
DISCRETE AND CONTINUOUS Website: http://aimSciences.org
DYNAMICAL SYSTEMS
Volume 13, Number 3, August 2005 pp. 541–552

QUASI-PERIODIC SOLUTIONS FOR COMPLETELY RESONANT
NON-LINEAR WAVE EQUATIONS IN 1D AND 2D

Michela Procesi

SISSA- Via Beirut 2-4- 34014 Trieste Italy

(Communicated by Antonio Ambrosetti)

Abstract.We provide quasi-periodic solutions with two frequencies ω ∈ R2 for a
class of completely resonant non-linear wave equations in one and two spatial di-
mensions and with periodic boundary conditions. This is the first existence result
for quasi-periodic solutions in the completely resonant case. The main idea is to work
in an appropriate invariant subspace, in order to simplify the bifurcation equation.
The frequencies, close to that of the linear system, belong to an uncountable Cantor
set of measure zero where no small divisor problem arises.

1. Introduction. We consider the completely resonant nonlinear wave equations
in d = 1 and d = 2 spatial dimensions with 2π periodic boundary conditions:

a)

{
vtt − vxx = −v3 + f(v)

v(x, t) = v(x + 2π, t)
,

b)

{
vtt − vxx − vyy = −v3 + f(v)

v(x, y, t) = v(x + 2hπ, y + 2kπ, t) ∀h, k ∈ Z

(1.1)

where f(v) is an odd analytic function at v = 0 of degree at least five.

In this paper we prove the existence of small amplitude quasi-periodic solutions of
Equations 1.1, with two frequencies ω ∈ R2.

Existence of periodic solutions for the one dimensional equation 1.1a has been
proved in the papers: [18], [1], [3], [4], [13], [5] both for periodic and Dirichlet
boundary conditions.

Up to now quasi-periodic solutions for Equations 1.1 have not been found. One
should remark that quasi-periodic solutions for non resonant (or partially resonant)
nonlinear Hamiltonian PDE’s have been widely studied, see for instance [17], [19],
[9], [11], [6], [7], [8] and references therein. In these cases the linearized equation at
zero already has quasi-periodic solutions (which arise from a foliation by invariant
tori). Indeed, given ω ∈ Rn, the space of quasi-periodic solutions of frequency ω is
always finite dimensional (possibly empty).

On the other hand the completely resonant equations 1.1, linearized in zero, pos-
sess infinite dimensional spaces of periodic solutions with the same period. Indeed,
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542 M. PROCESI

given ω ∈ Rn, the space of quasi-periodic solutions of frequency ω is always either
infinite dimensional or empty.

Actually for d = 1 all the solutions of the associated linear equation are of the
form:

v0(x, t) = r(x + t) + s(x− t), (1.2)
hence 2π periodic. When looking for a quasi-periodic solution Q(x, ωt) of equation
1.1a,with ω ∈ RN and ωi ∼ 1, it is not at all clear from which solution of type 1.2,
and from which frequency, should Q(x, ωt) branch off.

For d = 2 the picture is still more complicated as there are infinite dimensional
spaces both of periodic and quasi-periodic solutions.

The main idea of this paper is to look for solutions in appropriate invariant sub-
spaces of functions u : T2 → R. two independent variables1. In such subspaces the
problem is similar to that of finding periodic solutions for equation 1.1a.

To motivate our choice of subspaces let us first consider the case d = 1; the simplest
way to correct 1.2 obtaining a quasi-periodic function is to change by small and
different quantities the velocity of a forward and a backward traveling wave:

v(x, t) = r(ω1t + x) + s(ω2t− x) + small corrections , ωi ∼ 1.

As equation 1.1a has constant coefficients, looking for such a solution is equivalent
to restricting v(x, t) to the invariant subspace:

{
v(x, t) = u(x + ω1t, ω2t− x)

u(ϕ1 + 2kπ, ϕ2 + 2hπ) = u(ϕ1, ϕ2), ∀k, h ∈ Z (1.3)

In the case d = 2 again we consider the simplest possible solution:

v(x, y, t) = r(t + x) + s(t + y),

and correct the velocities of the two waves; this is equivalent to looking for solutions
in the invariant subspace:{

v(x, y, t) = u(x + Ω1t, y + Ω2t) , Ωi ∼ 1

u(ϕ1 + 2kπ, ϕ2 + 2hπ) = u(ϕ1, ϕ2), ∀k, h ∈ Z (1.4)

We define the frequencies to be:

ω = (1 + ε, 1 + aε) , Ω = (
√

1 + ε,
√

1 + aε); (1.5)

notice that for ε = 0 the subspaces 1.3 and 1.4 are spaces of periodic solutions in t.

