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Abstract: Floquet theory provides rigorous foundations 

for the theory of periodically driven quantum systems. In 

the case of non-periodic driving, however, the situation is 

not so well understood. Here, we provide a critical review 

of the theoretical framework developed for quasi-period-

ically driven quantum systems. Although the theoretical 

footing is still under development, we argue that quasi-

periodically driven quantum systems can be treated with 

generalisations of Floquet theory in suitable parameter 

regimes. Moreover, we provide a generalisation of the 

Floquet-Magnus expansion and argue that quasi-periodic 

driving offers a promising route for quantum simulations.

Keywords: Driven Quantum Systems; Floquet Theory; 

Quasi-Periodicity; Reducibility.

1  Introduction

The dynamics of quantum systems induced by a time-

dependent Hamiltonian attracts attention from various 

communities [1–5]. Chemical reactions can be controlled 

with driving induced by laser beams [6], and driving 

atoms permits to investigate their electronic structure [7]. 

Suitably chosen driving sequences permit to investigate 

dynamics in macro-molecular complexes [8], and there 

exist phases in solid-state systems that can be accessed 

only in the presence of driving [9, 10]. A neat bridge 

between quantum optics and solid-state physics is built 

by the fact that periodically driven atomic gases can be 

employed as quantum simulators for models of solid-state 

theory [11, 12].

Solving the Schrödinger equation with a time-depend-

ent Hamiltonian calls for different mathematical tech-

niques compared with those applied in situations with 

time-independent Hamiltonians. Differential equations 

with time-dependent coefficients have been investigated 

thoroughly, and in particular, developments regarding 

reducibility are appreciated, as they permit to understand 

driven systems in terms of time-independent Hamiltoni-

ans [13].

The foundation for this is laid by the Floquet theorem 

[14–16], which relates a periodically time-dependent Ham-

iltonian with a constant Hamiltonian. This mathematical 

theorem provides the basis for experiments that employ 

periodically driven quantum systems for quantum simu-

lations of systems with time-independent Hamiltonians. 

Such experiments have led to the experimental observa-

tion of, e.g. coherent suppression of tunnelling [17–19], 

spin-orbit coupling [20, 21], synthetic magnetism [22–24], 

ferromagnetic domains [25], or topological band struc-

tures [26, 27].

The specific time dependence of the driving force 

plays a crucial role in the dynamics that driven systems 

can undergo. Yet, despite the possibility to experimen-

tally tune it, very simple driving protocols are usually 

employed, which can significantly limit the performance 

of the simulations [28] and restrict the range of accessible 

dynamics [29, 30].

In this context, pulse-shaping techniques have been 

introduced in order to achieve the simulation of the 

desired effective dynamics in an optimal fashion [28, 30]. 

Yet, the restriction to periodic driving is a limitation, and 

quasi-periodic driving, i.e. driving with a time dependence 

characterised by several frequencies that can be irration-

ally related, promises substantially enhanced control over 

the quantum system at hand. As the use of quasi-periodic 

driving [31–33], however, implies that Floquet theorem is 

not applicable, the mathematical foundation is far less 

solid than in the case of periodic driving.

Generalisations of Floquet’s theorem to quasi-peri-

odic driving have been pursued both in the quantum 

physics/chemistry literature [34, 35] and in the math-

ematical literature [13, 36–38]. The former perspective 

approaches quasi-periodic driving as a limiting case 

of periodic systems, while the mathematical literature 

approaches quasi-periodicity without resorting to results 

from periodic systems. Beyond the fundamentally differ-

ent approaches, also the findings in the different commu-

nities are not always consistent with each other.

The goal of the present article is twofold. On the one 

hand, we discuss prior literature on the generalisation of 
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Floquet’s theorem to quasi-periodic systems and attempt 

to overview over what findings have been verified to 

mathematical rigour and what findings are rather based 

on case studies and still lack a general, rigorous founda-

tion. On the other hand, we aim at studying the possibil-

ity to use quasi-periodically driven systems for quantum 

simulations.

We consider quasi-periodic Hamiltonians H(t) that 

can be defined in terms of a Fourier-like representation of 

the form

 

( ) ,
i t

H t H e
⋅

=∑
n

n

n

ω

 
(1)

where ω = (ω
1
, …, ω

d
) is a finite-dimensional vector of real 

frequencies that are irrationally related and n = (n
1
, …, n

d
) 

is a vector of integers such that n·ω = +n
1
ω

1
 + … + n

d
ω

d
. 

Moreover, the norm of coefficients H
n
 is considered to 

decay sufficiently fast with |n|.

The main underlying question in the present work is 

the possibility to express the time-evolution operator U(t) 

of a quasi-periodically driven system in terms of a gener-

alised Floquet representation of the form

 

?
†( ) ( ) ,Q

iH t

Q
U t U t e

−

=

 
(2)

where H
Q
 is a time-independent Hermitian  operator 

and ( )
i t

Q
U t U e

⋅
=∑

n

nn

ω

 is a quasi-periodic unitary 

 characterised by the same fundamental frequency vector 

ω as the quasi-periodic Hamiltonian H(t). If the frequency 

vector ω defining the quasi-periodicity of H(t) contains 

only one element, i.e. d = 1, the Hamiltonian becomes 

periodic with period 2π/ω
1
 and the decomposition in (2) 

reduces to the usual Floquet representation, which is 

known to exist. However, if ω contains more than one 

element, i.e. d > 1, the Hamiltonian is not periodic and the 

representation in (2) is a priori not guaranteed.

