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Abstract. All the homogeneous structures on the generalized Heisenberg group

H(p, 1) are found, obtaining a one-parameter family of quasi-Sasakian homo-

geneous structures on this group.

In [AS], Ambrose and Singer give a characterization of the homogeneous Rie-

mannian manifolds through a tensor field F of type (1,2) satisfying certain

conditions (see §1). Afterwards, F. Tricerri and L. Vanhecke [TV] obtain a clas-

sification for the homogeneous Riemannian spaces into eight different classes

by properties of the F 's. Moreover, they determine all the homogeneous struc-

tures on the 3-dimensional Heisenberg group and prove that such structures

belong to the class T2®T3. On the other hand, in [ChG] we have studied and

characterized the almost contact metric homogeneous manifolds (i.e. almost

contact metric manifolds with transitive almost contact isometry groups).

In this paper we find all the homogeneous structures on the (2p + 1)-

dimensional generalized Heisenberg group H(p , 1), endowed with its natural

left-invariant metric. This group is an example of a connected, simply con-

nected, two-step nilpotent, real Lie group of type H with one-dimensional

center, and so it is a Heisenberg group [K]. Also, we obtain the transitive and

effective groups of isometries on H(p , 1) associated with a family of such ho-

mogeneous structures, and we give a one-parameter family of almost contact

homogeneous structures (Tx ; q>,¿j, n).

In §1, we give some results on almost contact metric manifolds and homo-

geneous structures on Riemannian manifolds. Beginning with §2 we determine

all the homogeneous structures on H(p ,1). Next, we characterize the homo-

geneous structures on this group of type T2®T3> obtaining also a large class

of such structures. Moreover, the groups of isometries on H(p , 1) associated

with those examples are found. Finally, in §3, we give a new characterization
_
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174 J. C. GONZALEZ AND D. CHINEA

for the quasi-Sasakian manifolds, i.e. normal almost contact metric manifolds

with closed fundamental 2-form, in terms of its Riemannian connection, and

we obtain a one-parameter family of almost contact homogeneous structures

(Tx;<p ,¿; ,n) where Tx are of type T2®T3 and (<p,Ç,n) is quasi-Sasakian.

1. Preliminaries

A (2« + l)-dimensional real differentiable manifold M of class C°° is said

to have a (<p ,¿;, /^-structure or an almost contact structure if it admits a field

tp of endomorphisms of the tangent spaces, a vector field ¿;, and a 1-form r\

satisfying

n(£,) = 1 ,        <p2 = -I + n <g> ¿;,

where / denotes the identity transformation, [B2].

Denote by X(M) the Lie algebra of C°° vector fields on M. Such a (para-

compact) manifold M with a (<p ,Ç , ̂ -structure admits a Riemannian metric

g such that

g(cpX,<pY) = g(X,Y)-n(X)t1(Y),

where X ,Y g X(M). Then M is said to have a (<p ,Ç , n , g)-structure or

an almost contact metric structure and g is called a compatible metric. The

2-form O on M defined by <$(X , Y) = g(X ,q>Y) is called the fundamental 2-

form of the almost contact metric structure. If V is the Riemannian connection

of g , then

(v^r = g(Y, vxt),      (v^O)(y ,z) = g(Y, (vx<p)Z).

An almost contact metric structure (<p ,£, ,r¡, g) is said to be normal if

(1-1) (yx<p)Y - (V9X9)q,Y + tl(Y)V9XZ = 0 ,

quasi-Sasakian if úfO = 0 and (<p ,£ , n) is normal, almost a-Sasakian if 0 =

dn/a , a G R - {0} , a-Sasakian if it is almost- a-Sasakian and normal.

For an extensive study of these structures we refer to [Bl, B2, TV].

A connected Riemanniann manifold (M , g) is said to be homogeneous if

there exists a connected Lie group G which acts on (M ,g) as a transitive and

effective group of isometries.

