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Abstract 

In this paper, we introduce Quasi Serializability, a 
correctness criterion for concurrency control in hetero- 
geneous distributed database environments. A global 
history is quasi serializable if it is (conflict) equiva- 
lent to a quasi serial history in which global transac- 
tions are submitted serially. Quasi serializability the- 
ory is an extension of serializability. We study the 
relationships between serializability and quasi serializ- 
ability and the reasons quasi serializability can be used 
as a correctness criterion in heterogeneous distributed 
database environments. We also use quasi serializabil- 
ity theory to give a correctness proof for an altruistic 
locking algorithm. 

1 Introduction 

The InterBase project in the Computer Sciences De- 
partment at Purdue University is an effort to inves- 
tigate multidatabase management systems. The goal 
of this project is ultimately to build a heterogeneous 
distributed database system (HDDBS) that supports 
atomic updates across multiple databases. 

An HDDBS integrates pre-existing database systems 
to support global applications accessing more than one 
element database. An HDDBS is different from a hc+ 
mogeneous distributed database system in that the el- 
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ement databases are autonomous and heterogeneous. 

HDDBSs have become a very attractive research 
area recently. Within this research area, the t,ransac- 
tion processing problem, especially that of concurrency 
control, has received considerable attention [GL84] 
[GP86] [P&6] [BSSS] [EH88] [LEM88]. Unfort,unately, 
no satisfactory global concurrency control algorithm 
has been given yet. The lack of suitable theoretical 
tools for proving the correctness of these algorithms is 
one of the reasons. 

Serializability has been generally used as the cor- 
rectness criterion for the proposed concurrency con- 
trol strategies. Unfortunately, serializability does not 
work well in heterogeneous distributed database envi- 
ronments. In [DEL088], we discussed the difficulties 
of maintaining global serializability in heterogeneous 
distributed database environments. The reason, we 
believe, is that serializability was originally introduced 
for centralized database environments and therefore 
is centralized in nature. Global concurrency control 
in heterogeneous distributed database environments, 
on the other hand, is hierarchical in nature due to 
the autonomy of the element databases. As a result, 
some of the proposed algorithms violate local auton- 
omy (e.g., Sugihara’s distributed cycle det,ection algo- 
rithm [Sug87]), while some allow low degree of con- 
currency (e.g., Breitbart’s site graph test,ing protocol 
[BSSS]), and others fail to maintain global serializabil- 
ity (e.g., [AGS87], [EH88] and [LEM88]). 

The hierarchical nature of global concurrency con- 
trol and the fact that local databases are autonomous 
make it very difficult to maintain global serializability 
in HDDBSs. On the other hand, the global concur- 
rency controller (GCC) is relieved from some respon- 
sibilities (e.g., the correctness of local histories). This 
suggests that the correctness criteria for global concur- 
rency control in HDDBSs should be based primarily on 
the behavior of global applications, with proper con- 
sideration of the effects of local applications on global 
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ones. In this paper, we define such a criterion called 
quasi serializability (QSR). QSR is used as the correct- 
ness criterion for global concurrency control in Inter- 
Base. 

In section 2, we define the terminology and assump- 
tions used in this paper. We then introduce, in section 
3, QSR as a correctness criterion for global concur- 
rency control in HDDBSs. In section 4, we give a 
correctness proof, using QSR theory, of an altruistic 
locking algorithm [AGS87]. The correctness of this al- 
gorithm cannot be shown using serializability. Some 
concluding remarks are given in section 5. 

2 Background 

2.1 An HDDBS Model 

A heterogeneous distributed database system consists of 
a set D = (01, Ds, . . . . Dm} of local database systems 
(LDBSs), a set G = (G1, Gz, . . . . Gn} of global trans- 
actions, and a set L = UT=, Li of local transactions, 
where Li = {Li,l, Li,2, . . . . Li,j,}. A local transaction 
is a transaction that accesses only one LDBS. The lo- 
cal transaction set Li contains those local transactions 
that access LDBS Di. A global kansadion is a trans- 
action that accesses more than one LDBS. The global 
transaction Gi consists of a set of global subtransac- 
tions, {Gi,l, Gi,z, ..:, Gi,m}, where the subtransaction 
Gi,j access LDBS Dj. 

