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Abstract – A non-intrusive stochastic finite-element method is proposed for uncertainty propagation
through mechanical systems with uncertain input described by random variables. A polynomial chaos
expansion (PCE) of the random response is used. Each PCE coefficient is cast as a multi-dimensional
integral when using a projection scheme. Common simulation schemes, e.g. Monte Carlo Sampling (MCS)
or Latin Hypercube Sampling (LHS), may be used to estimate these integrals, at a low convergence rate
though. As an alternative, quasi-Monte Carlo (QMC) methods, which make use of quasi-random sequences,
are proposed to provide rapidly converging estimates. The Sobol’ sequence is more specifically used in this
paper. The accuracy of the QMC approach is illustrated by the case study of a truss structure with ran-
dom member properties (Young’s modulus and cross section) and random loading. It is shown that QMC
outperforms MCS and LHS techniques for moment, sensitivity and reliability analyses.

Key words: Uncertainty propagation / stochastic finite-elements / non intrusive spectral approach /
polynomial chaos expansion / quasi-random numbers / structural reliability

Résumé – Utilisation des nombres quasi-aléatoires dans la méthode des éléments-finis sto-
chastiques. On s’intéresse dans cet article à une méthode aux éléments-finis stochastiques non intrusive
pour la propagation d’incertitudes à travers des systèmes mécaniques dont les paramètres incertains sont
représentés par des variables aléatoires. On représente la réponse aléatoire du système sur la base dite du
chaos polynomial. Chaque coefficient de ce développement est exprimé sous la forme d’une intégrale multi-
dimensionnelle au moyen d’une méthode de projection. Des techniques de simulation classiques, telles que
les simulations de Monte Carlo (MCS) ou les tirages par hypercube latin (LHS), peuvent être employées
pour estimer ces intégrales. Cependant, la vitesse de convergence des estimateurs associés est lente. De
manière alternative, on propose d’utiliser les méthodes quasi-Monte Carlo (QMC), basées sur les suites à
discrépance faible ou suites quasi-aléatoires (e.g. la suite de Sobol’) pour obtenir des estimateurs à conver-
gence rapide. La précision de la méthode QMC est illustrée sur l’exemple d’un treillis dont les propriétés
des barres (module d’Young et section droite) ainsi que les sollicitations sont aléatoires. On montre la
supériorité de QMC sur MCS et LHS pour les analyses de distribution, de sensibilité et de fiabilité.

Mots clés : Propagation d’incertitudes / éléments-finis stochastiques / approche non intrusive /
chaos polynomial / nombres quasi-aléatoires / fiabilité des structures

1 Introduction

Computer simulations are nowadays commonly used
in structural engineering to accurately model the be-
haviour of complex systems. Most of them are determin-
istic and thus provide relevant information as long as the
input data is well known, which is seldom the case in real-
ity. Probabilistic methods allow to take into account such

a Corresponding author: geraud.blatman@edf.fr

uncertainty by modeling the input parameters by random
variables, thus leading to a random response. The latter
may be efficiently represented using polynomial chaos ex-
pansions [1,2]. The coefficients of this representation can
be expressed as a multidimensional integral using a non
intrusive projection scheme [3–9]. In this paper, the use
of quasi-random numbers [10, 11] is proposed to provide
rapidly converging estimates of the PCE coefficients, as
suggested in [5]. As shown in the sequel, this approach
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allows to efficiently compute various quantities of interest,
e.g. statistical moments, sensitivity indices and probabil-
ities of failure, at a lower computational cost compared
to other non intrusive computational schemes.

The basic formulation of polynomial chaos expansions
is recalled in Section 2. Then the computation of the PCE
coefficients is detailed in Section 3 using a non intrusive
projection method. The use of quasi-random numbers is
addressed in this section. Then the various byproducts of
a polynomial chaos expansion are presented in Section 4,
namely the computation of the response PDF, the sta-
tistical moments and specific sensitivity measures called
Sobol’ indices. The use of a PC expansion in the context
of reliability analysis is then addressed. Finally an appli-
cation example dealing with a truss structure involving
10 independent random variables is given in Section 5.

