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Quasi-periodic solutions of Hamiltonian perturbations

of 2D linear Schrodinger equations

Jean BOURGAIN(¥)

0. INTRODUCTION

This paper is a continuation of the author’s work [B, 2] on constructing periodic and quasi-periodic solutions
of Hamiltonian perturbations of linear PDE’s (with pertodic boundary conditions). The method used for this
purpose was initiated in the work of Craig and Wayne (see [(C-W, 2]} for 1D-equations and time periodic
solutions. It 1s an infinite dimensional phase space version of the Liapounov-Schmidt argument for the
construction of periodic solutions. The basic idea of the Liapounov-Schmidt scheme (cf. [C-W]) consists in
splitting the problem in a resonnant finite dimensional piece given by the Q-equation and the remainder
of the problem. the P-equation. which is infinite dimensional and contains the small divisors issues. To
achieve frequency variation. we will rely on outer parameters contained in the equation (cf. [Kuk]) rather
than amplitude-frequency modulation depending on the nonlinear term (cf. {C-W]). The model equation

considered here 1s the nontinear Schrodinger cquation

ar

wy — Au+V(izu+e — (v,u.z)=0 (0.1)

ou

or )
iy — Au+ (u* V) e d(—_ Flu.i,z)=0 (0.2)

u

where u is a space periodic function, i.e. u = u(z,t), z € T4 [n (0.1) V = V(z) is a real periodic potential and
in (0.2) u* V' defines a real Fourier multiplier. The advantage of replacing the term V(x)u by a convolution
u+ V is the fact that the eigenfunction basis of Au+ (u * V') are given by exponentials which in dimension
d > 2 avoids certain difficulties which are not really the primary issues here.(**) The parameter ¢ > 0 in (0.1).
{0.2) corresponds to a perturbation and I is a real valued function in u, 4, z. periodic in z. For simplicity.
we assume £ is a trigonometric polynomial in = with polynomial coefficients in u, 7. This hypothesis may
be relaxed however. The outer parameters in the equation responsible for the frequency modulation are
introduced using the term V(z) - uin {0.1) and V * u in (0.2). Time periodic solutions for the linear equation
iuy — Au+ (u* V) = 0 are indeed given by

niz.t) = ettmelidrn (0.3)

where A = {ml2+€"(m)‘ In [B2], we prove their “persistency” for the perturbed equation (0.2) (A is considered
as a parameter taken outside an exceptional set of measure — 0 for ¢ — 0 and of course perturbed according
to the @-equation). The P-equation constitutes the main problem and is solved by a Newton scheme. which
has the advantage (on convergent expansions for instance) of converging rapidly. The main difficulty is the
control of the inverses of the linearized operators, which has the same flavor as the localization theory for the

Anderson model on a lattice. Writing the linearized operator in the form T'= D +¢ T} where D 1s diagonal

/)m n — "’/\<”>+/lvn (()”

(*) I.H.E.S . 35. route de Chartres, 21440 Bures-sur-Yvette FRANCE and | A.S , Olden Lane, Princeton, NJ 08540, U.S A

Cex)

One could also consider (. 1) with V7 ot the form \)(Jf] L) = "(171 b+ V(L‘g)



fm = Imf* + V) (0.5)

(the lattice settup 1s obtained by passing to Fourier transform), those difficulties depend on the structure
of the “singular sites” (m.n}, i.e. such that D,,, is small. In the periodic problem. this structure is rather
easy to deal with. Both in 1D and in higher dimension one encounters a pattern of separated islands for
the singular sites. Using Pdschel’s lemma (cf. [P]), i.e. the localization identity for the inverse operator. it
suffices to control the inverses of the restrictions of T' to neighborhoods of these islands. This is achieved by
simple eigenvalue perturbation, considered as functions of A (here one relies on self-adjointness properties
of T'). This singular site structure in the quasi periodic case is more complicated and requires different
arguments. The nature of the singular sites is related to the work of Frohlich and Spencer on localization
for —A +V(n) where A is the lattice Laplacian and V(n) is a quasi-periodic potential. The study of those
requires a multi-scale analysis. In [By], we established for 1D-equations (0.1) or (0.2) the persistency of
quasi-periodic solutions of the unperturbed equation. extending some of Kuksin's work [Kuk] for Dirichlet
boundary conditions to the case of periodic boundary conditions. Recall that the periodic spectrum of the

d2 . . .
407 T V appears in pairs wy,_1, wan of nearby frequencies

operator —

(0.6)

lwan — wan_1] ~ !‘Q(n) .

This multiplicity or almost multiplicity of normal frequencies is an essential obstacle if one tries to apply
the KAM scheme (as Kuksin does). The first step in [B;] consists in establishing a Melnikov result in finite
dimensional phase space (i.e. the persistency of a low dimensional torus in a high dimensional phase space)
using the Liapounov-Schmidt type technique from [C-W]. This argument is essentially different and more
flexible than KAM. It avoids restrictive assumptions on the frequencies, such as Melnikov's second condition.
which excludes in particular multiplicities in the normal frequencies. Once the finite dimensional result
obtained, the analysis of PDE-models involving our infinite dimensional phase space appears as a technical
elaboration of the arguments, which we pursued in [B)] for 1D NL Schrédinger and wave equations. Our
aim 1s to study here the 2D NLSE (0.2), following the same method. The main difficulty is an unbounded

multiplicity for normal frequencies, i.e. the equation (lattice points on a circle)
mf + rn::: = R? {(ny,mo € Z) (0.7)

may have a large number of solutions for given . However. these solutions appear in small clusters {of
cardinality < 2) which are well-separated and the total number of solution is at most exp l—o—lg%% <« R
These facts which are special for 2D play a role in our analysis. At this stage, there seems to be essential

difficulties to extend this work for D > 2.
Defining v = ¥ and taking complex conjugate of (0.2), replace (0.2) by 2 equations

vy — Au+ (us V)i+e L Fluv,z)=0

v
7 (0.8)
—tve — Av+(v*V)+¢ % Flu,v,z2) =0.
Passing to Fourier transform, the linearized operator T'= D + ¢ T} is given by
—(A. n) + |m[? + V(m) 0
D= (0.9)
0 (An) + |ml? + V(=m)

S o2g Saep

du v E
T = (0.10)
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15, = Toephtz operator with svmbol o)
acting on pairs (%, ¥). Those pairs fultil the condition r(2) = n(—r) and T preserves this property, since |". F

are real. Consider an nnperturbed solution (for d = 2 sav)

g (a0 =y e DRI g B A (0.11)
where A, ¢ = |ma|* + Virma). oo =12 The perturbed solution will have the form
LAz ) .
wolr t) = Z o ru(rHA,-{-n,)\,Jt«{—(m,r) (012)
m.n
where In particular (for p < 1)
Ny = Agn +0() (0.13)
Qeny i) = Ay o Moy = @2 (0.14)
Z [t Pl — er) (0.15)
(mn)gR

for some constant ¢ > 00**/ and denoting R = {(rn;, (1.0)), (1ns, (0, 1))}. We consider here Ay = (A1,0,A2,0)
as a parameter. The perturbed solution will be constructed for Ag € A, where A depends on |a;], |as| in
particular and has a Contor type structure and mes (A") — () in the parameter set for ¢ — 0. In case there is
a (weak) dependence on Ay of normal frequencies y,,, m # m,, ma, we assume moreover the non-resonnance
condition (2.9) below.

Denote ptm = |m|?+4 V(m). The P-equation is obtained by projecting (the Fourier transform of) (0.2) on the
complement of R. Thus the linearized operator is obtained by restricting 7 = D + < T} to the complement

of the “resonnant set”
R={{Fm, = (F.0) . (Fm. 2. (0.F1))} (0.16)

with sign correspondence.

The remaining 4 (in fact 2 independent) cquations form the (-system and determine A, — A, 0. In order to
solve the P-equation. we restrict (Aq, Aj to a Cantor set A = 1\, constructed along the Newton iteration

scherme. The restrictions on {Ag. A) are “admissible” in the sense that for any function of the form (0.13)
A=A+ ()

the condition (Ag, A) € A may be achieved for Ao € A, with A as above. We also assume that the solution
to the P-equation extends as a srnooth function of (A, A) to the full parameter set (and actually solves the
P-equation for (Ag, A) € A). This point Is of importance to determine A = Ay + £(Ay) by the Q-equations.
These considerations are analogous to [C-W]'**"' and [B,].