The possibility to represent the time-evolution 

operator of a quasi-periodically driven system as in (2) 

is directly related to the problem of reducibility [39, 40] 

of first-order differential equations with quasi-periodic 

coefficients, which is still an ongoing problem in the 

mathematics community [41]. Unlike their periodic coun-

terparts, linear differential equations with quasi-periodic 

coefficients cannot always be reduced to constant coef-

ficients by means of a quasi-periodic transformation [42, 

43], although a quasi-periodic Floquet reducibility theory 

does exist [36, 44].

Generalisations of Floquet theory to quasi-period-

ically driven systems have been derived also from a less 

mathematical perspective. Many-mode Floquet theory 

(MMFT) [34, 45–47] is based on physical assumptions of 

1 The periodic unitary U
P
(t) and the Hamiltonian H

F
 are, however, 

not uniquely defined, since different periodic unitaries U
P
(t) that sat-

isfy the same initial condition can yield different time-independent 

Hamiltonians H
F
.

the underlying time-dependent Hamiltonian, and it has 

been successfully applied to a variety of systems ranging 

from quantum chemistry [34, 48] to quantum optics [49, 

50]. However, it does not seem to have an entirely rigorous 

footing yet.

In this article, we address these different perspec-

tives and argue that, despite gaps in a general mathemati-

cal footing, concepts from regular Floquet theory can be 

translated directly to quasi-periodically driven systems, 

especially in fast-driving regimes, i.e. the regime of 

quantum simulations.

In Section 2, we introduce notation and preliminary 

concepts of Floquet theory that will be used throughout 

the article. In Section 3, we revise critically the MMFT and 

point out aspects of the derivation that cast doubts on the 

general validity of the proof. In Section 4, we argue how, 

nevertheless, the general formalism of MMFT can still lead 

to valid results, in agreement with prior work [35, 45–47, 

49–51]. In Section 5, we derive a generalisation of the Flo-

quet-Magnus expansion [52], which provides a perturba-

tive exponential expansion of the time-evolution operator 

that has the desired structure. With this, we advocate the 

possibility to identify effective Hamiltonians that char-

acterise well the effective dynamics of quasi-periodically 

driven systems in a fast-driving regime and exemplify 

in Section 6 the results with a quasi-periodically driven 

Lambda system.

2  Floquet Theory

Floquet’s theorem [14] asserts that the Schrödinger 

equation

 ( ) ( ) ( ),
t

i U t H t U t∂ =ɶ ɶ ɶ  (3)

characterising the time-evolution operator Ũ(t) of a system 

described by a periodic Hamiltonian ( ) ( ),H t H t T= +
ɶ ɶ  

is reducible. That is, there exists a periodic unitary 

U
P
(t) = U

P
(t + T) that transforms the Schrödinger operator 

( ) ( )
t

K t H t i= − ∂ɶ ɶ  into

 †( ) ( ) ( ) ,
P P F t

U t K t U t H i= − ∂ɶ  (4)

where † †( ) ( ) ( ) ( )( ( ))
F P P P t P

H U t H t U t iU t U t= − ∂ɶ  is a time-

independent Hamiltonian.1 As a consequence, the time-

evolution operator of the system can be represented as the 

product
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 †( ) ( ) ,F
iH t

P
U t U t e

−

=
ɶ  (5)

with U
P
 (0) = 1. This decomposition is of central impor-

tance in the context of quantum simulations with periodi-

cally driven systems because it ensures that, in a suitable 

fast-driving regime, the dynamics of the driven system can 

be approximated in terms of the time-independent Hamil-

tonian H
F
 [11, 12].

The eigenstates |ε
k
〉 of the Hamiltonian H

F
 form a basis 

in the system Hilbert space H, on which the periodic 

Hamiltonian ( )H tɶ  acts. Thus, any vector |φ(0)〉 charac-

terising the initial state of the system can be written as a 

linear combination of the eigenstates |ε
k
〉. Consequently, 

the decomposition of the time-evolution operator in (5) 

implies that time-dependent states |φ(t)〉 = Ũ(t)|φ(0)〉 can 

be expressed as a linear combination with time-independ-

ent coefficients of Floquet states of the form

 | ( ) | ( ) ,k
i t

k k
t e u tφ

−
〉= 〉

ε

 (6)

where ε
k
 are the eigenvalues of H

F
 (also termed quasiener-

gies), and †| ( ) ( )| | ( )
k P k k
u t U t u t T〉= 〉= + 〉ε  are periodic state 

vectors.

The quasienergies ε
k
 play a very important role in the 

dynamics of driven systems. They can be calculated after 

inserting the Floquet states in (6) into the Schrödinger 

equation | ( ) ( )| ( ) ,
t k k

i t H t tφ φ∂ 〉= 〉ɶ  which yields

 ( )| ( ) | ( ) .
k k k

K t u t u t〉= 〉ɶ
ε  (7)

Equation (7) formally describes an eigenvalue problem 

resembling the time-independent Schrödinger equation, 

where the periodic states |u
k
(t)〉 play an analogous role of 

stationary states. The quasienergies ε
k
, however, are only 

defined up to integer multiples of the driving [16], which 

results from the non-uniqueness of the transformation 

U
P
(t) and operator H

F
 in (4).

Furthermore, due to the time dependence of the states 

and the action of the derivative in ( )K tɶ , the diagonalisa-

tion in (7) cannot be straightforwardly solved with stand-

ard matrix diagonalisation techniques. For this reason, it 

is often convenient to formulate the problem in a Fourier 

space where the operator ( )K tɶ  is treated as an infinite-

dimensional time-independent operator [15, 16].