2 Polynomial chaos expansion

Consider a physical system whose uncertain param-
eters are modeled by independent random variables
(X1, ..., XM ) gathered into a random vector X. The sys-
tem behaviour is described by a deterministic function
f which can be analytical or more generally algorithmic
(e.g. a finite element model). The propagation of the un-
certainty in the input through the model function f leads
to a random response of the system. This random re-
sponse denoted by Y = f(X) is supposed to be scalar
throughout the paper without loss of generality (indeed,
the computational schemes presented in the sequel are
applicable componentwise in case of vectorial response
quantities). Provided Y has a finite variance, it can be
expressed in an orthonormal polynomial basis as follows:

Y = f(X) =
∑

α∈ INM

aαψα(X) (1)

This expansion is referred to as finite-dimensional polyno-
mial chaos expansion (PCE) [2]. The aα’s are unknown
deterministic coefficients and the ψα’s are multivariate
polynomials which are orthonormal with respect to the
joint probability density function (PDF) pX of the input
random vector X, i.e. E[ψα(X)ψβ(X)] = 1 if α = β
and 0 otherwise. As the random variables are assumed to
be independent, their joint PDF reads:

pX(x) = pX1(x1) × · · · × pXM (xM ) (2)

and the ψα’s can be constructed as the tensor products
of M unidimensional polynomials P (i)

αi that form an or-
thonormal family with respect to the marginal PDF pXi :

ψα(X) =
M∏
i=1

P (i)
αi

(Xi) (3)

with E[P (i)
k (Xi)P

(i)
l (Xi)] = 1 if k = l and 0 otherwise,

for all (k, l) ∈ IN2. For computational purposes, the PC

expansion in Equation (1) is truncated so that the maxi-
mal degree of the polynomials does not exceed p:

f(X) �
∑
|α|≤p

aα ψα(X) (4)

where |α| =
∑
αi. The number of terms in the above

summation is given by P =
(
M+p

p

)
. An analytical repre-

sentation of the random response Y can thus be obtained
by computing the coefficients aα, which is the scope of
the following section.

3 Non-intrusive computation of the PCE
coefficients

The PCE coefficients can be computed using a non-
intrusive projection approach [3–5], which exploits the or-
thogonality of the PCE basis. Indeed, by premultiplying
Equation (1) by ψα(X) and by taking the expectation of
the product, one gets the exact expression of each coeffi-
cient aα:

aα = E[f(X)ψα(X)] (5)

which can be rewritten as:

aα =
∫
D⊂IRM

f(x) ψα(x) pX(x) dx (6)

where D denotes the support of X. The multidimensional
integral (6) can be computed using several simulation
schemes, as described in the sequel.

3.1 Monte Carlo sampling

Monte Carlo Sampling (MCS) [12] is based on
the generation of independent pseudo-random numbers
(x(1), ...,x(N)) according to the input joint PDF pX . The
expectation in (5) is estimated by the empirical mean:

âN,MC
α =

1
N

N∑
i=1

f
(
x(i)

)
ψj(x(i)) (7)

The mean-square error of estimation reads:

E
[(
aα − âN,MC

α

)2
]

=
Var[f(X)ψα(X)]

N
(8)

This shows the familiar convergence rate O(N−1/2)
associated with MCS.

3.2 Latin hypercube sampling

The Latin Hypercube Sampling (LHS) method [13]
aims at generating pseudo-random numbers with a bet-
ter uniformity over IM = [0, 1]M compared to MCS. The
domain is divided intoN equiprobable intervals or stratas,
leading to a partition of IM in equiprobable subsets. Let
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us consider M independent uniform random variables
(U1, ..., UM ) over [0, 1]. N realizations of each Ui are ran-
domly generated by selecting one value in each strata.
The N realizations of U1 are randomly paired without re-
placement with the N realizations of U2. The resulting N
pairs are then randomly combined with theN realizations
of U3, and so on until a set of N M -dimensional sam-
ples is formed. The latter is finally transformed into a set
of pseudo-random numbers that are distributed accord-
ing to pX . LHS has been commonly used in a stochastic
analysis framework for computing the PCE coefficients,
see e.g. [3].

