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QUASI-RANDOM SET SYSTEMS 
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1. INTRODUCTION 

There are many properties of mathematical objects that satisfy what is some-
times called a 0-1 law, in the following sense. Under some natural probability 
measure on the set of objects, the measure of the subset of objects having the 
given property is either 0 or 1. In the latter case we can say that almost all 
the objects have the property. Familiar examples of this phenomenon are the 
following: almost all real numbers are transcendental (or normal to every base), 
almost all integers are composite, almost all continuous real functions are non-
differentiable, etc. It is often the case that the objects under consideration can 
be partitioned into a countable number of finite classes Cn , with the probabil-
ity assigned to an object in Cn being just l/lCnl. In this case, we say that a 
property Pn satisfies a 0-1 law if the fraction of the number of objects in Cn 
that satisfy Pn either tends to 0 or tends to 1 as n --+ 00. For example, almost 
all graphs on n vertices have maximum cliques and maximum independent 
sets of size at most 2 log n , almost all Boolean functions with n variables have 
circuit complexity (1 + o( 1 ))2n and almost all binary codes of length n with at 
most 2nR codewords (with R less than the binary symmetric channel capacity 
C) have arbitrarily small error probability (a special case of Shannon's coding 
theorem; see [S48]). One of the first general results of this type was the theorem 
of Fagin [F76] and Glebskii et al. [GKLT69], which asserts that every property 
of graphs that can be expressed in first-order logic satisfies a 0-1 law (see [SS88] 
for recent striking developments in this topic). 

One obvious method for finding explicit objects having some property Pn 
shared by almost all objects in Cn is simply to select one at random. With· 
overwhelming probability (tending to 1 as n --+ 00), the selected object will 
have property Pn • Unfortunately, it may be (and often is) extremely difficult 
to prove that any particular object does indeed satisfy Pn . 

It is our purpose in this paper to describe a method that can to a certain 
extent circumvent this difficulty. We will show that, for a variety of families, it 
is possible to identify a natural hierarchy of equivalence classes of properties, 
all of which are shared by almost all objects in the family. Any object satisfying 
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some property in one of the equivalence classes must of necessity satisfy all of 
the properties in that class, even though various properties in a class may appear 
(at first) to be unrelated to each other. Furthermore it is typically easy to verify 
at least one of the properties in a class (depending upon how the particular 
object is given), thereby establishing that all the properties in the class hold. 

Our main focus in this paper will be on combinatorial objects known as 
hypergraphs, which are the natural generalizations of graphs (cf. [Be89]). Ex-
tensions of these ideas to other structures will be discussed at the end of the 
paper. 

2. ROOTS 

Our investigations have their genesis in a number of threads that began to 
emerge some 20 years or so ago. These are found in the work of Wilson 
[Win, Wi74] on the theory of block designs, Erdos-Sos [ES82] on Ramsey-
Turan problems for graphs and hypergraphs, Rod! [R86] and Graham-Spencer 
[GS71] (both on certain universality properties of graphs), and more recently 
Thomason [T87(a), T87(b), T89], Haviland [H89], and Haviland-Thomason 
[HT89, HT(a)]. Some of the results in this paper have been discussed in a 
much weaker (nonquantitative) form in several earlier papers of the authors 
([CGW89] with R. M. Wilson, [CG90(a), CG(c)]. Here we are able to give the 
stronger quantitative versions for all of these (and many others as well) and set-
tle a number of the basic questions previously left unanswered. This uniform 
strengthening has been possible because of the much greater coherence with 
which the whole subject can now be viewed. In the final section, we speculate 
on future developments. 

3. NOTATION 

In this section we introduce a number of definitions that will be used through-
out the paper. More specialized definitions will be given later as needed (cf. 
[Be89]). 

For a (finite) set V, and a positive integer k, define: 

(~) := {X c V!!X! = k}, the family of all k-element subsets of V, 

k V := {(VI' ... , vk)!v j E V}, the k-fold Cartesian product of V with itself. 
As usual, IX! denotes the cardinality of the set X. 

Definition 3.1. A k-uni/orm hyper graph H = (V, J.lH) consists of a set of V 
of vertices of H, together with a function J.l H: (n ~ {I, -I}, called the 
(multiplicative) edge function of H. The set E(H) := J.l~I(-I) is called the 
edge set of H, and any X E E(H) is called an edge of H. Its cardinality is 
denoted by e(H). 

Usually, we just call H a k-graph. We ordinarily assume J.lH is 1 if two 
or more of its arguments are equal. Occasionally we will use the additive edge 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUASI-RANDOM SET SYSTEMS 

function XH of H to represent edges of H, which is defined by 

{ I if X E E(H) , 
XH(X) = 0 otherwise. 

153 

We remark that "ordinary graphs" (e.g., see [B079] or [BM76]) correspond to 
the case k = 2 . 

The complement H = (V, /J;H) of a k-graph H = (V, f1H) is defined by 
setting f1H = - f1 H' Thus, every X E (n is an edge of exactly one of Hand H . 
A k-graph G = (W, f1G) is called a subgraph of H = (V, f1H) if there exists 
an injective mapping A: W -+ V such that f1G(X) = -1 => f1H(A(X)) = -1. 
In terms of the restriction f1HI;.(w) of f1H to A(W), the previous condition is 
just f1G :::; f1HI;.(w)· Similarly, G = (W, f1G) is called an induced subgraph of 
H = (V, f1H) if f1G = f1HI;.(w)' We denote the number of occurrences of G 
as a subgraph, and induced subgraph, of H by #{ G c H} and #{ G < H}, 
respectively. 

Given X C V , define the restriction H[X] of H to X to be the k-graph 
(X, f1H[X)) given by setting f1H[X) = f1Hlx' For v E V, define the v-projection 
H(v) of H to be the (k - I)-graph (V, f1H(V)) given by taking 

f1H(V)(Y) = f1H(Y U {v}) for Y E (~~?) . 
For two k-graphs H = (V, f1H)' H' = (V, f1H') define the symmetric dif 

ference H\J H' = (V , f1 w:7H' ) of G and H by setting Jl H'V H' = f1 H f1 H' . More 
generally, the symmetric difference '/(:1 Hi of the k-graphs Hi = (V, f1H) is 
defined to be the k-graph (V, f1 'V) with f1 'V = n:1 f1H . For u, v E V , d~fine 

I 

the sameness (k - I)-graph Hu,v to be H(u)\JH(v). Thus, X is an edge of 
Hu,v if and only if either both Xu {u} and X U {v}, or neither Xu {u} nor 
X U { v} , are edges of H. 

The product HOH' of two k-graphs H = (V, f1 H) and H' = (V', f1 H' ) 
is defined to be the k-graph (V x V', f1 HDH') where f1 HDH' (X ,X') := 
f1H(X)f1H' (X') for X E (n, X' E (~'). In general, the product 0:1 Hi 
of the k-graphs Hi = (~, f1H) is just the k-graph (n:1~' f1D) with 

I 

Note that X c V is an edge of \7:1 Hi if and only if it is an edge of an odd 
number of Hi' Similarly, (X1' X2 ' ••• , Xm) E n:1 ~ is an edge of 0:1 Hi 
if and only if an odd number of X/s are edges of their respective H/s. 

For a function f1: (~) -+ {I, -I}, denote by fl the extension fl: V k -+ 

{I , -I} defined by 
_ _ {f1({V t , ... , vk}) if vI' ... ,vk are distinct elements of V, 
f1(v t , ... , vk ) - . 

1 otherwise. 
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Finally, we come to the most important definition of the section. Let H = 
(V, fJ,H) be a k-graph and assume WI = n. 
Definition. The deviation of a k-graph H, denoted by dev H , is defined by 

(3.1) 

Using the abbreviations v = (VI (0) , VI (1), ... , vk(O), vk( 1)) E V2k , and e = 
(81 , ... ,8k ) E {O, l}k, we can shorten the notation for the deviation of H by 
writing 

(3.1') 

It will be useful to consider a more general form of deviation, defined as 
follows. 

Definition 4.2. For 0 ~ I ~ k, define the I-deviation of the 
(V , fJ, H) (having n vertices), denoted by dev / H , to be 
(3.2) 

k-graph H = 

1 
dev/ H := k+/ L 

n Vi(O) , vi{l)EV 

L II ilH(V I (8\), ... ,V/(8/) , W/+l' ... , W k )· 

15,;9 
w,EV 8j E{O, I} 

i+I5,I5,k 15,j9 

As before, this can be abbreviated by 

(3.2') 

Note that for a k-graph H, dev k H is just dev H . 

For the simplest interesting case, namely k = 2, the deviation of a 2-graph 
H has the following interpretation. For four (not necessarily distinct) vertices 
a, b, c, d of H, we say that the sequence (a, b, c, d) is an even 4-cycle 
if an even number of pairs {a, b}, {b, c}, {c, d}, {d, a} are edges of H. 
Otherwise, we say that (a, b, c, d) is an odd 4-cycle. Let #(E4C c H) and 
#(04C c H) denote the numbers of even and odd 4-cycles in H, respectively. 
Then 

1 dev H = 4{#(E4C c H) - #(04C c H)}. 
n 

Similarly, for the general case, the deviation of a k-graph H can be interpreted 
as the average difference between the numbers of even and odd "octahedra" in 
H, where an octahedron is a certain 2k-vertex k-graph having 2k edges (see 
[CG90] for details). 

A standard model (e.g., see [BoSS]) for discussing random k-graphs on a set 
V assigns fJ,(X) = 1 or -1, each with probability 1/2 independently for each 
X E (n. This process actually induces a probability distribution on the set of 
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all possible k-graphs of V. We say that almost all k-graphs have some specified 
property P if the probability that a k-graph generated by this process tends to 
1 as I VI = n -t 00. We will usually denote a typical k-graph so generated by 
H}~J(n), or H I / 2(n) if k is understood. 

The main thrust of many of the results in this paper is that many of the 
properties shared by almost all random k-graphs are in fact implied by (and 
imply) the condition that the deviation of a k-graph is small. Specifically, the 
smaller dev H is, the more H behaves like a random k-graph (e.g., see Theo-
rems 6.1, 8.1, and 9.1). In this sense, dev H is a fundamental invariant of H 
as far as characterizing its random aspects. For this reason, k-graph properties 
equivalent to the vanishing of dev H are called quasi-random (cf. [CGW89, 
CG90(a)]). 

4. BASIC PROPERTIES OF DEVIATION 

In this section we summarize some of the fundamental properties of devi-
ation. Unless specified otherwise, H = (V, PH) will denote a k-graph with 
IVI = n. 
Fact 4.0. dev H = dev H . 
Proof. Immediate from definition of deviation. 

Fact 4.1. 
(4.1 ) O:::;devH:::; 1. 

Proof. The upper bound is an immediate consequence of the definition. For 
the lower bound we have by (3.1) 

1 
dev H = 2k L II PH(V I (e l ), ... , vk(ek )) 

n vi(O),vi(I)EV BjE{O, I} 
l'5,i'5,k 15,j'5,k 

= n~k L (L II PH(v1(e1), .. ·, vk_1(ek _ 1), W)r 
vi(O),vi(I)EV wEV BjE{O, I} 

l'5,i'5,k-l I'5,J'5,k-l 

~ O. 0 

By keeping track of those terms in dev H that have a repeated coordinate 
(causing PH to take the value 1), we can obtain the following somewhat 
stronger lower bound for dev H . 

Fact 4.2. 

(4.2) k-l 
devH~1-(1-1/n) . 

In particular, this implies that 

(4.3) devH~1/n fork~2, 

a fact that will be used to help simplify the forms of various inequalities. 
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Fact 4.3. 

( 4.4) 

Proof. 