In the subspaces defined in 1.3 and 1.4, finding quasi-periodic solutions of Equa-
tions 1.1 of frequency respectively ω and Ω, is equivalent to finding doubly 2π
periodic solutions for the equations:

d = 1 :

{
[(ω2

1 − 1)∂2
ϕ1

+ (ω2
2 − 1)∂2

ϕ2
+ 2(ω1ω2 + 1)∂ϕ1∂ϕ2 ]u(ϕ) = −u3(ϕ) + f(u)

u(ϕ1 + 2kπ, ϕ2 + 2hπ) = u(ϕ1, ϕ2), ∀k, h ∈ Z
(1.6)

d = 2 :

{
[(Ω2

1 − 1)∂2
ϕ1

+ (Ω2
2 − 1)∂2

ϕ2
+ 2Ω1Ω2∂ϕ1∂ϕ2 ]u(ϕ) = −u3(ϕ) + f(u)

u(ϕ1 + 2kπ, ϕ2 + 2hπ) = u(ϕ1, ϕ2), ∀k, h ∈ Z.

(1.7)

1notice that the variables must be independent also for ε = 0.
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Equations 1.6 and 1.7 can be written as:{
Lα[u(ϕ)] = −u3(ϕ) + f(u)

u(ϕ1 + 2kπ, ϕ2 + 2hπ) = u(ϕ1, ϕ2)
. (1.8)

where:
Lα[u] := α0(εα1∂ϕ1 + ∂ϕ2) ◦ (εα2∂ϕ2 + ∂ϕ1)u(ϕ), (1.9)

for an appropriate choice of α := (α0, α1, α2) ∈ R3.
Having unified the notation, from now on we work on equation 1.8. We rescale

equation 1.8 in order to highlight the relationship between the amplitude and the
variation in frequency:

u(ϕ) → √
εu(ϕ).

In the following we consider the scaled equation:

Lα[u] = −εu3 + ε2f(u, ε). (1.10)

We are now ready to state the main results of the paper.

Definition 1.1. Given a positive σ ∈ R, let Hσ be the Hilbert space of odd analytic
functions T2 → R, equipped with the norm:

|f |2σ =
∑

j∈Z2

|f̂j |2(|j|4 + 1)e2|j|σ.

Definition 1.2. Let r0(ϕ1, α) 6≡ 0, s0(ϕ2, α) 6≡ 0 be 2π periodic solutions of:{
−α0α1r̈0 = r3

0 + 3〈s2
0〉r0

−α0α2s̈0 = s3
0 + 3〈r2

0〉s0

〈f〉 ≡ 1
2π

∫ 2π

0

dτf(τ).

We prove (see Lemma 2.3 and Remark A.2) the existence of such solutions
r0, s0 ∈ Hσ. Moreover we prove that, for appropriate values of α1, α2, such so-
lutions are non degenerate.

Definition 1.3. Given ε0, γ such that 0 < ε0 ¿ 1 and ε0 ¿ γ < 1
6 , let Cγ :=

Bγ × Bγ be the set of badly approximable pairs:

Bγ :=
{

x ∈ (0, ε0) : |n1 + xn2| > γ

|n2| , n1, n2 ∈ Z \ {0}
}
.

Proposition 1. There exist positive numbers ρ, ε0, C1, C2, C3, γ such that, for any
ε ∈ R, and α ∈ R3 satisfying the assumptions:

H: (εα1, εα2) ∈ Cγ , ε ∈ (0, ε0), |α1/α2 − 1| ≤ ρ, C1 ≤ αi ≤ C2,

Equation 1.10 admits a doubly periodic solution u(ϕ, ε, α) ∈ Hσ,satisfying:

|u(ϕ, ε, α)− r0(ϕ1, α)− s0(ϕ2, α)|σ < C3ε.