2.1  Time-Independent Formalism

State vectors of the driven system are defined on the 

system Hilbert space H, where time is regarded as a 

parameter. In order to arrive at a formalism in which the 

parameter ‘time’ does not appear explicitly, one exploits 

the fact that the states |u(t)〉 in H that have a periodic 

time dependence can be defined on a Floquet Hilbert 

space F = H ⊗ L2(T), where L2(T)is the Hilbert space of 

periodic functions [16]. In this Floquet space, time is not 

regarded as a parameter but rather as a coordinate of the 

new Hilbert space. The explicit time dependence of the 

system can then be removed by adopting a Fourier rep-

resentation of the periodic states in the space F. Fourier 

series permits the characterisation of periodic functions 

in terms of a sequence of its Fourier coefficients. Formally, 

this can be described through an isomorphism between 

the space L2(T) of periodic functions and the space l2(Z) 

of square-summable sequences. This isomorphism allows 

one to map the exponential functions einωt, which form a 

basis in L2(T), to states |n〉, which define an orthonormal 

basis in l2(Z).

In this manner, periodic states | ( ) | in t

nn
u t u e

ω〉= 〉∑  are 

mapped to states

 

| | | ,
n

n

u u n〉= 〉⊗ 〉∑
 

(8)

while periodic operators ( ) in t

nn
A t A e

ω

=∑  can be mapped to

 

,
n n

n

A σ= ⊗∑A

 
(9)

where the ladder operators σ = + 〉〈∑ | |
n m

m n m  satisfy 

σ
n
|m〉 = |n + m〉. Similarly, the derivative operator −i∂

t
 is 

mapped to

 ˆ,nω= ⊗ɶD 1  (10)

with the number operator = 〉〈∑ˆ | |
n

n n n n  satisfying 

ˆ| |n n n n〉= 〉  and the commutation relation ˆ[ , ] .
m m

n mσ σ=

Consequently, the isomorphism between F and H 

⊗ l2(Z) permits one to treat the periodic system within a 

Fourier formalism by mapping the Schrödinger operator 

( ) ( )
t

K t H t i= − ∂ɶ ɶ  to the operator [53]

 
ˆ,

n n

n

H nσ ω= ⊗ + ⊗∑ɶK 1

 
(11)

with the Fourier components H
n
 of the periodic 

 Hamiltonian. The time-evolution operator Ũ(t) of the 

system can then be calculated via the relation [15]

 

( ) | |0 ,i t in t

n

U t n e e
ω−= 〈 〉∑

ɶ
ɶ K

 
(12)

which can be readily verified by inserting it into the 

Schrödinger equation and using the explicit form of ɶK 

given in (11), as we explicitly demonstrate in the Appendix 

for illustrative purposes.

The operator ɶK  in (11) is often represented as an infi-

nite-dimensional matrix [15, 16], and the Floquet states in 

(6) can be obtained from its diagonalisation [15]. In order 
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to find the Floquet decomposition of the time-evolution 

operator in (5), however, it is not necessary to completely 

diagonalise the operator .ɶK  Instead, the operator ɶK  

needs to be brought into the block-diagonal form

 †
ˆ

B P P F
H nω= = ⊗ + ⊗ɶ ɶK U KU 1 1  (13)

by means of a unitary transformation

 

.
P n n

n

U σ= ⊗∑U

 
(14)

The block-diagonalisation in (13) describes the coun-

terpart in the present time-independent formalism of the 

transformation in (4) such that, if the block-diagonal-

isation is achieved, the Floquet Hamiltonian H
F
 and the 

periodic unitary ( ) in t

P nn
U t U e

ω

=∑  are straightforwardly 

obtained from (13) and (14).

3   Many-Mode Floquet Theory 

Revised

The MMFT [34, 45–47] was introduced in the context of 

quantum chemistry as a generalisation of Floquet theory 

to treat systems with a quasi-periodic time dependence. 

The derivation of MMFT is rooted on Floquet’s theorem, 

and its proposed generality contrasts with other results 

derived with more rigorous approaches. In this section, 

we revise the derivation of MMFT and challenge aspects of 

the proof that question its general validity.

The derivation of the MMFT [34] consists in approxi-

mating the quasi-periodic Hamiltonian H(t) by a periodic 

Hamiltonian and then using Floquet theory to demon-

strate the existence of a generalised Floquet decomposi-

tion for the time-evolution operator of the system. The 

derivation [34] starts by considering a quasi-periodic 

Hamiltonian ( ) i t
H t H e

⋅
=∑

n

nn

ω  in (1) and approximating 

the different elements ω
i
 of the frequency vector ω by a 

fraction. Then, a small fundamental driving frequency ω 

is identified such that the different irrationally related fre-

quencies ω
i
 are expressed as

 ,
i i
Nω ω≈  (15)

with some integers N
i
. In this manner, the quasi-periodi-

cally driven Hamiltonian H(t) can be approximated by the 

periodic Hamiltonian

 

( ) ,i t
H t H e

ω⋅
=∑

nN

n

n

ɶ

 
(16)

where N = (N
1
, L, N

d
). The validity of the approxima-

tion ( ) ( )H t H t≈
ɶ  for a certain time window importantly 

depends on the good behaviour of the Hamiltonian and 

on the approximation in (15), which can be performed 

with any desired accuracy. When the approximation 

( ) ( )H t H t≈
ɶ  is satisfied with sufficient accuracy, the time-

evolution operator U(t) of the quasi-periodically driven 

system can be also approximated by the time-evolution 

operator Ũ(t) that is induced by the periodic approximated 

Hamiltonian ( ),H tɶ  i.e. U(t) ≈ Ũ(t).

The next step in the derivation aims at demonstrating 

that time-evolution operator Ũ(t) of the periodic Hamilto-

nian ( )H tɶ  can be approximately represented by a general-

ised Floquet decomposition analogous to (2). Specifically, 

the aim is to express the periodic unitary U
P
(t) of the 

Floquet decomposition in (5) in terms of a Fourier series 

of the form

 

( ) ,
i t

P
U t U e

ω⋅
=∑

n N

n

n  
(17)

which contains only specific Fourier components, as, in 

general, not all integers can be expressed as n · N with a 

vector of integers n. If this was possible for an arbitrarily 

small frequency ω, the unitary U
P
(t) in (17) would approxi-

mate a quasi-periodic unitary 
⋅

=∑( )
i t

Q
U t U e

n

nn

ω

 and the 

time-evolution operator of the quasi-periodically driven 

system could be well approximated by the sought general-

ised Floquet decomposition in (2).