F. R. K. CHUNG AND R. L. GRAHAM 

1 ~ I dey H = 2' ~ dey(H(v)\1H(v)). 
n V,v'EV 

dey(H( v)\1 H( Vi)) 

1 
- 2k-2 L: II JlH(v)\lH(v') (VI (81), .•• , Vk _ 1 (8k _ 1)) 

n v j (O),vi (1)EV BjE{O, I} 
1::;i:::;k-l l:::;j9-1 

= 2k-2 L: II JlH(V1 (e l ), ... , Vk _ 1 (ek _ I ), v) 
n vi (O),v i (1)EV BjE{O,I} 

l:'5i:::;k-1 I:::;j:::;k-I 

Thus, 

-; L: deY(H(v)\1H(v')) 
n v,v'EV 

= ~k L: L: II JlH(V 1 (8 1), ... , V)JlH(V1 (8 1), ... , Vi) 
n v,v' vi (O),v i(1) BjE{O,I} 

1 :::;i:'5k-1 1 :'5j:::;k-1 

= 2k L: II JlH(V 1 (8 1), .,. , V k (8k )) = dey H. 0 
n vi(O), vi(1) BjE{O, I} 

l:'5i:'5k l:::;j:'5k 

Essentially the same proof yields the more general result: 
Fact 4.4. For 0 ::; I ::; k, 

(4.5) dey,H= -; L: deY'_I(H(v)\1H(v ' )). 
n v,v'EV 

Fact 4.5. For k-graphs H = (V, IiH)' H' = (Vi, IiH') , 
(4.6) dey HDH' = dey H dey H' . 

Proof· 

'"' 11 II II V 2k V'2k L.J JlH(V1(GI),"" vk(Gk))JlH,(V1(GI)'"'' vk(Gk)) 
I I I I Vr(O),v\(I) (e,e')E{0,1}2 

Vi (0) ,vj(l) 
l:5i:5k 

= dey H dey H'. 0 

The same proof shows the following more general result. 
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Fact 4.6. For 0 ~ I ~ k , 

(4.7) 

Of course, Fact 4.6 generalizes to any number of factors: 

(4.8) 

Fact 4.7. For X c V, 

(4.9) 2k dey H[X] ~ (I VI/IXD dey H . 

Proof. 
1 

dey H = ---u; I: II ilH(V I (81), ••• , Vk (8k )) 
n Vi(O) , vi(l)EV BjE{O, I} 

19:5k l:Si:Sk 

=-k I: (I: II ilH(VI(81)"",Vk_I(8k_I),V)r 
n vi(O),vi(I)EV VEV BjE{O, I} 

19:5k-1 l:Si:Sk-1 

~ -h I: ( I: II ilH(V I (8 1), ••• , Vk _ 1 (8k_ I), v) r 
n vi(O),vi(I)EX vEV BjE{O, I} 

l:Si:5;k-1 l:Si:Sk-1 
1 

- 2k I: II ilH(V I (81), ••• , Vk (8k )) 
n Vk(O) , vk(I)EV BjE{O, I} 

Vi(O) , vi(I)EX l:Si:Sk 
l:Si:Sk-1 

- n2k I: ( I: II JLH(V, V2(82) , •• , , Vk (8k )) r 
vk(O),vk(I)EV VEX BjE{O, I} 
vi(O),vt(I)EX 2:Si:5;k 

2:Si:Sk-1 

~ n;k I: ( I: II ilH(V, V2(82), ••• , vk(ek )) r 
vitO) ,vi(I)EX VEX BjE{O, I} 

2:Si:Sk 2:Si:Sk 
1 

- ---u; I: II JLH(V1 (8 1), ••• , vk(ek )) 
n vi(O),vi(I)EX BjE{O,I} 

19:5k l:Si:Sk 

= (IXIIWD 2k dey H[X] 

as required. 0 

157 

Fact 4.7 has a sort of converse, which asserts that if a family of subsets Xi 
of V covers (~) fairly uniformly then dey H is close to the average of the 
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dey H[XJ. More precisely: 

Fact 4.8. Suppose XI ' ... , X m C V so that 
(i) each Y E (~) occurs in (1 + o(I))t of the X,; 

(ii) IX,I = (1 + o(I))u, 1 ~ r ~ m. 
Then 

(4.10) 1 m (1) dey H ~ (1 + 0(1)) m L dey H[X,] + 0 Ii ' 
,=1 

Proof. First, observe that the hypotheses imply 

7 = (1 + 0(1)) (2:) / (2~) . 
Thus, with n!.:= n!j(n - t)! wehaye 

1 
dey H = 2k L II PH(V I (8 1), ... , Vk (8k )) 

n vj(O), vj(l) 8j 

I::=:;i::=:;k I::=:;j::=:;k 

n-+oo. 

~ -h (n 2k - n2k + L II PH(V I (8 1), ... , Vk (8k ))) 
n distinct 8 j 

v j (O),V j (1) I::=:;j::=:;k 
I ::=:;i::=:;k 

= 0 (*) + (1 + ~~1)) L L L PH[Xrl(V I (8 1), ... , Vk (8k )) 
tn I::=:;,::=:;m vj(O), v j (1)EXr 8j 

=O(*)+(1+0(1))+(*fk L deYH[X,] 
l::=:;r::;m 

1 m (1) = (1 + 0(1))- Ldey H[X,] + 0 - as n -+ 00. 0 
m ,=1 n 

Fact 4.9. For 1 ~ I ~ k, 
( 4.11) 
Proof· 

1 
devt H = k+t L L II fi.H(x l (e l ), ... , xt(et ), wt+l ' ... , wk ) 

n Vj(O),v j(1) w, ejE{O.I} 
l~i~t t+l~t9 l~j~t 

= )+t L L (L IT fi.H(xl(e l ), .. ·, V, wt+l '"'' Wk ))2 
vj (O),Vj(1) w, v ejE{O, I} 
l~i~t-l t+I~I~k l~j~t-l 

~ Lt' k;t-2( L L II fi.H(XI(el), ... ,Xt_l(et_I),Wt,,,,,Wk))2 
n n Vj(O) , v j (1) w, ejE {O, I} 

l~i9-1 l~t~k l~j~t-l 

by the Cauchy-Schwarz inequality 
2 = (devt_ l H) . 0 
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By taking I = k, we obtain the lower bound of (4.1). Note that when I = 0, 

1 2k! 
devoH = k L flH(w I ,···, wk) = 1 - kIE(H)I· 

n w.EV n 
J 

I~j~k 

Fact 4.10. For 0 ::; I < k, 

(4.12) 1 
deY, H = n L deY, H(v). 

vEV 

Proof· 

Finally, we note the observation (to be used later) 

(4.13) dey G = 1 :::} dey G'V H = dey H . 

The proof follows at once from the definitions. 

5. SOME PROPERTIES OF RANDOM k-GRAPHS 

In this section we describe a variety of properties shared by almost all random 
k-graphs. These will serve as reference points for comparing the corresponding 
quasi-random versions of these properties in later sections. Proofs of the asser-
tions are not difficult, or are available in the literature, and (with exception of 
Fact 5.1) are omitted. As usual, H = Hm(n) will denote the random k-graph 
on n vertices as described in § 1. 

Fact S.1. 

(5.1) Pr [dey H~~~(n) > ~] ::; ~ e2k) . 
if 2k Proo. For fJ = (VI (0), VI (1), ... , Vk(O) , vk(I)) E V ,let 

Y(v) := II 
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and let S := EVEV2k Y('lJ) . Thus, S = n2k dev H. Let us call 'lJ E V 2k proper if 
all its components are distinct; otherwise we say it is degenerate. Observe that 
the number N of degenerate 'lJ satisfies 

N 2k 2k < (2k) 2k-1 = n - n- _ 2 n . 

Thus, 

E[S] = E[ ~ Y('lJ)] = ~E[Y('lJ)] 

= L E[Y('lJ)] + L E[Y('lJ)] 
v degenerate V proper 

~ C2k)n2k-1 . 1 + 0 

since for proper 'lJ, all the factors in Y ('iJ) are independent. Writing Cheby-
shev's inequality as 

Pr[S > A] ~ EiS] 
then taking A = o:n2k- 1 , we obtain (5.1). 0 

We remark that, with a little more care, it can be shown that for appropriate 
constants ck and c> 1, 

(k) / -v'n (5.2) Pr[dev H I / 2(n) > ck n] < c . 

Fact 5.2. Let H(t) be an arbitrary fixed k graph on t vertices. Then 
nt 

#{H(t) < H I/2(n)} = (1 + 0(1)) 2(k) , (5.3) n-+oo. 

Fact 5.3. Let H:= H~~i(n). Then almost all H satisfy (as n -+ 00) 

(i) IE(H)I = (! + o(I))(Z); 
(ii) for almost all vertices v E V of H, IE(H(v))1 = (1 + o(I))(k~I); 

(iii) for all X c V, IE(H[X])I = ! (If I) + o(nk). 

Of course, (iii)::} (ii) ::} (i). We will see the relevance of these properties to 
the I-deviation of a k-graph later. 

The deviation of a k-graph is related to a special k-graph called a k-octahe-
dron, tf = (V, J.l~), defined as follows. The vertex set V consists of 2k 
points X;(O) , xP), I ~ i ~ k. The edges of tf consist of all k-sets of the 

k form {XI (8 1), ••• , Xk(8k) : 8 1 ' .,. , 8k = 0 or I} (so that &' has 2 edges). A 
partial octahedron is a subgraph of &' having as edges a subset of the edges of 
&'. More specifically, an even partial octahedron (EPO) has an even number of 
such edges, while an odd partial octahedron (OPO) has an odd number. We let 
#{EPO < H} and #{OPO < H} denote the numbers of induced EPO's and 
OPO's, respectively, in H. 
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In these terms, Fact 5.1 asserts that 

(5.4) (k) (k)· ((n)) #{EPO < H I / 2(n)} - #{OPO < H I / 2(n)} = 0 k . 

In the case of ordinary graphs H = H(2)(n) = (V, XH)' we define the adja-
cency matrix A(H):= (XH(x, Y))X,YEV. Since A(H) is real and symmetric, it 
has real eigenvalues Aj' which can be labelled so that IAII ~ IA21 ~ ... ~ IAnl. 
Fact 5.4 [FK81}. Almost all random graphs H I /2(n) have Al = (1 + o(I))nj2, 
A2 = O(nl/2). 

6. INDUCED SUBGRAPHS 

As we have noted, for a fixed k-graph G(t) on t vertices, almost all random 

k-graphs H I /2(n) contain (1 +o(I))nLj2 W occurrences of G(t) as an induced 
subgraph. In this section we will show that this property actually holds for any 
k-graph H(n) with small deviation. More precisely, we prove 

Theorem 6.1. Assume G = G(t) is a fixed k-graph on t vertices where k ~ 2. 
ThenJor any H = H(n) with n ~ t2, we have 

(6.1) 1#{G(t) < H(n)} - 2(~) I ~ 5nt(dev H(n))2- k 
• 

ProoJ. Denote the vertex set of G by V = {VI' ... , vt }. For 1 ~ r ~ t, define 
V, := {VI' ... , vr } C V, G(r) := G[V,} , and Nr := #{G(r) < H}. We will 
show by induction on rand k that 

(6.2) INr - 2(;) I ~ 5nr (dev H)2- k 
• 

First note that for r < k, Nr = nl. and (6.2) holds since 

INr - ~~I = 0 ~ 5nr (dev H)2- k
• 

So let us assume for a fixed value of k ~ 2 that (6.2) holds for some value of 
r satisfying k - 1 ~ r < t. We want to prove that (6.2) also holds for r + 1 . 

Denote the vertex set of H by [n} = {I, 2, ... , n}. Let a denote (ai' ... , 
ar) where the a j are distinct elements of [n}, and let e denote 

(e(e l ), ••• , e(ez )) with e(e j ) E {-I, I}, 1 ~ i ~ z:= (k ~ 1)' 
where el , ••• ,ez denotes an arbitrary fixed ordering of the (k - I)-subsets of 
{ai' ... , a r }. Define 

J(a,e):=I{iE[n}li ¢ aand,uH({i}Ue)=e(e), l~j~ (k~I)}I. 
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Note that N'+I is the sum of exactly N, values f,(a, e). Namely, for each 
embedding A: G(r) ~ H, say with A(V) = a}, 1 ~ j ~ r, J(a, e) counts 
the number of ways of choosing i E [n] so that if we extend A to V,+I by 
setting A(V,+I) = i, and we define e(e) = ,uH({i} U e), 1 ~ j ~ (k~I)' then 

A becomes an embedding of G(r + 1) into H. Also, there are just 2 (k~l) n! 

quantities J(a, e), since there are nL choices for a and 2(k~l) choices for 
e. 

