Figure 3, to emphasize the diversity of burst morphologies
we encounter.

4. DETECTABILITY SIMULATIONS

We test the power of our detection method on a large number
of fake observations: light curves with or without a burst
envelope, one or several noise processes, and a periodic signal.
We restrict ourselves in the following to detecting periodic or
narrow quasi-periodic signals for reasons of computation time,
since the QPO detection method introduced in Section 2.2.1 is
computationally expensive and hence unfeasible to run on the
large number (of the order of several thousand) fake light curves
employed here to understand the effect of different components
in the light curve on detectability of periodic signals.

While in the previous section we laid out the general princi-
ples of the method, our main goal in this section is to characterize
how our assumption of pure red noise influences detection rates
when this assumption is not true, e.g., in light curves with a
strong burst envelope, or when the assumption holds, i.e., in
light curves that contain only red noise. We start out with a
simple estimate for the importance of the burst envelope on the
statistical distribution of the observed powers in our burst sam-
ple, and then use one burst from our sample as a template for
extensive simulations of light curves into which we artificially
inject a periodic signal of varying fractional rms amplitude.

4.1. A Simple Estimate

The method laid out in Section 2.1 is based on the assumption
that an observed light curve consists of a deterministic burst
envelope—a window function of some kind—and Poisson noise
originating in the quantum nature of light when photons impinge
on the detector. One may view the deterministic envelope as a

physical process giving rise to the overall shape of the burst,
following the same or at least similar functional dependencies
for potentially all bursts, and, more importantly, not a realization
of a noise process that would alter the general shape of the burst
significantly in a stochastic way. This sets it apart from other
processes we consider, which contribute to the light curve in
a stochastic way. Note, however, that the characteristics given
above do not imply that the burst envelope itself may be a
realization of a stochastic process, with variable parameters
between bursts. The combination of burst envelope and Poisson
noise is the null hypothesis against which one wishes to test.
One must then ask which part of the light curve is supplied
by the burst envelope, and what could be due to a potential
periodic process. The presence of red noise clearly renders the
fundamental assumption of this method invalid. Assuming pure
red noise, on the other hand, lets us avoid a question we cannot
easily answer: how much of the observed light curve can be
attributed to the burst envelope, and how much to a potential
noise process. We do not know a priori what the shape of the
burst envelope might be, nor what the power spectral density of
the noise process looks like. To first order, we already impose a
window function on the periodogram simply by having a short
burst: the light curve we Fourier transform is short, equaling a
window function that is one between start and end times of the
burst and zero everywhere else.

To make a first rough estimate of the effect of the rel-
ative strength of the burst envelope, we take all 27 bursts
from the sample described in Section 3 and stretch each
light curve to have the same total length of 0.2 s in order
to make the timescales comparable. We then computed the
Leahy-normalized periodogram for each light curve, gathering
all powers in 5 Hz bins for all 27 bursts. This yields distributions
of powers for each 5 Hz bin. For a noise process, the observed
powers should follow a χ2

2 distribution scaled by the mean power
in each bin. Thus, computing the standard deviation for each bin
and dividing by the mean power should yield a value close to 1,
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Figure 4. Variation between Leahy-normalized periodograms of 27 magnetar
bursts. We stretched each light curve to normalize all to the same burst duration
by multiplying the photon arrival times by a scaling factor, and then computed
periodograms for each of the 27 bursts in our sample. We then gathered powers
in 5 Hz bins to yield distributions of powers from all bursts for each of the 5 Hz
bins. For the pure red noise assumption to be valid, the resulting distributions
should follow a χ2

2 distribution scaled to the mean of the powers in each bin.
Here, we plot the standard deviation in each of the 5 Hz bins divided by the
mean of the distribution for each bin. This quantity should be close to 1 for
pure red noise. The assumption holds above about 30 Hz, but becomes invalid
below. Thus, statements for QPO features below 30 Hz should be interpreted
with caution.

(A color version of this figure is available in the online journal.)

if the powers are truly χ2
2 distributed. This assumption may be

broken in two possible ways. First, for steep power laws, the
mean in a 5 Hz bin may drop significantly, yielding powers that
do not follow a χ2

2 distribution. Second, for bursts that vary
significantly in brightness, the low-frequency red noise compo-
nent may vary between bursts, and again, the distribution will
be altered from our expectation. In Figure 4, we show exactly
the dependence on frequency of this quantity. Above 30 Hz, the
data seems to follow the noise distributions fairly well, while
below 30 Hz, it deviates significantly upward. There are mul-
tiple possible reasons for this. While we have corrected for the
differences in burst durations, we have not normalized for the
differences in fluence. Since burst fluences vary by over an order
of magnitude within the sample, this may significantly increase
the variation in burst periodograms. Alternatively, differences
in burst envelope may account for some of this variation as well.
It should be noted that one fundamental assumption underlying
this test is the idea that all bursts are governed by the same
kind of red noise spectrum. This may not necessarily be true,
especially for bursts varying by over an order of magnitude in
fluence, and a larger sample of bursts would be needed to draw
any solid conclusions about the burst envelope from this kind
of analysis. We conclude, for the purpose of our analysis, that
the burst envelope seems to become largely unimportant above
30 Hz, and thus above this threshold our assumption of pure red
noise is reasonable. Below, one should regard any conclusions
drawn about QPOs with caution. However, this simple estimate
is only provided to give an idea of where the burst envelope
might be important. In the following, we perform detailed sim-
ulations of various kinds of light curves, both including and
excluding a burst envelope, red noise and periodicities, in order
to probe the effect the different components may have on the
detectability of QPOs under the assumption of pure red noise.

4.2. White Noise Simulations

In order to test the detectability of (quasi-)periodic signals in
complex burst light curves, we simulated a large number of fake
observations of bursts and injected a periodic signal with varying
frequency and fractional rms amplitude in order to cover a large
range of possible signals. The phase of the injected periodic
signal was randomized for all simulations to avoid correlations
between simulations. For each combination of frequency and
fractional rms amplitude, we simulated 100 light curves, which
we then ran through our analysis method as if they were real
observations. While this is not enough to draw solid statistical
conclusions about detectability rates, it gives a qualitative idea
of what can be detected and what cannot.

It is important to note that the amplitude of the signal we quote
in all of this section is the fraction by which the underlying
emission will be modulated. If the underlying signal is flat,
then this amplitude corresponds to the fractional rms amplitude
as measured from the periodogram. However, if the burst
and the periodic signal vary together, such that the fractional
amplitude at each point in the light curve is constant, this is
not longer true. The reason for this discrepancy lies in the fact
that a multiplicative process such as the one described here
corresponds to a convolution in the Fourier domain, which will
keep the product of the power in both processes—the burst and
the periodic signal—constant, but redistributes power toward
frequencies close to that of the periodic signal. The result will
be a broadened peak in the power spectrum instead of a delta
function. While the power in the two central bins will be the
constant fractional rms amplitude corresponding to that we
would have measured for a flat light curve with a periodicity,
the side wings due to the convolution supply power that may be,
in practice, indistinguishable from an intrinsically broad QPO.
Hence, one would include these side bands into the calculation
for the fractional rms amplitude, and in practice measure an
amplitude that is larger than that we put in. A characterization
of this effect is beyond the scope of this paper; we merely wish to
remind the reader that they must take these effects into account
when considering the fractional rms amplitudes quoted in this
section.

In a first step, we tested the simplest case: (flat) white
noise. We created flat light curves with a constant count rate, a
periodic signal at 100 Hz of varying fractional rms amplitude,
randomized phase, and Poisson noise. In this limit, our method
should match standard Fourier analysis techniques and follow
the predictions of Groth (1975). In Figure 5, we show the
theoretical predictions for white noise together with the results
of our simulations. The observed detection rates match the white
noise predictions fairly well, and our method deviates from
expectations only for a fractional rms amplitude of 5%, but
remains within the uncertainty (a 5% error on a detection rate of
∼0.6 is expected based on 100 simulations). Thus, in the limit
of white noise, our method is equivalent to standard Fourier
techniques. For any signal at higher frequencies, where slowly
varying processes do not distort the power spectrum, we will
be as sensitive to a QPO as standard techniques. It should be
stressed that the probabilities we quote include a Bonferroni
correction for the number of frequencies, and are thus not
directly comparable to single-trial detection probabilities.