The MMFT derivation [34] considers, for concreteness, 

a quasi-periodic Hamiltonian H(t) in (1) with d = 2; that is, 

the frequency vector contains only two components: ω
1
 

and ω
2
. Moreover, the only non-vanishing coefficients 

H
n
 of the quasi-periodic Hamiltonian are H

(0,0)
, H

(±1,0)
, and 

H
(0,±1)

. Despite this specific choice, however, the possibility 

to generalise the results to Hamiltonians containing more 

frequencies is claimed.

In order to demonstrate the possibility to write the 

unitary in (17), the derivation in [34] makes use of the 

time-independent Floquet formalism described in Section 

2. First of all, the operator ɶK  in (11) is defined (using a 

slightly different notation) for the approximated periodic 

Hamiltonian ( )H tɶ  in (16).2 Then, a block-diagonal struc-

ture is given to ɶK  as a first step to achieve the desired 

structure of the time-evolution operator.

The block-diagonal structure is obtained by ‘relabel-

ling’ each vector |n〉 that forms a basis of l2(Z) (introduced 

in Section 2.1) as

 | ,p〉n  (18)

2 For convenience, we use the notation introduced in Sec. II, which 

differs from the one used in [34]. In particular, the operator ɶK  is de-

noted by H
F
 in [34] and it is represented in terms of a matrix.
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where the vector of integers n = (n
1
, n

2
) and the integer p 

are found by solving the Diophantine equation

 

2

1

i i
i

n n N p
=

= +∑
 

(19)

for all n and for the integers N
i
 in (15). Thereafter, a tensor 

product structure is given to the Hilbert space l2(Z), such 

that the state vectors in (18) are written in the tensor 

product form |np〉 = |n〉|p〉, with |n〉 = |n
1
〉|n

2
〉 and where 

n
1
, n

2
, and p can take all integer values. In this manner, 

the operator ɶK  in (11) is described to be rewritten in the 

block-diagonal form

 ˆ ,
bd

pω= ⊗ + ⊗ɶK K 1 1  (20)

with

 

ˆ .H σ= ⊗ + ⊗ ⋅∑ n n

n

nK ω1

 
(21)

The ladder operator σ
n
 and number operators n̂  and 

p̂  introduced in (21) are defined as σ = + 〉〈∑ | |,
n m

m n m  

= 〉〈∑ˆ | |,
n

n n n n  and = 〉〈∑ˆ | |,
p

p p p p  respectively, where 

the summations include all possible values of n and p.

The notation of the states |n〉 introduced in (18) and 

the tensor structure given to them and to the operator ɶK 

in (20) are of central importance in the derivation of MMFT 

and are the main focus of our criticism.

A linear Diophantine equation of the form in (19) with 

unknown p and n
i
 can always be solved independently 

of the specific integer values n and N
i
.3 In fact, it has infi-

nitely many solutions. For instance, given a solution {np}, 

it is always possible to obtain another solution by redefin-

ing the vector n as n′ = (n
1
 + zN

2
, n

2
 − zN

1
) with an arbitrary 

integer z. For this reason, it is not possible to uniquely 

associate a single vector |np〉 with each vector |n〉 without 

a specific prescription of which solution to choose. Such 

prescription, however, is not given in [34] and is not com-

patible with the tensor structure provided [34].

Problems arising from the ambiguity in the identifi-

cation of the vector |np〉 in (18) become apparent when 

considering, e.g. the scalar product of two states |np〉 and 

|n′p′〉 that correspond to two solutions {np} and {n′p′}. The 

scalar product 〈np|n′p′〉 vanishes if the two solutions are 

different. However, with the original notation, both states 

are associated with the same state |n〉 and the correspond-

ing scalar product 〈n|n〉 does not vanish, which leads to an 

inconsistency. This problem becomes especially relevant 

when considering the expression of the operator ɶK  in 

(20), which contains infinitely many different matrix ele-

ments | |p q〈 〉n mɶK  that correspond to the same matrix 

element | |n m〈 〉ɶK  of the operator ɶK  in (11). That is, the 

operator 
bd

ɶK  in (20) is in fact not a mere rewritten version 

of ɶK  in (11) but rather a different operator.

A central step in the derivation of MMFT is the exist-

ence of a unitary transformation relating the operators 

bd

ɶK  defined in (20) and

 ˆ
d B

pω= ⊗ + ⊗ɶK K 1 1  (22)

with

 ˆ
B F

H= ⊗ + ⊗ ⋅nK ω1 1  (23)

The existence would follow from a bijective relation 

between |n〉 and |np〉, but as such a relation does not exist, 

the unitary equivalence between the two operators does 

not necessarily hold true.

The notation introduced in (18) is also employed to 

express the time-evolution operator Ũ(t) in (12) as

 1 2

1 2
, ,

| |000 .i t in t

n n p

n n p e e ω

∞
−

=−∞

〈 〉∑
ɶK

 

(24)

This expression, however, contains infinitely many 

duplicate terms, as there are infinitely many vectors 〈n
1
n

2
p| 

that correspond to the same vector 〈n|, according to the 

prescription given by the Diophantine equation in (19). 

Equation (24) is thus not a reformulation of the expression 

of the time-evolution operator in (12).