) The 0(5)-term depends on /\,,' 0, ‘(1,,

{ .
(x =1 2)
%) Sce the discussion in [B1] in this respect.
- . . N
{ ) Except that here we do not invoke amphtude frequency modulation using the nonlinearity but use directly the frequency vector

Aasa parameter. which simplifies certain matters



The remainder of the paper deals with the linearized [’-equation and the control of the inverse of
restrictions T of T to lattice sets iny|. {nu, ... < N. Since this paper is a continuation of [C-W, »] and [B.:
the reader may wish to consuit them first for a more complete discussion of the Newton scheme and since
the cases treated there are simpler. We will present 1 Appendix a brief argument for construction of time

periodic solutions in general dimension.

A Lo
1. DESCRIPTION OF THE MATRIX 17"

Matrix with index set (n, £, m) where
neZ®. |n;| <N {(time frequencies)
m ez {space frequencies).

In this discussion. we let b = 2.

We assume {n, £.m) not in the resonnance set. which we identify with
R = {(—FJ.+.—7le) lj=1..... dyu {((‘J,‘—,m]) [ j=1.....d}

where ¢; = (0,...,0, 1. 0,....0) and 1n; some Z*-element. since T.Q, is the linearization of the P-equation.

The diagonal of T3 is given by
(A n) o0+ jigm  (with sign correspondence). (1.1)

The matrix T is selfadjoint and satisfies the off-diagonal estimate

’T‘(ﬂ,i,m),{n’,:ﬁ:_rn’)‘ < £ C‘)H——u 1 —=lm—m'|1 (12)
Moreover, for all sign choices (+. +), (+, =), (= +), (= =). Tin.+.my(n' +.m/) depends only on n—n'. m—rn’
if n # n’ or m # m’. (Off-diagonal produced by Toephtz-type operators).
2. CONTROL OF THE INVERSE
-1
(Tﬁ,"’) will be controlled by reciprocals of expressions
{p(EA ) o+ pixml) (2.1)

provided not to small, 1.e. > m (®{(N) growing slightly faster than polynomial).

In (2.1). |n;] < N, (n.x.m) € R and p 15 a polynomial taken in a set Ky 1 <qg<@Q=0Q(N) ~

exp EL—’I%S{;)?\? < (log N)* of the form

p(rrl):rf'{'%—ZnJ(/\) ™ (2.2)

i<q

with

05 ;] < ot (2.3)



. . . . . . . ) . .o
The structure of cach A is that of a countable compact satisfving K¢ # 0 only for finitely many -

derivations. This property Las to be made wetrically more precise. We have

K',\('“ =% for o >4 (= some positive integer) (2.9)
3 AN A (2.5)
For <y,
# K0T N B0 )] < by e (2.6)
L s
where B(0,6) denotes an L -ball [fa,jj~ - ¢ for j =0.1.. .y —1], and where again $.{ \") grows slightly
faster than polyvnomial.
[n the present situation. we may i fact let g < 2 except for at most $o(N') expressions of one of following
forms
()
I1 1) £ 0+ ) + Y a;(A) o) (2.7)
In—n'| < (Y J<aq
[rn| < 74

(n .+, menR
where the first term of (2.7) is of degree ¢ < Cs in . 7y = 7 + (n.A) and 0% a;| < =.
These expressions arise from small 1n and are also of the form (2.1)

(IT)
pP(E{A.n) & 0+ ptrm) where pis as in (2.2). (2.3) of degree ¢ < Q(V) defined above.

We assume moreover that these expressions may be replaced alternatively by
(A n) 27+ 4 + an(A)

lao( M. Jag(A)] < . Hence ¢ = 1 but only first derivative control on coefficients.

We let
ftrn = {7”‘: + 0 (!Hl}ﬂl";) (28)
with possible weak dependernce on A
Assume further
|£{An) + pim| > 20 5 for nf< Ny (n.t.m) ¢ R (2.9)

where .V is taken sufficiently large (first Melnikov condition).

Lemma 1. There 1s a A-sct of measure at most do(N)? 81/ on which complement
TNy + )l > a for <N . me A
JI{ET‘F, ( 'T = (,;'7(643‘(;5, (lr)).

Proof. Since for polynomials p(o ) with leading coetlicient «/ only q derivatives will be involved. we may as-

sume ¢ < C'5 by the Comment in (II}. Observe that ={\. )4/, has at least to be bounded if P (N ) + )] <

)



8. Thus for sinail n. mn is small too and p{E£(A 5} + j4,,) 1s given by (2.7) for ¢ = . which is at least
(50)““6‘)')rd + 0(£) > & invoking (2.9).

For larger n. denoting ay = +{A. n}) + y1,,. one has ¥, o, =~ +n and hence

N
(ﬁ) p(m(/\))k ~ in}?. Thus
: 0 . ‘ 1 gt/ e

for fixed n.m,p, we have |p(ay)| > 4. except for A in a set of measure < |n|™! /51/7 < (\1/'. Since oy has to
remain bounded. [n|* < |n| + 1. bounding {mj. It follows that to each p there corresponds a set of measure

1/ : - . 1
< Vet (51/1. Oue next uses the metric structure of Ky . Assume for instance vy = 1. Then A \,’ lias at most

®o(N) elements and K v\ (Ki\}) + Bx_‘él) has at most $,(.V) ﬁf(j‘-e*lements. Requiring |p| > #, for p € KT\],)
and |pl > 4 for p € Kn\ <IC%.\1.) + B’-,»,,>~ addition of the measures vields an exceptional set of size
Bo( V) N[5y 5o Ca gt (2.10)

leading to a bound as stated in the letnma. if we minimize (2.10) in 8.

oy a1 . . . . .
For the general case l\,N“) £ o, Ay = . a straightforward iteration of the previous construction vy

times yields a similar estimate.

Assume py, p2 € K. There are polvnomials pL = (p1.po)s
pe(a) = ot +Zaj(/\)dj (2.11)
1<y’
¢ <QINY  |0F a;] < d3(V) K exp(logN)® for Ja| < Q(N)* (2.12)
such that
prloy £ ou) € Ideal (pi(a1),pa(0o2)). (2.13)

The set K = {p+ | pr.pr € K} will still satisfy (2.1)-(2.6) replacing «q by 2ay and C3 by 2Cy, ®,(V) by
b, (N2

Lemma 2. Let ny.na2 be fized and fny — no| > N Led & < N7V Ercept for A tn a sel of measure at most
By (V)3 SUPAN) by = by (Q(N). Cy. vy, c) < (log N)E . we have

g — e A) £ty £ ptm, )] > 0 (2.14)
forallmy,ins € Z*. p € K.

Proof. Replace first p,, by |m|®> € Z. Observe that by (2.12} and assumption |n; — n2| > V. one has again

; 9 . i .
‘(%) [)((7‘1(/\))‘ ~ |ny — ny|? and using the structure of X one may as in Lemma 1 ensure

p{ny = no A) £ [y £ [mal®) > 6 (2.15)
except for A in a set of measure < &4(V)? 511/4) where & = ®(Q(N), Cs, n) € (log N)*. By (2.8). replacement
of tim by |m|? is allowed for |y |77, [rno| =" < 0 (%) > &7. Also. one only needs to consider pairs (m;, m)

SR
such that {m; — ma| < [n; — na|. Thus it remains to verify (2.14) for at most N? 8, °° pairs {(m;, m»). This
vields the estimate
TP po m 9 c1/d :
Do N8P LN ST by (V)2 8 (2.16)

8]



for the exceptional A-set. Optimizing (2,163 i oy vields the resnit,

3. STRUCTURE OF THE MATRICES
For given mg € Z*. consider the box @ = [ € Z* | | ~ mop | < N} and let Ty = Ty |g. We aim to

establish conditions on (A, 7} to ensure that for each )

ITSH] < M < by ) (3.1)

i i I - : .
Té‘((n.i‘rn).(rﬂd;;n’))‘ < exp <—§ m—rn[‘) if |m—m]>N*Y (3.2

This will essentially be achieved by a pattern of “isolated islands™ which will be constructed later in this

section. Properties (3.1), (3.2) inay then be extended to Ty or any restriction of Ty to a union of Q-cubes.