4.3. Pure Burst Envelope Simulations

In order to test the effect of a burst envelope on detectability,
we started with the extreme assumption: the burst is dominated
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Figure 5. Detection rates for simulated light curves of pure white noise
(a light curve of constant count rate), a strictly periodic signal at 100 Hz
and Poisson noise. We varied the fractional rms amplitude between 1% and
20% and compared with theoretical predictions calculated using the formalism
in Groth (1975). Different symbols and colors indicate (total) detection rates
for the unsmoothed periodogram and three smoothing factors included in our
analysis. Hollow markers and dashed lines correspond to total detection rates,
filled markers and solid lines true positive indicate the number of true positive
detections, defined here as the detections at the frequency where the signal was
injected (as opposed to the total detection rate, which includes both true positive
and false positive detections). Note that for white noise simulations, total and
true positive detection rates practically lie on top of each other. True positive
detection rates for our simulated light curves match white noise predictions (in
green) within the uncertainties (not shown), indicating that our method performs
equivalently well to standard Fourier techniques in the white noise regime.
Since the rates of true positive detections trace the total detection rates fairly
closely, we conclude that our method is not hampered by excessive numbers
of false positive detections. For transient phenomena, this regime includes all
frequencies above which slowly varying features in the light curve, e.g., red
noise, do not dominate the power spectrum.

(A color version of this figure is available in the online journal.)

by a complex burst envelope and Poisson statistics, lacking any
red noise. In order to generate the complex burst envelope, we
smoothed the light curve of 080823478 (see Figure 1) to an
arbitrary cut-off frequency, in our case roughly 35 Hz, creating
a smooth light curve with several broad peaks. We included
Poisson noise in each simulation, and a periodic signal at 40, 70,
and 100 Hz with an absolute amplitude that varied with the flux
of the burst envelope such that the fractional root-mean-square
amplitude remained constant. We varied the fractional rms
amplitude between 1% and 20%, and ran simulations without a
periodic signal in order to quantify false positive detection rates.

In Figure 6 we present a selection of periodograms of the
resulting combined light curves without Poisson noise. Most
notably, the multiplication of a complex burst envelope with a
periodic signal in the light curve leads to a significant broadening
of the periodic signal in the Fourier domain, including wings
and side-lobes. In this scenario, signals below 40 Hz should
be undetectable, whereas at higher frequencies detection rates
should approach what we would predict for pure white noise.
The combination of the envelope from the fit solution and a
periodic feature additionally changes the slope of what our
method will interpret as broadband noise in the case where
a periodic signal is located just at the break where the noise
powers drop toward the white noise level. We predict that this
will lead to decreased detection rates as well.

Figure 7 presents total detection rates as well as true positive
detection rates (both out of 100 simulated bursts) at 40, 70, and

Figure 6. Periodograms of simulated light curves including a complex burst
envelope shape and a periodic signal, without Poisson noise. We varied the
frequency from 20 Hz to 100 Hz, and kept a constant fractional rms amplitude
of 20%. The signal at 20 Hz (green) is almost invisible, and likely impossible
to distinguish from the underlying burst envelope, hence we do not consider
signals this low in the following analysis. For a signal at 40 Hz (orange), our
method is unlikely to be able to distinguish between the broadened periodic
signal and the burst envelope, causing low detection rates for even high rms
amplitudes. As the signal moves to higher frequencies (magenta: 70 Hz, dark
blue: 100 Hz), detection rates converge toward the detection rates predicted for
white noise (black dashed line).

(A color version of this figure is available in the online journal.)

100 Hz for five different fractional rms amplitudes and both un-
smoothed and smoothed periodograms. True positive detection
rates are measured as detections at the frequency of the injected
periodic signal. As predicted, detection rates increase toward
higher frequencies, where the envelope becomes unimportant.
While there are no true positive detections for the unsmoothed
periodograms at low frequencies, the number of true positives
for the smoothed periodograms closely traces the total detection
rates. This points toward a significant broadening of the periodic
signal as a result of its convolution with the burst envelope. In
general, at frequencies below 100 Hz, detection rates for pe-
riodograms smoothed to three or five bins are higher than for
the unsmoothed periodograms or those smoothed over 11 bins.
At higher frequencies, the detection rates for unsmoothed pe-
riodograms approach those of the smoothed periodograms. At
5% fractional rms amplitude or below, there may be a significant
contribution from false positive detections, which vanishes for
higher fractional rms amplitudes and higher frequencies.

4.4. Envelope Plus Red Noise Simulations

We used light curves composed of both a burst envelope
with a simple functional form as well as a power-law red noise
component, combined with Poisson statistics and a periodic
signal of varying frequency, amplitude, and randomized phase.
Although both the burst envelope and the red noise shape are
guesses and to some degree degenerate—a different choice of
burst envelope shape may lead to a different estimate of the
red noise power spectrum—we believe that this type of light
curve is likely to be more realistic than the pure burst envelope
model, based on the observation that bursts consistently rise
faster than they decay (indicating the presence of a deterministic
component) and the large variety in burst shapes otherwise
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Figure 7. Detection rates for periodic signals at various frequencies on top of
a smoothed burst envelope. The envelope is generated by smoothing the light
curve of burst 080823478. This introduces a sharp cut-off at around 35 Hz
(corresponding to the timescale of smoothing) that is unlikely to be seen in
real light curves. Detection rates at 40 Hz are strongly suppressed, indicating
that at low frequencies, chances of detecting even a very strong signal are
small. Note that while there are no true positive detections (as defined in the
caption of Figure 5) at 40 Hz for the unsmoothed periodograms, the number
of true positives for the binned periodograms closely traces the total detection
rates. Detection rates increase with frequency and fractional rms amplitude as
expected.

(A color version of this figure is available in the online journal.)

(indicating the presence of some form of variability on many
timescales that is typical for red noise).

For the largely qualitative conclusions we wish to draw here,
neither the exact shape of the burst envelope, nor the exact
parameters of the red noise are important, although both are
interesting questions in their own right and beyond the scope of
this paper. Instead, we wish to give a representative example of
the general behavior one may expect when applying the method
presented here to light curves of transient events with complex
light curves.

As before, we use burst 080823478 as a template burst
on which to base our simulations. This burst presents an
interesting profile, with a main spike and several features
that are reminiscent of red noise (see Figure 8). We cannot
exclude the possibility that the latter is actually due to a more
complicated emission mechanism, and can only state that its
timing properties are consistent with red noise. We fit the
entire light curve with several models, all based on a fast-rise,
exponential decay (FRED) profile of the type

f (x) = Aλ exp

( −τ1

(t − ts)
− (t − ts)

τ2

)

. (12)

Here, τ1 and τ2 are the rise and decay timescales, respectively,
ts is the burst start time, A is a normalization constant (or
burst amplitude), and λ = exp(2(τ1/τ2))1/2 (Peng et al. 2010).
This model has been successfully applied to GRBs in the past
and appears to be a reasonable first assumption for magnetar
bursts with their exponential-like tails and shorter burst rise
times compared with the decay timescale. Because the burst
has a sharp initial spike and then a long, relatively flat, but
very variable tail, a single FRED profile has trouble fitting the
entire light curve well: it can either fit the main spike with
its sharp decay, or the long tail, but not both together. Hence,
we implement two more complex hypotheses: a FRED profile to
account for the initial spike, on top of a linear function modeling
the slow decay, as well as a model with two FRED components.
The former does not fit the beginning and end of the burst well,
as it does not drop to background noise level as it should at the
start and end of the burst. The latter provides the best fit of the
three, but is the model with the largest number of parameters and
requires an explanation for the origin of the additional FRED
component. The periodogram presented in the right panel of
Figure 8 shows how important the choice of burst envelope
is for disentangling red noise and deterministic envelope at low
frequencies: if the burst envelope could be modeled with a single
FRED profile, the low-frequency part of the power spectrum
would be entirely dominated by red noise, and the assumptions
we make in Section 2.2 hold to a fairly high degree. If the model
has additional components, however, either in form of a straight
line, another FRED profile or another type, this component
will dominate the periodogram up to about 60 or 70 Hz. As a
consequence, assuming pure red noise in this part, if the more
complex hypothesis were true, our assumption of pure red noise
might be a poor one in this frequency range. For what follows,
we choose the combination of FRED and linear model, to keep
our model as simple and the number of free parameters as low
as possible.

Having chosen a model for the overall burst morphology, we
make an estimate of the red noise part of the power spectrum:
we de-trend the light curve by dividing the light curve by
the lightcurve model fit and compute the periodogram of the
residuals. De-trending in this way will give us a light curve
fluctuating around a mean of 1, and in line with our assumption,
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Figure 8. This figure shows the effect that different choices of burst envelope have on conclusions for the relative strengths of the red noise component and envelope
component in the low-frequency part of the periodogram. Left: light curve of burst 080823478 with single-component fast-rise exponential decays (FRED) fit
(magenta), a FRED profile with a straight line to account for the long tail (orange), and a combination of two FRED profiles (green); right: periodogram of the same
burst and all three fits from 4 to 600 Hz. There are clear differences in how strong the envelope is at low frequencies. The Poisson noise level is shown in a light blue
dashed line for comparison.