This implies the following two Theorems:

Theorem 1. There exists a positive number A, a Cantor set C(1) ⊂ (1 − A, 1 +
A) × (0, ε0) and a function α(a, ε) : R2 → R3 such that, for all (a, ε) ∈ C(1), the
pair (ε, α(a, ε)) satisfies the assumptions H, and

κ :=
1 + ε

1 + aε
/∈ Q .

Therefore, for all (a, ε) ∈ C(1), Equation 1.6 admits a quasi-periodic solution:

v(x, t) ≡ u(x + (1 + ε)t, (1 + aε)t− x, ε, α(a, ε)),
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where u(ϕ, ε, α) is defined in Proposition 1.

Theorem 2. There exists an appropriate positive number A, a Cantor set C(2) ⊂
(1−A, 1+A)×(0, ε0) and a function ᾱ(a, ε) : R2 → R3 such that, for all (a, ε) ∈ C(2),
the pair (ε, ᾱ(a, ε)) respects the assumptions H, and

κ̄ :=

√
1 + ε

1 + aε
/∈ Q .

Therefore, for all (a, ε) ∈ C(1), Equation 1.7 admits a quasi-periodic solution:

v(x, t) ≡ u(x +
√

1 + εt, y +
√

1 + aεt, ε, ᾱ(a, ε)),

where u(ϕ, ε, α) is defined in Proposition 1.

We now summarize the general strategy of the paper which is very similar to
that of [18] and [1]:

1. Following the standard Lyapunov-Schmidt decomposition scheme we divide
the space Hσ in two orthogonal, complementary subspaces P-Q such that Q is
the (infinite dimensional) space of periodic solutions of 1.10 for ε = 0. Using
standard notation we write:

u(ϕ) = q(ϕ) + p(ϕ)

with q(ϕ) ∈ Q and p(ϕ) ∈ P. We call the equations 1.10 projected on P (resp.
Q) the p (resp. q) equations.
In general, solving the p-equation implies a small divisor problem as the
eigenvalues of the linear operator Lα accumulate to zero for εα1, εα2 in any
set of positive measure.
Moreover, as the amplitude and the variation in frequency are of the same
order the q-equation is a non-trivial non-linear dynamical system even in the
limit ε → 0.

2. To simplify the solution of the p-equation, we restrict (εα1, εα2) to the un-
countable zero measure “Cantor like” set Cγ where the eigenvalues of the
linear operator Lα , restricted to the P subspace, are bounded from below by
an order one constant; see Lemma 2.1.

3. We solve the p-equations, keeping q(ϕ) as a parameter, by the standard con-
traction Lemma, for α ∈ Cγ and ε ∈ (0, ε0); see Lemma 2.2.

4. Once the p-equations are solved, we consider the ∞-dimensional q-equations.
As p(q, ε = 0) = 0 we first study the equations for p(q, ε) ≡ 0. For λ ≡
α1/α2 ∼ 1 we prove the existence of a non-degenerate solution r0(ϕ1) +
s0(ϕ2) = q0(ϕ, λ) ∈ Hσ. Moreover we prove that such a solution depends non
trivially on the two variables ϕ1, ϕ2; see Lemma 2.3.
By the implicit function theorem, this implies the existence of a solution
u(ϕ, α, ε) ∈ Hσ for all (α, ε) satisfying assumptions H; see Lemma 2.4. We
have proved Proposition 1.

5. Theorems 1-2 follow directly from Proposition 1. We define the functions
α(a, ε), ᾱ(a, ε) such that equation 1.8 coincides respectively with Equation
1.6 and 1.7. Then u(ϕ, α(a, ε), ε) is a solution of Equation 1.6 for all (a, ε)
such that (ε, α(a, ε)) satisfies the assumptions H. Finally such solution is a
quasi-periodic solution of equation 1.1a) provided that ω1/ω2 /∈ Q. The same
holds for Equation 1.7 substituting ᾱ to α and Ω to ω.
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6. We remark that if either r0 or s0 were identically zero then the solution found
in Proposition 1 would depend on only one variable. In such case the solutions
in Theorems 1-2 would be trivial.