The next step is to compute the first and second moments of J. First, we 
have 

(6.3) 

In particular, 

(6.4) LJ(a, e) = n,+I. 
a,e 

Next, define 

(6.5) S,:= L/(a, e). 
a,B 

Claim 1. 
(6.6) S, = '"' #{K(k-I) < H- }. L..J , X,y , 

x,YE[m] 

H;,y denotes the (k - l)-graph formed by restricting HX,y := H(x)'VH(y) 
to the vertex set V- := V\ {x , y} , and K;m) denotes the complete m-graph 
having r vertices and all possible (~) r-sets as edges. 

To see this, interpret S, in (6.5) as counting the number of ways of choosing 
0.= (0. 1 ' ••• , a,), e = (e(e l ), ••• , e(ez )) ' and two other (ordered) vertices x 
and y in [n]\a so that 

Summing over all e reduces this to requiring just that 

(6.7) ,uH({x}ue)=,uH({y}ue), l~j~ (k~l)' 

On the other hand, if we think of choosing x and y first, then by (6.7) 
{aI' ... ,a,} must span a K;k-I) in H;,y. This proves Claim 1. 

Of course, 

(6.8) #{K(k-I) < H- } < #{K(k-I) < H }. , X,y - ,. x,y 
Claim 2. For k ~ 2 , 

(6.9) 
-( , ) 2, ,+2 2-(k-l) 

S, ~ 2 k-I n n- + 5n (dev H) . 
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Proof. First, assume k = 2. Define 

1 
e(x, y) := Ii 2:: f1H(X, z)f1H(Y' z). 

zE[n] 

Thus, le(x, y)1 :::; 1 and 

which implies 

(6.10) 

Next, define 

Thus, 

1 '" 2 devH = 2" Le(x, y) 
n x.y 

~ ~ (2:: le(x , y) I) 2 by Cauchy-Schwarz, 
n x,y 

'" 2 1/2 Lie (x , y) I :::; n (dev H) . 
x,y 

n s(x, y) := "2(1 + e(x, y)). 

s, = 2::/(a, e) = 2::s(x, y)(,) 
a,e x,y 

:::; 2:: s(x, y)' = (~)' 2::(1 + e(x, y))' 
x,y x,y 

= (~)' {n 2 + E~ C)e(x,y/} 

:::; (~)' {n 2 +2'2:: Ie (X,y)l} 
x,y 

,+2 
:::; n2, + n,+2(dev H)1/2 by (6.10) 

2 , 
:::; n2~- + 5n,+2(dev H)1/2 

as required by (6.9) for k = 2, where we have used (4.3) and the fact that 

->1-- . n[ 1 (r) 
n' - n 2 

163 

We now observe that the remainder of the proof of Theorem 6.1 for the case 
k = 2 can be completed as written (following the end of Claim 2). 

In general, for some k > 2, the proof of Claim 2 for k will require the use 
of Theorem 6.1 for k - 1 . So we can assume for k > 2 that Theorem 6.1 holds 
for k - 1, and we will complete the proof of (6.9) for this value of k. 
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By (6.1) for k - 1, we have 

S < ""'#{K(k-I) < H } 
, - ~, X,Y 

X,Y 
2-(k-l) 

< 2-(k~l) n2,r- + 5n'+2 (~ ""' dey H ) 
- 2 ~ X,Y n X,Y 

by repeated application of Cauchy-Schwarz 
_ ( , ) 2, ,+2 2- k - 1 

= 2 k-I n n-+ 5n (dev H) 

by Fact 4.0 and Fact 4.3. This completes the proof of Claim 6.2. 0 

We now compute the variance of f. 

Also, since 

then 

""' - 2 ""' 2 ""' -2 Varf= ~(f(o:, e)-f) = ~f (0:, e)- ~f 
a, e a,e 

Nr+1 = l: f(o:, e) 
Nr choices 
of (a ,e) 

a ,e 

INr+' - NJI2 = I l: (f(o:, e) - Jf 
Nr terms 

:::; N, l: (f(o:, e) _])2 by Cauchy-Schwarz 
Nr terms 

:::; N, l: (f(o:, e) - J)2 = N, Var f 
all (a ,e) 

N {5 r+2(d H)2-(k-l) r(2n - r)n!:} 
:::;, n ev + (r) . 

2 k-I 

Thus, 

(6.11 ) { 
-(k-l) (2 _ ) !:}1/2 

IN - N f-I < N 1/ 2 5 '+2(d H)2 + r n r n ,+ 1 ,_, n ev ( , ) 
2 k-I 
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Now, by induction on r 

( 6.12) INr - 2(;) I:::; 5nr(dev H)Z-k. 

Since J = (n - r)/2(k~1) by (6.3) we obtain 

I nr+l I 1/2{ r+2 2-(k-l) r(2n-r)n!.}1/2 
Nr+l - (r+l) :::; Nr 5n (dev H) + (r) 

2 k 2 k-l 
Z-k 5(n - r)nr(dev H) 

+ 2(k~1) 

:::; 5n r+1(dev H/- k
, 

where the final inequality follows by straightforward computation using the 
assumptions 1 :::; k - 1 :::; r :::; fo and the (trivial) estimate Nr :::; nr • 

This therefore completes the induction step and (6.1) follows. Thus, Theorem 
6.1 is proved. 0 

We should point out that the basic structure of this proof has its roots in the 
seminal paper of Wilson [Win]. 

Theorem 6.1 has a quite unexpected consequence. What it asserts in essence 
is that the smaller dev H is, the closer #{G(t) < H} is (for any fixed G(t)) 

to what is expected, namely T m nL . However, dev H only depends on 
#{EPO < H} and #{OPO < H}, which in turn, depend on the quantities 
#{G(2k) < H}, as G(2k) ranges over all 2k-vertex k-graphs. Thus, if each of 
the 2k-vertex k-graphs occur as induced subgraphs of H about the "correct" 
number of times, then in fact so do all the I-vertex k-graphs, as well! Of course, 
for a fixed H, the larger I becomes, the larger the variation of the actual count 
from the expected value becomes. (Theorem 6.1 gives a quantitative statement 
of this phenomenon.) As will be seen in §7, the value 2k is in fact sharp for 
k-graphs. That is, for each k there is a family of k-graphs H(n), n ..... 00, so 
that: 

(i) For all G(2k - 1), 

2k-l n-
#{G(2k - 1) < H(n)} = (1 + 0(1)) e k- 1 ; 

2 k) 
(ii) for some G(2k) and some e > 0, 

n2k 
#{G(2k) < H(n)} < (1 - e) 2el:) , 

In fact, for k =f. 2s , we construct in §7 examples of k-graphs H(n) that satisfy 
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(i) and 
(iii) for some G(2k) , 

#{G(2k) < H(n)} = O. 
Such k-graphs H(n) clearly deviate from behaving like random k-graphs in 

a very striking way. It follows from (6.1) that if 

(6.13) 1 ( (I) rk) (t)-I n < 1 - 5 . 2 k (dev H) 2 

then any G(t) is an induced subgraph of H = H(n). 
Suppose dev H < 1 (the very special k-graphs having deviation 1 are char-

acterized in § 11). By (4.8) with I = k and Hi = H, 1 ::; i ::; m , we have for 
H Om. Om H .= i=1 ' 

dev HOrn = (dev Ht, IHoml = IHl m = nm. 

It then follows from (6.13) that for m large enough, e.g., m > (2n2t)k, we 
have #{G(t) < HOrn} > O. However, we can draw the same conclusion for a 
smaller value of m by the following direct construction. 

Proposition 6.2. If dev H < 1 then #{ G(t) < Horn} > 0 provided that 
m> (I-I )2k - 1 • - k-I 
Proof. By hypothesis, H must contain an OPO, i.e., 2k vertices Xi < Yi' 
1 ::; i ::; k , so that 

II flH(ZI"'" zk_1 ' xk) = -1 , 
zjE{Xj , y;l 
lSi~k-1 

II flH(zl'"'' zk_1 ' Yk) = 1. 
ZjE{Xj 'Yj} 
l~i9-1 

Let mo := (tD2k- 1 and let W = {WI < w2 < ... < WI} denote the vertex 
set of G(t). Also, let Wi denote W\{w l }. The plan will be to map each 
W E W to an mo-tuple w as follows. Let (VI' V2 , ••• , V(I_I)) be some 

}-I 

fixed ordering of (k~/I)' For V j , we reserve the 2k- 1 coordinate positions 
{U - 1)2k- 1 + i I 0::; i < 2k- I }. Write Vj = {u l < ... < uk-I}' Let wU, i), 

0::; i < 2k- 1 , be the values w is assigned in these coordinates. Then wU, i) 
is defined as follows. 

(i) W > uk_I' Then 

{ 
xk if Vj U {w} is an edge of G(t), 

wU, i) = 
Yk if Vj U {w} is not an edge of G(t). 

(ii) W < uk_I' W ~ Vj • Then 

wU,i)=Yk' 
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(iii) W = ur E Vj . Then 

_ .. { xk if the rth digit of the binary expansion of i is 1 , 
w(;, z) = 

if the rth digit of the binary expansion of i is O. Yk 
With this assignment for each Vj E (k~/l) , we have defined a mapping A.: W --+ 

{Xl' Yl , ..• , Xk' Yk}mo. It is now simply a matter of checking to see that A. 
induces a copy of G(t) in Homo, and the claim is proved. 0 

A small example may help to clarify this construction. 

Example. k=3, t=5, mo=24, W={1,2,3,4,5},and G(5) has edges 
{I, 2, 3}, {I, 2, 5}, {I, 3, 4}, {2, 4, 5}. 

12 13 14 
w 0 1 2 3 4 5 6 7 8 9 10 11 
1 J:'l Yl Xl Xl Yl Yl Xl Xl Yl Yl Xl Xl 
2 Y2 x2 Y2 x2 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 
3 X3 X3 x3 X3 Y2 x2 Y2 x2 Y3 Y3 Y3 Y3 
4 Y3 Y3 Y3 Y3 x3 x3 X3 X3 Y2 x2 Y2 x2 
5 X3 x3 x3 x3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 

23 24 34 
w 12 13 14 15 16 17 18 19 20 21 22 23 
1 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 
2 Yl Yl Xl Xl Yl Yl Xl Xl Y3 Y3 Y3 Y3 
3 Y2 x2 Y2 x2 Y3 Y3 Y3 Y3 Yl Yl Xl Xl 
4 Y3 Y3 Y3 Y3 Y2 x2 Y2 x2 Y2 x2 Y2 x2 
5 Y3 Y3 Y3 Y3 X3 X3 X3 X3 Y3 Y3 Y3 Y3 

7. k-GRAPHS WITH THE CORRECT DENSITY OF SMALL SUBGRAPHS 
We saw in the preceding section that if a k-graph H(n) contains all possible 

2k-vertex k-graphs G(2k) as induced subgraphs asymptotically equally often,. 
then in fact this must also hold for all t-vertex k-graphs G(t), for any fixed 
t, as well. In this section we show that the value 2k is critical for such a 
conclusion to hold. Specifically, we will prove 

Theorem 7.1. Fix 2:$ k :$ I :$ 2k - 1. Then there exists a family of k-graphs 
H(n) such that 

(i) for any G(l), #{G(l) < H(n)} = (1 + o(I))n' 12m; 
('+1) 

(ii) for some G(l + 1), #{G(l + 1) < H(n)} f:. (1 + o(I))n'+1 12 k . 
Proof. We will first deal with the case I = 2k - 1. The general case will then 
follow in the same way. Fix some vertex set V of size n. For 1 :$ j :$ k - 1 , let 
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H~~~ be a random i-graph (V, X), where in this section we use the additive 
edge function Xj' Define H j to be the k-graph (V, X~) given by: 

for X E (~) , x;(X):= L Xj(Y) (mod 2) . 
YE(1) 

That is, X is an edge of H j if and only if X contains an odd number of edges 
Y of Hm. Form the symmetric difference k-graph 

H* = H*(n) = \l~:/ H j = (V, X*). 