A global history H over GUL in an HDDBS is a set of 
local histories H = {HI, Hz, . . . . H,}, where the local 
history Hi (at LDBS Di) is defined over global sub- 
transactions Gl,i, Gz,i, . . . . Gn,i, and local transactions 
Li,l, a.., Liji. 

Informally, an HDDBS is a collection of autonomous 
database systems wishing to cooperate. The element 
databases are connected and coordinated by a global 
database management system. Concurrency control is 
performed hierarchically. The local concurrency con- 
troller (LCC) t a each LDBS is responsible for the cor- 
rectness of the local history at that site. The GCC, 
which is added on the top of the existing LDBSs, co- 
ordinates the local histories at all local sites to guar- 
antee the correctness of the global history. To simplify 
GCC’s work, a global transaction is allowed to submit 
at most one subtransaction to each local site [GP86]. 

2.2 Assumptions 

In this subsection, we list and explain the assumptions 
we have made in the study of QSR. Some of them 
are general in HDDBSs (e.g., local autonomy), while 

the rest are less general and are made to simplify the 
consistency problem of HDDBSs. 

Local Autonomy 

In an HDDBS, LDBSs are assumed to be au- 
tonomous. Autonomy is defined as follows [EV87] 
[DELO88]. 

Design autonomy: Each of the LDBSs is free to 
use whatever data models and transaction man- 
agement algorithms it wishes. 
Communica2ion’ au2onomy: Each of the LDBSs is 
free to make independent decisions as to what in- 
formation to provide to the GCC or other LDBSs, 
and when to provide it. 
Execution au2onomy: Each of the LDBSs is free 
to do anything (e.g., commit or restart) on any 
transactions running at its local site. 

Basically, local autonomy reflects the fact that 
LDBSs were designed and implemented independently, 
and were totally unaware of the integration process. 
Local autonomy has significant effects on global con- 
currency control and the meaning of global consistency 
[DEL088]. 

Data Integrity Constraint 

Another assumption we have made is that there is 
no data integrity constraint on data items at differ- 
ent sites. This assumption can be thought of as a 
consequence of local autonomy. Since each LDBS is 
designed and implemented independently, there is no 
relationship between data items at different LDBSs at 
all. In addition, it is also impossible to preserve these 
global data integrity constraints because neither the 
local users nor the LCCs of each LDBS are aware of 
the integration process and therefore the constraints’. 

As a result, global replication can only be in restric- 
tive forms. In this paper, we assume that only those 
data items that are not directly updatable by local 
transactions are allowed to be replicated. 

Intra Transaction Dependency 

In this paper, we also assume that there is no 
value dependency between subtransactions of the same 
global transaction. This assumption is made because 
of the following consideration. In HDDBSs, it is very 
expensive (if not impossible) to support value depen- 
dency between subtransactions. Recall t.hat LDBSs are 

1 Some people, however, believe that there should be some 
global integrity constraints on data items which are not iden- 
tical to the local ones (see, e.g., [GP86]). However, they did 
not mention how these global constraints can be defined and 
preserved. We plan to investigate this further. 
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usually connected through a global database manage- 
ment system, and usually do not have direct commu- 
nication. Since a global transaction can only submit 
one subtransaction to each site, the only way to imple- 
ment value dependency is to submit those subtrans- 
actions with value dependency relations sequentially, 
even though they are executed at different sites. 

We realized that this assumption is not necessary 
for QSR. However, the description of a less restric- 
tive condition requires more concepts and work on the 
transaction model, and therefore is out of the scope of 
this paper (we refer readers to [ED89]). In addition, 
with this assumption, the appropriateness of QSR can 
be explained more easily and clearly. 

3 Quasi Serializability 

In this section we introduce Quasi Serializability. We 
first give its definition, and then discuss its various 
properties as a correctness criterion for concurrency 
control. We also discuss the relationships between 
QSR and other correctness criteria. 

We assume that the reader is familiar with the ba- 
sic theory and notations of serializability (see, e.g., 
[BHG87]). 

3.1 Definitions 

As mentioned earlier, QSR is used as a correctness cri- 
terion for global concurrency control. The basic idea 
is that, in order to preserve the global database con- 
sistency, global transactions should be executed in a 
serializable way, with proper consideration of the ef- 
fects of local transactions. To understand this effect, 
let us expand the notion of conflict. 