We will also conci <ing off-diagonal estimates in the n-variable for previous N-scales and the decay (1.2)

for T that

<

/ A ' 1 IR o ' r 4 2 g«
ITGll(n.:t.mJ.(n tom })I < exp <—; In—mn |‘> i in—n'| > ®a(N) = exp(log V)2 (3.3)

and sirnilarly for restrictions of Ty to unions of (Q-cubes.

Uniform off-diagonal estimates for the inverses f: . the successive N-scales result from applications of the
localization 1dentity for inverses and only the specific exponential decay rate of T matters here (taking
¢y < 1)

These off-diagonal estimates will be used in particular when restricting to finite matrices having certain

bounds on their inverses. in the process of the Newton scheme.

Considering for given () the matrix TC; 7. we aim to ensure (3.1). (3.2) by conditions on A, o of the form
described 1n section (2). For a given (), the number of polvnomials will be at most ®+(N). Moreover one
has to analyze the dependence on (2 and show that the resulting polvnomials for varving @ will belong to a

compact K of the form (2.)-(2.6). This fact will result from the structure of the matrices T27. The relevant

’ Q
feature for this issue 1s the behaviour of the diagonal
={A. )+ m|* £ o
Assuinte (Q contains a point /ny such that
“zru){zznf < \“) (34)
(otherwise {£{A. n) + ptm £ o > N? for all m € Q).
Put & = 7 = /mg|? and write the diagonal
(A )+ ml* 0 = £(\, ny + (|mi* - |m0}3) +o. (3.5)
The only relevant part is ([m|* — !m”P)ch' Write m = o + Am. Assume m’, m” € (Q such that Am’.
A’ are linearly independent and
ol 12 2 t/2
|2 = Ling ]| < my

(3.6)

Hm”{"’ - \m“H < |17



Hence {assuming i) > V)
oy, A"y < 2 g7

(3.7)
[(rng, A" < 2 ling|/?
mplyving
gl < N1Y ]m(,{l/z (3.3)
From the assumption on iy, it follows that
dim {m — iy {me() and “mﬁyu ~ imnizy < |mr)‘1/3} <L (3.9)
Consequently. there is a vector 2 0 in Z* i < V'Y such that if in € Q. 1 — my ¢ Zv. then
“m[lj ~ |ru(]f"” > g
and hence
1 )
[N n) + g £ 0] > ;]mg[l/', (3.10)
Define
@r={meqQ|m-ingcZ}. {3.11)
Thus
”T5\1Q1” < Imol7H%
Writing
Tove, 77
Tg = (3.12)
P TQl
one has for the inverse
-1 -1 * _ —1 *y=—~1 -1 _ =1 - _r -1 xy—1
. T T Tow, PTau = PTolg, P17 P TG0, —Tolg, Pr(To, = P Th,, P
Q = :
_ _ -1 xy— | —1 _ =1 *y—1
(Tq, = P Ty, P17 PTG, (To, = P Tg\q, P7)
(3.13)
which is controlled by
> =1 xy=1 .
(Tg, = P T, PO (3.14)
The matrix T, — P T6\101 P* s a perturbation of Ty, and the conditions on (A.7) to control (3.14) will in
the linnt (here for [mg| — >¢) amount to those controlling T(Ell, For m = mgy + s.v, one has
;_‘-</\.n>—+—|7n|2;to':ix\’,\‘n>+2 (mo,v) s+ s v]* £ (|7 < V? from (3.4)). (3.15)

Clearly there are at most V¥ possibilities for » and the only remaining parameter is the integer {maq. v)

which 1s not necessarily bounded. We distinguish following cases
(a) [(ng, o) > V2
Then {£(A. n) + o £ of > N forall (n.x.m)eQ with m # mo.

(b) {(mg. vy < N2



Case (a)

In this case. there are possibly only small sites for 1 = 1y and it will suffice for (A. ) to ensure the properties
TG < M (3.16)

where
Qo = {0m =gyl < N7}, (3.17)

The effect of the other m # my on the conditions is to generate an ap = 2 compact satisfving (2.6) for some

absolute c¢3.

Case (b)
In this case. also (o, «) is determined up 1o V¥ choices and the elements outside Q) grow at least as

ilnntl/;). Conditions on (A. o) will clearly gencrate on ay = | compact satisfving again (2.6) for a specific e3.
Coming to conditions (3.1). (3.2). From the structure of the @ -diagonal
(A n)+2 (o vy s+ (]t 5T 2@ (3.18)
considered as a function of s. it follows that one may cover the set
{meQllx{An) +pumtol <l forsome [nf<N}C{meQ| “m|2 j:o’l < N?}

by sets (J, such that
each (4 1s a union of N-squares

diam Q4 < NV® (3.19)

dist(Qq, @s) > N for o £ 3. (3.20)

Again from the localization identify for inverses. one needs to satisfy for each a

175 < M. (3.21)

4. INDUCTIVE STEP

Let .V = N, and fix a region () in the m-variable which is a union of V-size boxes. We assume N, > N/!°,.

so that ) is admissible for all stages r' < r — 1. In fact this Q-restriction will play little role in what follows

and will be ignored therefore.
We first consider the range of the n-vanable {|{n;| < V). The matrix T = T,’\\,q | appears as a (2 x 2) block
matrix
Ty T
T, Tes
For a subset 4 C [=N. V] denote then Ty the restriction
Tiila Tiafa
I3y 14 Tooda

(unless otherwise specified).



The first purpose is to write
N VT =Q, 0,

where Tgll will be well-controlled and €2, at most of bounded size.

Let s <r—=1and A = ny+[=V,, V] a box contained in [—.V. V]¢. Observe that by the structure of T
described in (1)

) Al Anan

Ty =T (11

Choose s = r — 1. We clatm that with 4(nq) as above, we may ensure

T sl < ®1(N-21) (4.2)

except for ng in a cube Av_y T [= Vo V] of size < 10N, ;.

To achieve (4.2), we need to ensure

1
plEd o+ pn) > —— (4.3)
P (£(Anj fim )| PV

for n € A(ng). m € (Q and p a polynomial in K, _, as described in section 2.

Assume ny| € A(ng), n| € A(n}) such that
1 n

!71[] - IL(/Jl > 101\’;-1 (44)
p(rhn) + v + )] < = (45)
plv{in VO fim T — .
K &1 (No_1)
1

A n) + e+ pm) < ———— (4.6)

) ®1(N-—1)

where p.p’ € Kn,_, and v v/ = £1.

Distinguishing the cases v = v/ (resp. v = —¢') and denoting P_ = (p,p’)- (resp. Py = (p.p)+) the

polynomial (2.13), 1t follows from (4.5), (4.6) that

expllog Voo )f _ 1
by (N _y) T Dy (N )V

‘P$ (</\~ nmy — ”/1> + tm F Nm')| <

From (4.4),

ny —ny| > 8N,_;. By Lemnma 2. if one wants to avoid (4.5), (4.6), an exceptional A-set of

measure
N @y (Ne 1) By(N, o) T (4.8)
has to be excluded.
To ensure say
(4.8) < N7 (4.9)
we asstime
log NV, ~ (log N,~1)'?  and  ®4(N) < exp(log V)'° (4.10)
and hence
[Og (Dl(l\/r_l ) > (4d lOg Ny +6 lOg (bg(‘vr_] )) (I)4(1V,-_1 ) < (lOg N._) )H. (4.11)

Thus by excluding a A-set of neasure at most 1\',.—_11, {4.2) will hold except for ny in a box A,._; of size

-

~ N,._1. Observe that the A-set to be removed may be taken to be a union of intervals of length &, (N, _y)

10



. [ . .. . . . .
say of total measure < NV, 7. This last point is of importance in extending the approximate solutions (for

"good” A) to the entire A-range.