Ambrose and Singer [AS] proved that a connected, complete and simply con-

nected Riemannian manifold (M , g) is homogeneous if and only if there exists

a tensor field F of type (1,2) such that

'(i)      g(TxY,Z) + g(Y,TxZ) = 0,

(AS) (ii)     {VxR)YZ = [Tx,RYZ]-RTxYZ-RYTxZ,

. (i»)    (VxT)Y = [Tx,TY]-TTxY

for X ,Y ,Z G X(M). Here V denotes the Levi-Civita connection and R is

the Riemannian curvature tensor of M . These conditions are equivalent to

(i)  Vg = 0,
(ii) V/v = 0,

(iii) VF = 0,
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QUASI-SASAKIAN HOMOGENEOUS STRUCTURES 175

where V is the connection determined by V = V - F.

A homogeneous (Riemannian) structure on (M ,g) is a tensor field F of

type (1,2) which is a solution of the system (AS).

F. Tricerri and L. Vanhecke obtained in [TV] a classification of the homoge-

neous structures in eight different classes. These are:

( 1 ) symmetric if F = 0,

(2) F, if TXYZ = g(X ,Y)tp(Z) - g(X ,Z)v(Y), ip z AX(M),

(3) F2 if <£>TXYZ = 0 and cX2(T) = 0,

(4) F3 ^TXYZ + TYXZ = 0,

(5) TX®T2 if&TXYZ = 0,

(6) F, 0 F3 if TXYZ + TYXZ = 2g(X , Y)xp(Z) - g(X , Z)y/(Y)

- g(Y ,Z)y/(X) with y/eA[(M),

(7) T2®T^ ifcx2(T) = 0,

(8) TX®T2®T3    no conditions,

where 0 denotes the cyclic sum over X, Y , Z e X(M).

An almost contact metric manifold (M ,(p,£,,t},g) is said to be almost con-

tact homogeneous if (M ,g) is homogeneous and cp is invariant under the

action of the group. In [ChG] we have proved

Theorem 1.1. Let (M ,<p,Ç,n,g) be an almost contact homogeneous manifold.

Then, there exists a tensor field T of type (1,2) satisfying the conditions (AS),

and furthermore

(iv) Vxtp = Txtp - <pTx ,    for all X e X(M).

Conversely, if a connected, simply connected, complete almost contact metric

manifold (M ,<p ,£, ,n , g) admits a tensor field T of type (1,2) satisfying (i)-

(iv), then (M .ç.Ç.rj.g) is an almost contact homogeneous manifold.

From this theorem it follows that, for the almost contact homogeneous man-

ifolds, ¿;, n and í> are invariant under the action of the group.

We shall call (T ,ç ,£ ,r¡) an almost contact homogeneous structure on

(M ,<p,Ç,n,g) if it satisfies (i)-(iv) in Theorem 1.1.

2. Homogeneous structures on H(p, 1)

Let H(p , 1) be the group of matrices of real numbers of the form

a =

1    A     c

0   I     [B
0    0     1

where Ip denotes the identity p x p matrix, A = (ax , ... , ap), B = (bx , ... ,

b ) G Rp , and c g R.   H(p, 1) is connected, simply connected nilpotent Lie
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176 J. C. GONZALEZ AND D. CHINEA

group of dimension 2p + 1, which is called a generalized Heisenberg group (see

[H]). Moreover, H(p ,1) is a Heisenberg group [K].

A global system of coordinates (xjtxp+i ,z), 1 < i < p, on H(p, 1) is

defined by

*/(«) = a, ■    Vw = ôi -    z(a) = c       (1 < ' < P) •

A basis for the left invariant 1-forms on H(p , 1) is given by

p
ai = dxi •      <*P+i « ¿V< •      y = ̂  - E W;

>=1

and its dual basis of left invariant vector fields on H(p , 1) is given by

*<-£■ v. = a¿;+^' z=¿   <lsis,,)

Define a left invariant metric on H(p , 1) by

Then {A^ , Z} , $ = 1, ... , 2/?, is an orthonormal frame with respect to g.