2. Study of Equation 1.10. As said in the Introduction we divide the Hilbert
space Hσ in two orthogonal, complementary subspaces P-Q such that Q is the
(infinite dimensional) space of periodic solutions of 1.10 for ε = 0.
Equations 1.10 at ε = 0 are:

∂ϕ1∂ϕ2q = 0

so the subspace Q is defined as:

Q :=
{
q ∈ Hσ : q(ϕ) = r(ϕ1) + s(ϕ2)

}
,

The subspace P , orthogonal complement of Q in Hσ, is:

P :=
{
p ∈ Hσ :

∫ 2π

0

dϕ1p(ϕ) =
∫ 2π

0

dϕ2p(ϕ) = 0
}
.

Conventionally we write:

u(ϕ) = r(ϕ1) + s(ϕ2) + p(ϕ1, ϕ2) ≡ q(ϕ1, ϕ2) + p(ϕ1, ϕ2),

with q(ϕ) ∈ Q and p(ϕ) ∈ P.

Equations 1.10 projected on the Q, P subspaces are:

−α0α1r̈ = r3 + 3〈s2〉r + Πϕ1 [(u
3 − q3) + εf(u, ε)] q1)

−α0α2s̈ = s3 + 3〈r2〉s + Πϕ2 [(u
3 − q3) + εf(u, ε)] q2)

Lα[p] = ΠP ε[u3 + εf(u, ε)] p),

(2.11)

Here and in the following given a T−periodic function f(t) we set:

〈f〉 =
1
T

∫ T

0

f(t)dt.

It is convenient to consider the following associated equations:

−α0α1r̈ = r3 + 3〈s2〉r + Πϕ1 [(u
3 − q3) + ηf(u, η)] q1(η)

−α0α2s̈ = s3 + 3〈r2〉s + Πϕ2 [(u
3 − q3) + ηf(u, η)] q2(η)

Lα[p] = ΠP η[u3 + ηf(u, η)] p(η),

(2.12)

which coincide with equations 2.11 when η = ε. This is useful as now we will obtain
solutions which are analytic in η provided that εα1, εα2 are in an appropriate cantor
like set.

We first consider the p(η)-equations and prove that the operator Lα is invert-
ible.This implies the existence of a solution p = p(q, η) ∼ Oη(η) for Equation 2.12p.

2.1. The p(η)-equations. Following the scheme proposed in the Introduction,
item 2., let us study the “Cantor like” set Cγ where Lα is invertible.

Lemma 2.1. Let Cγ be the set in Definition 1.1, for all (εα1, εα2) ∈ Cγ ⊂ (0, ε0)×
(0, ε0) we have that:

|Dn| ≡ |(εα1n1 + n2)(n1 + (2 + εα2n2)| > γ ∼ Oε(1),

for all integer n1, n2 6= 0.
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Therefore, for (εα1, εα2) ∈ Cγ , α0 > C1 the operator Lα restricted to the P
subspace has bounded inverse:

|ΠpL
−1
α [p]|σ ≤ 2|p|σ

C1γ
,

for all p ∈ P .

Proof. By definition x ∈ (0, ε0) is badly approximable if:

|n1 + xn2| > γ

|n2| , ∀(n1, n2) ∈ Z2 n2 6= 0.

We denote this set by Bγ(ε0) or B for short. B is known to be uncountable, zero
measure and accumulating to zero. See [1] for a proof. Therefore (εα1, εα2) ∈ Cγ ⊂
(0, ε0) × (0, ε0) if both εα1, εα2 ∈ B with γ = Oε(1). Notice that Lemma 2.1 is
trivially satisfied if

−n1 6= [εα2n2] and − n2 6= [εα1n1].
Now, if ε0 is small enough, when −n1 = [εα2n2] then |n1| < 1

2 |n2| so that

|n2 + εα1n1| > 1
2
|n2|.

This implies that

|n1 + εα2n2||n2 + εα1n1| > γ|n2|
2|n2| >

1
2
γ.