The derivation of MMFT [34] achieves the desired 

structure of the time-evolution operator by combining 

the expression for the time-evolution operator Ũ(t) in (24) 

with the expression for the operator ɶK  in (20). Given the 

doubts on the unitary equivalence between 
bd

ɶK  and ɶ
d
K  

and the correctness of (24), it seems to us that the deriva-

tion of MMFT is not complete.

Besides a Floquet-like decomposition for quasi-peri-

odic systems, MMFT also describes a method to calculate 

the time-evolution operator by diagonalising a time-

independent operator perturbatively or numerically in a 

similar way as described in (13) for periodic systems [15]. 

Specifically, it is argued [34] that finding the unitary trans-

formation that relates 
bd

ɶK  and ɶ
d
K  is essentially equiva-

lent to transforming K in (21) to K
B
 in (23). This method 

has then been applied in a variety of fields, leading to suc-

cessful results [35, 45–47, 49–51].

In the next section, we will give an explanation why, 

despite arguing that the proof of MMFT is not entirely rigor-

ous and possibly incomplete, this method can still lead to 

valid results. We shall do this without imposing any inter-

mediate periodicity in the system but rather by directly 

3 A Diophantine equation 
=

=∑
1

d

i ii
n nN  with unknowns n

i
 can be 

solved if and only if the greatest common divisor gcd(N
1
, … , N

d
) di-

vides n [L. J. Mordell. Diophantine Equations . New York: Academic 

Press, 1969]. Thus, by appropriately choosing the variable p, the 

 Diophantine equation in Eq. (19) can always be solved.
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defining an extended Hilbert space, in an analogous way 

as described in Section 2.1 for periodic systems.

4   Quasi-Periodic Reducibility 

in Fourier Space

The possibility to express the time-evolution operator 

U(t) of quasi-periodically driven systems in a generalised 

Floquet decomposition can be formulated in terms of the 

reducibility of the Schrödinger equation, as described 

in Section 2.1 for periodic systems. In the quasi-periodic 

case, we seek a quasi-periodic unitary U
Q
(t) that trans-

forms the operator K(t) = H(t) − i∂
t
 to

 
†( ) ( ) ( ) ,

Q Q Q t
U t K t U t H i= − ∂  (25)

where † †( ) ( ) ( ) ( )( ( ))
Q Q Q P t Q

H U t H t U t iU t U t= − ∂  is a time- 

independent Hermitian operator and U
Q
(0) = 1. Similarly 

to the operator H
F
 introduced in (4), the eigenvalues of 

H
Q
 are only defined up to n · ω, where ω is the frequency 

vector of the Hamiltonian H(t) and n an arbitrary vector of 

integers [39].

In Section 2.1, we have described how the transfor-

mation in (4) – which is known to exist due to Floquet’s 

theorem – can be solved within a time-independent for-

malism using Fourier series. Here, we expand this for-

malism to include quasi-periodic systems and show how 

the transformation in (25) can be similarly formulated in 

terms of the block-diagonalisation of a time-independent 

operator. With this, we do not aim at proving the existence 

of the decomposition of the time-evolution operator in (2) 

but rather assume its existence and construct the corre-

sponding effective Hamiltonian.

Similarly as described in Section 2 for periodic 

systems, the Fourier coefficients of quasi-periodic states 

can be defined as the Fourier components of vectors in 

H ⊗ L2(Td), where H is the original system’s Hilbert space 

and L2(Td) is the space of square-integrable functions 

on a d-dimensional torus. Thereafter, the isomorphism 

between the space L2(Td) and the sequence space l2(Zd) 

can be employed to work within a time-independent or 

Fourier formalism. In this manner, quasi-periodic opera-

tors ( )
i t

B t B e
⋅

=∑
n

nn

ω

 can be mapped to

 

,B σ= ⊗∑ n n

n

B

 
(26)

where the ladder operators σ = + 〉〈∑ | |
n m

m n m  are 

defined in terms of a basis |n〉 of the sequence space l2(Zd) 

and satisfy σ
n
|m〉 = |n + m〉. Similarly, the derivative opera-

tor −i∂
t
 can be mapped to

 = ⊗ ⋅ˆ ,nD ω1  (27)

with the number operator ˆ | |= 〉〈∑
n

n n n n  satisfying 

ˆ | |〉= 〉n n n n  and the commutation relation ˆ[ , ] .σ σ=
m m

n m  

The operator K(t) = H(t) − i∂
t
 can then be associated to the 

operator

 
ˆ ,H σ= ⊗ + ⊗ ⋅∑ n n

n

nK ω1
 

(28)

which coincides with the operator already introduced in 

(21). In this way, the transformation in (25) is then given by

 
† ˆ ,

B Q Q Q
H= = ⊗ + ⊗ ⋅n ωK U KU 1 1  (29)

where the transformation U
Q
 has the form

 

,
Q

U σ= ⊗∑ n n

n

U

 
(30)

as it describes a quasi-periodic unitary.

The block-diagonalisation described in (29) offers 

an alternative formulation of the transformation in (25) 

and indeed coincides with the transformation relating 

bd

ɶK  and 
d

ɶK  defined in (20) and (22). That is, even if the 

general premise of MMFT is not satisfied, its explicit appli-

cation is still correct as long as reducibility holds.