Moreover, [X¡,X ¡] — Z, 1 < ¡' < p, with the other bracket products equal

to zero, and therefore it is easy to verify that, for the Riemannian connection

Vof?,

vTx, = vyz = -ixt,J,.,
Z.      I Aj 2      /?+/

VyXn+i = -Vy     X. = \Z,X¡     p+¡ Xp+i     i        2      '

^ZXp+i - ^7X„^Z - 2Xi>

the other covariant derivatives being zero.

The connection forms are given by

^zW = SiyxXi,Z) = ~{ap+i(X),       coXp+z = fa ,       wx¡Xp+¡ * -iy,

for any X G X(H(p , 1)), the remainder forms being zero. The curvature tensor

is given by

R(X¡,Xj,Xp+¡,Xp+j) = \,       i¿j,

R(Xi-XP+fXi-xP+i) = l

(2.1) R(Xl,Xp+i,Xj,Xp+j) = \,        i¿j,

R{xi,xp+J,xj,xp+i)^^,     t + j,

R(Xi,Z,Xi,Z) = R(Xp+i,Z,Xp+i,Z) = -\,

and they are the only ones different to zero.
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QUASI-SASAKIAN HOMOGENEOUS STRUCTURES 177

Next, we determine the homogeneous structures on (H(p , 1), g). Let F be

a (0,3)-tensor field such that TXYZ + TXZY = 0 for all X, Y, Z G X(H(p , 1)).

By the condition (ii) of (AS), that is

(VXR)(Y , Z , W , V) = - R(TXY ,Z ,W ,V) - R(Y , TXZ , W, V)
- R(Y ,Z ,TXW ,V) - R(Y ,Z ,W ,TXV),

and   replacing    (Y.Z.W.V)    by    (Xt,Z,X   Xp+J),(X,,Z,Xp+i,Xp+j),
(X¡, Xp+¡, X,, Xp+j) and (Xt, Xp+¡, Xp+i, Xp+j) we obtain, respectively,

n 7\ Txzxp+I = ~lai(x) ;       Txzx, = H+< W;
\*"*,J f — T* * T _ T

/LsLjsLj A.A.p+iA.p+j AA.¡A.p+j AA.jA.p+¿

for all X G X(H(p , 1)). It is not hard to check that the condition (ii) of (AS)

is equivalent to (2.2).

Put,

Oij(X) = Txx¡Xj = TXXf+.Xf+j,       bu(X) = TXXiXf+i = Txx¡x^.

It follows that

a   = —a   ,       b   = b  .
u j' ' ¡j      j'

Let V be the connection determined by V = V - F. Then the connection

forms of V are given by

&xx =ö)x   x     = ~aa '

(2.3) ***,♦,?-*(/•        '¿J-
CO ■*„—iv+b»)>At/ip+

the remainder forms being zero.

By the condition (iii) of (AS)

(VxT)(Y,Z,W) = 0

and replacing Z, W by X¡, Xj , and X¡, Xp+j , we obtain, respectively

(2.4)

(2.5)

k=\

+bjk(X)bik(Y)-bik(X)bkj(Y)) = 0.

(»M+ffotwv*) - "ikWkjW
k=l

+ajk(X)bik(Y)-a]k(Y)blk(X)) = 0.

Furthermore, it follows that (2.4) and (2.5) are equivalent to the condition

(iii) of (AS).