We now repeat the preceding letting ny, € \,_,. Remark that the dependence of (4.7 on ny, n only appears
s} 4 1 I 1 1 > pp

through the difference ny — 1 where in, — nyl < 0N, _;. Consequently the conditions (4.7) lead again to a
measiure estimate
o 2 - r - ¢
CLON 7 Do (Vo) by (Voo e < N7 (4.12)

for the A-set to be removed. One may then obtain a subbox A, of A._; of size < 1ON,._- such that for
no € \rmi\Aroo, A =np + =N, A\'r_‘_,]’i, one has

1T < (N, (4.13)
[terating this construction perrnits to obtain a set Ay = Q. of bounded size such that
HTT < dy(N) (4.14)

if A =ng+[-V,, V] and
20N > dist(ng, 2.) > 20N,. (4.15)

Besides (4.14), one will also satisfyv for such .1 the off-diagonal estimates

exp (—% [n —n'|") if n—n'| > ®o(N,) « N
T3 ((n,m), (', m"))| < (4.16)

exp (=% [m—m'[7) if |m—m|>N?

by (3.3).
Denote
T__;l(n. n') = (T,l_‘ {((n.m). (n" m')))m meQ (4.17)
which is a matrix with index set . Clearly by (1.14). (4.16) and Shur's estimate, we have
1T non' )| < by (4.18)
and for
In—n']l > &p(V.) (4.19)
1T7 (n.n))|| < max Z l'[;‘ ((n.m). (n".m"))]
< max Z + Z }T‘Il((n‘m),(n"m’))l
|m——m’l<,\': [rn—m/{>N?
< NI exp ! in—n'l"") + Z exp 1 lm — m/|™
© 2 ' ’ 2 '
jm'—m|>N$
e 1 e
< exp (——; n—n'I"v . (4.20)
Fix ny.na € Q, dist(ny, Qy) > dist(ns. Q4) and let for s <r-—1
20N 4 > dist(ny, Qu) > 20N, (4.21)

11



A=+ =N, ;\’_,]d. I'rom the localization identity, one has

Tgll(nl.ng):71_;"(111,71'_»)4{— Z TIl(nl,n/)T(n’.n”) Tgll(n”.n«_f}.

n‘eAn"’e\A

Hence from (4.18), (4.20). (4.10)
T3 (ny, na)| <

by (No)+ Z B (N,) e sl =" |IT5,1(””~ )l

In/—ny[<®n(Ns)
in/l ey >N,

T T e O e e

[nf=ny1>®n(Ng)
Inf—a >N

< by (disting Qu)) + sup (il ||T61(nn_))H
|n—nl|>/\', !

Take

D (N) < exp(log V)2

(compatible with (4.11)).

From iterating (4.23), one dedices that

NT3 (n o)l < @y (dist’(ny, Q4) + dist’(na, Q2))

with
dist’(n, Q) = min(dist(n, Qq). V._1)
and
TG (. no)l| < emwhmmnel®
if

ny — II'_7| > 10¢g (dist/(nl , Q_}) <+ diStl(ng‘Qg))

and in particular if

|ny — na| > 10B(N._y).

Coming back to Q4, assume ny, ny € Q5 and

[vr{A ny) + o+ pim, | < <o

o (A, na) + vao + pm,| < €9

for some vy.vo = £1, my. s € Z°. Here <5 > ¢ is a small number.

It follows from (4.29) that
KAy = o) + w1 flen, — v Hm,| < 2 <0.

Let |ny — naf < C2. We distinguish 1wo cases
Case 1. |my|. |m2]| are small (bounded by (7}, say).

Case 2. Either |my| > Ci2 or [ma| > (4.

12

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)



1

If (4.30) holds. necessarily 1y = 1y and both [myf. Jmai > L €00 In particular p, @ {Ay . Aa}, jim, & |mi|*.

Hence. by approximate choice of A, we mav ensure 11, = n. as only possibilitv. Thus Q. is restricted to a
3 A | 9 3 3 2

single site. Qu = {nqy}, with cither + or — sign and
(A ) + o+ | < 24

only appears for m € Z” such that | takes a given value.

In either case. fix ng € Q4 and redetine

7y = a4 {ng, A).
Thus the diagonal elements of T are ={(A.n — ny) + oy + Hxm.
For simplicity we will put n, = 0.

We next show that

- ! o .
ITQII ((n1y ), (n2, ma))| < exp <—— [rny — mgf”/'”> if Py = ma| > (Imy] + [na)'”

10
establishing an off-diagonal estimate with respect to the m-variable.
Assume |ny| > [naf. Let A be as above (i.¢. a neighborhood of ny of size ~ n|).

Applying again the localization identity for the inverse

Tx{,l ((”1, my), (ng,ma)) = T,:‘ ((ny,my). (ng,mg))

+ Z T;]((nl,ml].(n,m)) T((n.m).(n".m')) Tall((n/,m’),(ng,mg)).

nEAn'¢A
From the induction hypothesis (4.16)
[(4.33)] < P
since

g — | > {size AY.

Examine the second term (4.34). Using the first index. estimate by

max sem w4 37) 4 (4.38) 4 (4.39))

fn'—nyi>4ing,

where
(3T = Y @y (m) T (), (na. ma))
b=y < lny ("
Im=m/|<ln "
(4.38) = > @ (ny]) oIl Ta! (0. m'), (2. ma))|
by h< g [
bm—m!|>{ny "
(439) — Z ,g_ﬂml—ml‘l—|m—m’|'1 ‘T(;‘l ((n"m’),(ng, mg))' )
[m—my>Iny (5
Thus
(4.97) < max s e aimmnn !T(il((Ill‘m./)-,(n'z»mz))[

|"/—"1|>‘»_L""1|
Im/—myi<zin "

(4.31)

(4.32)

(4.40)

(4.41)



. U a1~ Ly —n(© -
(4.38) + (4.39) < Mmax s el Lm0 lTﬂll ((HIAInI)_(n'_).mg))|, (4.42)
1"’—n1|>f|"11
I[f{ny = '] > |y = ma|V*9 one gets the bound
P B L by (g + 10— my]) < o= Flmy—mgje/2 (4.43)

since |rny — ma| > |ng|tY.

Assume |ny — n/| <y — mof'/%0 Clearly, in any case (4.41) + (4.42) is at most

) ax IT,r;l ((n/,vn/)‘(nmm?)){ (4.44)
In'=ny<lmy—rm,(1/20 1

Iml=ma>imy—maf=slngt*

o s - el TS N (i m), (g ma)) (1.45)
n/_n”(}mx_mﬂl/,:u ¢

m

The worse contribution comes from (1.44). If one performs an iteration. the original pairs (ry, ). (na. )

zet replaced by pairs (ny, M), (72, 7,) and we need to preserve the property
Ty = ] > ([ + [72])” (4.46)

to exploit (4.16).

If we iterate (4.44) k times, the pair (77, 77y). (72, Tna) will clearly satisfy

I —-n]|<k|m1‘mg|]/'30 [T — na| < k 1/20

m; — ma|

[Tty — 7] > [y = ina] — 2k Iny|® — 2k°%|m, — mg}l“.

Hence
1]+ [Ta] < |ni] + |nal 4 2k Jiny — a0 < imy = ma V0 4 2k Jmy — a0 < 2 |y — ma [V (4.47)

and

Ty — M| > |y — s

N s 1
=2k |y — mg]l/‘ - 2k"|my — m-_7|1/4 > 3 |rny — ngy (4.48)

provided
k< |y — mo]t/?0 (4.49)

. . . . . q1/20 _ _ o
At this stage however, such iteration factor vields already a factor ghmr—m=l e~lmi—mal

vields (4.32).

again. This

Considering the decomposition Q = Q; U Qs write

Tq P

T= . (4.50)
P Tq,

We distinguish the cases (1). (2) above. Thus in case {2), {9 consists of a single element for either the + or

— stgn and (in the case of + sign)
|
T”‘nl Tho [, T11|Q2 0

(Tha la, ) Ty 0 0



[n case (1)

Tila, Thila,

To, =
szlﬂ. T‘JE‘Q,
Write
Tl T Pr (T, = PG P PR TR P (T, = P T )T
= (4.51)
— (T, = P13 P70 P (To, - P T3} P7)

Recall (4.25). thus

HTszll“ <D (N, _1). (4.52)
Hence it remains to control

(To, - P Ty Py (4.53)

Estimate for ny.n, € Q,

[P 75! o)

< Z | P{ny. n")l) H'[};ll(n/.n”)H NP (n". na)l|

n'n'

and by (4.25)
< E'_’ Z ()y~\u,—n’|"‘~f712"71”[q (I)1 (I”’ll + In”“

n' n’

< & Z e Hnf =g nt e b, (I”II+ |n”|)

n'n

< e”.