5   Generalised Floquet-Magnus 

Expansion

General results of reducibility for first-order differential 

equations with quasi-periodic coefficients are not to be 

expected [39, 40], but the situation is better understood if 

the driving amplitude is small as compared to the norm |ω| 

of the frequency vector. Using unitless variables τ = |ω|t|, 

which are common in the mathematical literature, the cor-

responding differential equation reads

 

( )
( ) ( ).

| |

H
i U U

τ

τ

τ τ∂ =
ω

 

(31)

The regime of the new rescaled Hamiltonian, which 

is quasi-periodic with frequencies ω/|ω|, is referred to as 

close-to-constant, whereas the term fast driving is more 

common in the physics literature. In this regime and 

under suitable hypothesis of regularity, non-degeneracy, 

and strong nonresonance of the frequencies, reducible 

and non-reducible systems are mixed like Diophantine 

and Liouvillean numbers; most systems are reducible, but 

non-reducible ones are dense [37, 41, 42, 54]. Moreover, the 

generalised Floquet decomposition of the time-evolution 

operator in (2) can be found with any given accuracy, for 
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|ω|−1 that is sufficiently small, provided it exists [55–57]. In 

practice, this is often done through an expansion in terms 

of powers of |ω|−1.

In this section, we will derive a generalisation of the 

Floquet-Magnus expansion [52, 58, 59] to quasi-periodic 

systems and provide a perturbative exponential expan-

sion of the time-evolution operator with the desired 

Floquet representation. This will allow us to identify H
Q
 

as the effective Hamiltonian that captures the dynamics of 

the system in a suitable fast-driving regime.

We start the derivation by reproducing the steps of 

the regular Floquet-Magnus expansion [52] and intro-

ducing the desired decomposition of the time-evolution 

operator

 
†( ) ( ) Q

iH t

Q
U t U t e

−

=  (32)

into the Schrödinger equation i∂
t
U(t) = H(t)U(t), which 

yields the differential equation

 
† † †( ) ( ) ( ) ( ) .

t Q Q Q Q
i U t H t U t U t H∂ = −  (33)

Then we define the quasi-periodic Hermitian operator 

Q(t) as the generator of the quasi-periodic unitary U
Q
(t) via 

the relation

 
( )( ) .iQ t

Q
U t e=  (34)

Introducing the expression in (34) into (33) and using 

a power series expansion for the differential of the expo-

nential [52, 59, 60], one obtains the non-linear differential 

equation [52]

 

1

( )
0

( ) ( ) ad ( ( ) ( 1) ),
!

kk kk

t Q t Q

k

B
Q t i H t H

k

∞
+

=

∂ = − + −∑
 

(35)

where B
k
 denotes the Bernoulli numbers and ad is the 

adjoint action defined via 
1

ad [ , ad ]
kk

A A
B A B

−

=  for k  ≥  1 and 
0

ad .
A
B B=

The next step in the derivation is to consider a series 

expansion for the operators H
Q
 and Q(t) of the form

 

( )

1

n

Q Q

n

H H

∞

=

=∑
 

(36)

 

( )

1

( ) ( ),n

n

Q t Q t

∞

=

=∑
 

(37)

with Q(n)(0) = 0 and where the superscript indicates the 

order of the expansion. After introducing the series in (36) 

and (37) into (35) and equating the terms with the same 

order, one obtains the differential equation

 ( ) ( ) ( )( ) ( ) ,n n n

t Q
Q t A t H∂ = −  (38)

with A(1)(t) = H(t) and

 

1
1( ) ( ) ( )

1

( ) ( ( ) ( 1) )
!

n

kn n nk

k k

k

B
A t X t Y

k

−

+

=

= + −∑
 

(39)

for n  ≥  2. The operators ( )( )n

k
X t  and ( )( )n

k
Y t  in (39) are 

given recursively by

 

( )( ) ( )

1
1

( ) [ ( ), ( )]

n k

n mn m

k k

m

X t Q t X t

−

−

−

=

=∑
 

(40)

 

( )( ) ( )

1
1

( ) [ ( ), ( )]

n k

n mn m

k k

m

Y t Q t Y t

−

−

−

=

=∑
 

(41)

for 1  ≤  k  ≤  n − 1, with (1)

0
( ),X iH t=−  ( )

0
0n

X =  for n  ≥  2, and 
( ) ( )

0

n n

Q
Y iH=−  for all n.

An important feature of the differential equation 

in (38) is the structure of the operator A(n)(t), which only 

contains terms involving the Hamiltonian H(t) or opera-

tors Q(m)(t) and ( )m

Q
H  of a lower order, i.e. with m < n. This 

allows to solve (38) by just integrating the right hand side 

of the equation, which leads to

 

( ) ( ) ( )

0
( ) ( ( ) )d .

t
n n n

Q
Q t A t H t= −∫

 
(42)

Moreover, even though (38) describes a differential 

equation for Q(n)(t), the solutions for both Q(n)(t) and ( )n

Q
H  

can be inferred from it by imposing suitable conditions 

on the time dependence of Q(n)(t). In the periodic case, for 

example, the operators ( )n

Q
H  are fixed by the requirement 

that Q(n)(t) is a periodic operator [52].

In the quasi-periodic case, we can determine ( )n

Q
H  by 

exploiting the quasi-periodicity of Q(n)(t) and A(n)(t). This 

essentially results from the fact that, in order for the integral 

of a quasi-periodic operator ( )
i t

n
O t O e

⋅
=∑

n

n

ω

 to be quasi-

periodic, it must satisfy that 
0 0

1
lim ( )d 0.

T

T
O O t t

T
→∞

= =∫  

As a consequence, in order for Q(n)(t) in (42) to be quasi- 

periodic, ( )n

Q
H  must read

 

( ) ( )

0

1
lim ( )d .

T
n n

Q
T

H A t t
T→∞

= ∫
 

(43)

Equations (42) and (43) can be solved for any n > 1 pro-

vided that the solutions for m < n are known. As they can be 

readily solved for n = 1, (42) and (43) thus contain the neces-

sary information to recursively derive all the terms in the 

expansions of Q(t) and H
Q
 in (36) and (37), respectively.