(A color version of this figure is available in the online journal.)

we consider the variance around that mean to be red and white
noise only. We fit a power law (for the red noise) plus a
constant (accounting for Poisson noise) to the periodogram of
the residuals, and take the resulting power-law fit as a template
power spectrum to simulate red noise light curves from. Using
the method from Timmer & Koenig (1995), we simulate 100
light curve realizations from red noise power spectra only. Note
that light curves simulated according to Timmer & Koenig
(1995) will have entirely uncorrelated phases, which may
introduce a bias into the light curves if this does not accurately
reflect reality. More importantly, light curves generated this
way are distributed around a mean of zero. In reality, light
curves with negative count rates are unphysical, however,
any transformations applied to the simulated light curve will
result in correlations between phases in the periodogram. We
choose a method following Uttley et al. (2005) to generate
log-normally distributed light curves that have no negative data
points, accepting that the assumption of log-normally distributed
light curves introduces a potential bias into our simulations
via the correlations it introduces between the phases in the
periodogram. Each red noise light curve is combined with the
template assumed for the burst envelope. This will provide us
with 100 light curves including both an envelope and a red noise
component that we can use as fake observations to be analyzed
through our method. We add periodic signals in the same way
as in Section 4.3, however, since the red noise we included
in the simulations does not drop off as sharply as the burst
envelope in the previous section, the periodogram at 100 Hz is
still contaminated by red noise. Thus, here and in the following
section, we also include simulations with a periodic signal at
150 Hz to probe the white-noise dominated region, and run
each light curve through our Bayesian detection method.

The detection rates for various frequencies are shown in
Figure 9. Signals at 40 Hz are not detectable, with either
no or very few true positive detections. Detection rates rise
for higher frequencies toward the white noise limit, although
even for 150 Hz, a signal at a fractional rms amplitude of 5%
or 10% is still somewhat suppressed. The effect of red noise
on detectability is more wide-spread in frequency compared
with the case of a pure burst envelope, where the power due
to broadband variability drops sharply around 40 Hz. Binned
or smoothed periodograms are generally better at detecting

periodic signals combined with a burst envelope and red noise,
with detection rates in the unsmoothed periodogram only
approaching the performance of the smoothed spectra (and
at the same time the white noise limit) for high frequencies.
This again is due to the broadening of the periodic signal
in the convolution with the burst envelope and red noise. As
for the pure burst envelope simulations, total detection rates
contain a significant contribution from false positive detections,
and true positive detection rates approach total detection rates
for high frequencies and large fractional rms amplitudes. We
note that the false positive detection rate at low fractional
rms amplitude seems uncharacteristically high for the three-bin
periodogram at all frequencies in these simulations. At present,
we do not understand the reason for this. It is possible that
the broadband fitting is not entirely reliable in some of the
simulations. In practice, the results from the broadband fitting
of the periodograms of real bursts are checked to ensure
minimization to a global minimum. Additionally, we believe
the number of false positive detections is easily corrected
for by requiring that, in practice, signals at low fractional
rms amplitude need to be significant in at least two different
smoothed or binned periodograms.

4.5. Pure Red Noise

As a last example, we test detectability under the hypothesis
that our light curve has no deterministic element at all, and
consists purely of red noise. We generate light curves using
the method from Timmer & Koenig (1995), using the fit to
the periodogram of burst 080823478 as a template to achieve
comparable burst length, fluence, and rms variability. Again,
we introduced a periodic signal of constant rms amplitude
and randomized phase into each light curve, changing the
fractional rms amplitude of the signal for different simulations.
Figure 10 presents the detection rates for the simulations of
pure red noise. Detection rates for the pure red noise case are
comparable to the case where there is an envelope component,
indicating that the presence of a burst envelope does not
significantly alter detectability of a periodic signal if there
is a red noise component present. Low-amplitude signals are
suppressed in the case where the light curve consists only of red
noise compared with simulations including a burst envelope. As
for the combined light curves, detection rates for one or more
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Figure 9. Total (hollow markers and dashed lines) as well as true positive (filled
markers and solid lines; for a definition see caption of Figure 5) detection rates
for a periodic signal on top of a combined burst envelope and red noise light
curve. The different panels correspond to different frequencies of the periodic
signals, from 40 to 150 Hz. As before, we include detection rates of both the
unsmoothed and smoothed periodograms. Note that for the case where a periodic
signal is combined with a burst envelope and red noise, the periodic signal will
be significantly broadened, and thus one can more successfully detect these
signals in binned or smoothed periodograms. This is especially true at 70 Hz.
For higher frequencies, the difference becomes smaller, but is still appreciable.

(A color version of this figure is available in the online journal.)

Figure 10. Detection rates for a periodic signal on top of a red noise light curve.
The different panels correspond to different frequencies of the periodic signals,
from 40 to 150 Hz. As before, we include total (hollow markers and dashed
lines) and true positive (filled markers and solid lines, definition in caption of
Figure 5) detection rates of both the unsmoothed and smoothed periodograms.
Note that signals at 5% rms amplitude or below are generally suppressed, as
compared to the white noise detection limit accessible with standard Fourier
techniques.

(A color version of this figure is available in the online journal.)
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of the binned periodograms are always equal or higher than
for the unbinned periodograms, and below 70 Hz, even strong
signals become nearly undetectable. For high frequencies, the
detection rates approach the white noise predictions and are
slightly higher than predictions for simulations including both
a burst envelope and a red noise component, although detection
rates for a fractional rms amplitude of 5% are suppressed even
for a 150 Hz periodic signal. This indicates that the red noise
component is still significant at these frequencies, for the given
input spectrum. In reality, the frequency at which the white noise
detection limit holds will depend on the specific burst variability
for each observation.

4.6. Conclusions from the Simulations

The different types of simulations allow us to draw two
important conclusions for QPO detection: (1) in the limit of a flat
light curve, translating to a pure white noise power spectrum,
our method does equally well compared to standard Fourier
techniques, and (2) detection rates for more complex light
curves depend on the underlying emission mechanism. Even
a periodic signal may be significantly altered (i.e., broadened)
by the presence of a burst envelope and/or red noise, if the
periodic signal is modulated by these aperiodic processes, and
this broadening will depend specifically on the shape of burst
envelope and the red noise parameters, as well as the relative
strengths between the two. A significant broadening may in turn
affect detectability when it alters what our method interprets
as broadband noise, decreasing detection rates even for high
fractional rms amplitudes. For the small sample of bursts from
SGR J0501+4516, a simple, crude estimate comparing the
standard deviation to the mean in small frequency bins across
all bursts in the sample reveals that the assumption of red noise
holds reasonably well for frequencies above 30 Hz. Below, the
assumption may either be broken by the presence of a burst
envelope, or alternatively the bursts may be sufficiently varied
in red noise properties to produce the observed increase in
standard deviation about the mean. This need not mean that
our assumption of red noise is invalid in this regime, simply that
we do not know this to be true or false. Hence, we caution the
reader to interpret results at frequencies this low with care and
with the conclusions of the burst simulations in mind.

In general, signals below 70 Hz or so will be very difficult to
detect, unless they have fractional rms amplitudes of above 10%.
This is not impossible, given the high fractional rms amplitudes
observed from the 2004 giant flare (see Watts 2012, Table 1
for an overview), however, even for high amplitudes false
non-detections may still occur. We recognize these issues as
a shortcoming of the presented method, however, in the absence
of any physical model or empirical evidence for a consistent
burst envelope structure, we opt for the conservative approach
presented here. Thus, we caution the reader to keep the effects
described above in mind when interpreting the posterior p-values
and sensitivities quoted in Section 5 below.

On the other hand, we have also shown that while the
sensitivity of our method depends on the type of light curve
analyzed, detection rates for both light curves combining an
envelope and red noise—the case we consider most likely for
SGR bursts—and for pure red noise light curves, detection
rates are quite similar, within the uncertainties, indicating that
the additional envelope component does not significantly alter
our chances of detecting a signal. Hence, unless light curves
are purely deterministic, our method will yield fairly reliable
results. At the same time, the false positive detection rate is

generally low in most simulations, which is one of the key
goals of developing this technique for transients. False positive
detections can be dealt with by requiring detection in more than
one smoothed or binned periodogram.