The same (exchanging n1 with n2) holds if −n2 = [εα1n1]. The eigenvalues of Lα

restricted to P are α0Dn so

|L−1
α [p]|2σ ≡

∑

n∈Z2

n1,n2 6=0

|pn|2(1 + |n|4)e2iσ|n|

|α0Dn|2 ≤ 4
C2

1γ2
|p|2σ,

for all p ∈ P .

Now we pass to item 3. and solve the p-equation keeping q(ϕ) as a parameter.

Lemma 2.2. Given q(ϕ) ∈ Q such that

η|q|2σ
C1γ

¿ 1 ,

the p(η) equations:

p(ϕ) = ηL−1
α ΠP [(q + p)3 + ηf(q + p, η)],

can be solved with q as a parameter. The solution p(q) is abalytic in η and respects
the bounds:

|p(q)|σ ≤ C3
η|q|3σ
C1γ

,

for C3 an appropriate order one constant.

Proof. By Lemma 2.1 L−1
α is bounded on P, moreover the operator:

p → ΠP [(q + p)3 + ηf(q + p, η)]

is well defined and regular on Hσ; we can apply the standard contraction mapping
theorem. We define the sequence:

p(h) = ηL−1
α ΠP [(q + p(h−1))3 + ηf(q + p(h−1))] , p(0) = 0
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The sequence defined above is a contraction if

3η|q|2σ
C1γ

¿ 1

in such case we have 2:

|p(h) − p(h−1)|σ ≤ C3
|q|2ση

α0
(|p(h−1) − p(h−2)|σ) ≤ (C3

|q|2σε

C1γ
)h|q|σ.

We now pass to point (4) of our scheme and solve the Equations 2.12q(η), with
p = p(q, η) computed in the preceding Lemma:{

α0α1r̈ + r3 + 3〈s2〉r + Πϕ1 [(q + p(η, q))3 − q3) + ηf(u, η)] = 0 q1)

α0α2s̈ + s3 + 3〈r2〉s + Πϕ2 [(q + p(η, q))3 − q3) + ηf(u, η)] = 0. q2)
(2.13)

2.2. The q-equations. The q-equations 2.13 are non trivial at η = 0:{
−α0α1r̈ = r3 + 3〈s2〉r
−α0α2s̈ = s3 + 3〈r2〉s . (2.14)

It is convenient to rescale the Equations 2.14 setting:

r(ϕ1) =
√

α0α1x(ϕ1) , s(ϕ2) =
√

α0α2y(ϕ2); λ =
α1

α2

we obtain the equations: {
−ẍ =x3 + 3λ−1〈y2〉x
−ÿ =y3 + 3λ〈x2〉y,

(2.15)

Lemma 2.3. There exists an appropriate ρ such that for all λ in

|1− λ| ≤ ρ

the Equation 2.15 has a non-degenerate solution: (x(t, λ), y(t, λ)) such that both
x, y are not identically zero.

The proof of this Lemma is in the Appendix. Let us define

r0(ϕ1, α) =
√

α0α1x(ϕ1,
α1

α2
) , s0(ϕ2, α) =

√
α0α2y(ϕ2,

α1

α2
),

where x(t, λ), y(t, λ) are given by Lemma 2.3. By definition r0, s0 solve the q(η)-
equations for η = 0.

Lemma 2.4. Equations 2.12 (q1−q2) for p = p(q, η) have a solution q(ϕ, α, η) ∈ Q,
which is η close to

q0 = r0(ϕ1) + s0(ϕ2).

Proof. By Lemma 2.3 the solutions of 2.12 for η = 0 (and therefore p(q, η) = 0)
are non-degenerate, i.e. equation 2.15, linearized in (x(t, λ), y(t, λ)) does not have
solutions in Hσ and the linear operator:

O−1[X, Y ] :=

{
Ẍ+3x2(t, λ)X + 3λ−1〈y2(t, λ)〉X + 6λ−1〈y(t, λ)Y 〉x(t, λ)

Ÿ +3y2(t, λ)Y + 3λ〈x2(t, λ)〉Y + 6λ〈x(t, λ)X〉y(t, λ)
(2.16)

is C1 and invertible.