After performing the integrations in (42) and (43), the 

first two terms of the series for H
Q
 become

 (1)

0Q
H H=  (44)
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(2) 0

0 0

[ , ][ , ]1
,

2Q

H HH H
H −

≠ ≠

= +
⋅ ⋅

∑ ∑ nn n

n n
n nω ω

 

(45)

where H
n
 are the Fourier coefficients of the quasi-periodic 

Hamiltonian, as defined in (1). Similarly, the first two 

terms of Q(t) read

 

(1)

0

( ) ( 1)
i t

n

H
Q t i e

⋅

≠

=− −
⋅

∑
nn

n

ω

ω

 

(46)

 

(2) 0

2
0

( )

0; 

0; 0

[ , ]
( ) ( 1)

2 ( )

[ , ]
( 1)

2 ( )

[ , ]
( 1).

2

i t

i t

i t

H Hi
Q t e

H Hi
e

H Hi
e

⋅

≠

+ ⋅

≠ ≠−

⋅

≠ ≠

= −
⋅

+ −
⋅ + ⋅

+ −
⋅ ⋅

∑

∑

∑

nn

n

n mn m

n m n

mn m

n m

n

n n m

n m

ω

ω

ω

ω

ω ω

ω ω

 

(47)

Consistently with the periodic case, the results 

obtained here reduce the regular Floquet-Magnus expan-

sion when the frequency vector ω contains only one 

element. Moreover, by using the Baker-Campbell-Haus-

dorff formula [61], one can verify that the expressions 

in (44)–(47) coincide with the first terms of the regular 

Magnus expansion [59], which applies for general time-

dependent systems. This formal expansion can also be 

linked [62] to the method of averaging for quasi-periodic 

systems [55] to obtain exponentially small error estimates 

in the quasi-periodic case.

The expansion of the operators H
Q
 and Q(t) intro-

duced in (36) and (37) can be interpreted as a series 

expansion in powers of |ω|−1 such that, in a suitable fast-

driving regime, the lowest order terms of the series are 

the most relevant to describe the dynamics of the system 

[63]. Even though the convergence of the quasi-periodic 

Floquet-Magnus expansion is in general not guaranteed 

and requires further investigations, this permits us to 

identify effective Hamiltonian analogously as done for 

periodic systems.

In fast-driving regimes where the fundamental 

driving frequencies are the largest energy scales of the 

system, the two unitaries U
Q
(t) and Q

iH t
e

−

 of the time-evo-

lution operator in (32) capture two distinct behaviours 

of the system’s dynamics. On the one hand, the unitary 

U
Q
(t) describes fast quasi-periodic fluctuations dictated 

by the fast frequencies ω. On the other hand, the oper-

ator Q
iH t

e
−

 captures the slower dynamics of the system 

characterised by the internal energy scales of H
Q
, which 

can be thus identified as the effective Hamiltonian of the 

system.

6   Quasi-Periodically Driven Lambda 

System

In this section, we will illustrate with a quasi-periodically 

driven Lambda system the possibility to approximate the 

dynamics of quasi-periodically driven systems in terms of 

a truncation of the effective Hamiltonian H
Q
.

The Lambda system describes an atomic three energy-

level system with two ground states |1〉 and |2〉 that are 

coupled to an excited state |3〉 via a time-dependent 

laser field. The time-dependent coupling allows one to 

indirectly mediate a transition between states |1〉 and |2〉 

without significantly populating the excited state and, 

in this way, overcome the impossibility to drive a direct 

transition between the two degenerate ground states. This 

method also permits the implementation of non-trivial 

phases in the tunnelling rate of particles [64, 65] and con-

stitutes a building block in many quantum simulations 

[20, 23, 27, 66].

The Hamiltonian of the Lambda system in an interac-

tion picture reads

 = 〉 〈 +〈 +( ) ( )|3 ( 1| 2|) H.c,H t f t  (48)

where f(t) is usually a periodic function, but here, we con-

sider it to be quasi-periodic, i.e. of the form

 

( ) ,
i t

f t f e
⋅

=∑
n

n

n

ω

 
(49)

with a frequency vector ω and Fourier components f
n
. 

Moreover, we require the static Fourier component to 

vanish, i.e. f
0
 = 0, in order to ensure that the dominant 

dynamics of the system does not yield transitions between 

the ground states and the excited state.

With the Hamiltonian of the quasi-periodically driven 

Lambda system in (48), the first two terms of the effective 

Hamiltonian expansion in (44) and (45) become (1) 0
Q

H =  

and

 Ω= 〉+ 〉 〈 +〈 − 〉〈(2)

eff
((|1 |2 )( 1| 2|) 2|3 3|),

Q
H  (50)

respectively. As the first term vanishes, the leading order 

term of the effective Hamiltonian is thus given by (2),
Q

H  

which describes transitions between the ground states of 

the system with a rate

 

2

eff

| |
.

f
Ω =

⋅
∑ n

n
n ω

 

(51)

In order to illustrate the possibility to approximate 

the dynamics of the system in terms of a truncation of 

H
Q
, we compare in Figures 1 and 2 the matrix elements 

Unauthenticated

Download Date | 10/4/16 2:33 PM



A. Verdeny et al.: Quasi-Periodically Driven Quantum Systems      905

T
ra

n
s
it
io

n
 p

ro
b

a
b

ili
ty

P12

P12
eff

P12

P12
eff

0.0

0.2

0.4

0.6

0.8

1.0a b

T
ra

n
s
it
io

n
 p

ro
b

a
b

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

ω1t ω1t
0 100 200 300 400 0 100 200 300 400

Figure 1: Comparison between the exact and effective transition probabilities P
12

(t) = |〈1|U(t)|2〉|2 and = 〈 〉eff 2

12 eff
( ) | 1| ( )|2 |P t U t  for the periodi-

cally (a) and quasi-periodically (b) driven Lambda system. In (a), a periodic driving function ω