Finally, we would like to make two notes. First, the findings
above are based on the assumption that a periodic signal will
vary with the underlying light curve, that is, that the fractional
rms amplitude, rather than the absolute amplitude, remains
constant. This assumption, of course, need not be true. Instead,
the absolute amplitude may be constant, in which case a periodic
signal would truly remain confined to two frequency bins,
and none of the broadening would occur. Second, we also
note that the false positive detection rate is low, as expected
for a conservative approach. For 100 fake observations, and
a detection threshold of p < 0.05 for each observation, we
find roughly five false positive detections in most runs, exactly
as expected. The sole exception is the run that combines a
burst envelope and red noise. At present, it is not clear what
causes this increase in false positive detection rate. The false
positive detection rate can be lowered by tightening the detection
threshold to a smaller probability, at the cost of increasing the
upper limit to the amplitude of a signal we might have missed,
or, in other words, increasing the risk of false non-detections.

5. RESULTS

We computed light curves and periodograms for all 27 bursts
(Sections 5.2 and 5.3) as well as time segments before and
after each burst (Section 5.1). In each case, we produced a
light curve by binning the TTE data to a time resolution
of 1/2νNyquist = 1.22 × 10−4 s, corresponding to a Nyquist
frequency of νNyquist = 4096 Hz. The time resolution may
be arbitrarily chosen, as long as it remains poorer than the
time resolution of the detector itself, i.e., 2 µs for Fermi
GBM, although searches with high frequency resolution up
to large Nyquist frequencies quickly become computationally
expensive. We chose the time resolution based on the Nyquist
frequency of interest: we do not expect any signals above
4000 Hz from neutron star seismic oscillations (McDermott
et al. 1988). We search both the unbinned periodogram as well
as the same periodogram binned to integer multiples (3, 5, 7,
10, 15, 20, 30, 70, 100, 200, 300, 500, and 700) of the frequency
resolution of that burst, i.e., the actual frequency resolution of
the binned periodograms depends on the frequency resolution
of the unbinned periodogram. Additionally, we smooth the
spectra with a Wiener filter with different smoothing factors
(3, 5, and 11) and compare results of the search of binned
periodograms with searches across the smoothed periodograms.
Note that while computing sensitivities for binned periodograms
is statistically straightforward, doing so for a convolution of
the periodogram and a smoothing function is not, hence all
sensitivities quoted refer to either the unbinned or binned
periodogram, but never the smoothed one.

5.1. Checking for Spurious Timing Signals

Fermi GBM sees the entire unocculted sky at any given
point in time. Therefore, the γ -ray background can be rather
complex, and one must exclude that a background source
supplies significant variability to the burst periodogram. To this
end, we performed timing analysis on 1 s and 10 s long segments
before and after each burst as well as on the bursts themselves.
The light curves constructed out of these segments were Fourier
transformed and normalized in order to produce periodograms
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Table 1
Posterior Summary of Results for the Broadband Modeling for All Bursts in the Sample

Burst ID Length Fluence Model p(LRT) p(SSE) α1 α2

(ms) (erg cm−2)

080822529 86 7.05 flat 0.31 ± 0.01 0.82 ± 0.01 · · · · · ·
080822647 216 19.3 PL 0.10 ± 0.01 0.70 ± 0.01 2.41+0.39

−0.35
· · ·

080822981 30 4.41 PL 0.16 ± 0.01 0.84 ± 0.01 2.42+1.44
−1.23 · · ·

080823020 66 25.02 PL 0.99 ± 0.002 0.55 ± 0.02 2.72−0.65
· · ·

080823091 676 82.84 flat 0.59 ± 0.01 0.02 ± 0.005 · · · · · ·
080823174 447 14.3 PL 0.09 ± 0.008 0.82 ± 0.01 1.93+0.91

−0.71 · · ·
080823248 272 22.18 PL 0.29 ± 0.01 0.85 ± 0.01 4.19+1.95

−1.50
· · ·

080823293a 189 20.10 PL 0.11 ± 0.01 0.75 ± 0.01 2.65+0.61
−0.60 · · ·

080823293b 38 9.54 flat 0.09 ± 0.009 0.95 ± 0.006 · · · · · ·
080823319 142 19.42 PL 0.16 ± 0.01 0.78 ± 0.01 2.79+1.04

−0.70 · · ·
080823330 192 67.05 PL 0.47 ± 0.02 0.18 ± 0.01 2.71+0.36

−0.34 · · ·
080823354 96 8.62 PL 0.51 ± 0.01 0.89 ± 0.01 3.35+1.37

−1.06 · · ·
080823429 94 14.24 PL 0.09 ± 0.009 0.97 ± 0.005 4.17+1.56

−1.28 · · ·
080823478 264 512.6 BPL 0.003 ± 0.002 0.13 ± 0.01 2.16+2.09

−0.84 5.21+2.41
−3.25

080823623 220 21.12 PL 0.30 ± 0.01 0.23 ± 0.01 1.97+0.55
−0.46 · · ·

080823714 406 33.04 PL 0.58 ± 0.02 0.57 ± 0.02 1.77+0.34
−0.31 · · ·

080823847a 264 78.61 PL 0.10 ± 0.009 0.63 ± 0.02 2.55+0.33
−0.30 · · ·

080823847b 108 33.09 PL 0.92 ± 0.008 0.96 ± 0.005 2.48+0.55
−0.48 · · ·

080823986 60 4.37 flat 0.22 ± 0.01 · · · · · · · · ·
080824346 34 5.70 PL 0.99 ± 0.003 0.78 ± 0.01 3.02+3.45

−1.58
· · ·

080824828 82 6.39 flat 0.42 ± 0.02 0.86 ± 0.01 · · · · · ·
080825401 128 104.8 PL 0.14 ± 0.01 0.75 ± 0.01 2.25+0.24

−0.22 · · ·
080826136 160 507.3 BPL 0.026 ± 0.005 0.99 ± 0.001 2.02+0.89

−1.41 4.86+2.82
−3.00

080826236 88 17.08 PL 0.99 ± 0.003 0.44 ± 0.02 2.27+0.69
−0.57

· · ·
080828875 72 5.28 PL 0.93 ± 0.008 0.92 ± 0.008 3.42+3.09

−1.51
· · ·

080903421 50 10.96 PL 0.96 ± 0.006 0.76 ± 0.01 5.20+2.52
−2.81 · · ·

080903787 100 13.88 PL 0.06 ± 0.007 0.66 ± 0.02 2.44+0.81
−0.61 · · ·

Notes. Burst lengths and fluences are taken from Lin et al. (2011). The posterior probability for the likelihood ratio is always for the simpler model

tested (i.e., either power law or constant). α1 is the power-law index in the simple power law, and the low-frequency power-law index in the broken

power-law case. α2 is the high-frequency power-law index in the broken power-law case. We quote the fifth and ninety-fifth percentiles for each quantity

derived from a MCMC sample of 50,000 individual parameter sets.

with a Leahy normalization (noise powers averaging to 2; Leahy
et al. 1983).

For none of the segments before and after each of the 27
bursts in our sample did we find significant detections of
periodicities or QPOs. All segments present white-noise
dominated periodograms consistent with a Poisson noise χ2

distribution, indicating that the burst emission is not contami-
nated by a background source with significant timing behav-
ior or instrumental effects on the relevant timescales. This
includes any potential signal from the source itself. Any ad-
ditional background source contributing emission would have
to have switched on at the same time as the burst occurred, and
switched off equally fast. This is highly unlikely. Note, however,
that some instrumental effects, particularly dead time, scale with
the source flux, and will not be recognizable in the background
periodograms. Dead time in particular has an intricate effect on
the burst periodogram, and led us to exclude the brightest bursts,
which were also saturated.

5.2. An Example: Timing Analysis of Burst 080823478

In the following, we illustrate the analysis procedure with one
specific burst, bn080823478, before giving results for the whole
sample. This burst had a duration of T 90 = 264 ms and the

highest fluence of the sample (see Table 1). The periodogram
for this burst is presented in Figure 11.

5.2.1. Choosing a Noise Model

After fitting both a simple power law and the more complex
broken power law, we computed the likelihood ratio between
the two models, LRT = 10.69. Note that here, as well as in
the analysis of the remaining sample, we set the smoothness
parameter of the broken power law to −1 as in Vaughan (2010).
The resulting function should more correctly be called a bending
power law in this case, since it turns over in a smooth bend
rather than a sharp break. Setting the smoothness parameter
to −1 introduces a potential bias into the determination of
the low-frequency power-law index for this model, however,
including the smoothness parameter in the MCMCs, we found
that the posterior distributions of this parameter for the bursts
in our sample are very broad, indicating that the parameter is
unconstrained. At the same time, it is correlated with the low-
frequency power-law index, and thus the quoted values for this
parameter should be read with caution. Additionally, we show
below that the overall goodness of fit of the model to the data is
good, indicating that another component is not needed. The fits
to the periodogram and the residuals (data/fit) are presented
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Figure 11. Fermi GBM observation of burst bn080823478 from SGR J0501 +
4516: periodogram and residuals Ij /Sj (for the light curve, see Figures 1 and 8).
Upper panel: unsmoothed (black) and smoothed (orange; Wiener filter, 5∆ν)
periodogram, power-law fit (blue) and broken power-law fit (red). Middle panel
and lower panel show the residuals of the power-law fit and broken power-law
fit, respectively. The broken power law presents a significantly better fit to the
data.