Let oi and oj be operations of two different transac- 
tions in a local history H, where oi precedes oj. We 
then say that oi directly conflicts with oj in H if they 
both access the same data item and at least one of 
them is a write operation. Whereas if 0; and oj belong 
to the same local transaction (or global subtransac- 
tion), then we always say that oi directly conflict with 
oj in H. This, however, does not apply to operations of 
different subtransactions belonging to the same global 
transaction. 

Let oi and oj be operations of two different trans- 
actions in a local history H. We say that oi indirectly 
conflicts with oj in H if there exist operations 01, 02, 

. ..) 0) (k 2 1) of other transactions such that Oi di- 
rectly conflicts with 01 in H, o1 directly conflicts with 
02 in H, . . . . and ok directly conflicts with Oj in H. 

Let Gi and Gj be global transactions in a global 
history H. We say that Gi directly conflicts with Gj 

in H, denoted Gi 4: Gj, if one of Gi’s operations 
directly conflicts with one of Gj’s operations in a local 
history of H. We say that Gi indirectly conflicts with 
Gj in H, denoted Gi -sH Gj, if one of Gi’s operations 
indirectly conflicts with one of Gj’s operations in a 
local history H. We also simply say that Gi conflicts 
with Gj in H, denoted Gi -+H Gj, if either Gi --P: Gj 
orGi-+“Gj. 

Notice that the conflict relat,ion we defined here is 
history dependent and irreflexive. Therefore, an oper- 
ation, oi, (directly or indirectly) conflicts with another 
operation, oj, in a history only if oi precedes oj in that 
history. Notice also that a global transaction might 
indirectly conflict with another global transaction in a 
history even if they do not access any common data 
items. The indirect conflicts are introduced by other 
transactions. It is the indirect conflicts that model the 
effect of local transactions on global transactions in a 
history. 

Now let us introduce the notion of a quasi serial his- 
tory. Unlike a serial history, only global t,ransactions 
are required to execute serially in a quasi serial history. 
As we shall see later, this, together with the serializ- 
ability of local histories, is sufficient to guarantee the 
correctness of global concurrency control in heteroge- 
neous distributed database environments. 

Definition 3.1 A global history is quasi serial if 
1. all local histories am (conflict) serializable; and 
2. there exists a total order of all global transacfions 

such that for every two global transactions Gi and 
Gj where Gi precedes Gj in the order, all Gi ‘S 

operations precede Gj ‘s operations in. all local his- 
tories in which they both appear. 

Two global histories of an HDDBS are (conflict) 
equivalent, denoted f, if their corresponding local his- 
tories are all (conflict) equivalent [BHG87]. 

Definition 3.2 A history is quasi serializable if it is 
(conflict) equivalent t o a quasi serial history. 

In a quasi serializable history, all local histories are 
serializable. In addition, global transactions are exe- 
cuted in a way that is serializable in terms of both di- 
rect and indirect conflicts. This kind of serializability 
is achieved by taking into account conflicts between 
both local and global transactions, although we are 
only interested in the behavior of global transactions. 

Example 3.1 Consider an HDDBS consisting of two 
LDBSs, D1 and D2, where data items Q and b are at 
D1, and c, d and e are at D2. The following global 
transactions are submitted to the HDDBS: 

G : wg, (a)rgt (4 G2 : rga (Wg2 (cbgl (4 
Let L1 and L2 be some local transactions submitted 

at D1 and D2, respectively: 
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~5 : rh(a)q(b) ~52 : w,(d)n,(e) 
Let Hi and Hr be local histories at D1 and D2, 

respectively: 

H1 : wgl (ah (ah4 W,, W 
H2 : rg2 (+4 (4rgl (4wg2 (ebb(e) 

Let H = { Hr , Hz}. Then H is quasi serializable. It 
is equivalent to the quasi serial history H’ = {Hi, Hi), 
where 

3.2 The Quasi Serializability Theorem 

There is a convenient graph-theoretic characterization 
of quasi serializability which is described in the follow- 
ing theorem. Let us first introduce the quasi serializa- 
tion graph (QSG). 