2recall that |q(ϕ)p(ϕ)|σ ≤ |q|σ|p|σ, by the Hilbert algebra property
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In the Appendix we have studied the operator O and given bounds on its norm:

|O[f, g]|σ ≤ |x(t, λ = 1)|8σ max(|f |σ, |g|σ)

The q(η) eqautions are of the form: F (r, s, η) = 0, where F is a well defined and
regular operator whose differential at r0, s0, 0 is the operator O (notice that we have
introduced the parameter η in order to have an analytic perturbation parameter).

By the Implicit Function Theorem 2.16 implies that for η small enough we can
solve the q-equations 2.13 obtaining q = q(ϕ, η) = r(ϕ1, η) + s(ϕ2, η).

We can now prove the existence of solutions for Equation 1.10, let us restate the
proposition:

Proposition 1. There exist positive numbers ρ, ε0, C1, C2, C3, γ such that, for any
ε ∈ R, and α ∈ R3 satisfying the assumptions:

H: (εα1, εα2) ∈ Cγ , ε ∈ (0, ε0), |α1/α2 − 1| ≤ ρ, C1 ≤ α0 ≤ C2,

Equation 1.10 admits a doubly periodic solution u(ϕ, ε, α) ∈ Hσ, with the property:

|u(ϕ, ε, α)− r0(ϕ1, α)− s0(ϕ2, α)|σ < C3ε.

Proof. We set η = ε, in Lemmas 2.3, 2.4; we then obtain a bound on ε0 given by
an appropriate function of |x(t, λ = 1)|σ.

The solution is simply

u(ϕ, α, ε) = r(ϕ1) + s(ϕ2) + p(q, ε).

By definition p(q(ϕ, ε)) and q(ϕ, ε)− q0(ϕ) are of order ε. Rescaling Equation 1.10
we obtain that

√
εu(ϕ, α, ε) is a solution of 1.8.

3. Quasi-periodic solutions for the wave equations. As we have said in the
Introduction, Thorems 1-2 are a simple consequence of proposition 1.

Theorem 1. There exists a positive number A, a Cantor set C(1) ⊂ (1−A, 1+A)×
(0, ε0) and a function α(a, ε) : R2 → R3 such that, for all a, ε ∈ C(1), the numbers
ε, α(a, ε) satisfy the assumptions H, and

κ :=
1 + ε

1 + aε
/∈ Q .

Therefore, for all (a, ε) ∈ C(1), Equation 1.6 admits a quasi-periodic solution:

v(x, t) ≡ u(x + (1 + ε)t, (1 + aε)t− x, ε, α(a, ε)),

where u(ϕ, ε, α) is defined in Proposition 1.

Proof. Equations 1.6:{
[(ω2

1 − 1)∂2
ϕ1

+ (ω2
2 − 1)∂2

ϕ2
+ 2(ω1ω2 + 1)∂ϕ1∂ϕ2 ]u(ϕ) = −u3(ϕ) + f(u)

u(ϕ1 + 2kπ, ϕ2 + 2hπ) = u(ϕ1, ϕ2)

are of the type 1.8 for a suitable function α(a, ε):

A2 = εα2 :=
εa

2 + ε
, A1 = εα1 :=

ε

2 + aε
,

α0 := (2 + ε)(2 + aε), λ ≡ α1

α2
=

2 + ε

a(2 + aε)
.

Notice that
C1 ≤ |αi| ≤ C2 , |λ− 1| ≤ ρ
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provided that ε, |a− 1| are small enough. Let

C(1) := {(a, ε) ∈ (1−A, 1 + A)× (0, ε0) : (A1(a, ε), A2(a, ε)) ∈ Cγ and κ(a, ε) /∈ Q}
The application

(a, ε) → (A1, A2)
is invertible for a, ε ∈ (1−A, 1 + A)× (0, ε0). Let us call its inverse

ψ : (0, Cε0)× (0, Cε0) −→ (1−A, 1 + A)× (0, ε0).

ψ establishes a bijection between C(1) and a subset C̄ of Cγ . C̄ by definition is the
subset of Cγ where κ ◦ ψ is irrational. In order to obtain C̄ we remove from Cγ , for
each A1 ∈ B (badly approximable), only the countable set of pairs (A1, A2), such
that:

A2 =
κ + 2A1κ− 1
1 + A1(1 + κ)

, κ ∈ Q.