(A color version of this figure is available in the online journal.)

in Figure 11. We use the Gaussian approximation to the
covariance and the best-fit model parameters for the power-law
model (H0) as input to 500 MCMC ensemble walkers (see
Section 2.2 or Foreman-Mackey et al. 2013 for details) with
100 samples each, after a burn-in phase with 100 samples for
each walker. Figure 12 presents the posterior distributions of
all five parameters and their correlations with each other. With
1000 randomly picked parameter sets from this sample of 50,000
parameter sets, we create 1000 fake periodograms, and compute
the posterior predictive p-value for the LRT of the observed data
using the formalism outlined in Section 2.2. In Figure 13 we
plot a histogram of the posterior distribution for the likelihood
ratio from the simulated periodograms. The black vertical line
indicates the value of the likelihood ratio of the observed data.
For bn080823478, p(LRT) = 0.003 ± 0.002, hence we consider
observing these data unlikely under the null hypothesis (a simple
power law), and we adopt model H1 for the rest of our analysis
of this burst.

5.2.2. Searching for Periodicities

We use the broken power-law fit to the periodogram to draw
another sample of MCMC parameter sets, in the same fash-
ion as outlined above, and simulate 1000 fake periodograms
all following a broken power law. From these, we computed
the summed-square residuals TSSE and search for the highest
data/model outlier, TR in the unbinned and binned periodogram.
The latter should tell us about any features narrower than the
frequency resolution n∆ν (where n = 1 for the unbinned peri-
odogram and n > 1 for binned periodograms), while the former
will give information about the overall fit of the model to the
data. For this burst, we computed the posterior predictive dis-
tribution for the square-summed residuals and compared this
distribution to the observed value, finding pSSE = 0.49 ± 0.01.
As this statistic is an indicator for how well the model fits the
data, we expect a low pSSE to indicate that the model fit could

be improved, either by implementation of a different model
or addition of model components. For this burst, we conclude
the model fits the data rather well. The highest outlier in the
residuals is at νmax = 2317 Hz with a power 2I/S = 15.71
and a posterior predictive p-value p(TR) = 0.42 ± 0.02. The
observed maximum power seen in the residuals is well within
the distribution of outliers produced by the Monte Carlo sim-
ulations of the broadband model without any periodicity (see
Figure 14), and is hence unlikely to represent a real peri-
odic process. Similarly, we find maximum outliers as well
as posterior probabilities of these outliers for the smoothed
and binned periodograms, neither of which show no signif-
icant features. The results are summarized with the remain-
ing model parameters as well as the other bursts in Tables 1
and 2. None of the outliers were significant, thus we conclude
that under our assumption of red noise, there are no narrow
(quasi-)periodic signals in this data set. The posterior distribu-
tions and the observed values for the unsmoothed and smoothed
periodograms are presented in Figure 14.

We searched the burst for broader quasi-periodic signals
using an additional Lorentzian component and comparing the
mixture model of broadband noise process and Lorentzian to the
pure broadband model. With a posterior probability of the pure
broadband model of p(LRT) = 0.51 ± 0.02 (i.e., the probability
that this model is sufficient in explaining the observed data), we
conclude that there is no QPO in the burst.

5.3. Whole Sample

For all bursts, we followed the same procedure as for
080823478. All of the preferred models had a fairly high
p(SSE), which indicates that the overall fit of the preferred
model to the data is good. A summary of the results is presented
in Table 1. Periodicity searches on the data are summarized in
Table 2. While we compute posterior p-values for all binned and
smoothed spectra, we only report the results for the unbinned
spectra here for reasons of brevity, and only point out significant
results in the binned spectra where appropriate.

None of the 27 bursts shows periodicities of any noteworthy
significance in any of the unbinned (see Table 2, column p(TR))
periodograms. The highest data/model outlier significance is
seen in burst bn080823847a (see Figure 15 for a light curve
and periodogram), p(TR) = 0.11 ± 0.01, at frequency νmax =
4057 Hz with a power P (2I/S) = 18.88, well below the
power required to reach the detection threshold corresponding
to a posterior p-value of 5%. However, the same burst shows
significant signals in the binned periodograms, as summarized
in Table 3. Note that p-values quoted there are corrected for
the number of frequencies searched, but neither for the number
of bursts searched nor the number of binned spectra searched
for each burst. While the former is straightforward (a simple
multiplication factor of 27 for the number of bursts searched),
the latter is more complicated, owing to the fact that searching
different binnings for a single periodogram does not result
in independent trials. The most conservative assumption is to
consider them independent, including another multiplication
factor equal to the number of binnings searched (here: 9). This
would rule out all but the two signals with frequency bins of 95
and 158 Hz, which remain significant even after a correction for
the number of trials.

Comparing the results in Table 3 to the periodogram of
the same burst in Figure 15 allows for several interesting
observations, whose implications will be discussed in detail in
Section 6. The frequencies at which significant excess powers
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Figure 12. The MCMC sample of the parameters for the preferred broadband model for burst 080823478 (here: a broken power law). The posterior distributions for
individual parameters are presented on the diagonal. If a posterior distribution is very broad, then the parameter is not very well constrained (indicating a high standard
deviation on that parameter), and a simpler model might be adequate. The off-diagonal panels show correlations between parameters (panels opposite of each other,
mirrored on the diagonal, are equivalent): scatter plots for 1000 randomly picked parameter pairs from the entire sample of 250,000 parameter sets, and contours of
number density. One can observe for example a very tight correlation between low-frequency power-law index and normalization, and very little correlation between
the normalization and the noise. Other parameters may correlate in more complex ways with each other. The trails and “clumpiness” in some of the scatter plots
indicate that the distributions are not perfectly unimodal, and that even for highly peaked distributions, there are parameters far off the mean that are nevertheless not
entirely unlikely.

(A color version of this figure is available in the online journal.)

are detected in the binned spectra are all at integer multiples
of a suspicious feature at around 30 Hz, which in itself is not
significant in any of the searches. The periodogram itself shows
fairly prominent features at the frequencies at which signals are
detected (see arrows in Figure 15, right panel), which become
more prominent in the binned spectra, lending confidence that
these might be real signals, and not false positive detections.
If indeed there is a feature at 30 Hz, whose significance is
diminished by the presence of red noise, then the higher-
frequency detections may correspond to harmonics of this
signal. The implications of these findings are discussed in more

detail in Section 6. Since we only search for the highest peak
in each periodogram, there is a chance that several frequencies
may be significant in each binned periodogram. This would
require a more extensive search, including, e.g., the second-
and third-highest peaks in the analysis. Additionally, a potential
signal may have an energy dependence, thus an energy-resolved
timing analysis may yield more conclusive results.

In none of the 27 bursts do we find any significant QPOs (see
last column in Table 2). Posterior probabilities for the broadband
model alone are largely in the range 0.2–0.8, indicating that the
broadband model alone is an adequate fit to the data, and an
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Table 2
Results for the Search for Periodicities and Quasi-periodicities in the Entire Sample of Bursts

Burst ID Maximum Measured Power Sensitivities (% rms) p(LRT)