The quasi serializafion graph of a global history H, 
denoted QSG(H), is a directed graph whose nodes are 
the global transactions in H, and whose edges are all 
the relations (Gi, Gj) (i # i) such that Gi --+H Gj. 

QSG(H) is completely determined by the conflict re- 
lations of H. Therefore, QSG(H)=QSG(H’) if H and 
H’ are conflict equivalent. However, the reverse might 
not be true because QSG(H) loses some information of 
local transactions. Nevertheless, QSG(H) contains (in 
indirect conflict relations) enough information about 
local transactions for the testing of quasi serializabil- 
ity, as the following theorem indicates. 
Theorem 3.1 A global history H is quasi serializable 
if and only if all local histories are (conflict) serializ- 
able and QSG(H) is acyclic. 

Proof: (if) Suppose H = {HI, HZ, . . . . H,,,} is a global 
history over G U L, where G is a set of global trans- 
actions and L is a set of local transactions. Since 
QSG(H) is acyclic, it may be topologically sorted. 
Let ir, is, . . . . i, be a permutation of 1,2, . . . . n such that 
Gi, , Gi,, . . . . Gi, is a topological sort of QSG(H). For 
each local history HI (1 5 1 5 m), assume that 
Gil,19 G~,,I, --., Gi,,, are the global subtransactions that 
appear in HI. We show, below, that there is another se- 
rializable local history H,‘, equivalent to HI, such that 
all of Gil,r’s operations precede Gi,,,‘s operations in 
H,‘, all of Gil,,‘s operations precede Gi,,l’s operations 
in HI, and so on. 

In order to construct the equivalent history H,‘, let 
us group the operations in HI into n operation sets 
based on global subtransactions. 

Forp=l ton-l do 
OP(i,, 1) = { o E Hl - U”;!; OP(iij, 1) : 

a. o E Gip,l, or 
b. o conflicts with one of 

Gip,r’s operations } 

OP(i,, I) = { everything left } 

Informally, OP(i,, I) consists of all Gi,,,‘s operations 
and those operations in HI that must precede some 
of Gi,,/‘s operations in any history which is conflict 
equivalent to HI (but not in previous OP’s). OPs are 
well defined and have the following properties: 

1. OP(i,, I) contains all operations of global sub- 
transaction G~,,J, but no operation of other global 
subtransactions, where 1 5 p 5 n. 

2. u;=, OP(~s, 1) consists of all the operations in Hi. 
3. OP(i,, 1) II OP(i,, 1) = 0, where 1 5 p # q 5 n. 

Let SH be the constructor that constructs from an 
OP a subhistory which has the same conflict relations 
as HI as far as the operations in OP are concerned. 
This can be done by ordering all operations in OP in 
the same way as in HI. 

Now H,! can be constructed as follows: 

SH(OP(&, 1)) o SH(OP(i2, 1)) o . . . o SH(OP(i,, 1)) 

where o stands for concatenation of subhistories. We 
claim that: 

1. H: involves the same transactions as ‘HI; 
2. Hi is conflict equivalent to HI; and 
3. Global subtransactions in HI are executed sequen- 

tially in H,‘. 

The correctness of the first and the last statements 
are clear. We now show that the second statement is 
also true. 

Let oi and oj be two operations in HI and oi con- 
flicts with oj. There exists integer p such that oj E 
OP(i,,l). If p < n, then oj either belongs to Gi,,r 
or conflicts with one of Gi,,r’s operations, and so is 
oi. Therefore, either oi E OP(i,,l), where q < p, or 
oi E OP(i,, I) by the definition of OP(i,,l). In ei- 
ther case, oi precedes oj in Hi. This is also true when 
p = n. So, oi also conflicts with oj in Hi. 

Let H’ = {HI, Hi, . . . . HA}, then H’ is quasi serial 
and equivalent to H. Therefore, H is quasi serializable. 