We conclude
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178 J. C. GONZALEZ AND D. CHINEA

Theorem 2.1. All the homogeneous structures T on (H(p , 1), g) are given by

p

2T = YlSai ® ap+iA y+ap+i ® yA *< )

(2-6) '=1 p

+ ¿2 {au ® (a, A ay + ap+/ A ap+j) + 2bij ® a,. A ap+>} ,
' .7=1

where the l-forms atj and bi} satisfy (2.4), (2.5) and atJ = -a^.b^ = bjr

Next, we classify the homogeneous structures on (H(p ,l),g). From [TV,

Theorem 5.1], the connected Riemannian manifolds which admit a homoge-

neous structure T ^ 0 of type F, are of constant negative curvature. Thus, by

(2.1), (H(p,\),g) does not admit any homogeneous structure of type Tx .

Proposition 2.1. A homogeneous structure T on (H(p ,\) ,g) is of type T2®Ty

if and only if

(2.7) Í2(aij(X¡) - bu(Xp+¡)) = ¿(a,,(^+i) + b^X,)) = 0,
i=\ (=1

for all j,  l<j<p.

Proof. By definition

cx2(T)(X) = YdTEniEmX,        XeX(H(p,l)),
m

for an arbitrary orthonormal basis  {Em}  on  H(p,l).   Thus, using the or-

thonormal basis {X ,Z},s=l,...,2p,v/e have

7=1

7=1

c12(F)(Z) = 0.

This proves the proposition.

It is possible to obtain examples of homogeneous structures on (H(p , 1), g)

satisfying (2.7). More specifically, let T(r ,s ,tx , ... ,t ) be as in Theorem 2.1

with

au = r> (» < j) '    aji = -fy if > J) '

bu =sy = bß ,       i¿j,

btl = tiy,       i=\,...,p,

where r ,s ,ti G R,  i = 1.p.  Trivially, by Proposition 2.1, this family

of homogeneous structures is of type T2®T3. Further T G T2 if and only if
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QUASI-SASAKIAN HOMOGENEOUS STRUCTURES 179

t-t■ = -1 , for all i = I , ... , p , and r = s — 0 ; and F G F3 if and only if t. = 5

for all i = I , ... , p and r = 5 = 0.

The Lie algebra G of the transitive and effective group G of isometries of

(H(p ,l),g) associated with the homogeneous structure T(r ,s,tx , ... ,t ) is

isomorphic to the direct sum M © K, where K is the holonomy algebra of

V = V - F and M = TxH(p , 1), x G H(p , 1). In what follows we shall take

for x the origin o of H(p , 1). From [KN, Theorem 8.1], K is generated by

the operators (R0)XY , where X, Y G M and R is the curvature tensor of V,

being the brackets of M © K the followings

[X , Y) = (T0)XY - (T0)YX - (R0)XY ,        X,YeM,

(2.8) [A,X] = A(X),        XeM.AeK,

[A,B] = AB-BA,        A.BeK.

Using (2.3) and the structure equations we obtain

p

ñx¡X] - Ôjr^jr^j = r E afc A <V*      (' < »
/t=i

ñx,xp+J=s!Zak*aP+k     ('V;).
A=I

Ôjf,^+1 = [ï + t,)Y,aJAap+j>

7=1

Q^2 = Úx   z = 0.

Hence, K is generated by B = (R0)x x    , which has the following expression

with respect to the basis {X , Z} ,

B = ^Ro)x,xp+l

—r ■ ■ ■     —r

-(%+h)    s    ■■■

(i+íi)     i

0

-s

■■■    -s    -(\ + tp)
0     ■■• 0

S     (\+tp)    0

r 0

-r 0

0 0 0
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180 J. C. GONZALEZ AND D. CHINEA

From (2.8), the bracket product on M © K is given by

[*, - Xj] = [Xp+i - Xp+]] = [X,, Xp+j] = [B,Z] = 0,       t*j;

[Xt,Xp+l] = Z + B,

[z^J = r EVE1; +jE^+('i + K+1'
V'<7 <>7        / 'W

\i<j i>j J        ¥J

^      \/<7 />7 / W J

[* • ̂+/i —ME xp+j - E *„+, ) +s ¿2 xj. +d + iu, •
V'<7 '>7 / M/'