We claim that H*(n) satisfies the desired conclusions, except when k = i, in 
which case an additional step is required. 

So we first assume k # i. Consider an arbitrary fixed set W = {w 1 ' ... , 

w2k _ l } of 2k - 1 vertices in V. Form the matrix M with rows indexed by 
X E ('Z') and columns indexed by lj = (T), 1 ~ i ~ k - 1 . Thus M has size 
e\-I) by 2k- 1 - 1. The (X, Y)-entry M(X, Y) of M is defined to be 1 
if Yj C X and 0, otherwise. We can view each column C(Y) as a function 
mapping ('Z') to {O, I} by defining 

C(lj)(X) = M(X, Y), 

Furthermore it is easy to see that 

so that 

L C(lj) = X; 
YjE(T) 

L L C(Y)=X*. 
l::5j::5k-1 YjE(T) 

The key fact we now apply is a result of Wilson [Wi90] that asserts that (for 
k # i) M has full rank mod 2, which in this case is ek;I). Actually, Wilson's 
result implies that if we adjoin the all 1 's column I to M, forming M+ , then 
M+ has mod 2 rank equal to ek;I). However, for k # i some i with 
1 ~ i ~ k - 1 has m odd. Summing all the columns C(~), ~ E (~) , yields 
I so that in fact rank2 M = rank2 M+ = ek;l) • As W ranges overall (2k-l)-
element subsets of V, since the edges of the various corresponding H~~~ are 
chosen independently (and uniformly), then an easy argument shows that each 

(2k-l) 
of the possible ek;l) (0, I)-vectors occurs (1 + o(I))n2k- 1 /2 k times as 
n ~ 00. But this just means that for almost all choices of the H~~~ each of the 

(2k-l) 
possible k-graphs G(2k-l) on 2k-l vertices occurs (1 +o(l))n2k- 1 /2 k 

times as an induced subgraph of H* (n) , as claimed. 
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In the case k = i for some t, we form the k-graph H+ by taking the two 
disjoint k-graphs H* and its complement H* , and placing a random k-graph 
between them. That is, if H* = (V, X*), H* = (Vi, X*), V n Vi = 0, then 
H+ = H+(2n) = (V u Vi, X+) with 

{ 
X*(X) forXS; V, 

X+(X) = X*(X) for X S; Vi, 
o or 1 with probability 1/2 otherwise, 

for X E (V~v') . An easy argument shows that 

(2k-l) 
#{G(2k - 1) < H+(2n)} = (1 + o(I))(2n)2k-1 2- k 

for almost all choices defining H+ . 
To see that there are 2k-vertex k-graphs G(2k) satisfying (ii) (for I = 

2k - 1), it is enough to show that dey H* and dey H+ are bounded away 
from 0 (independent of n). Indeed we show in § 11 that dey H* = 1 and, 
consequently, for almost all choices of H+ , dey H+ ~ (1 + o(I))21- 2k . 

Now, we treat the case of general I. Of course, for 1= k the conclusion is 
immediate so we may assume I> k. We apply the same constructions as in the 
preceding case 1= 2k - 1 , but now with rows of M indexed by sets X E (~) , 
and columns indexed by sets Yj E Tj, 1 :::; j :::; 1- k (where IVI = l). As 
before, Wilson's result applies to the augmented matrix M+ (with the all 1 's 
column adjoined), with the conclusion that M+ has mod 2 rank equal to W. 
Thus, it follows that when k =I i then M itself has mod 2 rank equal to (k) 
and the analogous construction of H* gives us the desired k-graph, while for 
k = i the "doubling" construction of H+ (using H* and H*) works here as 
well. It follows as before that dey H* = 1 , and dey H+ almost always exceeds 
(1 + o(I))21- k- 1 • This completes the proof. 0 

S. DISCREPANCY 

In this section we relate deviation to another measure of randomness for k-
graphs called discrepancy. This is a natural generalization of the well-studied 
concept of the discrepancy of a graph [ESn, ES74] and was suggested (for 
k = 3) by Frankl and Rodl [FRS9] as a possible quasi-random property. We 
will show here that deviation and discrepancy are indeed intimately related, and 
in fact, one can be small only if the other one is. 

To begin with, we need to define discrepancy. Let H be an arbitrary k-graph 
on an n-vertex set V and with edge set E(H). For a (k - I)-graph G on V 
with edge set E( G) , we define 

(S.1 ) E(H, G):= {X E E(H) I (k ~ 1) S; E(G)} , 

e(H, G) := k!lE(H, G)I. 
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Thus, e(H, G) counts the number of ordered subsets in E(H, G). Finally, we 
define the discrepancy of H, denoted by disc H , by 

(8.2) . I I -dlscH:= k max e(H, G) - e(H, G)I, n G 

where the max is taken over all (k - I)-graphs G on V. 
For k = I , we take by convention 

(8.3) discH = .!.le(H) - e(H)I, . n 

where, as usual, e(K) denotes the number of edges of K. 
For k = 2, it follows from (8.2) that 

(8.4) discH = 22 max le(H[W]) - e(H[W])I. 
n wcv 

Thus, the discrepancy of a 2-graph just measures the maximum imbalance be-
tween edges and non-edges over all its induced subgraphs. 

It is easily proved that almost all random k-graphs H1/ 2(n) satisfy 

(8.5) discH1/2(n) = 0(1), n-+oo, 

and we have seen by Fact 5.1 that almost all H1/ 2(n) satisfy 

(8.6) dev H 1/ 2(n) = 0(1), n-+oo. 

What was actually quite unexpected was that for arbitrary k-graphs H, (8.5) 
and (8.6) are equivalent. 

The following result states this in a more quantitative form. 

Theorem 8.1. For any k-graph H = (V, PH): 
rk 

(i) discH ~ (dev H) ; 
(ii) dev H~ 4k (discH)2- k 

• 

Proof. First observe that for k = 1 the desired conclusions are immediate since 
in this case 

Hence we assume k ? 2 . 
We first prove (i). Let G be an arbitrary (k - 1 )-graph on V with edge set 
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E(G). By definition, 

n2k dev H =:L IT 'uH(U I (81), ... , Uk (8k )) 
uj(O),u j(1) ejE{O, I} 
199 I$.j$.k 

= :L ( :L IT 'uH(V, U2 (82 ), ... , Uk (8k )) r 
uj(O),u;fl) vEV ej 

if I NI 

> :L(1) (:LIT'uH(V,U 2(82 ), ... ,Uk (8k ))r 
uj(O), uj(l) v 6j 
if I NI 

where 2::(1) denotes a sum over all choices of Ui(O) , ui(l), i =1= 1, such that 
{U 2(8 2), ... , Uk (8 k )} is an edge of G for all choices of 8 j E {a, I}, 2 ~ j ~ k, 

",(1) IT = L..J 'uH(U I (8 1), '" , Uk (8k )) 

where 2::(2) denotes a sum over all choices of ui(O) , ui( 1), i =1= 2, such that all 
{U I (8 1), U3(83 ), ... , Uk (8k )} E E(G) for all 8 j E {O, I} 

",(1,2) IT 
= L..J 'uH(U I (8 1), ... , Uk (8k )) 

uj(O), uj(l) 6 j 

where 2::( I ,2) denotes a sum over all choices of U i (0), U i ( 1) such that all {u 2 (82) , 

U3(8 3) , ... , Uk (8k )} and all {U 1 (8 1), U3(8 3), ..• , Uk (8k )} are edges of G for all 
8 j E{O,1} . 

",(1,2,3)IT 
~ L..J 'uH(U I (8 1), '" , Uk (8k )) 

uj(O),u,(I) 6 j 

",(1,2, ... ,k) IT 
~ L..J 'uH(U I (8 1), ... , Uk (8k )) 

u,(O),u;fl) 6 j 

where the final sum is over all choices of ui(O), ui( 1) such that every (k - 1)-
subset of all {U 1(81), ... , Uk (8k )} , 8 j E {a, l}, are edges of G. We now 
repeatedly apply the Cauchy-Schwarz inequality. 
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2k 
1 (I:(1,2, ... ,k) ) > k flH(VI, .. ·,Vk ) - k(2 -2) n Vi "",Vt 

1 - 2k 
= k (e(H, G) - e(H, G)) nk(2 -2) 

since all (k - 1 )-subsets of each choice of {v I ' ... ,vd are edges of G. 
Thus 

le(H, G) - e(H, G)I ::; (nk(2k-2) . n2k dey H)I/2k 

::; nk (dev H) 1/2k . 

Since G was arbitrary then this implies 

as required. 

1/2k disc H ::; (dev H) 

We next prove (ii) by induction on k. We first remark that for k = 2, (ii) 
follows directly from results in [CGW, Fact 9], so we will assume k ~ 3. 
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Assume that for every (k - 1 )-graph G on V, we have 
- 2 k 

le(H, G)-e(H, G)I <2e n . 
We will show 

k 1/2k dev H < 4 e . 
For each u E V , define 

k 1/2k 
S(u) := {v E V I dev Hu,v 2: (4 - 2)e }, 

S := {u E V I S(u) > 2en}, 
where Hu,v is the sameness (k - I)-graph of H with respect to u and v 
defined previously (i.e., ItH (X) = -ItH({U}UX)ltH({V}UX) for X E (k~l))' 
If lSI:::; 2en then U,v 

1 
dev H = 2" L dev Hu, v by Facts 4.0 and 4.3 

n u,v 

:::; ~{ISI . n + (4k _ 2)e 1/2k • n2} :::; 4k e1/ 2k 

n 
as required. Thus, we may assume lSI> 2en. Fix u E S. For each v E S(u) , 
the induction hypothesis implies there exists a (k - 2)-graph G(u, v) on V 
satisfying 

- 2 k-l 
le(Hu,v' G(u, v») - e(Hu,v' G(u, v))1 > M n 

where J2 = 4e. Thus, there is a subset S'(u) of S(u) with IS'(u)1 = en so 
that either: 

(a) e(Hu,v' G(u, v)) 2: !-e(( k~l))' G(u, v)) + 3J2nk - 1 for all v E S'(u); or 
(b) e(Hu v' G(u, v)) :::; !-e(( k~l))' G(u, v) - 3J2nk - 1 for all v E S'(u). 

We will just treat case (a); the argument for case (b) is very similar and is 
omitted. We begin by defining the following (k - I)-graphs on V. 

E(H~) = E(H(u)) n (V~~\U)) , 
E(H~') = E(H(u)) n (V~~\U)) , 
E(G') = {Y U {v}IY E E(G(u, v)), v E S'(un U E(H~), 

E(G") = {Y U {v}IY E E(G(u, v)), v E S' (un U E(H:). 

Consider the sum 
a(u):= L e(Hu,v' G(u, v)). 

vES'(u) 

For each X' E E(H, G') there are three possibilities: 
(i) IX'nS'(u)I2:2. There are at most e2nk such X'. 
(ii) IX' n S'(u)1 = 1. In this case, X' = Y U {v} for some v E S'(u) , and 

so, Y E E(Hu,v' G(u, v)). 
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(iii) IX' n S' (u)1 = O. In this case, X' E E(H, H~) . 
A similar analysis applies to those X" E E(H, G"). Combining these obser-

vations, we obtain 

a(u) = L e(Hu,v' G(u, v)) 
VES'(u) 

= (k - I)! L I{YIY E E(Hu,v' G(u, v)}1 
VES'(u) 

= (k - I)! L I{Y u {v}IY E E(Hu,v' G(u, v))}1 
VES'(u) 

(8.7) :::;(k-I)!I{XE (~) IIXnS'(u)I=I, X=YU{v}, 

Y E E(Hu,v' G(u, V))} 1+ e2nk 

= (k - I)!I {X IIX n S' (u) I = 1, X = Y u {v}, X E E (H) , 

Y E (Hu,v' G(u, v)}1 

+ (k - I)!I{X' I IX' nS'(u)1 = 1, X' = y' U {v}, 
, - , 2 k 

X E E(H) , Y E E(Hu,v' G(u, v))}1 + e n 
, ,-" -" 2k :::; e(H, G ) - e(H , Hu) + e(H , G ) - e(H , Hu) + en. 