(only if) Let H be a quasi serializable global history. 
Again, we assume that Gr,G2, . . . . G, are the global 
transactions in H. Let H’ be a quasi serial global 
history which is equivalent to H. Then QSG(H) = 
QSG(H’). Since Gr, G2, . . . . G, are executed sequen- 
tially in H’ and one operation can only conflict with 
subsequent operations in a history, QSG(H’) must be 
acyclic and so does QSG(H). o 

Example 3.2 The QSG of the global history H in 
example 3.1, as shown in Figure l.(b), is acyclic. HOW- 
ever, its serialization graph, as shown in Figure l.(a), 
is cyclic. Cl 
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(b) 
Figure 1: Serialization graph (a) and Quasi Serializa- 
tion Graph (b) of H. 

3.3 QSR as a Correctness Criterion 
for Concurrency Control 

In this section, we show that quasi serializable histo 
ries are correct in terms of global concurrency control 
in heterogeneous distributed database environments. 
We do so by first discussing the database consistency 
problem, especially that of HDDBSs. We then discuss 
the ways that quasi serializable histories maintain the 
HDDBS consistency. 

3.3.1 HDDBS Consistency Problem 

It is generally accepted (see, e.g., [SLR76]) that a his- 
tory is correct (or the database consistency is ensured) 
if 

l Each transaction sees a consistent database. 
l Each transaction eventually terminates. 
l The final database after all transactions terminate 

is consistent. 

In our HDDBS environment (as described in sec- 
tion 2), the consistency problem is different from what 
we have described above. The main difference is that 
there is no additional global data integrit,y constraint 
except the mutual consistency constraints for globally 
replicated data items. 

Generally, a database is said to be consistent if it 
satisfies a set of consistency constraints. There are 
two types of consistency constraints associated with a 
database system: 

On the other hand, there might be global transac- 
tion consistency constraints. This is possible because 
these constraints can be totally independent of any lo 
cal transactions (e.g., constraints between two global 
transactions). We are currently investigat,ing these and 
related problems. This is also necessary, as the follow- 
ing example shows. 

1. Data integrity constraints Example 3.3 Consider an HDDBS consisting of two 
These constraints are defined on data items and LDBSs, D1 and Dz, where data item a is at DI and 

specify the real world restrictions on the values 
of data items. For example, the salary of an em- 
ployee in a departmental database must always be 
greater than zero. These constraints are usually 
database dependent, but application independent. 
Therefore, they can be checked statically. In other 
words, whether a database satisfies t.he constraints 
can be checked entirely based on the values of data 
items. 

2. Transaction consistency constraints 
These constraints specify the general restrictions 
on the interference between transactions. For 
example, two transactions should not mutually 
influence each other. These constraints can be 
database independent, but they cannot be checked 
statically. In other words, whether a database sat- 
isfies the constraints depends on all transactions 
executed and the interference among them. 

Data integrity constraints can be expressed as a set 
of predicates, however they are not usually explicitly 
given. One way of preserving these constraints is to 
execute the involved transactions sequentially (assume 
that each transaction, when executing alone, will pre- 
serve these constraints.) 

Transaction consistency constraints, on the other 
hand, usually cannot be expressed in predicate form. 
As with data integrity constraints, they are usually not 
explicitly given. They are generally required because of 
the conflict between user transparency and concurrent 
execution of transactions. Again, serial execution of 
the involved transactions is sufficient to preserve these 
constraints. 

In an HDDBS, each LDBS has its own set of con- 
sistency constraints. When the LDBSs are integrated 
into an HDDBS, these consistency constraints are corn- 
bined, together with some additional consistency con- 
straints for the global database, to form the consis- 
tency constraints of the HDDBS. 
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data items b and c are at D2. The following global 
transactions are submitted to the HDDBS: 

G : wg, tabsi (4 G-2 : rda)wdb) 
Let L be the local transaction submitted at 4: 

L : r@)wt(c) 
Let Hr and Hz be local histories at D1 and D2, 

respectively: 
Hl : W81bh2 (a) 

H2 : wga (b)rdb)wt(c)r,, Cc) 
In HI, Gz reads the value, a, written by G1 directly. 

In Hz, however, Gr might read the value, b, written by 
Gz indirectly (e.g., local transaction L copies the value 
of b to c). Therefore, each global transaction sees only 
part of the effect of the other. Obviously, this kind 
of global inconsistent retrieval should not be allowed. 
However, it cannot be detected by LCCs. •I 

In summary, an HDDBS is consistent if and only if 
(1) it satisfies the global transaction consistency con- 
straints (2) the globally replicated data items are con- 
sistent, and (3) all the LDBSs are consistent. 