TR νmax p(TR) 40 Hz 70 Hz 100 Hz 500 Hz

080822529 1.43 1973 0.77 ± 0.01 19 19 19 19 0.47 ± 0.02

080822647 14.36 3283 0.56 ± 0.02 78 40 28 16 0.48 ± 0.02

080822981 7.79 2118 0.98 ± 0.004 · · · · · · 72 16 0.76 ± 0.02

080823020 13.77 3145 0.31 ± 0.01 80 32 23 13 0.50 ± 0.02

080823091 0.44 2367 0.80 ± 0.01 9 9 9 9 0.51 ± 0.02

080823174 18.14 1711 0.24 ± 0.01 13 12 12 12 0.48 ± 0.02

080823248 12.49 95 0.91 ± 0.01 18 17 17 17 0.53 ± 0.02

080823293a 15.51 2069 0.32 ± 0.02 23 14 12 10 0.49 ± 0.02

080823293b 11.03 3593 0.54 ± 0.02 35 35 35 35 0.50 ± 0.02

080823319 14.39 1542 0.43 ± 0.02 28 18 16 14 0.54 ± 0.02

080823330 15.07 3695 0.46 ± 0.02 40 19 12 6 0.88 ± 0.01

080823354 12.13 2407 0.72 ± 0.01 46 26 21 18 0.81 ± 0.02

080823429 12.97 3689 0.55 ± 0.02 81 24 17 13 0.49 ± 0.02

080823478 15.71 2317 0.42 ± 0.02 28 12 8 4 0.51 ± 0.02

080823623 18.60 902 0.09 ± 0.009 24 17 16 14 0.51 ± 0.02

080823714 15.03 1301 0.69 ± 0.01 19 14 13 11 0.85 ± 0.01

080823847a 18.88 4057 0.11 ± 0.01 43 23 15 8 0.49 ± 0.02

080823847b 11.03 2515 0.94 ± 0.007 · · · 57 40 15 0.50 ± 0.02

080823986 10.07 2791 0.74 ± 0.01 19 19 19 19 0.47 ± 0.02

080824346 9.39 2968 0.83 ± 0.01 · · · 70 55 26 0.52 ± 0.02

080824828 2.54 74 0.66 ± 0.01 23 23 23 23 0.24 ± 0.02

080825401 12.36 496 0.80 ± 0.01 73 36 26 7 0.94 ± 0.007

080826136 12.80 2868 0.77 ± 0.01 43 20 11 5 0.54 ± 0.02

080826236 13.16 3536 0.49 ± 0.02 70 38 28 15 0.56 ± 0.02

080828875 12.24 667 0.56 ± 0.02 54 25 17 17 0.53 ± 0.02

080903421 9.97 3781 0.66 ± 0.02 · · · 33 24 22 0.56 ± 0.02

080903787 14.04 2817 0.40 ± 0.02 73 42 28 16 0.50 ± 0.02

Notes. We show the TR = maxj (R̂j ) statistics for each burst, along with the associated frequency and the posterior probability to find this outlier given a pure noise

process. For each burst, we also quote sensitivities, i.e., the fractional rms amplitude a periodic process would have needed to have in order to be detectable for our

method, given the noise process and parameters determined for that burst. Note that due to the excess power in the low-frequency part spectrum being modeled as

red noise, the sensitivity will depend on frequency, and be generally less constrained in the low-frequency part of the spectrum than in the white-noise dominated

high-frequency spectrum. Where no sensitivity is given, the derived value exceeded 100%. A signal with more than 100% fractional rms amplitude would have negative

counts, and is therefore not physical. A sensitivity limit on the amplitude >100% merely indicates that we cannot constrain the signal amplitude at the given frequency

at all. Finally, we also present the posterior probability on the likelihood ratio for a model containing a QPO versus a model without QPO, which is an indicator for

the presence of a QPO in the spectrum.

Figure 13. Distribution of likelihood ratios for 1000 simulations of the null
hypothesis (power-law model). The observed value of TLRT for burst 080823478
is indicated as a black vertical line. The further to the right (i.e., the further in
the tail of the distribution) this observed value is located, the more unlikely the
null hypothesis becomes, indicating that a more complex model (in this case
the broken power law) may be more appropriate in modeling the broadband
variability.

(A color version of this figure is available in the online journal.)

additional Lorentzian does not result in a better fit. However,
we also note that the posterior probability of the likelihood
ratio is clustered around 0.5 for 19 out of 27 bursts. Since for a
well-behaved probability statistic applied to data consistent with
the null hypothesis, p-values should be uniformly distributed
between 0 and 1, this clustering indicates that the test is
conservative in the sense that it does not overstate the rejection
of either null hypothesis or alternative hypothesis. In practice,
results on the LRT should be combined with those on the binned
spectra to yield reliable detections.

5.4. Broadband Variability

The broadband variability observed in the bursts is not just
a nuisance when searching for (quasi-) periodicities, but is of
interest in its own right: it shows that something is varying in
the source, although not periodically. Here, we have chosen a
purely phenomenological approach, selecting empirical models
that are both simple and widely observed in many astrophysical
contexts, without physical justification. Hence, the question
of whether we can derive any physical knowledge from these
empirical models is an interesting and important one.

Almost all bursts in the sample are well-modeled by a
simple power law, although the lower and upper bounds on
the 90% credible interval show a large variation in some
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Figure 14. Histograms of posterior distributions and observed values (black
vertical lines, burst 080823478) of the TR statistic defined in Equation (11).

(A color version of this figure is available in the online journal.)

indices, indicating that they are not very well constrained.
Some caution should be used when interpreting these values,
since they were derived from a sample of bursts with very
diverse properties overall, such as burst length and fluence.
Additionally, an unmodeled burst envelope may significantly
change the slope of the power law-like part of the periodogram.
A reliable characterization of the broadband properties hinges on
our knowledge of the processes (both noise and non-stochastic)
involved, and will be deferred to a future paper involving a larger
sample of bursts. Figure 16 shows the distribution of power-law
indices for all bursts where at least a simple power law was
required to adequately represent the data. The distribution of
indices ranges from 1.7 to 4.3 and peaks around 2.5, which is
higher than commonly seen for example in GRBs (see, e.g.,
Beloborodov et al. 2000 and Guidorzi et al. 2012).

Four bursts could be modeled without invoking the presence
of red noise at all; contributions by burst variability were con-
fined to very low frequencies and standard Fourier techniques
apply for all but the first three or four frequency bins. Only two
bursts required the more complex model (bursts 080823478 and
080826236). While these were not the longest bursts, they had

Table 3
Posterior Summary for Various Binned Periodograms Derived

from Burst 080823847a

dνbin νmax TR p(TR)

(Hz) (Hz)

16 310 7.24 0.017 ± 0.004

22 2094 7.01 0.004 ± 0.002

32 301 6.01 0.003 ± 0.002

47 307 4.90 0.002 ± 0.001

63 4067 4.27 0.003 ± 0.002

95 2096 4.10 (<2.0 × 10−5)

158 2129 3.26 (<2.0 × 10−5)

316 2050 2.59 0.027 ± 0.005

633 2050 2.45 0.003 ± 0.002

949 2050 2.34 0.007 ± 0.003

1583 2050 2.16 0.029 ± 0.005

Notes. p-values were derived using an increased number of 50,000 simulations

in order to increase the resolution on small probabilities. The first column holds

the binned frequency resolution, dνbin, the second column the frequency at

which the highest outlier TR was found, νmax, column three the corresponding

value of the TR statistic and finally column four the associated posterior

p-value to find that value in a pure noise spectrum, binned to the same

frequency resolution. Note the probabilities without errors in brackets at binning

frequencies of 95 and 158 Hz. The p-value there turned out to be zero at

these binning frequencies. Of course, the p-value is not actually zero; however,

since we approximate the posterior distribution of TR with a finite number of

simulations, there is a possibility that the true probability to achieve the observed

value with only noise is small enough that none of the simulations will exceed

the observed TR, giving rise to a zero p-value. We computed the p-values with

up to 50,000 simulations, and hence state an upper limit on the p-value of

2.0 × 10−5.

the highest fluence (except for the excluded saturated bursts),
indicating a potential correlation between power spectral shape
and burst fluence. This is expected: the normalization (i.e., the
relative strength to the noise) of the broadband noise model
depends directly on the number of counts detected, thus bright
bursts may enable us to see the cut-off frequency of the power
law as set by the burst duration, whereas many of the other bursts
have too low a fluence to observe the same behavior. Alterna-
tively, it is possible that the difference in power spectral shape
is intrinsic to the source, that is, the physical processes creating
this kind of variability vary in some way with burst fluence.
Without a model for the emission processes producing the burst

Figure 15. Fermi GBM observation of burst bn080823847a from SGR J0501+4516. Left: light curve with a time resolution of 0.002 s. Structure in the burst profile is
clearly visible. Right: unbinned (blue) and binned (magenta: 16 Hz binning; orange: 65 Hz binning) periodogram for this burst. There is a feature in the periodogram
around 30 Hz (leftmost arrow), which is by itself not significant. However, significant features reported in Table 3 are all at integer multiples of this frequency (within
the uncertainty imposed by the frequency resolution), indicating the presence of harmonics at 150 Hz, 300 Hz, 900 Hz, and 2100 Hz (arrows 2–5).

(A color version of this figure is available in the online journal.)
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Figure 16. Distribution of power-law indices (α for single power law, α2 for
broken power law) for all bursts where the power law or broken power law was
preferred.

(A color version of this figure is available in the online journal.)

in the first place, however, it is difficult to assess the validity of
the latter hypothesis. Additionally, with only two bursts prefer-
ring the broken power-law model, the numbers are too low to
draw conclusions, and we defer the discussion on the physical
implications of the broadband noise modeling to a later paper
utilizing a larger sample of magnetar bursts.