Now, if we apply the induction hypothesis to the (k - I)-graphs H~, H~' , G' , 
and G", we have 

, -, 2 k 
le(H, Hu) - e(H, Hu)1 < 2e n , 

" -" 2k le(H, Hn) - e(H , Hu)1 < 2e n , 
, -, 2 k 

le(H, G) - e(H, G)I < 2e n , 
" -" 2k le(H, G ) - e(H, G )1 < 2e n . 

Consequently, from (8.7) 

a(u):::; ~e ((~), 0') - ~e ((~), H~) 
(8.8) 

+ ~e ((~), 0") - ~e ((~), H:) + 5e2nk • 

On the other hand, by (i) we see 

a(u):::: ~ L e ((k ~ 1)' G(u, V)) + 3a2nk- 1IS(u)1 
VES'(u) 

(8.9) :::: ~e ( (~) , 0') - ~e ( (~) , H~) 

1 ((V) ") 1 ((V) ") 2 k 2 k + 2e k' G - 2e k' Hu - 5e n + 315 en . 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUASI-RANDOM SET SYSTEMS 175 

However, (8.8) and (8.9) imply 15 2 :::; lOe/3, which contradicts the assumption 
that 15 2 = 4e. 

This completes the induction step and Theorem 8.1 is proved. 0 

We point out here that it is possible to define, for any I :::; k, the I-discrepancy 
disc! H of a k-graph H on a vertex set V of size n by 

1 -disc! H:= k max le(H, G) - e(H, G)I, 
n G 

where G ranges over all (1- 1 )-graphs on V, E(H, G) = {X E E(H)I V:l) C 
E(G)}, e(H, G) = k!IE(H, G)I, etc. For this more general concept, the ana-
logue to Theorem 8.1 holds. 

Theorem 8.2. For 2 :::; I :::; k , 
Z-I 

(i) disc! H :::; (dev, H) ; 

(ii) dev! H :::; 41 (disc! H)z-' . 

The proof of Theorem 8.2 is similar to that of Theorem 8.1 and is given in 
Chung [C90], which in fact includes a much fuller discussion of I-deviation and 
I-discrepancy, and the applications of these ideas to communication complexity 
(cf. [BNS89]). 

9. GRAPHS 

Certainly the most commonly occurring k-graphs are just (ordinary) graphs. 
While many of the known results relating the deviation of a graph G to other 
structural invariants follow immediately from the preceding results by special-
izing k to be 2, there are other useful properties of graphs that are not easily 
generalized to larger values of k . In this section, we discuss some of these. 

To begin with, for each graph G = (V, Ji-G) on vertices, we can define (as 
before) an n x n symmetric matrix A = A(G) = (a(x, y))x ,yEV' called the 
adjacency matrix of G, as follows: 

{ I if {x , y} is an edge of G , 
a(x,y)= . o otherwIse. 

Since A(G) is real symmetric, its eigenvalues Ai = Ai(G), 1 :::; i:::; n, are real. 
We label them so that 

IAII ~ IA21 ~ ... ~ IAnl· 
It is well known (e.g., see [CDS80, CDGT88]) that many structural properties of 
G are controlled by the behavior of the eigenvalues of A(G). Random graphs 
Glj2 (n) are known [FK81] a.a. to have 

Al = (1 + o(1))n/2, A2 = O(nl/2), n-+oo. 

In [CGW89], it is shown that the conjunction of the following three prop-
erties is equivalent to a family of graphs G = G(n) being quasi-random, i.e., 
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equivalent to having dev G = 0 ( 1), n ~ 00 : 

(a) G has (1 + o(l))n2 /4 edges; 
(b) Al (G) = (1 + o(I))n/2; 
( c ) A2 (G) = 0 ( n) . 

The following theorem is a more quantitative form of this result, which allows 
it to be applied to individual graphs, rather than just having it apply asymptot-
ically to a family of graphs. 

Theorem 9.1. For any graph G = G(n) = (V, J.tG); 

(i) I Ex,y J.tG(x, y)1 :::; n2(devG)I/4; 
(ii) IAI(G) - ~I::; ~(devG)I/4; 

(iii) IA2(G)I::; n(devG// 16 . 

Proof. Let e denote the number of edges of G, let e := n2/2 - e, and let 
A = A(G) denote the adjacency matrix of G. 

First observe that (i) follows immediately from Fact 4.9 (applying it twice), 
since 

(9.1) I "" 4e devo G = 2' L- J.tG(x , y) = 1 - 2' . 
n x,y n 

The proof of (ii) is slightly more complex. To begin with we have (by Rayleigh-
Ritz) 

(9.2) A = su (v, Av) > (I, AI) = 2e 
I l (v, v) - n n 

where I denotes the vector of aliI's. Therefore, 

(9.3) n n 2e --A <---2 1-2 n 

Define the matrix M = (m(x, Y))X,YEV = J - 2A, where J denotes the n x n 
matrix of all l's; thus, m(x, y) = J.tG(x , y). Also, set 

d(x) := I{y E VIJ.tG(x, y) = -1}1, cl(x) := n - d(x), 
s(x, y) := I{z E VIJ.tG(x, z) = I1dy, z)}l, s(x, y) := n - s(x, y). 

Since 

21e - el = 1 L m(x, y)1 :::;1 L(d(x) - cl(x)) 1 ::; L Id(x) - cl(x)l, 
X,Y x x 
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n4 dey G = ~)s(x, y) - s(x, y))2 
x,Y 

~ -; (L: Is(x, y) - s(x, Y)I)2 
n x,y 

~ -; (L:(S(X , y) _ s(x , y))) 2 
n x,y 

~ :2 (~(d(X) _ d(x))2) 2 

~ :2 (~( L: Id(x) _ d(X)I) 2) 2 
x 

16 4 
~ 4(e -e) . 

n 
Since M = J - 2A and the Ai are real, then 

4 4 4 16AI ::::; 16 Tr(A ) = Tr(J - M) 

177 

where Tr denotes the trace function. By the additivity of Tr, we can upper 
bound Tr( J - M) 4 by bounding the various terms we obtain by expanding 
(J - M)4 . To do this, we note the following inequalities: 

4 4 Tr(J ) = n , 
3 2 2 3 4 1/4 Tr(J M) = Tr(J MJ) = Tr(JMJ ) = Tr(MJ )::::; n (devG) , 
2 2 2 2 2 '"' 4 1/2 Tr(M J ) = Tr(J M ) = Tr(JM J)::::;nL....(s(x,y)-s(x,y))::::;n (devG) , 

x,y 

Tr(MJMJ) = Tr(JMJM)::::; (L:(d(X) _ d(x)) 2 ::::; n4(devG)I/2, 
x 

2 '"' - 2 4 1/2 Tr(M J M) ::::; n L....(d(x) - d(x)) ::::; n (dev G) , 
x 

Tr(J M 3) ::::; L:(d(x) - d(x))(s(x, y) - s(x, y)) 
x,y 

::::; ( (n L:(d(z) _ d(z)) 2 ( L:(s(x, y) _ s(x, y))2) ) 1/2 
z x,y 

J 

::::; (n4(dev G)I/2. n4(dev G))1/2 ::::; n4(dev G)3/4, / 
2 2 '"' -Tr(M J M ) = Tr(M J M) ::::; L....(d(x) - d(x))(s(x, y) - s(x, y)) 

x,y 
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Tr(M3 J) :::; n4(dev G)3/4, 
4 4 Tr(M ) = n devG. 

Therefore, 
4 4 4 1/4 4 1/2 Tr(J - M) :::; n + 4n (devG) + 6n (devG) 

4 3/4 4 + 4n (dev G) + n devG 
4 1/4 4 = n (1 + (dev G) ), 

which implies 
4 (n)4 1/4 4 AI:::; "2 (1 + (dev G) ), 

i.e., 

( 9 .5) A I :::; (~) (1 + (dev G) 1/4) . 

Thus, by (9.3), (9.4), and (9.5) we have 

(9.6) I n I n 1/4 Al -"2 :::; "2 (devG) 

as required for (ii). 
Finally, to prove (iii) we have 

A~ :::; Tr(A4) - A~ 
1 4 4 < - Tr(J - M) - A - 16 I 

1 4 1/4 4 (n 1/4 ) 4 :::; 16 n (1 + (dev G) ) - "2 (1 - (dev G) ) 

:::; (~f· 8(devG)I/4(1 + (devG)I/2) 

:::; n4(dev G)I/4 , 

i.e., 
IA21 :::; n(devG)I/16. 

This completes the proof of Theorem 9.1. D 

In turns out that the D-product described in §3 can be used to form arbitrarily 
large quasi-random graphs that are essentially optimal from the point of view 
of having A2 small. Here is an outline of the relevant facts. Let G = G( n) be a 
graph with dey G < 1 (i.e., G is not a complete bipartite graph). Let A( G) be 
the adjacency matrix of G, and let M = M(G) = J - 2A(G) , where J is the 
n x n matrix of all 1 'so Thus, M is symmetric with 1 's on the diagonal. Let Wi ' 
1 :::; i :::; m, denote the eigenvalues of M, ordered so that IWII ~ IW21 ~ ... ~ 
IWn 1 . Then GDt := 0:=1 G has M( GDt ) := M(t) = ®:=I M (the ordinary tensor 
product). Since devG < 1 then dev(GDt ) = (devG)t = 0(1) as t ---> 00. Thus, 
M(t) has as an eigenvector 1+ e where I is the all 1 's vector of length N = nt , 
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and each component of 8 is o( 1). This implies that the largest eigenvalue of 
A(t) := A(GDt ) is (1 +o(I))N/2 while ).~) , the second largest eigenvalue of A(t) 
(in absolute value) is at most (! + o(I))lw l lt = (! + o(I))Nioglwllflogn . Now, it 
is well known (see [FK81]) that if a graph H on N vertices has all but o(N) 
vertices with degrees (1 + 0 ( 1 )) N /2, N -+ 00, then ).2 (H) , its second largest 
eigenvalue, must satisfy ).2(H) > cNI/2 for some c > O. Could our product 
graphs GDt meet this bound? They could, but only if log IWIII log n = 1/2, 
i.e., IWII = Vii, for the starting matrix M. However, since 

n 
trace(MT M) = n2 = L w7 ' 

i=1 

then the only way IWII can equal Vii is for all Wi = ±Vii (as observed by L. 
Lovasz [L89]). This implies that if we set U to be the (unitary) matrix formed 
by the eigenvectors ei , then 

(UTMT)(MU) = U-IMTMU = nI, 

i.e., MT M = nI, which just means that M is a Hadamard matrix. Since 
Tr(M) = n = l:~1 Wi and each Wi = ±Vii, then n must be a perfect square. 
The smallest nontrivial example of this is given by the matrix 

M, ~ [1 1 ~1 ~11 
-1 1 -1 
-1 -1 1 

with corresponding 4-vertex graph 

Of course, there are other ways to generate symmetric Hadamard matrices (with 
diagonal 1) besides taking tensor products (see [Wa88]). However, it is interest-
ing that the simple D-product can produce graphs with such good ).2 behavior. 

Of course in principle all ofthe asymptotic results in [CGW89] and [CG90(a)] 
have explicit versions (i.e., not involving 0(1)). We give Theorem 9.1 as an ex-
ample of just how such a translation can be made in this case. The reverse 
direction, bounding dev G in terms of the maxima of the three quantities 
Ie - n2/41, 1)..1 - n/21 and 1).21, we leave as an interesting exercise for the 
reader. We mention one more such translation since it involves one of the 
most innocuous sounding conditions for quasi-randomness. Here, C4 denotes 
a 4-cycle, i.e., the graph with vertices {a, b, c, d} and edges {a, b}, {b, c} , 
{ c, d} , and {d, a} . 
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Theorem 9.2. Let {G(n)} be a/amily o/graphs where G(n) has n vertices and 
e(G(n)) edges. Then 

devG(n) = 0(1) 

if and only if 
e(G(n)) 2: (1 +0(1))n2 /4 and #{C4 C G(n)} ::; (1 +0(1))n2/16, n-+oo. 