3.3.2 Correctness of Quasi Serializable Histo- 
ries 

Since a quasi serializable history is equivalent to a 
quasi serial history, we only need to show the correct- 
ness of quasi serial histories. 

First, a quasi serial history preserves the mutual con- 
sistency of all globally replicated data items. This is 
true because they are updated only by global transac- 
tions that are executed serially. 

Second, a quasi serial history preserves the global 
transaction consistency constraints. This is true be- 
cause of the serializability of local histories, and the 
serial execution of global transactions. To see this, let 
us investigate various kinds of transaction consistency 
constraints in heterogeneous distributed database en- 
vironments: 

Constraints on local transactions (or global sub- 
transactions) at the same LDBS: They are pre- 
served because of the serializability of local histo- 
ries. 
Constraints on global transactions: They are pre- 
served because the global transactions are exe- 
cuted serially. 
Constraints on local transactions (or global sub- 
transactions) at different LDBSs: There is no di- 
rect interference between local transactions at dif- 
ferent LDBSs because they do not access any com- 
mon data item. Global transactions might intro- 
duce indirect interference between them. How- 
ever, this is true only if there exist value depen- 
dency between subtransactions of the same global 

transaction, which is not the case in our environ- 
ment. Therefore, constraints on local transactions 
at different LDBSs are always preserved because 
there is no interference between these local trans- 
actions. 

Example 3.4 Let us consider the global history H 
in example 3.1. Since there is no value dependency be- 
tween the two subtransactions of transaction Gz, the 
value of data item e written by Gz at D2 is not related 
to the value of data item b read by G2 at D1. There- 
fore, the value of data item e read by local transaction 
L2 at D2 is not related to the value of data item b 
written by local transaction L1 at DI. In other words, 
there is no relation between Lr and L2 (or they do not 
influence each other). The global constraints which can 
only be defined on global transactions are preserved 
because the global transactions are executed serially. 
0 

It is worth noting that the above arguments are 
onIy true in heterogeneous distributed database envi- 
ronments. They may not hold in, for example, ho- 
mogeneous distributed database environments. There 
are two reasons for this. First, in homogeneous envi- 
ronments, global integrity constraints can be defined 
on data items at different LDBSs. A quasi serial- 
izable history might not preserve these constraints. 
Second, it is possible for subtransactions of the same 
global transaction to have value dependency in homo- 
geneous environments because they can communicate 
with each other. Therefore, two local transactions at 
different LDBSs might interact with each other. Un- 
less all the transactions are executed in a serializabIe 
way, undesired interference between local transactions 
at two LDBSs might happen, and therefore constraints 
on these local transactions will not be preserved. 

3.4 Comparison to Other Criteria 

The most commonly used correctness criterion in gen- 
eral database environments (and also in heterogeneous 
distributed database environments) is serializability 
(see, e.g., [BSSS]). Let G be a set of global t.ransactions 
and L = {LI,..., L,} be sets of local transactions at 
various local sites. A global history over G U L is se- 
rializable if it is computationally equivalent to a serial 
global history over G U L2. 

Two types of serializability exist, conflict serializ- 
ability and view serializability [BHG87]. A global his- 
tory over G IJ L is conflict (or view) serializable if it 
is conflict (or view) equivalent to a serial history over 
G TV L. In this section, we use CSR to denot.e the set 
of global histories which are conflict serializable, and 

2L 1s treated as a set of “one site global transactions”. 
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VSR for those which are view serializable. We use QSR 
to denote the set of global histories that are quasi se- 
rializable. 

For a global history, its quasi serialization graph is 
a subgraph of its (conflict) serialization graph. There- 
fore, a conflict serializable global history is also quasi 
serializable. In other words, CSR s QSR. 

Theorem 3.2 CSR c QSR. 
Proof: We only need to show that CSR # QSR. To 
see this, let us consider, for example, the global his- 
tory H in example 3.1. It is quasi serializable, but not 
serializable. q 

However, this is not true for VSR because the seri- 
alization graph for a view serializable history may not 
be acyclic. To see this, let us consider the following 
example. 