3.3 Quasi-Monte Carlo sampling

The convergence rate associated with the pseudo-
random schemes mentioned above can often be increased
by using highly uniform sets of numbers over IM , which
are called low discrepancy sequences or quasi-random
numbers [10, 11]. The use of such sequences for comput-
ing the PCE coefficients has been suggested in [5]. Upon
introducing a mapping from D to IM , the integral in
Equation (6) reads:

aα =
∫

IM

f
(
T−1(u)

)
ψα

(
T−1(u)

)
du (9)

where T : X �−→ U is the isoprobabilistic transform of
each component of X into a uniform random variable
U [0, 1]. Let (u1, . . . ,uN ) be a set ofN quasi-random num-
bers. The quasi-Monte Carlo (QMC) estimate of aα is
given by:

âN,QMC
α =

1
N

N∑
i=1

f
(
T−1(u(i))

)
ψα

(
T−1(u(i))

)
(10)

The Koksma-Hlawka inequality [11] provides an upper
bound of the absolute estimation error:

∣∣aα − âN,QMC
α

∣∣ ≤ V
(
fψα

)
DN

(
u(1), . . . ,u(N)

)
(11)

where V (fψα) denotes the so-called total variation of
fψα, which depends on the mixed derivatives of fψα, and
DN represents the star discrepancy of the quasi-random
sample, which measures its uniformity. In this paper, the
use of the Sobol’ quasi-random sequence, for which DN

converges at the rate O(N−1 lnM (N)), is proposed.
The unidimensional Sobol’ sequence is a particular low

discrepancy sequence defined as follows. Consider the bi-
nary expansion of a natural integer n ∈ IN:

n ≡ (qm · · · q0)2 (12)

The nth term is the Sobol’ sequence reads:

u(n) =
m∑

i=0

qi
2i+1

(13)

Figure 1 shows the space-filling process of [0, 1] using
this technique. The M -dimensional sequences are built by

pairing M permutations of the unidimensional sequences.
Figure 2 shows the space-filling process of [0, 1]2 using a
two-dimensional Sobol’ sequence, compared to MCS and
LHS, from which the better uniformity of the former is
obvious.

4 Postprocessing of the polynomial chaos
expansion

4.1 Statistical moments

The statistical moments of the response PCE can be
analytically derived from its coefficients. In particular, the
mean and the variance respectively read:

µY = a0 (14)

σ2
Y,P =

∑
0<|α|≤p

a2
α (15)

where (·),P recalls that only P =
(
M+p

p

)
terms have been

retained in Equation (4). The skewness coefficient of the
response is defined as:

δY =
1
σ3

Y

E
[(
Y − µY

)3
]

(16)

Its PCE-based approximation reads:

δY,P =
1

σ3
Y,P

∑
0<|α|,|β|,|γ|≤p

aαaβaγ

× E [ψα(X)ψβ(X)ψγ(X)] (17)

Note that the expectations in the above equation are
zero for many sets of multi-indices (α,β,γ) and can thus
be efficiently stored in a sparse structure. If the ψα’s are
products of Hermite polynomials, these expectations can
be computed analytically [14]. Otherwise a quadrature
scheme can be used. In the same way, the kurtosis coeffi-
cient of the response is given by:

κY =
1
σ4

Y

E
[(
Y − µY

)4
]

(18)

and is approximated as follows:

κY,P =
1

σ4
Y,P

∑
0<|α|,|β|,|γ|,|δ|≤p

aα aβ aγaδ

× E [ψα(X)ψβ(X)ψγ(X)ψδ(X)] (19)

4.2 Sensitivity indices

Variance-based methods of sensitivity analysis aim at
quantifying the relative importance of each input param-
eter in the response variance. The Sobol’ sensitivity in-
dices [15, 16] have been proposed for this purpose:

Si =
Var [E[Y |Xi]]

σ2
Y

(20)
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Fig. 1. Space-filling process of [0, 1] using a unidimensional Sobol’ sequence.
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Fig. 2. Space-filling process of [0, 1]2 using a two-dimensional Sobol’ sequence, compared to MCS and LHS.
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Si is referred to as the first order sensitivity index as-
sociated to Xi. This measure can be extended to each
subset {i1, . . . , is} of input random variables to quantify
the interaction effects:

Si1,...,is =
Var [E[Y |Xi1 , . . . , Xis ]]

σ2
Y

(21)

As the number of such indices dramatically increases
with the number of input random variables, one often
computes instead the so-called total Sobol’ sensitivity in-
dices of each input Xi, which are defined as the sum of
all the Sobol’ indices involving i:

STi =
∑

u⊂{1,...,M}\{i}
S{i}∪u (22)

As shown in [17], the Sobol’ indices can be ana-
lytically computed from the coefficients of the PCE in
Equation (1). Deriving Equation (15) conditionally to
each Xi, one gets the following PCE-based estimates of
the partial variances Var [E[Y |Xi]]:

Di,P =
∑

α∈IP
i

a2
α (23)

where IP
i is the set of multi-indices α which appear in

Equation (1) and such that only the index i is non zero:

IP
i =

{
α ∈ INM : (|α| < p)

∧ ( αk = 0 ⇔ k 	= i ∀ k = 1, . . . ,M)
}

(24)

Consequently, the PCE-based estimates of the first or-
der Sobol’ indices read:

SUi,P =
1

σ2
Y,P

∑
α∈IP

i

a2
α (25)

The extension to the PCE-based estimates of the gen-
eral Sobol’ indices is straightforward:

SU(i1,...,is),P =
1

σ2
Y,P

∑
α∈IP

i1,...,is

a2
α (26)

where:

IP
i1,...,is

=
{

α ∈ INM : (|α| < p)

∧ ( αk = 0 ⇔ k /∈ (i1, . . . , is) ∀ k = 1, . . . ,M)
}

(27)

Hence the PCE-based total Sobol’ indices:

SUTi,P =
∑

u⊂{1,...,M}\{i}
S{i}∪u,P (28)

Fig. 3. Truss structure with 23 members.

Table 1. Truss example, input random variables.

Variable Distribution Mean Standard deviation

E1, E2 (Pa) Lognormal 2.10 × 1011 2.10 × 1010

A1 (m2) Lognormal 2.0 × 10−3 2.0 × 10−4

A2 (m2) Lognormal 1.0×10−3 1.0×10−4

P1–P6 (N) Gumbel 5.0×104 7.5×103

5 Application example

5.1 Problem statement

Let us consider the truss structure sketched in
Figure 3, already considered in [18]. Ten independent in-
put random variables are considered, whose distribution,
mean and standard deviation are reported in Table 1.

The deflection at midspan v is regarded as the model
response and approximated by a second-order (p = 2)
PCE made of normalized multivariate Hermite polynomi-
als. In this respect, it is necessary to transform the input
random vector Z = {E1, E2, A1, A2, P1, . . . , P6}T into a
standardized Gaussian vector:

ξi = P−1
Zi

(
Φ
(
Zi

))
, ∀ i ∈ {1, . . . , 10} (29)

where Φ denotes the standard normal CDF. This leads to:

vPCE(ξ) =
∑

0≤|α|≤p

aαψα(ξ), P =
(

10 + 2
2

)
= 66

(30)
where P denotes the number of terms.

5.2 Moment analysis

The four first statistical moments of the response v are
computed from the PCE coefficients, which are estimated
using the MCS, LHS and QMC schemes. On the one
hand, reference values have been computed using crude
Monte Carlo simulation of the problem (1 000 000 sam-
ples are used). On the other hand, estimates of the
PCE coefficients are obtained using N = 10 000 samples
and the moments of the response are post-processed us-
ing Equations (14), (15), (17), (19). The resulting response
moments are reported in Table 2 together with the refer-
ence values.
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Table 2. Truss example – estimates of the four first statistical
moments.

Reference MCS LHS QMC
Number of FE runs 1 000 000 10 000 10 000 10 000

µv –0.0794 –0.0792 –0.0794 –0.0794
σv 0.0111 0.0120 0.0124 0.0112
δv –0.4920 –0.5605 –0.2052 –0.4959
γv 3.4555 3.9667 3.2944 3.3676

Accurate estimates of the mean value are obtained
when using LHS and QMC, whereas the MCS scheme also
yields a rather insignificant relative error ε = 0.3% with
respect to the reference value. However, QMC provides
the best estimate of the standard deviation (ε = 0.9%)
whereas relative errors of 8.1% and 11.7% are associated
with MCS and LHS respectively. Moreover, the QMC esti-
mate of the skewness coefficient is much closer (ε = 0.8%)
to the reference value than those provided by MCS and
LHS (ε = 13.9% and 58.3% respectively). Finally, QMC
also provides the best estimate of the response kurto-
sis coefficient, yielding a relative error ε = 2.5% versus
ε = 14.8% and ε = 4.7% using MCS and LHS respec-
tively.

The probability density function of the maximal de-
flection can be estimated by the various methods. The ref-
erence solution corresponds again to 1 000 000 runs of the
finite element model. The PCE-based PDF corresponds
to 1 000 000 samples of the PCE obtained by the vari-
ous methods (where 10 000 finite-element runs have been
used in each case to compute these PC coefficients). In all
cases, a kernel representation of the sample set of max-
imal deflection is used [19] (Fig. 4). It appears that the
PDF obtained from the QMC approach is much closer to
the reference solution (i.e. almost identical) than that de-
rived from the MCS and LHS computation, both in the
central part and in the tails (see the plot with logarithmic
scale to the right in Fig. 4).