Recall that Q4 is a neighborhood of 0 of bounded size. Hence also
P T3 Pl < e, (4.54)

Also. by (4.32)
[(P T3 P*) (1, my), (na.ma))| <

[P ((ny,my). (0 ') J(Tﬁll)((n',m’).(n”.m”))‘ |[P™((n", ") (n4, ma))] <

n’ n' . m’ m"
o —l IC]_ _ 'Cl_l /Icl_ - //Cl
£2 z e 2in’| {my—m Sin”| frma—m"'| &, (In/|_+_|n//l) (455)
nl'"/I
fm/—m/ J<(n/{4[n"" )Y
+ 22 z ()—%|n'|"l_]m1—rnl ':l——i;|n”lc‘—’mz—m”!cl_Tlalm/—muicl/;‘u (456)
"/."II

mmm 2 [ L0

Clearly
(4.55) < &° o Hmy—mp|c1/10
(456) < :-") ﬁ_ﬁ[m‘—ynz'ﬂ/’lo
so that
. e )
'(P Tﬁll PT) ((”1'”Ll)\(”'_’,m«_;))l o 2t im0 .

Next, consider following decomposition according to the mn-variable
Q'_J = Q'_).] U Q'.’,‘..’-
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In case (1), Qun is a bounded set., such that
|[£in. Ay + o+ pzm| > 1 for me Q. (4.58)
In case (2). Q.4 will consist of the m-valies for which |m|3 takes a certain given value and
1
£ (0. A) £ 0+ prgml| > 3 for Qy ={ng}, me, (4.59)
Decompose P T({ll P* accordingly
Uy Ugg

PTI P = (4.60)
Uy Uss

[X]

so that
Ta,, —Un Q" -l
Ta, =10 Tf{ll P = . (4.61)
Q—-Uys  Ta,— U
Observe that by (4.54), (4.58). (4.59), the diagonal elements of T, , — U1 are at least ,13— 7> % [t remains
thus to control

S =Ta,, — Uy —(Q =12} (Th,, —Un)™ 1 (@ = Uy). (4.62)
Recall that by (4.54), (4.57)
U5l < & (4.63)
|Usj(rmy ma)| < &2 em tolmemmal (4.64)
From the preceding it follows in particular that
[(Ta,, = )71 < 3. (4.65)
Since ) appears as an off-diagonal part of T
QI < <. (4.66)
Consequently, from (4.63)-(4.66)
S = Ta,, +0(?). (4.67)
Also
1Tﬂgll(m1‘m3)| < zehmimmaltt [T, (T, ma)| < < pmimi=mzl™for oy £y (4.68)
Q. ma)| < e plmi=mal™ (4.69)
from which by (14.64) one easily derives that
IS(rmy . ma)l < ¢ o= Trlmi—ma (4.70)

Case (1)
The diagonal of Tn,, is given by
(A n—-ng) o+ pgm

-

where oy = (M. ng) + . |n — ng| and |m| are bounded by Cys. Thus S is a (d x d)-matrix for some bounded

d. To control the inverse (S*71)~'. we consider the determinant det S*”* which is thus of the form

det 270 =[] (2(An=no) 2oy +pugm) +5 (N 01) (4.71)

In=nal<Cyy
jm|<Cyy

16



where (cf. (4.67))
FlA o) = 0(=). (-4.72)

Case (2)
The diagonal of Tq,, is given by

+o, + HEm

where 71 = (A ng) + 0. [m|? = & (specific value) and the sign is well specified.

Assume [ngl* =k = [ini* = |ms]*, Imy — ol < [mol'/? iy = gl < [mol'/*. Then
2 (g my =] < 2 g [V? (1=1.2). (4.73)
Since [det(rny — 1ng. s — mg)| > 1.t follows

ol < Jma] 2 Py [M2 Jrng M2

which is contradiction.
This shows that in an &!/?

Partition Q99 = U/QY, where #Q5., <2 and

-neighborhood of any solution of |m|* = k. at most one other point may appear.

dist (05,90 ) > €175 for o # 4. (4.74)

Case (2.1)
k < (log Ny,

In this case S is a (d x d)-matrix, with (from the divisor function)

| k . logl ‘;Vr .
d<exp 2o < oxp (hy —B98 0 g (V) < (log N, ). (4.75)
loglog & loglog log V.
Writing
Sat, R
S = Y Sl (4.76)
P ot
one has
A per/z00 ———
IR} < emm (4.77)

from (4.70). while the off-diagonal .of each Sqg, is at most 0(¢) by (4.67).

We estimate again (S*7)~! by (det $*7)=1, det S} appearing in the form

det $*7 = H (det 5?2?’;) + (A, o)

a<d
= [T (o + 807 + vald o)) + oA 1) (4.78)
a<d
where
lo(A o) =0 <dd f:,—l‘—lk“““”> =0 <e-%k”‘/’°°> (4.79)
[Wa(A. o) = 0(¢) (4.30)
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and 7, = | or 2.

Case (2.2)

k> (log N
In this case, letting
e Cyg > 10000 {(4.81)
we have
IRl < exp (-% (log m)“‘*“) < exp —(log N, )20 (4.82)

On the other hand. we only consider (A o )-values for which the inverse is bounded by & (V,) < exp(log N, )'2.

4 . -1 : .
Hence, we may restrict ourself to controlling the (Sn%) provided we insure that for all «

Hsg‘; < expllog N, )'? (4.83)

and the off-diagonal part R may thus be ignored in this case.

Estimate again b(—z,,l by the reciprocal of the determinant. of the form
(£ + k)7 + va(A oy) (4.84)
where ¥(A, o) = 0(g), 7, = 1 or 2.

In order to apply Malgrange's preparation theorem and replace the error terms (A, o) and v4(N.oy) by
polynomials in oy (of lower degree than the leading o-power) with smooth coefficients in A, estimates on

9% 9% -derivatives are necessary.

Restrict A and o (hence o) to a sufficiently small neighborhood of the initial pair to ensure a perturbation of
the operator T small enough to preserve the previous construction reducing the problem to the invertibility
of S given by (4.62). In particular, one needs to preserve the bounds on the (Ti 7y=1 for the blocks A of size
< Vy_ considered above. Hence one may allow a perturbation of the (A.¢)-parameter by an amount

‘r

NTUBUN )T > exp —(log V,)

{taking (4.10), (4.24) into account).

We will apply Malgrange's theorem w.r.t. o restricted to a complex disc D centered at the initial 7; €
R of size exp —(log N, )? and analytic (in fact the restriction of rational) functions on D satisfving these
further derivative estimates (see (4.99)-(4.101) below). This will in particular lead to at most exp(log N, )>
polynomials (restricting the m-variable to a given domain Q). Thus in (2.4)-(2.6), the function ®4(N,) may
)3

be taken exp(log N,)® say, which is certainly compatible with (4.10).

Assume
[0S T' ((n1, my), (n2,ma))| < exp (=|ny — na|t = [my — ma|%) plal® (4.85)
where T refers to the off-diagonal of T

Of course the operator T’ resuits from the approximative solutions {y;} constructed along rhe Newton
iteration scheme and in verifving (4.85) one uses the fast decay of the consecutive increments Ag y = yg — Yyt —1

as well as the way they are obtained. Recall that essentially one has
Apy=—[Fly-0]"" Flyy) (4.86)

18



and T at stage k 15 constructed from F'(ye_1). One needs to control 9F(A¢ y) which from (4.86) and

induction hypothesis may be bounded by (¢f [By])

ITHI max 07 Rl It 0t el al (4.87)

where 1 < p < 4 < B (considering the possibility of large |[a]). This remark permits to keep essentially the
el**_bound over the iteration.
Recall that we defined (4.31)
7=+ (np, A)
so that the diagonal of T writes
Hn—nyA) o) + pipm. (4.88)

For 4 defined as earlier in this section. size 4 ~ N,, we have thus

P

< |‘T;1H|nl+|;i|+l ‘€|rr[

Vil < elal® gy v, )Rttt (4.89)

o8 o3, (]

Also. from (4.25)
[0 07, (T < {1, e+ttt ol yial o plol® (v, _p)2lel+ioiet (4.90)

. : . . , Aoy , .
As consequence of an induction hypothesis for the derivative estimates of (T 7)=! when N < N,_|, we get

-1
a5 04, (T:\m) ((n1my). (n2.ma))| <

ellal+inh? exp (—% [ny —na|™) if |ny — na| > ®o(Ny)
(4.91)
ellat+181)? exp (—% my —mof™) i |y — ma| > NE.