If í. = - j for all i - I, ... , p, and r — s — 0, then the dimension of K

is zero and the Lie algebra of G is isomorphic to the algebra of H(p , 1). In

the other case, if we put V = B + Z, it follows

[X,, Xp+¡] = V,       [V, Xp+¡] = [V, Xt] = [V , B] = 0.
Hence G is a 2(p + 1)-dimensional Lie algebra. The subalgebra generated

by the vector fields XS,V, s — 1, ... ,2p, denoted by (Xs, V), is isomorphic

to the Lie algebra of H(p ,1). From the expressions of the brackets of these

vector fields, the Lie algebra G is a semidirect sum of (Xs, V) and (B). More

precisely,

Q={Xs,V)xg(B)
where a is the representation of (B) on (X , V) given by

(2.9)

^)Xl = -\r[YdXj-YJx\^sY,Xp+J+(\ + t\xp+\
y  \i<j       ¡>j   j     m J

\i<j i>j J J4i
a(B)V = 0.

Thus, in this case, G is a semidirect product of H(p, 1 ) with a one-dimen-

sional Lie group. To describe this group, we identify H(p, 1) with Cp x R

through the application (x¡ ,x+j ,z)-* (tu ,t) where w. = x, + ixp+j and

t = z - j X/Li xjxp+j which is an isomorphism of Lie groups, considering on

CpxR the structure of Lie group given by

/ ,   p \
(Wj, t)(w'j ,t')= \wj + w'j, t +1' + ̂  E Im(™X)   •
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QUASI-SASAKIAN HOMOGENEOUS STRUCTURES 181

Then, from (2.9) G is the semidirect product H(p , 1) x   50(2) where each

e'e G S0(2) acts on H(p , 1) by the matrix

-id

(2.10)

0 0      0

-u

L o
o
U

So, we conclude

with    the   homogeneous   structure

.. , p), r = s = 0 the corresponding

Theorem    2.2. Let    (H(p,\),g)     be

T(r,s,tx.tp). For /. = -\   (/= 1

group of isometries is H(p , 1) itself and for all the other values of the parameters

it is H(p , 1) x   SO(2), where y/ is given by (2.10).

3. Quasi-Sasakian HOMOGENEOUS STRUCTURES ON H(p, 1)

First, we start with a characterization for the quasi-Sasakian manifolds in

terms of its Riemannian connection.

Lemma 3.1. An almost contact metric manifold  (M ,cp ,£ ,r\ ,g)   is quasi-

Sasakian if and only if

(3.1) (VX<D)(F, Z) = r,(Y}(V9Xr,)Z + n(Z)(V Yn)<pX,

for all X.Y.ZeX(M).

Proof. Let M be a quasi-Sasakian manifold. Then, from (1.1) we have

(3.2) (V^)({,T) = (V,x<i»(t,9Y)

and

(3.3) (Vi<P)(F,Z) = 0,

for all X ,Y ,Z G X(M). Furthermore, since <I> is closed,

(3.4) (V<pX®)(<pY,<pZ) = 0   and   (Vx<t>)(Y,Z) = {Vr<t»(X,Ç).

Now, (3.1) follows from (3.2), (3.3) and (3.4). The converse is immediate.

Next, we give a family of quasi-Sasakian structures on H(p, 1). For it, let

(<p,Ç,r],g) be an almost contact metric structure on H(p, 1) and tp1" the

components of <p, with respect to the basis {X ,Z}, s = I, ... ,2p. We

assume that tp™ = constant and Z = ¿;, then

(V^)*f = K+'í.

iyXp^)xr = -w¿,

where 1 < / < p and 1 < r < 2p .
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182 J. C. GONZALEZ AND D. CHINEA

Also, we obtain

( v)*,.=\ ¿{(?r+ti+tWj+(C - f¡)x„j}.
7=1

1     P
<y<f)x,+l = 2 E«C - O*,- - (<+,+tf+')-w ■

7=1

Hence (V^X = 0, for all X G X(H(p , 1)), if and only if

<pp+i = <pp+]
(3.5) ' ; (l<i,j<p).