6. DISCUSSION AND CONCLUSION

Magnetar bursts are a potential window into the interior of
neutron stars, via the oscillations measured in magnetar giant
flares. Finding analogous signals in the wealth of short SGR
bursts, however, poses something of a challenge. We have shown
that timing analysis of astrophysical transients is a non-trivial
problem. Standard Fourier techniques are defined for infinitely
long time series, an assumption that is clearly broken by the
non-stationary nature of transient events in general, and magne-
tar bursts in particular.

Monte Carlo simulations of light curves fail to be predictive
when there is no precise knowledge of the underlying burst light
curve: there is a degeneracy between the overall, aperiodic burst
shape, a potential red noise component, and the very thing we
would like to measure: a QPO. When the light curve is not
adequately modeled, then the periodograms produced from the
Monte Carlo simulations will not reproduce the low-frequency
part of the periodogram, where it clearly diverges from the
statistical distributions expected for pure white noise.

In the absence of better knowledge about the emission
processes in magnetar bursts, we advocate a conservative
Bayesian method that models the burst light curve as a pure
red noise process. It is purely empirical in the sense that it does
not require additional assumptions on the underlying physical
processes, except for fairly broad assumptions on what the
power spectrum shape might be. Assuming pure red noise is, in
a way, the complementary extreme to Monte Carlo simulations
of the light curve: in one, we assume only a deterministic burst
profile without the presence of red noise, with the price that
inadequate modeling of the periodogram shape will lead to
spurious detections. Here, we assume only red noise, at the

cost that weak signals are likely missed. This is the greatest
weakness of our approach. We have shown in Section 4 that
even strong signals may be undetectable at low frequencies,
where burst envelope and red noise dominate. These, however,
are exactly the frequencies at which many of the QPOs in giant
flares have been seen (e.g., 18 Hz, 30 Hz for the 2004 giant flare;
see Israel et al. 2005). This limitation is in part not only due to
restrictions of our method, but also to the short lengths of the
SGR bursts, where at these frequencies only one or two cycles
may be seen in the light curve. Upper limits below 100 Hz are
often fairly unconstraining, and range from 10% to more than
100% fractional rms amplitude for a signal to be detectable. At
frequencies close to and above 100 Hz, sensitivities approach
the white noise limit, which is strongly dependent on the number
of photons from a particular burst. Thus, for a bright burst with
good count statistics, sensitivities are quite constraining, down
to less than 10% (e.g., burst 080823478, see Table 2). This is
comparable to what was observed in giant flares: for example,
a QPO at 93 Hz, as seen in the 2004 flare, at roughly 10%
rms amplitude (Israel et al. 2005; Watts & Strohmayer 2006),
should be detectable in at least the brightest bursts of our sample.
Similarly, a high-frequency QPO like the one at 625 Hz seen
in the 2004 flare with a fractional rms amplitude of up to 20%
should be clearly detected with our method as well.

However, QPOs in SGR bursts may be less strong than in the
giant flares, owing to the lower energy injected in SGR bursts,
and hence more likely to be misclassified as non-detections, if
their fractional rms amplitudes fall below 5%. Additionally, we
restrict ourselves when searching for periodicities by consider-
ing only the highest peak in the spectrum, which is clearly not
adequate when there are multiple signals in the periodogram.
On the other hand, if even the highest peak is not significant,
any other peak in the periodogram will be even less significant.

The burst 080823847a presents an interesting case that
illustrates the limits of a pure signal-processing approach to the
timing analysis shown here. Two of several significant signals
detected in the binned spectra remain significant even after the
most conservative correction for the number of trials is applied,
indicating that there is indeed a real signal present. However, the
nature of this signal is at present unclear. The detected signals
are possibly harmonics of a lower-frequency signal around
30 Hz, corresponding to a timescale of τ = 1/ν = 33 ms.
This timescale roughly corresponds to the two sharp peaks
seen in the burst light curve in Figure 15 (left side). Whether
we consider this to be a QPO atop a burst envelope or not
cannot be answered from Fourier analysis alone; it becomes a
matter of interpretation and prior knowledge. The presence of
harmonics indicates a signal repeating on the timescale of the
fundamental, but with variability on shorter timescales in the
signal. One could well interpret the two peaks in the light curve
as a strongly damped (quasi-)periodic signal that is amplified
together with some underlying burst profile and dies away after
two, possibly three, cycles. The frequency of this signal is
similar to that observed from the 2004 giant flare (Israel et al.
2005; Strohmayer & Watts 2005), and thus not unlikely. On the
other hand, this kind of signal can equally well be derived from a
red noise process. The fact that red noise is a stochastic process
means that at some point, two or even three peaks will follow
each other, as in the present burst. While red noise itself would
not introduce harmonics, the signal could be boosted by an
underlying burst envelope, introducing the observed harmonics.
At present, without any knowledge about emission processes
and the kind of light curve they produce, it is impossible to
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distinguish the two, and we choose the conservative approach
and interpret the observed feature as part of a noise process.

Another problem as yet unsolved is that of false non-
detections we expect, i.e., weak signals missed due to the fact
that we assume a pure red noise process. There are several ways
to break this dilemma, but all require more detailed knowledge
of the variability-producing processes in the neutron star, and
this is where both theoretical efforts and development of novel
statistical techniques are required. What produces the burst
emission? What produces the aperiodic variability seen in the
red noise part of the periodograms? Until we can answer these
questions, finding QPOs in magnetar bursts will always suffer
from the essential degeneracy between burst envelope and red
noise. If we knew the overall burst shape, one could, for example,
simulate light curves, but as a combination of a burst profile and
a red noise process, as done in Section 4, and compare this
sample to the observed periodogram. Other approaches involve
leaving behind the Fourier domain and its incorrect assumption
of stationarity behind altogether.

Knowledge about the burst envelope, on the other hand, would
also offer us an additional source of observational information
to exploit: if we can use the existing information on the hundreds
of bursts available to learn something about the burst envelope
shape, we may be able to put tight constraints on potential
QPO detections and provide additional observational constraints
for burst emission models in general. Clearly, with the right
statistical techniques, there is a wealth of information yet to
be extracted from the SGR bursts observed with Fermi GBM.
Additionally, for bursts with high count rates, it is possible to
study variability properties of the bursts with energy, thanks to
Fermi/GBM’s excellent energy resolution. These studies may
provide additional information on QPOs that depend on energy.
The methods developed here, however, while developed with
SGR bursts in mind, are by no means limited to magnetars. They
are applicable in fairly general circumstances, for any light curve
that is phenomenologically similar to what we observe from
magnetars: highly variable, transient events with complex light
curves. This includes, for example, other known transients such
as GRBs, tidal disruption events, and supernova light curves.
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APPENDIX A

COMPARISON WITH RECENT RESULTS

El-Mezeini & Ibrahim (2010) searched a data set of SGR
bursts from SGR J1806−20, found in data taken with the RXTE.
They report the significant detection of QPOs in 5 different
SGR bursts out of a sample of 30, with frequencies of 84, 103,
and 648 Hz with significances �4.3σ , estimated using Monte
Carlo simulations of light curves equivalent to those described in
Section 2.1, by smoothing the burst light curve and subsequently
adding Poisson detector noise to form a null hypothesis against
which to test the data. For the reasons stated in Section 2.1,
we do not believe these estimates to be conservative, and
consequently reanalyze this data set from 1996 November 5–18
after barycentering the data and filtering out photons outside

the range 2–60 keV, where the response curve of the instrument
indicates that noise will dominate at these energies. We use
data from all Proportional Counter Units of the Proportional
Counter Array detector. We use the Bayesian analysis presented
in Section 2.2 to choose a broadband noise model and search
for (quasi-)periodic signals in the same data set. The results are
presented in Table 4 and Figure 17.

For the most part, we cannot confirm the detections shown
in El-Mezeini & Ibrahim (2010) using our Bayesian methods.
Only one burst shows a marginally significant signal: burst 3
(p = 0.03 ± 0.01) at a frequency of around 3706 Hz, and only
in one binned spectrum. Given the posterior probability is very
close to our (rather high) detection threshold, we are inclined
to disregard this detection as insignificant as well, as it would
indeed become insignificant as soon as we take the number of
bursts searched into account. This result is in stark contrast with
the probabilities quoted in El-Mezeini & Ibrahim (2010). There
are, however, errors in their analysis: taking into account the
varying nature of the background light curve should make the
significance of any claimed detection drop compared with the
significance computed from the ideal χ2 distribution. Although
El-Mezeini & Ibrahim (2010) do carry out simulations, the
significances that they quote rise substantially, indicating a
problem in their Monte Carlo simulation method. Indeed their
simulated power spectra show far fewer high noise powers than
one would expect given the number of simulations carried out
and the number of independent frequency bins (enhancing the
significance of any tentative detection).