Next we establish more precise derivative estimates on (YLI‘I)A 7' Our aim is to show (cf. (4.25). (4.27).
(4.32) for « = 3 = 0) that

as ('?:l T(;ll ((ny.my). (na, rnv_))){ <
I @ ([ 4 g1 (0
e2al+[5D" exp (_% Iny — na|1) if |ny — naj > ®g (0] + [na|) (if) (4.92)

2l al+19]) exp (—11—(J by — a2 i my — ma| > (] + (n'_>|)mv (2i2)

For (i), (i1), we differentiate (4.22)-and for (iii) differential (4.33)-(4.34).

The contributions of the second term of (4.22) for instance are

Do (0T 8 T (nh,n) (952 07 T') (non') (027 022 T 1) (0 na) (4.93)
neEAn’'gAd
where || = o] + |aa| + Jas|, |8] = [31] + |32] + |s]. Observe that the presence of a square (|a|+ |;3|)")

avolids in particular problems of extra factors due to applying the product rule (since the contributions of
las| + [0i| = |a| + |B] are dominant in this respect). To estimate (4.93), apply (4.89), (4.90). (4.91). (4.85)

and the same argument as earlier for &« = 3 = 0. The first two factors in (4.93) yield the estimate

ellaal 419, D S (NI feal® =Ty Iny = n| < $o(N,) (4.94)
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2 1 2 ey . -
P H07 ayp (-——S n, — n}“> etz mln=nd if  ny—nj > ®g(N). (4.95)
If (4.94). one gets thus

e(‘a|'+|02|+1/31|+|;’32,)z E‘H”!“”,rl ()_L\ NT 6(2'(,‘14_]13")(10;;;\',)l"’. (496)

If we assume (2|a] + |31]) (log NP2 > %A\':‘. thus Joy| + 4] > N2 the last factor in (4.96) may be

bounded by et +3D* Hence. in both cases {4.94), (4.95), there is the estimate

)

el lmitis 41320 = Siny=n't7r («4.97)

This observation permits to carry out essentially the same argurent as for o = 3 =10,

Observe finally that if |ny| + |ns| is large. hence V.. the last factor of (4.96) may essentially be ab-
sorbed in the first. This point is of importance to preserve essentially the e/t factor when estimating

o Aoy . . . . ,
7N o8 (TS7)™" (ny, ng) for [ny = na| > ®o( V) according to the inductive hypothesis.

-1
. . AL . . . - -
Once the derivative bounds for <I“”l”‘> gotten. we may estimate derivatives of P Tnll P and from the

arguments leading to (4.57) we get

< 2t pad4l3D? = fylma—ma] /20

0% 05 (P T3 P™) (my. my)

(4.98)

Hence one gets the estimate (4.98) for the matrices U;; given by (4.60) and also for the matrix S defined by
(4.62) (case a = 3 = 0 given by (4.70)).

Case (1)
Besides (4.72), one gets the dertvative estimate from (4.98)

05 07, (A )] < 0 (= e2el#2DT) (4.99)

(In this case. a. 3 will only take bounded values (independent of N).)

Case (2)
In case (2.1). the functions v, (A. o) and ¢(A, oy) satisfy again from (4.98)
0% 02 GalM o1)| =0 (s eﬂHaHlﬁl)’) (4.100)
while
07 07 (Ao} =0 (e—“‘“”“) p2lal+HBN* (4.101)

Recall that we need to consider the (reciprocal of) the expression (4.78)

I (2o + )™ + walhon)] + (A, o) (4.102)
a<d

where 7, = 1.2. d <€ k*.

In case (2.2). we need to consider reciprocals of
(ko + K + wa(X o) (4.103)
where 7, = 0.1, ¥, as in (4.100).
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In both (4.102), (-1.103) the sign £ of oy 1s well specified. Define
me=m thk=0+{ng. Ay k. (4.104)
Thus (4.102). (4.103) may be rewritten as

H (o7 + Ua( A as)] + 2( A o) (4.103)

a<d
7l + (A7) (4.106)
with v, ¥ satisfving (4.100) and » (4.101).

Applying in case {1) Malgrange's preparation theorem. (1.71) inay be replaced by polynomials

II == +o +piEn )+ Y ay(A) o (4.107)
in—ngi<iy, J(d
Imicay
degree d
where
[0% a,| < 0(z) (4.108)

(|| and d are bounded here).

Stmilarly in (4.105). (4.106). one may replace i, (A, o), (A o2} be a lower degree polynomial in o4 (of
degree 1 or 0) and smooth A-coefficients. Thus (4.105) gets replaced by

[I patoa, d) + 202 0n) (4.109)
a<d
where
Palor, M) =0+ a;(\) o) (d<2) (4.110)
j<d
0 aj] < eHel” - (4.111)

and ¢ as in (4.101) and (4.106) is also replaced by a os-polynomial of the form (4.110)-(4.111).

In order to replace also ¢(A.0y) by a polynomial of degree < Y degree p,, again Malgrange's theorem is
n<d

applied. In this case however the degree d is large (possibly exp %) and the assumption d <« k°

together with (4.101) become essential. A more quantitative analysis of the preparation theorem taking

into account large degrees and specific derivative bounds for large derivatives is thus necessary and will be

presented separately.
Finally, observe that in case (2), one has for the self-adjoint S defined by (4.62)
S=0, 1 +0(¢). (4.112)
Hence. from first eigenvalue variation. 5~! may be controlled by reciprocals of expressions of the form
a9 4+ a(A) (4.113)
with [a], [a'| = 0(¢). See the comments in (2.11).

3

Finally, in order to establish the off-diagonal estimates on T7!(ny, n,) and (0F 92 T=')(ny.ny) for

HT“ H < PN ) iny = o] > Ba(N,). we rely again on the localization identity and the estimates (4.27),

(4.92) related to Tn—l1 (the %—f'actor may be improved to any number > 1, from the assumptions on T and

derivatives: keep also the observation in mind about the P+ factors). In particular one verifies the

inductive assumptions in this respect (cf. (4.16). (4.91)) at stage N,.
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5. ApPENDIX 1 (Preparation theorem)

We give a proof here of the analytic case with estimates in terms of the data. which make the result applicable

in the context of case (2.1} described above. Thus we consider an analytic function

Sz =Y a0 2 gl g) (1)
1<d
,:(z\:):Zrl_,i/\) -7 (2)
1>d

(z — o4) on a neighbarhood D of 0 of size » (= exp —(log .V, )?) such that

a;"' < pridtiah)’ for j < d (3)

a;'” <y el gor s d (4)

a}m <yedlel®s=1 for > d. (5)
Here log B

y<e P with logd < (6)

loglog B

Conditions (3), (4), (6) result from (4.101), {4.109)-(4.111) and {5) from the persistency of the J7 z-bound
(4.101) for o3 € D.

QOur aim is to replace f by a polynomial

P(X.z) = bi(A) & + 2 (7)
j<d
with
b < et for j < d . fal < 2d° (8)
in the sense that
IP(A 2} ~ | f(Mz)| for z€D (9)

and A restricted to a suitable neighborhood of a given parameter choice Ag.