<PP+j = Vj

If we suppose that (3.5) is satisfied, using condition (3.1), it is not hard to

check that (cp , ¿J, r\, g) is a quasi-Sasakian structure. Moreover,

p

i=i

So, we have established the following.

Theorem 3.3. On  (H(p,l),g), the almost contact metric structures (tp , £,

n,g), with tp™ = constant, £ = Z and n — y, satisfying (3.5) are quasi-

Sasakian. Moreover, they are a-Sasakian if and only if

tpp+l = k,   for allie {I.p} (k G R - {0})

and the remainder components of <p are zero.

Finally, we shall obtain that the previous structures (tp ,£, n) are the only

almost contact structures such that (Tx ; <p ,£ , n), k / -j , are almost contact

homogeneous structures, where

p
2TX = J2[(*i 8 ap+; A y + ap+, O y A a,. + 2Ay 0 a, A ap+¡],        k G R

(=1

Theorem 3.4. Leí (ç», £ , >/) èe a« almost contact structure on H(p , 1), vvz'í/z g

compatible metric. Then

(a) If k = -j , (F ; q>, ¿;, n) is an almost contact homogeneous structure if

and only if the components (p™ and £m are constant.

(b) If k ^ -5 , (T ; tp , I; , n) is an almost contact homogeneous structure if

and only if the components <p™ are constant, £ = ±Z and

p+i p+j p+i i9j   =<p,   .     r,+jm'j-

Proof. From (2.3), the connection V reduces to

VXX, = -y(X)(í + k)Xp+¡ ,        VxXp+, = y(X)({ + k)Xt ,        VxZ = 0.
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QUASI-SASAKIAN HOMOGENEOUS STRUCTURES 183

Then, condition (iv) of Theorem 1.1, i.e. Vtp = 0, is equivalent, in this case,

to

*(0 = -X{f)) = y(X)({ + k)(tp'p+] + cpp+i),

x(<Pj+i) = x(9^j) = y(x)(\+k)(<p) + <:;),

X(<p]p+l) = y(X)(\+k)<pp2+p'+x,

X(<p2pp+ï) = y(X)(2-+k)<p2p+l.

Also, if Vtp = 0, it follows that

X^) = -y(X)(\-rX)ip+i,

(3-7) X^p+i) = y(X)(\ + k)^,

From (3.6) and (3.7), it is easy to prove (a). Using (3.7) we have

X,(tm) = Xp+i(im) = 0,        1 < i < p, 1 < m < 2p+ 1,

and hence

b      _ r    / \ . ^m ^m

'»m ~<'m^Xp+\ ' ■■• 'X2p • Z> ' fa      ~~~X'~cW'

Now, it is not difficult to check that ¿; = ±Z.

From (3.6) we obtain

Xl(tp"p++Jk) = Xi(fJk) = 0,        \<j,k<p,

and this gives

(3.8)        VPpti = 9pti(xp+l.x2P,z),       <PJk = vi{xp+x,... ,x2p,z).

We also have that

Xp+i(9Pp++i) = Xp+i(çJk) = 0,

and so

f39) <A   x°<i     ^L_ xd<i
{     } 9xp+, -   *'   dz    ■        dxp+l -   X>   dz    •

Combining (3.8) and (3.9) we deduce that <pp*Jk and tpJk are constant and

<+' = 9f+J ■
In the same way we can see that <?' = pf£', which proves (b).

From Theorems 3.3 and 3.4 we obtain

Corollary 3.1. If A jí j a/iúf (T;<p ,Ç,n) is an almost contact homogeneous

structure on (H(p , 1), g), then (tp , ¿; ,n) is quasi-Sasakian.
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