APPENDIX B

DATA ANALYSIS RECIPES

B.1. How to Fit a Noise Model

Fitting a noise model is essentially a model selection task. In
the following, we will lay out the individual steps in a recipe-like
style.

1. Compute a periodogram of the burst light curve.
2. Fit the periodogram with both a simple model (the null

hypothesis) and a more complex model (the alternative
hypothesis we wish to test against), to get MAP estimates
for the parameters in each model

3. Using the MAP estimates, compute the likelihoods of the
data given each model and MAP parameters, then compute
the likelihood ratio of the complex model versus the simple
(null) model.

4. Produce a large MCMC sample approximating the posterior
distributions of the parameters of the null model.

5. Pick a (large) number n of parameter vectors from this
sample (e.g., n = 1000), and create power spectra from
these parameters and simulate a periodogram from each by
drawing a realization from the random process the power
spectrum represents. This will yield n fake periodograms.

6. Fit each simulated periodogram with both simple and
complex model, exactly in the same way as done for the
burst periodogram, and compute the likelihood ratio of this
simulation. The sample of likelihood ratios from fitting
the simulated periodograms will be representative of the
likelihood ratios one expects when fitting both the simple
and complex model to a sample of periodograms derived
entirely from the null hypothesis.

7. Compare the distribution of simulated likelihood ratios
with that of the observed burst, and compute the tail area
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Table 4
Summary of the Bayesian Analysis for Five Bursts Presented in El-Mezeini & Ibrahim (2010)

Quantity Burst 1 Burst 2 Burst 3 Burst 4 Burst 5

Start time (MET s) 90915519.65 90909708.72 90925017.31 90915519.65 9093707656

length (s) 0.13 0.31 0.12 0.11 0.36

Model PL PL PL PL PL

p(LRT) 0.84 ± 0.01 0.59 ± 0.01 0.13 ± 0.01 0.41 ± 0.01 0.38 ± 0.02

p(SSE) 0.91 ± 0.008 0.85 ± 0.01 0.39 ± 0.02 0.26 ± 0.01 0.75 ± 0.01

α1 2.63 2.68 2.52 2.67 2.29

α1 5% 2.07 2.31 2.06 2.10 2.11

α1 95% 3.31 3.12 3.04 3.37 2.47

Unsmoothed max(2I/S) 15.11 13.99 13.67 13.18 14.46

νmax 2464 2690 3696 3694 3246

p(TR) 0.13 ± 0.01 0.41 ± 0.02 0.08 ± 0.01 0.32 ± 0.01 0.95 ± 0.02

Three bins max(2I/S) 8.34 9.21 8.65 9.4 9.24

νmax 2466 2701 3706 3698 1394

p(TR) 0.20 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 0.11 ± 0.01 0.18 ± 0.01

Five bins max(2I/S) 7.38 8.51 8.73 6.33 7.15

νmax 2352 2703 3695 3687 1395

p(TR) 0.11 ± 0.01 0.05 ± 0.01 0.11 ± 0.01 0.24 ± 0.01 0.20 ± 0.01

Eleven bins max(2I/S) 4.27 6.91 5.05 4.98 5.85

νmax 2416 2708 3712 3648 2218

p(TR) 0.07 ± 0.01 0.41 ± 0.01 0.23 ± 0.01 0.29 ± 0.02 0.53 ± 0.01

QPO p(LRT) 0.49 ± 0.02 0.20 ± 0.02 0.47 ± 0.02 0.54 ± 0.02 0.25 ± 0.01

Notes. The choice of broadband model is recorded, as well as the results of the periodicity and QPO searches. Note that the posterior probability for the summed-squared

residuals (p(SSE) is shown for the model with the better fit, whereas the posterior probability for the likelihood ratio p(LRT) is shown for the simpler model always.

probability of seeing the observed likelihood ratio, if the
data were entirely drawn from the null hypothesis. If this
tail area probability is large, then the data are consistent
with the null hypothesis. The converse, however, is not
necessarily true. A small p-value indicates that the data are
unlikely to be drawn from the null hypothesis. This is not
a direct proof that the complex model is the underlying
process that produced the observed burst, however, it is an
indication that the more complex model is likely a better
representation of the data than the null hypothesis.

B.2. Searching for Periodicities

1. Fit a broadband noise model (e.g., the preferred model
as defined as above in Appendix B.1) to the burst, and
compute the residuals Rj = 2Ij/Sj , where Ij are the peri-
odogram powers and Sj is the broadband noise model at jth
frequency νj .

2. From the residuals, pick the highest outlier max Rj ; this is
the candidate single-bin periodicity.

3. Simulate a large number of periodograms from an MCMC
sample in the same way as done for the choice of noise
model above.

4. Fit each simulated periodogram with the preferred noise
model, compute the data/model residuals Rj and find the
maximum outlier max Rj in the residuals of each simulated
periodogram.

5. Compare the distribution of maximum outliers from the
set of simulations derived from the broadband noise model
with no periodicity present, to the outlier in the real burst
periodogram. One may compute the posterior predictive
p-value for the observed outlier in much the same way
as for the LRT. If the p-value is large, then the outlier is
consistent with a pure noise distribution.

B.3. Searching for QPOs

We search for QPOs as a model selection problem, where we
compare the broadband noise model to a more complex model
combining both the broadband noise model and a Lorentzian
to account for the QPO. Because we do not know the centroid
frequency of the potential QPO inherently, the task is slightly
more complex than that which we use for the choice of noise
model.

1. Fit the observed periodogram with the broadband noise
model and compute residuals Rj. Smooth the residuals with
a Wiener filter with a width of five frequency bins in order
to reduce the probability of the minimization algorithm
terminating in local minima due to sharp noise features.

2. At each frequency, fit a flat line and a Lorentzian of variable
width and intensity, but fixed centroid frequency to the
smoothed residuals and compute the likelihood of that fit.
We leave out the first five and last five bins in order to
avoid fitting the edge of the periodogram. The result of this
process will be the maximum likelihood as a function of
frequency.

3. Pick the frequency bin with the largest maximum likelihood
as given from modeling each frequency.

4. Fit the full-resolution periodogram with the broadband
noise model alone as well as a combined model of broad-
band red noise and Lorentzian, using the model parameters
for the largest maximum likelihood fit in the previous step
as starting parameters for this fit.

5. Compute the likelihood ratio for these two models.

6. Simulate a large number of periodograms (in our case, 500
to reduce computational load) from an MCMC sample of
the broadband noise model.
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Figure 17. Light curves, periodograms, and posterior distributions for the five bursts from SGR J1806 − 20 observed with the Rossi X-Ray Timing Explorer between
1996 November 5–18 presented in El-Mezeini & Ibrahim (2010). Long, upper plots for each burst are the light curves binned to 0.005 s. On the lower left, the
unsmoothed periodograms (black) the five-bin smoothed periodogram (orange) as well as the power law and broken power-law fits. Underneath each periodogram
is a plot of the residuals of dividing the periodogram by the broadband model (power law in the middle, and bent-power law on bottom). On the right, the posterior
distributions of the highest data/model outlier for the unsmoothed (upper left) and smoothed periodograms (rest; upper right: 3-bin smoothing, lower left: 5-bin
smoothing; lower right: 11-bin smoothing). The observed value is overplotted as a black vertical line.

(A color version of this figure is available in the online journal.)
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7. For each simulated periodogram, follow the exact same
procedure in steps 1–4 to produce an approximation to the
distribution of likelihood ratios from the null hypothesis.

8. Compare the distribution of likelihood ratios derived from
the simulated periodograms to the likelihood ratio for the
observed burst, and compute a posterior predictive p-value
for the probability of obtaining the observed likelihood
ratio, if the data were consistent with pure red noise.
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Göğüş, E., Woods, P. M., Kouveliotou, C., et al. 2010, ApJ, 722, 899
Groth, E. J. 1975, ApJS, 29, 285
Guidorzi, C. 2011, MNRAS, 415, 3561
Guidorzi, C., Frontera, F., Montanari, E., et al. 2004, A&A, 416, 297
Guidorzi, C., Margutti, R., Amati, L., et al. 2012, MNRAS, 422, 1785
Hastings, W. K. 1970, Biometrika, 57, 97
Holland, S. T., Barthelmy, S. D., Baumgartner, W. H., et al. 2008, GCN,

8112, 1
Hurley, K., Cline, T., Mazets, E., et al. 1999, Natur, 397, 41
Ibrahim, A. I., Strohmayer, T. E., Woods, P. M., et al. 2001, ApJ, 558, 237
Israel, G. L., Belloni, T., Stella, L., et al. 2005, ApJL, 628, L53
Israel, G. L., Romano, P., Mangano, V., et al. 2008, ApJ, 685, 1114
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