Assume
‘)\—/\()‘<O‘ :f‘:jd. (10)
Dencting (bo, ..., ba—1) = b a parameter, define
priz) ==+ by (11)
j<d
Write
po(z) = pols) + qu(b sy = (z—=5) (12)
j<d
pb(:) - 1 +Z(1J(b's) 2 (1‘)
po(s)(z =) = po(s)
7<d



It follows then from Cauchy's theorem and (13) that for ail &
. 1/ S5 s 1 s* qi(b.s)ds
Sk [___/ __;__ Pb(Z)‘Z __/ M - (14)
271 Jr pr(s)z — 50 oy 270 I, pe(s)

We will make a choice of 7 depending on & and according to an iteration process along which b will be more

and more specified. Define &, = @' say and
ap = “YP for d< k <k, and «a} = min (P,Hk‘\ 6_k> for & >k (15)

and let
e~ (1L+ap)” % >0 (16)

Step 1. Let d < k < K,

Chose 7 = 7 = 0(1) < 1 such that
sd+zajkx\q) Sl >d =k, for sel,. (17)
J<a
Assume for j =0,.... d—1
Ky
|% —-aj(An)|< TBE. (18)
Put
k
1 1 s¥ ds
Qb A= S ad) ,—./ o ds
k_;l 27 Jr,, pe(s)(z — s)
and for j =0...., d—1
k
‘ 1 s qi(bs
Ry ;(b.A) = Z ap(A) —/ M . (19)
k=d+1 ari Je,, o po(s)

Hence. from (14)

fAz) =D ap(A) 2 Quib A z) iz =D RN Z ap(A) =*

j<d j<d k>ky
= 1+ Qb A 2] pol2) + D _lay(A) = by = By 5(b.A) =7 + > ar(A) 5. (20)
j<d k>ky
From (17). (18)
' |s|* T d :
< — < d%. (21)
r,, 1pe(s)llz — sl min  |ps(s)]
<€l
Hence from (4)
hy Ly
Qi< S laedt < dt ST ap < dt A0y <A1 (22)
k=d+1 k=d+1
by (15). (6). Similarly
IRyl < +'Y3 and |0y Ry < M2 (23)

Solve for j =0.1..... d—1
by + Rij(b.A) = a;{\) (24)
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which may be done by the implicit function theorem, in view of (23).

This vields

satisfying

Writing [a}(A) — a;(Ao)] < la) (A) = a; (A)] + laj(A) = a;(Ag)] < /3 4 e2d+17 51 <0 1/

a;(A) = a;(A) +0(+'/?).

(18) 1s satisfied. We restrict further b to satisfy in particular

Step

K

Jb —fl(AO” ~ ;63.

2. Let k) < & < ko

Choose 7 satisfving (16) and moreover for s € s,

ST+ 3 al(h) o) > (%)d > (%)d = ks,

7<d

Assume for 7 =0.1....,d -1

Put

Hence

Estimate

k=d+1
S 1 a;(b. 5)
RO b A a A ‘—fu/ J - dS
AN = D ol {m e ) ]
FA2) =Y ai(h) &+ 24+ Qa(b, A, )= > Raj(b.)) )7+ > (V) =
j<d i<d k>k,
= [1+ Qb )] prlz) +Z (a;(A — Ro (b, A)) ~’+Zak
j<d k>ka
k 3
2 1 s* ds
Q —Q = a (/\) —/ _—
T k:kZ,H S\ e, ps)E )
ko -1
@Q-@il< > aprf (Iprikn m(s)l)
k=k,+1
ko
< 2d° Z ap 771 (by (27), (28))
k=k+1
k2 k—d
<2t Y7 (a)'TFE by (16))
b=k +1

e

< 3d* (ag, 41)7

< (ap, o) '% (by (13)).
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3. it follows that

(26)

(27)

(30)

(31)



Similarly

|Ry — Ry| < (’(1;1+1)_1/2 and | ( Ry — R < (rzz.lﬂ)—l/? (32)
Solvefor j = 0.1,....d -1
bi + Ra (b A) = a;(N) (33
yielding
a*(A) = (a7 (N))j=0. -1,
Since, by construction
aj(A) + Ry j(a' (M), A) = a;() (34)
it follows by subtraction of (33}, (34)
(aF =aly+ Ry (a® A) = Ry jla’ . A) + (Roy — Ry j)(a® ) = 0. (35)
Hence. from (23), (32)
\a/‘y—(zl|<'._’(a,’cl_H)—l/2 (36)
and
la®(A) = a'(Ao)| < 2(ag o) 2 4 Jar(A) = ai(da)] < 2ag, 4) 77 J A+ 5 (37)

Consider condition (28). from (10). (16}, only the first term in (37) has to be considered. This vields

* L1/ 1 —d— . L —ad
@k )72 < 55 d7 T (ap,) TR (38)
which is easily seen from (15) to hold for
ko ~ k32 (39)
We again restrict b further to satisfv in particular
I Ko
|b] — (l]'(/\())’ < m (40)

and perform the next step.

The continuation of this process is clear. Take k.y; = £2'%. The sequences {a‘}, {(s}, {R.} are obviously
convergent. Denoting b, @, R their respective limits. we have by construction of a® for |z} < 63, |A = Ag| < 3¢

FOL = [T+ QM(A) A 2] [543 b(A) & (41)

1<d
where in particular ¢ = 0(1). Hence (9) holds.

It remains to check (8). We have (j = 0..... d—1)

bi(A) + Rij(b(A). A) = a;(A) (42)
where
B 1 k0. (b. s
Rib. N = 3 an(d) [2—/ s* 4i(b.s) ds], (43)
k=d+1 Jr,, pols)
Differentiating (42) yields by (3)
()] < etd+ad ) + 41+ f’1|)|a| sup |D? R| Z 1)) . |b(/3,a|)|4 (44)
A< ,
= Z13:i<]al
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Here D7 R refers to both b and A derivatives.

From {43). one has

; 5 SRR S RNE]D
D% R| < k;ﬁ Jnax a7 (%) .
Recall that [3] < |a] < 2d* by (8).

~ We distinguish the cases & < &, and k > &,

(a) For k < ky, 7 = 0(1) and. by (4), Ia‘,‘c‘j/)l <y eklel)? S A2 -
Hence we get the bound

ddl'l+|a() 71/'.3 < _',1/3‘

(b) For k > k. write by (4)

i/>| o pllkHlal)t ke

y
la
since |af < 2d* < 2kY/%. Hence. since also Ia:] < e2lel® 5=F it follows from (15)

la 1“‘3{

J| < el (a;)i—}'
Substituting in (45) gives

B 2 Y <d(14]al) T . _
el|cxl dd(1+|01|) Z(ak)i” 24 X < eod (akl) 1/2 <e
k>ky

Consequently, from (46), (49)
ID? Rl < e 4" for |8 < |af

and substituting in (44) yields for jo| < 2d°

Ibg_a)l< e2dtlal)t L —5d"® Z [B51] - bPre].

Z18,|<]al

From this. one easily concludes that
{ « 2 (
657 < 3 24D for o) < 24

and in particular (8).

6. ApPENDIX 2 (The periodic case)

/2

Lg10
._2d )

(48)

[n this case. the linearized operator T = D + T on the (m, n)-lattice (m € Z%, n € Z) is given by

—An + m|* + V(m) 0
D =
0 An +|m|? + V(=m)
Soarp Saze
T - Fuow pY:
Sazp S azp



acting on pairs (4. ). To deal with its inverse. we use following known [Irohlich-Spencer type lemma (cf.
[Pos]) when the singular sites of D appear in well-separated clusters. We will rely on a simple Frohlich-
Spencer type lemma to bound the inverses of certain linear operators of the form D + = Ty, where the

singular sites for the diagonal D, appear in well-separated clusters.

Lemma 1 Fiz some constants l—IJ > 5y > 2y > =y > 0 and let Q be a subset of the M-ball in
ZHY (M — x). Assume {Qa} a collection of subsets of Q satisfying

diamQ, < M (2)
dist(Q2,.Qy) > M2 for o # 5 (3)
Write T=D+S (D = diagonal) where
ISl <= o IS(z.y)| < = e=lemvl (4)
for some ¢ > () and
ID(z)|>p>e if reQ\UQ, (5)
WT )™ " < M9 forall o (6)
denoling Q, on Me-newghborhood of Q..
Then
T )~ < uee (7)
and
(T1O ey)) < om0 ez =y > M2 (8)

Proof. The argument is essentially well-known. We repeat 1t here for completeness sake. Denote Q5 = Uy Q4.

(i) Let Q@ C Q\Qy and write the restriction

=D+ 55= (1 + 57 Dg) Dg (9)
which inverse may be written as a Neumnann series
J
-1 _ =1 =1
T3t =05' 3 (-1P (s7 0F') (10)

720

by (4), (5). In fact HTﬁ—lH < Zb"l and analyzing (10) using (4) yields an off diagonal bound. say

'Tﬁ_l(x,y)‘ <emilTvlt for 2 # . (11)
(i1) Let z,y € Q. Denote M by K.

Case I. Assume dist(z, Q) > K.