In particular this clearly shows that C(1) is uncountable.

Theorem 2. There exists an appropriate positive number A, a Cantor set C(2) ⊂
(1−A, 1+A)×(0, ε0) and a function ᾱ(a, ε) : R2 → R3 such that, for all (a, ε) ∈ C(2),
the numbers ε, ᾱ(a, ε) respect the assumptions H, and

√
1 + ε

1 + aε
/∈ Q .

Therefore, for all (a, ε) ∈ C(2), Equation 1.7 admits a quasi-periodic solution:

v(x, t) ≡ u(x +
√

1 + εt, y +
√

1 + aεt, ε, α(a, ε)),

where u(ϕ, ε, α) is defined in Proposition 1.

Proof. The functions ᾱ(a, ε) are:

A1(a, ε) = εᾱ1(a, ε) :=
ε√

1 + ε + aε + aε2 +
√

1 + ε + aε
,

A2(a, ε) = εᾱ2(a, ε) :=
ε

ε2
(
√

1 + ε + aε + aε2 −√1 + ε + aε),

ᾱ0(a, ε) :=
√

1 + ε + aε + aε2 +
√

1 + ε + aε, λ =
1
a
.

As in the previous Theorem the map A1(a, ε), A2(a, ε) is invertible and we can
obtain C̄ from Cγ by removing for each A1 ∈ B a numberable set of pairs (A1, A2).

Appendix A. Proof of Lemma 2.3. We search for odd 2π periodic solutions of
equations 2.15 for λ close to one:{

−ẍ =x3 + 3λ−1〈y2〉x
−ÿ =y3 + 3λ〈x2〉y,

(A.17)

let us first consider the equation

− ä = a3 + Ca (A.18)

which is known to have a odd periodic solutions expressed in terms of elliptic
functions. Let us recall that the function Sn(t,m) is by definition the solution of:

ḟ =
√

(1− f2)(1−mf2),
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while

K(m) =
∫ π

2

0

dϕ√
1−m sin2 ϕ

, E(m) =
∫ π

2

0

dϕ

√
1−m sin2 ϕ,

are respectively the complete Elliptic integrals of first and second kind.
Rescaling appropriately A.17, we find the solution:

a(m,C, t) = V (m, C)Sn(Ω(m,C)t,m), V =
√−2mΩ , Ω =

√
C

m + 1
,

of period 4K(m)/Ω(m,C). We set a(m, C, t) to be 2π periodic by assuming Ω =
2K(m)/π.
The equations A.17 are of the type A.18 for appropriate m1(λ), m2(λ) which solve
the “compatibility” equations:

3λ〈a(m1, C1, t)2〉 = C2 , 3λ−1〈a(m2, C2, t)2〉 = C1.

It is known that

〈Sn(t, m)2〉 =
K(m)− E(m)

mK(m)
so the compatibility equations are:





6λΩ2(m1)(
E(m1)
K(m1)

− 1)−(m2 + 1)Ω2(m2) = 0

6λ−1Ω2(m2)(
E(m2)
K(m2)

− 1)−(m1 + 1)Ω2(m1) = 0.

(A.19)

These equations have a solution (see [13]) for λ = 1, m1 = m2 = m ∼ −0.2544.
Computer assisted calculations show that the Jacobian of Equation A.19 is in-

vertible in
λ = 1,m1 = m2 = m ∼ −0.2544.

By the implicit function theorem there exists ρ1 > 0 such that, for |λ − 1| ≤ ρ1,
equation A.19 has the solution3:

x(λ, t) = a(m1(λ), C1(λ), t) , y(λ, t) = a(m2(λ), C2(λ), t), (A.20)

both not identically zero. Moreover, by construction, the solution is 2π periodic
odd and therefore in Hσ for some appropriate σ. We now prove the non-degeneracy.

Lemma A.1. Given F (t), G(t) ∈ Hσ, the equation:
{−Ẍ =3x2X + 3λ−1〈y2〉X + 6λ−1〈yY 〉x + F (t)

−Ÿ =3y2Y + 3λ〈x2〉Y + 6λ〈xX〉y + G(t),

where x, y are defined in A.20, has a unique solution X, Y ∈ Hσ, for |λ− 1| ≤ ρ.