=Ω 1( )
i t

f t e  with ωΩ = +
1/2

1
/ 0.1(1 2/2)  is 

considered. In (b), the results correspond to a quasi-periodic function ω ω

=Ω +1 1
2

( ) ( )
i t i t

f t e e  with Ω/ω
1
 = 0.1. The parameters of the driving 

function in (a) and (b) are such that they lead to the same effective rate Ω
eff

 in (51).
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Figure 2: Plot of the transition probabilities P
12

(t) = |〈1|U(t)|2〉|2 
and = 〈 〉eff 2

12 eff
( ) | 1| ( )|2 |P t U t  as a function of time for a quasi-periodic 

Lambda system with ω ω

=Ω +1 1
2

( ) ( )
i t i t

f t e e  and Ω/ω
1
 = 0.05.

of a numerically exact calculation of the time-evolution 

operator of the system U(t) and the effective time-evolu-

tion operator

 
(2)
Q

eff
( )

iH t

U t e
−

=  (52)

for different driving functions f(t). Specifically, we 

display the transition probabilities P
12

(t) = |〈1|U(t)2〉|2 and 
eff 2

12 eff
( ) | 1| ( )|2 | ,P t U t= 〈 〉  which describe the exact and effec-

tive transitions between the ground states of the Lambda 

system.

In Figure 1, we compare the performance of the 

driven Lambda system for a periodic and quasi-periodic 

driving functions in a moderately fast-driving regime. In 

Figure 1a, a periodic driving is considered, which yields 

exact dynamics that exhibits fast regular fluctuations 

around the slower effective dynamics. On the contrary, 

we show in Figure 1b how a quasi-periodic driving leads 

to a pattern with seemingly erratic fluctuation around the 

effective dynamics. In the regime where the fluctuations 

can be neglected, however, their regularity is irrelevant. 

This supports the view that, as quasi-periodic functions 

provide a more general parameterisation of the driving 

protocol, quasi-periodically driven quantum systems have 

the potential to expand the accessible effective dynamics 

in a variety of experimental setups [67].

Another aspect that is apparent from Figure 1 is the 

drift between the exact and effective dynamics. This is 

not a characteristic feature of quasi-periodically driven 

systems but rather results from the truncation of the oper-

ator H
Q
. Including higher order terms in the expansion 

of H
Q
 or considering a faster driving regime, the approxi-

mation would be improved and the exact and effective 

dynamics of the system would better overlap for longer 

times. Indeed, in Figure 2, we consider a quasi-periodic 

function with higher frequencies and observe that the 

effective time-evolution operator in (52) approximates 

better the exact dynamics of the system for longer times. 

This highlights the possibility to use the generalised 

Floquet-Magnus expansion derived in Section 5 in order 

to derive time-independent effective Hamiltonians that 

capture well the dynamics of quasi-periodic systems in a 

suitable fast-driving regime.

7  Conclusions

Despite concerted efforts towards the generalisation of 

Floquet’s theorem for quasi-periodic systems, there are 

still many open questions regarding the existence of Flo-

quet-like decompositions. Although a rigorous footing is 

not complete, effective Hamiltonians can be constructed. 

The specific examples discussed here focus on the case 
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of weakly and/or rapidly driven quantum systems. Pro-

vided that quasi-reducibility is given, however, one may 

also strive for numerically exact methods [34, 35, 50] or for 

perturbative expansions in different regimes such as adi-

abatically slow driving [68] or strong driving [3].

As the restriction to periodic driving naturally 

imposes restrictions on the effective Hamiltonians that 

can be achieved, the use of quasi-periodic Hamiltonians is 

a promising route for quantum simulations. The increased 

freedom in accessible time dependencies makes quasi-

periodic driving a highly interesting basis for the identifi-

cation of accurate implementations of effective dynamics 

by means of optimal control. As such, one can expect that 

quasi-periodic driving will find numerous applications 

in quantum simulations and that the increased interest 

in quantum physics will trigger activities in mathematics 

towards the existence of Floquet-like decompositions and 

the convergence of perturbative expansions.
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Appendix: The Propagator 

in Floquet Theory

Here, we show that

 ( ) | |0 ,i t in t

n

U t n e e
ω−= 〈 〉∑

ɶ
ɶ K

 (A.1)

as given in (12), is indeed the propagator induced by H(t), 

i.e. that it satisfies the Schrödinger equation with the 

initial condition Ũ(0) = 1.

The time derivative of (A.1) reads

 ( ) |( ) |0 .i t in t

t

n

i U t n n e e
ω

ω
−∂ = 〈 − 〉∑
ɶ

ɶɶ K
K  (A.2)

Using the explicit form

 σ ω= ⊗ + ⊗∑ɶ ˆ1 ,
n n

n

H nK  (A.3)

and

 〈 =〈ˆ| | .n n n n  (A.4)

Equation (A.2) is reduced to

 ( ) | |0i t in t

t m m

nm

i U t n H e e
ω

σ
−∂ = 〈 ⊗ 〉∑
ɶ

ɶ K  (A.5)

 | |0i t in t

m m

nm

H n e e
ω

σ
−= 〈 〉∑
ɶK

 (A.6)

 | |0 .i t in t

m

nm

H n m e e
ω−= 〈 − 〉∑

ɶK

 (A.7)

Replacing the summation index n by n + m leads to

 
( )

( ) | |0
i n m ti t

t m

nm

i U t H n e e
ω+−∂ = 〈 〉∑

ɶ
ɶ K

 (A.8)

  | |0im t i t in t

m

m n

H e n e e
ω ω−= 〈 〉∑ ∑

ɶK

 (A.9)

 ( ) ( ).H t U t=
ɶ  (A.10)

The initial condition Ũ(0) = 1 results directly from 
0| |0i

n e
−〈 〉=
ɶK

1.
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