We then write Q = Q@ 4+ Q,. where Q; = QN B(z. A). hence 2y, N Qs = 0. From the identity for inverses.
one finds

TS (z.y) = Tn_ll(x.y)-i- Z TSI(L:) Sz w) Tgl(w,y). (12)
e WESD,
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From (1) we have thus ITgll(x.y)‘ < pTt e~ 317=91" and hence. by (12)

TRt o) < p™t + 0 D enElEAT el AT )
€N WESL,
—1 ~Llr—zj° —1r.
< + X e’3 TS (=,
p Lmax PENT
-1 ~L+Re -1 E
=p~" 4+ max e 37 . max TS 'z, ). 13
R>K lz—y|>|z—y|-R 75 (=9 (13)
Clearly the first term vanishes in (13) for |z — y| > N and hence
T: ' (z.y)| < max em TR max T3z, if |lz—y|l>K. 14
T (2. y)] < max ymax TR w] i el (14)
Case II. Assume dist(z,Qy) < K.
We then write @ = Q; + Q., with Q, = §a = K-neighborhood of S,, if dist(z,Sq)
< K. From (6) and (12)
|T51(z,y)! < M + MEH! max e~te-wl ]T{{l(w,y)" (15)
ze8h wes,
We distinguish further the cases
(I1;) dist(w, Sa) > 2K.
Then |z — w| > 2K — K = A and
2.15) < M 4 MCit! - LA TS (w,
( ) lr:‘n>a;<{ ‘ lw'—y|>|r——zr/rllf)1§—'2K—M‘l l a2 (w y)l
(16)
< MS = 3R T = )|
1 * ;{r;a}ig ‘ Jl~y|>|$TyEID—(R—2M'1 a y)i
(17)

since |w—z| <|w—zl+ |z =] < R+2K + diam S,.
Again the first term in (17) may be dropped if |z — y| > 2M*.
(II) dist(w. So) < 2K.

From the separation hypothesis (3}, it follows that dist{w, ) > A, since dist(w, So) > K. Thus Tal(w, )
may be estimated as in Case [. Substituting (13) in (15) yields

15) < MO+ -t ,— i R° TV 2,y . 18
(19) R . LAV (R Gl (18)

Since in this case with w as in (15), {w — y| > |z — y| = 3K — diam S,, it follows that the first term in (18)
may be dropped if |z — y| > 2M**.

Summarizing (13), (17), (18). it follows that |T3'(z,y)| is bounded by (18) in all cases and the first term
may be ignored if |z — y| > 2. Hence |T51(1;,y)l < MC*t p=1 and (7). If we assume |z — y| > M
say, an iteration of (18) yields

75 (2 )] < 2 o HRTHRS ) oo dlemyl® (19)
Ry+2Mer +Ro+2Me1 4 <|r—yj
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assuming 2(1 — ¢) > | (considering decav functions of the form e=" for ¢ < | simplifies iteration here in
fact).

We need to satisfy the hypothesis of Lernma 1.

First make the following observation related to condition (6). Let Q ¢ By, lﬁl) C Z9*! and consider the

selfadjoint operator A, Tn, where A= (X)) Clearly

—|m* + C’(m} 0
Dy (M Ty) = - + 0(¢) (20)
0 —|m{* + 1V (m)

(T has a bounded dependence on Ao, A). 1t follows then from first order variational calculus that
[Ox, (411)] = |zo]? for [zo] large enough for the eigenvalues i of Tn. On the other hand. Ox, (1) 1s bounded.
This enables us to make an admissible restriction of (A, A} to a set of small comnplementary measure such
that
1T < ve (21)
for Q ranging in a given collection of A€ subsets of B(0, M), as above.
T Ty

Ty Ty
duplicate each element from the index set), the decay assumption (2.4) will be fulfilled provided the symbols

We consider T as a (2 x 2}-block matrix < ), Tv» = T3,. Keeping this in mind (alternatively, we

o =01, F, OXF, O F satisfy the corresponding Fourier transform decay property. Considering for instance
a polynomial function F in . v such property results fromn the iterative construction of the sequence of
approximative solutions 1w/ using the Newton scheme and will be fulfilled at each stage (with a fixed constant
c), cf. [By]. Our next task is to describe the Qq-sets which is a simple arithmetical issue.

!
a

We will show that the region {z ¢ 24 | 1z < M} may be partionned in set {Q,} satisfying
diam ®(Q,) < M? (22)

dist (P(Q,), ®(Q)) > M* for o £ 3 (23)

for some small e = £(d) > 0, § = 6(d) > 0, where ®(z) = (z. |z*). A partionning of the near-resonant sites
Qo {(z.n) € 24+ [zl < M |lz]* - An| < C'} may then be obtained defining

Bo=flzm ez o e, |laf' ~anf < c). (24)

The existence of such partition {Q,} will clearly result from following fact
Lemma 25. Given z, € 29, there‘ 5 asel QCZY, 25 €Q satisfying
diam ®(Q) < M* (26)
[P(z) = D(y)| > M i ze0Q. yEQ (27)
Here 6 = C(d) ¢.
Lemma (25) is a consequence of

Lemma 28. Let {zj}iz01. & be a sequence i Z9 of distinet elements such that |®(z;) — P(z;41) < B.
Then k < BY, with C = C(d).
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Indeed. given zn € Z% define Q, = {zez2||P(z) — (zy)| < M} and in general let
Qi1 = {z €27 |dist (@(z), ®(Q;)) < Me}. Put @ = U; Q. Thus clearly there is for each z € Q a chain
(zj)j=0. & with zx = r and [®(x;_\j - d(z;)| < M®, j = 1..... k. Hence k < MC* by Lemma 28 and
[D(r) — @(2z0)] < k- M < MI+EE Thus the lemma holds with § = (1 + (e, proving Lemma 25.

Proof of Lemma 28.

We perform an inductive construction. based on the same ideas as in the d = 2 case.

Define j, < 5:,— such that |z; | > c(d) #'/¢ (using the fact that the points r; are distinct lattice points). Denote
Ag rj = zj — zj, for jo < j < k. From assumption, |®(z;) — ®(z;,}| < (j — jo)B, while ®(z;) — d(r;,) =
(Ao z; . 2(zj0, Ao z;) +|Ag z;]*). Consequently

{250, o i) < (j — jo)* B (29)

Take jo < j < Jjo+ 1 < k. I dim[Ag z; | jo < j < jo+ /1] = d, it easily follows from (29) that |z;,| <
C(d) (J, B)#*!, which is a contradiction if

(J1 BY*! < e(d) kM4, (30)

Thus. if (30) holds, there is a subspace #, of R%, dim H, = d — 1 such that z; € x50+ M for jo < j< jo+ )y,
Choose next jg < j; < jo + % Ji satisfying
P, 25, > e(d) J;/* (31)

2

and consider 7; < j < j; + % Ji. One has again |{z;,, Ay z;)| < (j — j1)? B2 if Ay z; = r; ~ z;,. Hence
{Pu, zj, , Ay z;)| < (5 — j1)* B (32)

Restricting j1 < j < ji+J2, Ja < % J1 and assuming dim (A, z; | j; < j < ji 4+ J2] = d =1, it follows that
|Py, zj,| < C(d) (J» B)?. Thus we take .J, satisfying

(Jo BY < ¢ J}/*t (33)

If (33) holds, there is a subspace H, of R?, dim Hy = d — 2 such that z; €z, + Hofor gy <j<j)+ Jo.
Continuing this process d times yields a contradiction, provided B? < J4_;. This proves the lemma for
k< Bdu, taking into account the conditions (30), (33) etc.

This proves the lemma.

Remark: The existence of partitions as above was observed earlier by A. Granville and T. Spencer.

We now return to applying Lemma | to our problem.

Fix £ > 0 and write Q = 5-&-6 where Q@ = B(0, M*) and B(0. M) C Q C B(0, 2M). The preceding
allows to partition Qn 2o in sets Q, satisfving

diamQ, < M? | dist{Q,, Q) > M?/? for o # 3. (34)

Define
Q= (QnQy)u U Q. (35)

dist(Qa )< MP
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and partition 2y NQ as Q_,, 1, | dist (Q.,Q) > M7} These sets are of diameter < M* (assuming x > p)
and at least M#/*-separated. Thus in i2). (3 welet ey = n, 2y = 5,23 = §. Tosatisfy (6). apply (21) taking

for Q the sets Q.. Considering Q_| of a smaller size-scale, we assume a bound on (T1Q-1)~" obtained at
previous stage of the construction. We may then apply Lemma 1.
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