Example 3.5 Consider an HDDBS consisting of two 
LDBSs, D1 and D2, where data items a, b and c are at 
D1 and d is at Ds. The following global transaction is 
submitted to the HDDBS: 

Gl : win (a)~ (bb,, (c)pa (4 
Let ,51 and L2 be two local transactions submitted 

at D1. 
LI : wl(a)w, (b) L2 : w,(a)w,(b) 

Let HI and Hz be local histories at D1 and D2, 
respectively: 

HI : wgl (ah, (ah, (b)Wgl (b)w, (ah,(b)w,, (cl 
H2 : r,,(d) 
Let H = {Hi, Hz}. Then H is view serializable. 

Since HI is not conflict serializable (see [BHG87]), H 
is not quasi serializable. q 

Theorem 3.3 VSR $! QSR. 
The reverse is also not true. For example, the global 

history, H, in example 3.1 is quasi serializable but it 
is not view serializable. 

Theorem 3.4 QSR (t VSR. 
The relationships among QSR, CSR and VSR are 

illustrated in Figure 2. 

Figure 2: Relationships among QSR, CSR and VSR. 

In [KS88], Korth proposed the use of predicatewise 
serializability (PWSR) as the correct,ness criterion for 
concurrency control in CAD database and office infor- 
mation systems. The basic idea of PWSR is that if the 
database consistency constraint is in conjunctive nor- 
mal form, we can maintain the consistency constraint 
by enforcing serializability only wit,h respect to data 
items which share a disjunctive clause. Clearly, PWSR 
concerns data integrity constraints only. In HDDBS 
environments, only the data items at the same LDBS 
can share a constraint clause. Therefore, a global his- 
tory is predicatewise serializable if all the local histo- 
ries are serializable. Since all the local histories in a 
quasi serializable history are serializable, each quasi se- 
rializable history is also predicatewise serializable. Let 
us also use PWSR to denote the set of histories that 
are predicatewise serializable. Then, we have QSR C 
PWSR. 

Theorem 3.5 QSR C PWSR. 
Proof: We need to show that QSR # PWSR. This is 
true because the global history H in example 3.2 is 
predicatewise serializable, but not quasi serializable. 
Cl 

4 A Correctness Proof of an Al- 
truistic Locking Algorithm 

It has been our goal in this paper to present a more 
flexible correctness criterion than serializability. This 
allows us to validate algorithms which provide a high 
degree of concurrency and do not violate local au- 
tonomies. In this section, we apply our quasi seri- 
alizability theory to an altruistic locking algorithm 
[AGS87]. This algorithm was chosen for illustration 
because it was, we felt, correct, non-serializable and 
clearly stated. 

4.1 How the Algorithm Works 

The basic idea of the algorithm is to use global locking 
to coordinate the executions of global transactions at 
local sites. To improve the performance, the altruis- 
tic locking protocol provides a mechanism for global 
transactions to release locks before they finish. 

Specifically, the altruistic locking protocol works as 
follows. A global transaction must lock a site before it 
can request work from that site. Once the global trans- 
action’s request has been processed, and if the global 
transaction will request no further work from that site, 
it can release its lock on the site. Other global trans- 
actions wait,ing to lock the released site may be able 
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to do so if they are able to abide by the following re- 
strictions. The set of sites that have been released 
by a global transaction constitutes the wake of that 
transaction. A global transaction is said to be in an- 
other global transaction’s wake if it locks a site which 
is in that transaction’s wake. The simplest altruistic 
locking protocol says that a global transaction running 
concurrently with another global transaction must ei- 
ther remain completely inside that transaction’s wake, 
or completely outside its wake, until that transaction 
has finished. 

4.2 A Non-Serializable Example 

Although the authors of the altruistic locking algo- 
rithm believed that the algorithm ensures serializabil- 
ity of the global executions [AGS87], it actually does 
not. To see this, let us consider the following example. 