5.3 Sensitivity analysis

The total Sobol’ indices are computed from the PCE
according to equation (28). The estimates associated to
the use of MCS, LHS and QMC for computing the PCE
coefficients are reported in Table 3 together with reference
values. The reference values are computed from standard
Monte Carlo formulae [15]:

DMC
∼i =

1
N

N∑
m=1

f
(
x(m)

)
f

(
x

(m)
∼i,1, x

(m)
i,2

)
− µv,

SMC
Ti

= 1 − DMC
∼i

σ2
v

(31)

In this formula, the subscripts in x.,1 and x.,2 indicate
that two different Monte Carlo samples are generated and
mixed. Moreover, subscript ∼i corresponds to vectors in
which the ith component has been discarded:

x
(m)
∼i =

(
x

(m)
1 , . . . , x

(m)
i−1 , x

(m)
i+1 , . . . , x

(m)
M

)
(32)

The empirical mean in equation (31) is computed us-
ing N = 500 000 samples, which actually leads to per-
form N×(M+1) = 5 500 000 deterministic finite element
runs [17] to compute the whole set of total Sobol’ indices.

It can be concluded from the Sobol’ indices that the
variability of the deflection v is much more sensitive to
the variables E1 and A1, than E2 and A2. This makes
sense from a physical point of view since the properties of
the horizontal bars are more influential on the displace-
ment at midspan than the oblique ones. It can been also
observed that the Sobol’ indices associated with E1 and
A1 (resp. E2 and A2) are similar. This is due to the fact
that these variables have the same type of PDF and co-
efficient of variation, and that the displacement v only
depends on them through the products E1A1 and E2A2.
Finally, the Sobol’ indices reflect the symmetry of the
problem, giving similar importances to the loads that are
symmetrically applied (e.g. P3 and P4). Greater sensitiv-
ity indices are logically attributed to the forces that are
close to the midspan than those located at the ends.

Such physically meaningful indices are obtained using
N = 10 000 QMC samples. In contrast, MCS and LHS
can provide unreliable results, as overestimating the im-
portance E2 for instance. In all cases, the QMC scheme
yields more accurate estimates than MCS and LHS.

5.4 Reliability analysis

The serviceability of the structure with respect to an
admissible maximal deflection is studied. The associated
limit state function reads:

g(z) = vmax − |v(z)| ≤ 0, vmax = 0.11 m (33)

The reference value of the probability of failure has
been obtained by crude Monte Carlo simulation:

PMC
f =

Nfail

N
(34)

where N = 1 000 000 samples and Nfail is the num-
ber of samples corresponding to a negative value of
the limit state function Equation (33). The result is
PMC

f = 8.7 × 10−3, and the coefficient of variation of
the underlying estimate is 1.1%. The corresponding
reliability index is given by βMC = −Φ−1(PMC

f ) � 2.38.

On the other hand, once the PCE coefficients have
been obtained by MCS, LHS or QMC using 10 000 finite
element runs, an approximate limit state function is built:

gPCE(z(ξ)) = vmax − |vPCE(ξ)| (35)

The probability of failure is then computed from
Equation (35) (which is a polynomial function almost
costless to evaluate) using 1 000 000 Monte Carlo samples.

Results are reported in Table 4. QMC provides the
most accurate estimate with a relative error on β of 0.8%,
whereas relative errors of 8.8% and 3.8% are respectively
associated with MCS and LHS.
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Fig. 4. Truss example – probability density function of the maximal deflection (left: linear scale; right: logarithmic scale).

Table 3. Truss example – estimates of the total Sobol’ indices.

Variable Reference MCS LHS QMC
Number of FE runs 5 500 000 10 000 10 000 10 000

A1 0.388 0.320 0.344 0.366
E1 0.367 0.356 0.331 0.373
P3 0.075 0.067 0.095 0.077
P4 0.079 0.124 0.080 0.077
P5 0.035 0.086 0.068 0.046
P2 0.031 0.079 0.067 0.039
A2 0.014 0.074 0.052 0.014
E2 0.010 0.088 0.115 0.013
P6 0.005 0.067 0.013 0.014
P1 0.004 0.037 0.063 0.005

Table 4. Truss example – estimates of the probability of fail-
ure and the reliability index.