An explicit form of this result (which can be proved along the lines given in 
the proof of Theorem 9.1) is 
Theorem 9.3. Let G be any graph with n vertices and e( G) edges. Then, 

(i) e(G) 2: (n2/4)(1 - (devG)I/4); 
(ii) #{C4 c G} ::; (n4/16)(1 + (devG)I/4)4. Also, 

(iii) e(G) 2: (t - 0:)n2 and #{C4 C G} ::; (t + 0:)2n4 implies devG ::; 
80:(33 - 260:). 

It would be interesting to know what the sharpest results of this form are. (A 
recent paper of Spencer and Tetali [ST(a)] also deals with quantitative aspects 
of quasi-randomness for graphs.) 

A curious singularity occurs for graphs in connection with Facts 4.7 and 4.8. 
It follows from these results that for any 0 < 0: < 1, devG(n) = 0(1) if and 
only if for all X c V with IXI = (1 + o(l))o:n, G[X] has (1 + 0(1))0:2n2/4 
edges. In particular, this implies that e(X, X) , defined to be the number of 
edges in G that hit both X and X, satisfies 
(9.7) e(X, X) = (1 + 0(1))0:(1 - 0:)n2/2. 

A natural question is whether the converse holds, that is, if (9.7) holds for 
all X c V with IXI = (1 + o(I))o:n then devG(n) = 0(1) (i.e., {G(n)} is 
quasi-random). 

Any such hopes, however, are shattered by the following obstruction. Let H 
be a graph with vertex set Au B , with A and B disjoint and IAI = IBI = n/2. 
The edge set of H will consist of the pairs (1) together with a random bipartite 
graph between A and B (i.e., each edge {a, b} is chosen independently with 
probability 1/2). Then it is not hard to see that for almost all H, every set 
X c A uB of size n/2 spans n2 /8 + O(n) edges. However, a simple calculation 
shows that dev H = ! + 0(1). 

What is surprising, however, is that 1/2 is the only value of 0: for which the 
converse fails to hold. We outline a proof of this fact. 
Theorem 9.4. Let 0 < 0: < 1/2 and suppose G = G(n) = (V, f..l) satisfies (9.7) 
for all X c V with IXI = (1 + o( 1) )o:n. Then dev G = o( 1), n -+ 00 . 

Proof. To begin with, we define for integers rand t with 3 ::; r < t/2 the 
matrix M = M, I = (M(l, e)), where I ranges over all ([;1), the set of r-
element subsets ~f [t] := {I , 2, ... , t}, e ranges over ([il) , and 

{ I if Ie n II = 1 , 
M(l, e) = . o otherwIse. 
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We can think of forming a complete graph K t on [t], and, for each complete 
bipartite graph K(I, 1) (on vertex sets I and 1:= [t]V) and each edge e, let-
ting M(I, e) indicate which e are edges of K(I, 1). A related, but somewhat 
more complicated, matrix M* = (M*(e, I)) is given by 

M*(e, l) = (r - 1)(t - r - l)(t - 2r) if Ie n II = 1, { 
-(r-1)(r(t-2r)+2(r-1)) iflenII =0, 

-(t-r-l)((t-r)(t-2r)-2(t-r-l)) iflenII =2, 

where, as in M, I E ([~l) and e E ([~l) . In particular, M is (~) x m and M* 
is m x G)· 

The two matrices M and M* are related by 
* (t - 2)! 

(9.8) M M = 2(t - 2r) (r _ 2)!(t _ r _ 2)!Im 

where 1m is the identity matrix of size m. Equation (9.8) follows by direct 

computation using the definitions of M and M*. Thus, M* is a (scalar 
multiple of a) left inverse of M, and it follows in particular that M has full 
rank, i.e., rank equal to m. We remark that for t = 2r, the matrix Mr t = 
M r,2r only has rank er;-l). This turns out to be the underlying reason fo; the 
special behavior of the value 0: = 1/2. 

Now, consider the property Q(O:)(e) for e > 0, 0: < 1/2, defined by: 

(9.9) Q(O:)(e): If X c V with IX - o:nl < en then le(X, X) -
10:(1 - 0:)n 21 < en2 for n > no(e). 

We want to apply Q(O:)(o:) to G = G(n) in the following way. Let t be large 
(but fixed) and assume for ease of exposition that n = tm for some integer m. 
Partition the vertex set V of G into disjoint sets C1 , C2 ' ••• , Ct ' each of size 
m , and define 

ls,i<js,t, 

where e(Ci , Cj ) denotes the number of edges of G between Ci and Cj • We 
can associate with this construction a weighted complete graph K t on [t], with 
the edge e = {i, j} of K t receiving the weight p(e) = Pi}' 

We now fix r with 3 S, r < t /2 so that p := r / t is close to 0: (we will be 
more precise later). We first apply Q(P)(e) to G. This then implies that for 
each I C ([~l) , if we form X = UiE1 C i then the number e(X, X) = c(I) of 
crossing edges, which is just 

satisfies 

(9.10) 

c(I) = L e(Ci , C) = m2 L Pi}' 
iEI 
JEI 

2M - -m P =c, 

iEI 
JEI 
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where p = [p(e)]eE([~I) and c = [C(I)]IE([~I) are column vectors. By Q({J)(e) , 
we know 

(9.11) c(l) = (1P(1- P) + e(l))n 2 , 

where le(1) I < e, I E ([~l) . 
Now, we invert (9.10) by left-multiplying by M* to get 

(9.12) 2 * _ (t-2)! _ *_ 
m M M P = 2(t - 2r) (r _ 2)!(t _ r _ 2)! P = M c. 

However, direct computation shows that 

(9.13) M*I = 2(t - 2r)(t - 2)! I 
r(t - r)(r - 2)!(t - r - 2)! 

where I denotes a column vector of alII's. Thus, we obtain from (9.11), (9.12), 
and (9.13) 

(9.14) I 2 2 Ip(e) - zP(1 - p)n I < en 

for each e E ([~l) and n > no(e). This means that all the "edge densities" Pi) 
between the various clusters Ci and Cj in G are very close to what is expected. 
Of course, to apply Q(a) rather than d{J) , we choose a sufficiently close rational 
approximation P = rlt to 0:. It then finally follows that any nl2 points of 
G span ko:(1 - 0:)n2 + 0(n2) edges, which in turn implies quasi-randomness, 
i.e., dev G = o( 1). This argument works for 0: 1:- 112 and fails for 0: = 1/2 
precisely because the matrix M r , t has full rank m for 2 ::; r ::; t - 2, r 1:- t 12, 
but only has rank (;:1) when r = tl2 (which corresponds to 0: = 1/2). 0 

A fuller discussion (and a completely different proof) of this result is given 
in [CG(a)]. We do not know at present what the corresponding results are for 
k > 2. The first case would be: Suppose G = G(n) = (V, /1) is a 3-graph so 
that for any partition V = A U B U C with IAI = IBI = ICI = n13, the number 
e(A, B, C) of edges of G of the form {a, b, c} and a E A, b E B, c E C 
satisfies 

e(A, B, C) = (1 +0(1))n3/54. 

Does this imply dev( G) = 0(1) as n ~ 00 ? 
We conclude this section by pointing out that as soon as a family of graphs 

G( n) fails to satisfy one of the quasi-random properties, then in fact all quasi-
random properties must fail for G(n). Relatively little is known quantitatively 
about this phenomenon. In [CG90(b)], the following is proved. 

Theorem 9.5. Let H(t) be an arbitrary fixed graph on t vertices, and suppose 
that #{H(t) < G(n)} = 0 for a family of graphs G(n), n ~ 00. Then there 
exists S c V(G(n)) with lSI = Lnl2J such that le(G[S])-n 2 /161 > r(2t2+27)n2 
for n 2: no(t) . 
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It is not whether a substantially sharper bound applies (e.g., of the form 
Tot n2 ), and just how the "truth" depends on the structure of the excluded 
graph H(t). 

10. TOURNAMENTS 

In this section we show how some of the preceding ideas can be applied to 
the most commonly occurring directed graphs, namely, tournaments (e.g., see 
[M68]). We will not include all of the details (which can be found in [CG(c)] but 
rather discuss the basic results and show how they connect to ordinary graphs. 

A tournament T = (N, f.lT) consists of a set N = N(T) , called the nodes 
of T, together with an (antisymmetric) function f.lT: N 2 -+ {I , -I}. Thus, 
for x =f. y in N, f.lT(X, y) = -f.lT(Y' x). By convention, f.lT(X, x) = 1 for 
all x E N. The pairs (x,y) E f.l~'(-I):= A(T) are called the arcs of T. 
As usual, T(n) will denote a tournament on n nodes. Define nd-(v) for a 
node v of T to be {u E NIf.lT(U, v) = -I}; similarly, define nd+(v) := {u E 

NIf.lT(V, u) = -I}. Theindegree d-(v) andoutdegree d+(v) of v are defined 
by 

d-(v):= Ind-(v)l, 

For v EN, X eN, we let 

d-(v, X):= Ind-(v)nXI, 

Also, for X, X' eN, define 

d-(X, X') := L d-(v, X'), 
vEX 

d+ I '"" + I (X,X):=L...Jd (v,X). 
vEX 

An ordering of T = T(n) is a I-to-l mapping n: N -+ [n] = {I, 2, ... , n}. 
An arc (u, v) is said to be n-increasing if n(u) < n(v); otherwise we say that 
(u, v) is n-decreasing. The undirected graph T: on N is formed by creating 
for each n-increasing arc (u, v) of T under the ordering n an (undirected) 
edge {u, v} of T: . 

For two nodes u, v EN, the sameness set S(u, v) is defined by 

S(u, v) := {z E NIf.lT(U, z) = f.lT(V, z)}, 

and we let s(u, v) := IS(u, v)l. 
If T' = (N' , A') is a given tournament (or more generally, a directed graph), 

we let #{ T' < T} denote the number of labelled occurrences of T' as an 
induced subtournament (or sub-digraph) of T. In other words, 

#{T' < T} := I{A: N ' -+ NIT[A(N' )] ~ T'}I 

where ~ denotes the obvious tournament isomorphism. Finally, we define 
a structure analogous to EPO's in the case of graphs. We call a sequence 
(vo' v, ' v2 ' v 3) an even 4-cycle (E4C) if 

f.lT(VO' V,)f.lT(V" V2 )f.lT(V2 , V3)f.lT(V3 , vo) = 1. 
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We let #{E4C C T} denote the number of (labelled) E4C's in T. 
As in the case of graphs, we can define the deviation of T = T(n) by 

1 
(10.1) dey T:= 4' L f.1.T(VO' V1)f.1.T(V1 , V2)f.1.T(V2 , V3)f.1.T(v3 , vo)· 

n VO,V1 'V2'V3 

We next state a collection of properties of a family of tournaments that are 
shared by almost all random tournaments T1/2(n), n -+ 00. The essential 
content of our next theorem asserts the equivalence of all of these properties. 

We only state them in their (weaker) asymptotic forms although we will in-
dicate how they can be converted to "absolute" forms (i.e., with no occurrences 
of 0(1». 

Theorem 10.1. For any family of tournaments T = T(n), the following state-
ments are equivalent as n -+ 00 : 

(i) dey T = 0(1); 
(ii) For any fixed x, each tournament T' (s) on s nodes satisfies 

#{T'(s) < T} = (1 + o(l))nSr m; 
(iii) Each tournament T' (4) on 4 nodes satisfies 

#{T'(4) < T} = (1 + 0(1»)n 4 j64; 

(iv) #{E4C c T} = (1 + 0(1))n4 j2; 
(v) 2:u ,vEN Is(u, v) - nj21 = 0(n3); 

(vi) 2:u ,vENII{w E NIf.1.T(U, w) = 1 = f.1.T(V, w)}l- nj41 = 0(n3); 
(vii) For all X eN, T' = T[X] satisfies 

L Id;,(v) - d~,(v)1 = 0(n2); 
vEX 

In this case we say that T is almost balanced; 
(viii) Every subtournament T' of T on lnj2J nodes is almost balanced; 
(ix) For every partition of N = Xu Y with IXI = lnj2J, IYI = rnj21, we 

have 

vEX 
(x) For all X, Y s:;; N, ,,+ d- 2 L.,..ld (v, Y) - (v, Y)I = o(n ); 

vEX 

(xi) For every ordering 7C of T, 

I{u, v E NI(u, v) is 7C -increasing} I = (1 + 0(1)n2 j2; 

(xii) For every ordering 7C of T, dey T: = 0(1); 
(xiii) For some ordering 7C of T, dey T: = 0(1). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUASI-RANDOM SET SYSTEMS 185 

The last two properties relate quasi-randomness of tournaments to quasi-
randomness of graphs. However, there are several differences that should be 
noted. 