Proof. We first consider the operator

X → L[m,X] = Ẍ + 3a2(m)X + C(m)X

where a(m) = a(m,C(m)) is 2π periodic; notice that

a(m1(λ)) = x, a(m2(λ) = y,

3Indeed, as stated in [18], equationA.19 has solutions (x(λ, t), y(λ, t)) both non-identically zero,
provided that λ ∈ (π/6, 6/π)
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by definition. The operator L has been studied and inverted in [13]. We have:

X = −L−1[m1, (6λ−1〈a(m2)Y 〉a(m1) + F (t))] ,

Y = −L−1[m2, (6λ〈a(m1)X〉a(m2) + G(t))],

which yields a linear equation for 〈xX〉, 〈yY 〉:
∣∣∣∣

1 6λ〈a(m1)L−1[m1, a(m1)]〉
6λ−1〈a(m2)L−1[m2, a(m2)]〉 1

∣∣∣∣
∣∣∣∣
〈a(m1)X〉
〈a(m2)Y 〉

∣∣∣∣ ≡

M

∣∣∣∣
〈xX〉
〈yY 〉

∣∣∣∣ = −
∣∣∣∣
〈a(m1)L−1[m1, F ]〉
〈a(m2)L−1[m2, G]〉

∣∣∣∣ .

This determines X, Y uniquely provided that the matrix M in the left hand side is
invertible.

In [13] the constant 6〈a(m)L−1[m, a(m)]〉 ∼ 2.5 is computed explicitly (computer
assisted calculations); as 〈a(m)L−1[m, a(m)]〉 is smooth and m1(λ),m2(λ) ∼ m for
λ ∼ 1 there is a ρ neighborhood of λ = 1 where matrix is invertible.

We have defined an invertible linear operator on Q :

O[F (ϕ1), G(ϕ2)] :=

(L−1[m1, F (ϕ1) + 6λ−1〈yY 〉x(ϕ1)], (L−1[m2, G(ϕ2) + 6λ−1〈xX〉y(ϕ2)]),
(A.21)

where naturally ∣∣∣∣
〈xX〉
〈yY 〉

∣∣∣∣ = −M−1

∣∣∣∣
〈a(m1)L−1[m1, F ]〉
〈a(m2)L−1[m2, G]〉

∣∣∣∣ .

Finally let us give a bound on the σ analytic norm of the operator O, we can
use the bound on L−1 provided in [13]

|L−1[m]|σ ≤ |a(m)|2σ which implies |O|σ ≤ C max(|a(m)|8),
for |λ− 1| ≤ ρ′.

Remark A.2. It should be noticed that given x(λ, t), y(λ, t) 2π solutions of A.17,
the functions

xj(λ, t) = jx(λ, jt), yh(λ, t) = hx(λ, ht),

are solutions of {
−ẍj =x3

j + 3λ̄−1〈y2
h〉xj

−ÿh =y3
h + 3λ̄〈x2

j 〉yh,

with λ̄ = j2

h2 λ, for all natural values of j, h such solutions are still 2π periodic.
This remark permits us to construct more solutions of A.17 namely for all couple
of naturals j, h such that |λh2

j2 − 1| ≤ ρ,

jx(λ
h2

j2
, jt), hy(λ

h2

j2
, ht)

are solutions of A.17 and they are clearly different from x(λ, t), y(λ, t) studied in
the proof of Lemma A.1 which have minimal period 2π.
On the other hand, if λh2

j2 /∈ [π/6, 6/π], we have (see [18]) that the only solutions
are y = 0, x = a0(t) and x = 0, y = a0(t) where a0 solves −ä0 = a3

0. Such solutions
do not satisfy our assumptions, ideed they produce periodic soutions depending only
on x + ω1t or x− ω2t.
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Finally if λ is not close to one one can still find solutions of A.17 but they will
have minimal periods 2π/j and 2π/h. where j, h are the smallest co-prime naturals
such that

| j
2

h2
λ− 1| ≤ ρ.
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