Reference MCS LHS QMC
Number 1 000 000 10 000 10 000 10 000

of FE runs

Pf 8.7 × 10−3 1.5 × 10−2 1.1 × 10−2 9.1 × 10−3

(CV = 1.1%)
β 2.38 2.17 2.29 2.36

Relative – 8.8% 3.8% 0.8%
error on β

Finally, a parametric study is carried out to assess the
accuracy of the QMC estimates of Pf and β when varying
the threshold vmax. The QMC estimates are obtained us-
ing N = 10 000 samples. Results are reported in Table 5
together with the reference values.

As expected, the estimation error increases with the
threshold value, i.e. when the probability of failure de-
creases, with a relative error on β varying from 2.9%
to 4.7%. This indicates that a second order PC expan-
sion is not sufficiently accurate to describe the far tails
of the response PDF. Better reliability results are thus
expected using a third order PCE [8]. However, as the to-
tal variation of the monomials ψα’s increases with their
degree |α|, so does the QMC estimation error according

Table 5. Truss example – reliability results obtained by pro-
jection using QMC (parametric study).

Threshold (cm) Ref. solution QMC Simulation
Pf β Pf β

10 4.0 × 10−2 1.75 4.4 × 10−2 1.70
11 8.7 × 10−3 2.38 9.1 × 10−3 2.36
12 1.5 × 10−3 2.97 1.4 × 10−3 2.98
14 3.5 × 10−5 3.98 2.1 × 10−5 4.09
16 6.0 × 10−7 4.85 1.8 × 10−7 5.08

to Equation (11). A number of samples N greater than
10 000 would probably be required to provide accurate
estimates of the 3rd order PC coefficients.

The convergence rates associated to the various meth-
ods are plotted in Figure 5. In each subfigure, the ratio
of the quantity of interest with respect to its reference
value is plotted as a function of the number of samples
N used to compute the PCE coefficients. Figures 5a–d
show the convergence of the mean value, standard devia-
tion, total Sobol’ index ST1 and probability of failure (for
vmax = 11 cm) respectively. It can be observed in all four
cases that QMC converges more rapidly than MCS and
LHS. Rather accurate results are obtained by QMC from
1000 sample whereas the convergence of MCS and LHS
for 10 000 samples seems not to be attained.

6 Conclusion

In the context of non intrusive stochastic finite ele-
ments, the quasi-Monte Carlo method has been proposed
to provide rapidly converging estimates of the response
polynomial chaos expansion coefficients. Post-processing
techniques for an efficient computation of the statistical
moments of the response, the Sobol’ sensitivity indices
and probabilities of failure are reported, together with a
method to plot accurately the response probability den-
sity function.
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Fig. 5. Convergence rates of the simulation-based estimators.

The QMC method is based on the generation of
deterministic quasi-random sequences which ensure a
better space-filling of the unit hypercube than the
pseudo-random numbers used in classical Monte Carlo
schemes. Three specific quasi-random sequences, namely
the Halton, Faure and Sobol’ sequences, had been al-
ready successfully used in [20] to analyse the sensitivity
of models whose input random variables were uniformly
distributed. From this analysis it was concluded that the
Sobol’ sequence was the most efficient choice.

In the present paper, the Sobol’ sequence is compared
to MCS and LHS in an application example dealing with
a finite element model of truss and non uniform input
random variables. The QMC scheme overperformed the
other methods, providing reliable estimates of the re-
sponse statistical moments, sensitivity indices and prob-
ability of failure, using about 1000 samples, i.e. 1000
deterministic finite-element runs. In contrast, the MCS
and LHS methods seem not to have converged even for
N = 10 000 samples. Consequently, this method seems to
be an efficient alternative to Monte Carlo when using a
simulation scheme to evaluate the PCE coefficients. In the
future, it would be interesting to assess the performance
of QMC in higher dimensions (e.g. M ≥ 20) and in the
case of non-linear models.

References

[1] R. Ghanem, P. Spanos, Stochastic finite elements – A
spectral approach, Dover Publications, 2 ed., 2003

[2] C. Soize, R. Ghanem, Physical systems with random un-
certainties: chaos representations with arbitrary proba-
bility measure, SIAM J. Sci. Comp. 26 (2004) 395–410

[3] D.M. Ghiocel, R.G. Ghanem, Stochastic finite element
analysis of seismic soil-structure interaction, J. Eng.
Mech. (ASCE) 128 (2002) 66–77
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