On one hand, whereas dev G = 1 whenever G is a complete bipartite graph, 
dev T is always bounded strictly below 1. The exact value of p := SUPT dev T is 
not known, although it can be shown that t ::; p ::; g . (In § 11, we characterize 
all k-graphs H with dev H = 1 .) 

Further, it should be pointed out that the analogue to Theorem 9.4 does not 
hold for tournaments. To explain what we mean by this, consider the following 
set of properties for a family of tournaments T(n) with node set N: 

(a) For the "cyclic" tournament C3 with node set {1, 2, 3} and arcs (1,2), 
(2, 3), (3, 1), 

#{C3 < T(n)} ~ (1 + o(1))n3 /8; 
(b) T(n) is almost balanced, i.e., 

I: Id;(n)(v) - d~(n)(v)1 = o(n2); 
vEN 

(c) For every partition of N = X U Y , 

d+(X, Y) - d-(X, Y) = o(n2); 

(d) For every partition of N = Xu Y with IXI = Ln/2J, IYI = rn/21 , 
d+(X, Y) - d-(X, Y) = o(n2). 

In [CG(c)] it is shown that these four properties are equivalent. They are 
also strictly weaker than having dev T = o( 1) as the following example shows. 

Example. Let T* = T*(n) have node set Xu Y U Z with IXI = IYI = IZI = 
n/3. Each of the subtournaments T*[X] , T*[Y] , T*[Z] will be random. The 
remaining arcs of T* are all the pairs X x Y, Y x Z , Z x X. It is easily 
checked that (almost always) T* satisfies (a) (and therefore (b), (c), and (d)) 
but not any of the conditions in Theorem 10.1, since dev T* - 2/9 as n - 00. 

In particular, if we arbitrarily fix 0: E (0, 1) then for any X c N with IXI = 
(1+o(1))o:n,weseeby(c) that in T* there are (1+o(1))0:(1-0:)n2/2 arcs from 
X to Y. Thus, if we choose an ordering n of T* so that all (x, y), X EX, 
Y E Yare n-increasing, then in the graph T: ' there are (1 +o(1))0:(1-0:)n2 /2 
edges between X and Y. 

As remarked earlier, all the tournament properties we have described can be 
formulated in absolute, as opposed to asymptotic, terms. For example, it can 
be shown (see [CG(c)] that: 

(v') EU,VEN Is(u, v) - n/21 ::; n3(dev T)I/2; 

(vii') For all Xc N, T' = T[X] satisfies 

I: Id;,(v) - d~,(V)1 ::; n2(dev T//4 ; 
vEX 
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(xi') For any ordering 77: of T, 

I/{(U, v) is 77:-increasing}/-/{(u, v) is 77:-decreasing}/1 ~ 5v'sn2(devT)1/8; 

(xii') For every ordering 77: of T, if G = T; , the increasing arc graph of T 
under 77:, then 

1O-75(devT)24 ~ devG ~ 40V300v's(devT)1/16. 

Of course, these bounds are rather crude and are only intended to illustrate 
the principle. It would be interesting to obtain sharp bounds for these various 
expressions (particularly (xii')). 

Properties (xii) and (xiii), linking graphs and tournaments, give us a potent 
new way for constructing large classes of graphs with small deviation from a 
single one with this property. Namely, suppose we start with a graph G = 
(V, /1G) where we assume V = [n] = {I, 2, ... , n}. We can associate to G a 
tournament T = TG = (V, /1T) by taking 

/1T(i, j) = sign(J - i)/1G({ i , j}) , i -::f. j . 

Thus, if id: [n] -+ [n] denotes the identity map then G is just 1i~. Now, let 
77: be an arbitrary ordering of T, and let Gn := T; . Applying (xii'), we obtain 

1/384 (10.2) dey Gn < 2000(dev G) . 
Thus, if devG = 0(1) then devGn = 0(1) as n -+ 00. Of course, to go from 
G to Gn directly (avoiding intermediate tournaments), we simply permute the 
(ordered) vertex set with 77:, and interchange edges with nonedges for all pairs 
inverted by 77:. To the best of our knowledge, this transformation on graphs has 
not been treated before in the literature, so its properties are yet to be explored. 

The preceding analysis can be carried out for ordered k-graph analogues 
of tournaments T* = (V, /1*). Here, /1*: V lf -+ {I, -I} so that for any 
permutation 77:: V -+ V , 

* signn * /1 (77:(x 1 ,···,xk))=(-I) /1 (x1 ,···,Xk), 

where V lf denotes {(Xl' .•• , X k ) E V k : Xi are distinct}. We hope to return to 
this in a future paper. 

11. k-GRAPHS WITH DEVIATION 1 

In this section we characterize those k-graphs H = H(k) = (V, /1H) that 
have dey H = 1 . These are important since it is precisely the k-graphs G with 
dey G < 1 for which GOt becomes quasi-random as t -+ 00 . 

To begin our discussion we need to introduce the coboundary operators 6(i) , 

i 2: 0, mapping k-graphs H = (V,/1H) to (k+i)-graphs 6(i)(H) = (V,/1a U)(H))' 
defined by taking, for X E (k~J ' 
(11.1) /1a il ) (H) (X) = IT /1H(Y)· 

YE(D 
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Thus, X is an edge of 6(i)(H) if and only if X contains an odd number of 
edges of H as subsets. In particular, 6(0) (H) is just H itself. (A more general 
version of this definition occurs in Hu [H49]). We next establish several basic 
properties of 6(i) . For integers a, b 2: 0 , let us say that a and b are disjoint 
base 2, if the base 2 expansions of a and b have no common 1 'so That is, 
if a = 2:;>0 a/, b = 2: i >o bi2i , ai' bi E {O, I}, then a and b are disjoint 
base 2 if and only if aibi .;;; 0 for all i. 

Also, we let H0(k) = (V, fl0) denote the trivial k-graph on V, i.e., with 

fl0(X) = 1 for all X E (~) . 

Fact 11.1. For a, b 2: 0, 

(11.2) 6(a)(6(b)(H)) = { 6(a+b)(H) 
H0 

if a and b are disjoint base 2, 
otherwise. 

Proof. For X E (k+~+b) , 

fl,J(a)(,J(b)(H))(X) = II fl,J(b)(H)(Y) 

YE (k!b) 

II II flH(Z) = II II flH(Z) 
YE (k!b) ZE (D ZE (f) fYT2'kS-i 

II (a+b) {fl,J(a+b)(H)(Z) if (a!b) is odd, 
= flH(Z) a = 1 'f (a+b) . 

(X) 1 a IS even. ZE k 

However, (a;b) is odd if and only if a and b are disjoint base 2 (e.g., see 
[GKP89]) and the proof is complete. 0 

As an immediate consequence we have 6(i) ·6(i) = 0, the trivial map (sending 
H(k) to H~k+2i)) for every i> O. 

Fact 11.2. For k-graphs H and H' on V, 

(11.3) 6(i) (H'V H') = 6(i) (H)'V6(i\H' ) . 

Proof· For X E (k~J ' 

fl,J(i)(H'VH')(X) = II flH'VH'(Y) = II flH(Y)flH'(Y) 
YE(~) YE(~) 

= II flH(Y) II flH'(Y) = fl,J(i) (H) (X)fl,J(i)(H') (X) . 
YE(~) YE(~) 

Thus, 
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We will use the convention that for any set V, there are just two distinct 
O-graphs H(O) = (V, Jl). One is H~O) for which Jl == 1; the other is the 
"complement" H~) for which Jl == -1 . 

The main result of this section is the following. 

Theorem 11.1. For a k-graph H(k) = (V, Jl), 

( 11.4) dev H(k) = 1 

if and only if 

( 11.5) 

for some choice of (k - i)-graphs H(k-i) = (1( .• Jlk-i) , 1 ~ i ~ k. 

Proof. ~: Assume G = d m) and fix i ~ 1 . By Definition (IT), 

(11.6) dev c5(i) (G) = !m 2: II PJ(i)(G) ('IJ(e)) . 
n I) C 

We must show that each of the summands is 1. We use the notation U E (!) 
for oX E V m+i to indicate that U is a subsequence of oX of length m. Then 

II pJ(i)(G) (1J (e)) = II II PG(U) 
t t UE (I)::)) 

2i = II PG(U) = 1 
UE (I)::)) 

since for each U E (v::)) , there are i unselected coordinates, each of which has 
2 (ordered) choices. The proof of (11.4) now follows by repeated application 
of (4.14). 

=>: Suppose H(k) = H(k)(n) = (V, Jl) has edge set E = E(H(k)) and 
satisfies dev H(k) = 1. We proceed by induction on k and then on n. For 
k = 1 the assertion is immediate since in this case we must have either E = V 
or E = 0. The first case is just H(I) = c5(I)(H~)); the second is just H(I) = 
c5(I)(H~O)). Assume for some k > 1 that the assertion holds for all values less 
than k. Now, if n = k the only possibility is that H(k) has no edges, i.e., 
Jl == 1. In this case, H(k) = c5(I)(H~k-l)) where H~k-l) is a (k -I)-graph on V 
having no edges. So, assume the implication holds for all values less than some 
n > k. We will show that it also holds for n. 

Select an arbitrary fixed vertex x E V and form d k) = H(k).'1c5(I) (H(k) (x)) , 
where H(k)(x) is the neighborhood graph of H(k) at x. It is easy to check 
that x is isolated in d k), i.e., no edge of d k) contains x. Furthermore, by 
(4.14) 
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since dev H(k) = 1 (by hypothesis) and dev6(1)(H(k)(x)) = 1 by the first part 
of Theorem 11.1. 

Now, define V- := V\{x} and G- := dk)[V-]. Thus, X c (~) is an 
edge of G if and only if X is an edge of G-. Consequently, dev G- = 1 . 
However, G- is a k-graph on n - 1 vertices so by induction we have 

G- - k ~(i)G(k-i) 
- 'Vi=l u 

for some choice of (k - i)-graphs d k - i ) on V-, 1:::; i :::; k. To complete the 
proof, define (k - i)-graphs H(k-i) and (k - i-I)-graphs G~k-i-l) on V by 
taking 

E(H(k-i)) = E( d k- i)) , 

E(G~-i-I)) = {X u {x}IX E d k- i)} 

for 1 :::; i:::; k. The last (straightforward) computation to check is that 

H(k) = 'V~=I ((6(i) (H(k-i))'i16(i-I) (G~-i-I))) 

which then by Fact 11.2 yields the desired representation. 0 

We have normally assumed for k-graphs H = (V, J.l) that J.l = I if two 
arguments are equal. In the case of graphs, this is just the assumption that 
H has no loops. With this requirement we can assume that the final factor in 
(11.5) is trivial, i.e., 6(k)(H~O)). This k-graph is just H~k) (having no edges) 
and consequently does not affect the product. Thus, for graphs G we have: 

dev G = 1 ¢:} G is a complete bipartite graph Kr. s . 

Note that if either r or s is 0, then G just consists of isolated points. 
We remark that this section contains the seeds from which various cohomo-

logical aspects of k-graphs can be developed. We have begun this in [CG(b)]. 

12. SOME EXPLICIT CONSTRUCTIONS 

In this section we give a few of the simplest constructions for k-graphs hav-
ing small deviation or I-deviation. By the earlier results, these k-graphs conse-
quently behave like random k-graphs in many respects, and can often be used 
in place of random k-graphs. Unlike random k-graphs, however, their precise 
structure is determined, and can be employed in other ways. A typical example 
of this phenomenon is the case of so-called "expander" graphs in communi-
cation networks. Random graphs have excellent expanding properties but are 
difficult to use when precise algorithms for routing (for example) are required. 
To begin with, suppose Hi' I :::; i :::; m, is a family of k-graphs. By (4.8) we 
have for H* := 07:1 Hi ' 

m 
dev H* = II dev Hi . 

i=1 
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Thus, if each dev Hi is bounded away from 1, then dev H* = 0 (1) as m -+ 00 . 

In particular, if we take all Hi equal to a fixed k-graph H with dev H = c < 1 
then 

Om m devH = c , 
from which many quantitative quasi-random properties easily follow. 

A more arithmetic family of k-graphs with small deviation is given by the fol-
lowing construction. Let p denote a fixed (arbitrary) prime. Form the "Paley" 
k-graph p;k) = (~ , J.lp) as follows: 

~ := GF(p) , the finite field with p elements. 
For X E ({), J.lp(X):= ¢(2:xExx(modp)) where ¢: GF(p)-+ 
{I , -I} denotes the non principal quadratic character on G F (p) . 

Thus, {VI"'" vk} is an edge of p(k)(p) iff VI + ... + vk is a quadratic 
nonresidue in G F (p) . 

Fact 12.1. 

(12.1) devp;k)=O(p-I), p-+oo. 

Proof, We will use the following well-known estimate of Burgess [B62] (also see 
Weil [We48]). For distinct al' ... , as E GF(p) , 

(12.2) I 2: ¢(x+al) .. ·¢(x+as)1 ~ (s-1)/P. 
XEGF(p) 

Note that (12.1) holds for nondistinct ai as well, provided the product is not 
identically one. Then 

/k dev p;k) = 2: II )lp(XI (8 1), ... , Xk(8k)) 
x;(O) ,x;(l) eE{O, I} 
l~i9 I~j~k 

2: II ¢(XI (81) + ... +Xk(8k)) 
xj(O) ,xj (1) ejE{O, I} 
I~i~k I~j~k 

= 2: (2: II ¢(X+X2(82)+"'+Xk(8k))r 
xj(O), x j(1) x eJ 
2~i~k 2~j~k 

< 2:' (2k- 1 /p)2 + 2:" / by (12.2) 
xj(O), Xj(l) x;(O), x j(1) 
2~i~k 2~i~k 

where 2:' denotes the sum over all choices of the X i (8 i ) for which some value 
V E GF(p) occurs as a sum X2(82) + ... + Xk(8k) in an odd number of ways 
(and 2:" represents the complementary set). Consequently, 

/k dev p;k) = O(/k-I), p -+ 00. 

This implies (12.1) and Fact 12.1 is proved. 0 
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We point out that essentially the same arguments (from [C90]; see also 
[GS71]) show that for 1 ~ I < k, the k-graph G/ = l5(k-/)(p~/)) satisfies 

( -(7) dev/ G/ = 0(1), dev/+I G/ ~ 1 + 0(1))2 , P -t 00. 

It would be interesting to know if in fact we could have 

dev/ G; = 0(1), dev/+I G; = 1 + 0(1), n -t 00 

for a suitable family of k-graphs G; on n vertices. 
We will describe one more class of quasi-random families of k-graphs, the 

so-called "even intersection" k-graphs [(k)(n). The vertex set of [(k)(n) is 
2[n] , the collection of all subsets of {I, 2, ... , n}. A k-set {XI"'" X k }, 

Xi E in], is an edge of [(k)(n) if and only if 

k 

I OXil == 0 (mod2). 

Let Ii denote the (multiplicative) edge function for [(k)(n). 

Fact 12.2. 
dev [(k)(n) = 0(1), n-too. 

Proof. Define N:= 2n • Since 

dev [(k)(n) = ;2k I: II .a(XI (e l ), ... , Xk(ek)) 
Xj(O) ,xj(l) BjE{O, I} 

l:5i:5k I:5J:5k 

= N~k I: (I: II .a(X, X2(e2) , ... , Xk(ek)) r 
Xj(O),Xj(l) x B} 

2:5i9 2:5i9 

then it suffices to show that the number of Xc [n] for which the sum 

s:= I: IX n X2(e2 ) n··· n Xk(ek)1 

is even is (1+0(1))N/2 for almost all choices of Xi(O) , Xj(l) c [n], 2 ~ i ~ k. 
We will show that this is in fact the case whenever all the Xj(O) and X j( 1) 

are distinct. First note that the parity of S is unchanged if we make the re-
placements: 

Xj(O) -t X;(O) := Xj(O)\X;(1) , 

X j(1) -t X;(l) := X j(1)\Xj(O) 

since each element x E Xj(O) n X j(l) affects an even number of terms of S. 
By construction, X;(O) and X;(l) are disjoint. 
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Thus, we have reduced our problem to counting the number of Xc [n] for 
which the sum 

is even. Let 

(12.3) s(e2, ... ,13k) := s(e) := IX~(e2) n··· n X~(ek)l. 
Since all 2k- 1 expressions on the right-hand side of (12.3) are disjoint, then 
the number of X such that S is even is just 

(12.4 ) L:' II (~(~))2n-s 
i(e) II 1(13) 

where the sum E' is taken over all i(e) such that Ell i(e) == 0 (mod 2) , 
and e := (132, ... ,13k), s := ElIs(e). The interpretation of (12.4) is simply 
that S' counts the number of ways of choosing X which has i(e) elements 
X~(e2) n ... n X~(ek)' Of course, S' is not affected if X is changed by any 
subset of [n]\ Ui ,j X; (e j ) ; this accounts for the factor 2n- s in (12.4). 

However, observe that 

( 12.5) L:(_1)E,i(lI)II (~(~))2n-s = 0 
i(lI) II 1(13) 

since this is just the result of expanding the expression 

and substituting x = 1. Thus, the expression in (12.5) summed over i(e) with 
Ell i(e) even is just one-half of the total sum 

L: II (~(~))2n-s = 2n , 
i(lI) II 1(13) 

i.e., 2n- l , which is N12, as required. Since almost all choices of the Xi(e) 
result in distinct sets then Fact 12.2 is proved. 0 

We remark that the same techniques can be applied to a variety of other 
families of subsets formed by modular restrictions on intersections, e.g., such 
as the k-graph having vertex set ([2;1) and edges {XI' ... , Xk}, Xi E ([2nn1) , 
with IXI n .. · n Xkl == 0 (mod 2) . 

13. CONCLUDING REMARKS 

In a series of papers, Thomason [T87(a), T87(b), T89] and Haviland-
Thomson [H89, HT89, HT(a)] have investigated a concept called "(p, a)-
jumbledness," which is related to our work on quasi-randomness. Restricting 
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the discussion to the case p = 1/2 (which is our primary focus), a k-graph H 
with vertex set V, is said to be (!. a: )-jumbled provided 

(13.1 ) le(H[X]) - ~ ('~I) I ~ a:IXI 

for all X c V. Here, a: is ordinarily some function of n = I VI. It turns 
out that for k = 2, the condition that a: = o(n) is precisely a quasi-random 
property of graphs (and so, is equivalent to dev H = 0(1), n -+ (0). However, 
for k > 2 , this property is considerably weaker than being quasi-random. More 
precisely, it is equivalent to dev2 H = 0(1) (see §8 and [C90]), whereas quasi-
randomness of a k-graph is equivalent to dev k H = o( 1). We remark that 
almost all random 2-graphs G 1/2 on a vertex set V have been shown by Spencer 
[S89] to have the following property: For H = b'(I)(G1/ 2), the l-coboundary of 
G1/ 2 (see §1l), we have 

le(H[X]) - ~ ('~I) j ~ 200lXI 2 

for all X c V. However, dev H = 1, and, in particular H contains no 
induced 4-vertex subgraph with an odd number of edges. Thus, while (p, a:)-
jumbledness is an effective concept for studying random behavior in graphs, 
it appears to be too weak to carry out the analogous investigations for general 
k-graphs. 

In the same spirit as (13.1), it is not hard to prove the following bound for 
any k-graph H on an n-vertex set V: For any X c V with x := lXI, we 
have 

(13.2) k ((n)2k )2-k k Ix - 2k!e(H[XDI ~ x dev H x. 

No doubt, the exponent 2-k here can be improved, as can many of the other 
constants in our various estimates. We have no idea what the truth should be. 

lt would be most interesting to know other quasi-random properties of k-
graphs. In the case of graphs, Simonovits and Sos [SS91] have very recently 
proved the following result. We first need several definitions. Let G be a graph 
with vertex set V. For disjoint sets X, Y c V, let d(X, Y) := e(X, Y)/IXIIYI 
where e(X, Y) denotes the number of edges with endpoints in both X and 
Y. A pair (X, Y) is called e-regular if for every X' eX, y' c Y satisfying 
IX'I > elXI, IY'I > elYI, we have 

Id(X' , Y') - d(X, Y)I < e. 

A fundamental result of Szemeredi {Sz78] is his 

Regularity Lemma. For every e > 0 and m, there exists k( e, m) such that for 
every G(n), the vertex set V(n) of G(n) can be partitioned into k + 1 sets 
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Uo' UI , ... , Uk for some k with m < k < k(e, m) so that lUol < en, all IU;I 
are equal for i > 0, and for all except e (~) pairs (i, j), (Ui , Uj ) is e-regular. 

It asserts that in a certain sense, any graph can be approximated by a random 
k-partite graph. In [SS91] it is shown that the following property is a quasi-
random property. 

(Ps): For every e > 0 and m, there exist two integers k(e, m) and 
no(e, m) such that for n > no' G(n) has a "Szemeredi" partition for the 
parameters e and minto k almost equal classes UI , ••• , Uk' with m < k < 
k(e, m) so that (Ui , U) is e-regular, and Id(U;, Vj ) - !I < e holds for all 
except e (~) pairs (i, j), 1 ~ i, j ~ k . 

In fact, when a family {G(n)} is quasi-random then it is true [SS91] that Sze-
meredi partitions always exist having no exceptional pairs. The corresponding 
result for k-graphs is given in [C91]. 

As mentioned at the beginning, most of the preceding analysis can be carried 
out assuming that the random k-graph properties we are trying to classify arise 
from random k-graphs in which k-sets are selected with a fixed probability 
p E (0, 1), rather than probability 1/2. The corresponding statements and 
arguments are essentially the same although notationally slightly more cumber-
some. However, if we allow p = p(n) to depend on n, the size of the k-graph, 
then the situation becomes much more complex, especially as p(n) becomes 
small, e.g., p(n) = O(nl/2). We certainly do not yet have a full understanding 
of quasi-randomness in this range. 

Another direction that merits attention is what we called "forcing families" 
(for graphs) in [CGW89]. Let us call a family !T of k-graphs forcing if when-
ever #{F < G(n)} = (1 + o(l))nvTe for all F = F(v, e) E!T (i.e., F has v 
vertices and e edges) then {G(n)} is quasi-random. For example, in the case 
of graphs, it is shown in [CGW89] that the following families are forcing (where 
Km denotes the complete graph on m vertices, Cm denotes the cycle on m 
vertices and K"s denotes the complete bipartite graph on rand s vertices): 

(i) {K2' C4 }; 
(ii) {K2' C2t }, any fixed t; 

(iii) {C2r , C2s }, r::j:.s; 
(iv) {K2' K2,t}' t ~ 2 
(v) {K2,s,K2,t}, s,t~2, s::j:.t. 

Can forcing families of graphs be characterized? What is the situation for k-
graphs? 

More generally, one can attempt the same type of classification of random 
behavior for a wide variety of objects, for example, ordered k-graphs, integer 
sequences, matrices, partially ordered sets, permutations, groups, and vector 
spaces, to name a few, as well as for functions defined on these and other 
structures. Preliminary work on some of these topics has recently been initiated 
(e.g., see [CG(a), CG90(b), CG(c), SS(a), ST(a)]) but clearly a vast expanse of 
fertile ground still awaits exploration. 
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