Example 4.1 Consider an HDDBS consisting of two 
LDBSs, D1 and D2, where data items a and b are at 
Dl, and data items c and d are at Ds. The following 
global transactions are submitted to the system: 

G : rgl (a)wsl (4 Gz : wsa @b-s, (4 
Let L1 , Ls be the local transactions at D1 and D2, 

respectively: 
LI : wrl(ahI (b) ~52 : rl,(c)w,(d) 

Let HI and H2 be the local histories at DI and DI, 
respectively: 

HI : wtl(a)rgl (ah,(bh (b) 
HZ : wol (4% (c)w2 (4rga (4 

Suppose G1 locks D1 before Gz does. G2 waits until 
G1 finishes reading data item a and releases D1. The 
same thing happens at D2. In other words, Cl gets 
the lock first. After updating data item c, G1 releases 
the lock. G2 then gets the lock and reads data item d. 
Since G2 is completely in the wake of G1, the history 
may be generated (or certified) by the algorithm. It is 
not hard to see that the global history, H = {HI, Hz}, 
is not serializable. q 

4.3 Correctness Proof 

We prove that altruistic locking is a correct concur- 
rency control algorithm (for HDDBSs defined in sec- 
tion 2) by proving that all global histories generated 
(or certified) by the algorithm are quasi serializable. 
We do so by constructing an acyclic QSG for every 
global history. 

Let H be a global history over G U L, where G = 
{Gl,G, . . ..&I is a set of global transactions (n > 
1). Suppose that H is generated (or certified) by the 
altruistic locking algorithm. 

Let Gi and Gj be two global transact,ions in G which 
access a common database. If Gj gets any lock first, 
then either Gi is completely in the wake of Gj or Gi 
will not start until Gj has finished. Otherwise (if Gi 
gets any lock first), either Gj is completely in the wake 
of Gi or Gj will not start until Gi has finished. 

Suppose that Gi conflicts with Gj. Then one of Gi’s 
operations must conflict (directly or indirectly) with 
one of Gj’s operations. Recall that an operation con- 
flicts with another operation only if it precedes that op- 
eration in a history. One of Gi’s operations must pre- 
cede one of Gj’s operations in a local history. There- 
fore, we have: 
Lemma 4.1 If the edge Gi + Gj (1 < i, j < nj is in 
QSG(H), then all Gi ‘s operations precede Gj ‘s opera- 
tions in all local histories. 

Theorem 4.1 QSG(H) is acyclic. 

Proof: Suppose that there is a cycle in QSG(H): 

Gi, -* Gi, -+ . . . -+ Gik + Gil, where 1 5 
il, i2 , . . . . in, k 5 n. By lemma 4.1, all of Gi, ‘s oper- 
ations precede Gi,‘s operations at all local sites, all of 
Gi.,‘s operations precede Gi,‘s operations at all local 
sites, etc., and all of Gi, ‘s operations precede Gi, ‘s op- 
erations at all local sites. In other words, all of Gil’s 
operations precede Gil’s operat,ions at all local sites, a 
contradiction! 0 

5 Conclusion 

We have extended serializability to verify the correct- 
ness of concurrency control algorithms for HDDBSs, 
resulting in quasi serializability. A global history in an 
HDDBS is quasi serializable if it is (conflict) equivalent 
to a quasi serial history in which all global transac- 
tions are submitted sequentially. We have shown that 
a global history is quasi serializable if and only if it has 
an acyclic quasi serialization graph. We have used this 
result to prove the correctness of an altruist,ic locking 
algorithm. 

The main difference between quasi serializability and 
general serializability theories is that the latter treats 
global and local transactions equally while the former 
treats them differently. More specifically, quasi serial- 
izability theory is based primarily (not totally) on the 
behaviors of global transactions. This is appropriate 
in HDDBS environments because of the fact that there 
is no global data integrity constraint and no value de- 
pendency between subtransactions of the same global 
transaction. 

Quasi serializability makes global concurrency con- 
trol easier in the sense that it allows a higher concur- 
rency than serializability. One immediate observation 
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is that the global concurrency controller can ensure the 
correctness of the global history (i.e. quasi serializ- 
ability) by simply controlling the submission of global 
transactions (e.g., serially). However, it is not obvi- 
ous how to take advantage of quasi serializability to 
design global concurrency control protocols other than 
submitting global transactions serially. Further work 
is still needed in this area. 

Another advantage of quasi serializable histories is 
the compatibility of (quasi) serialization and execution 
orders of the global transactions. This property is very 
useful for multi-level transaction management prot* 
cols where concurrency control is performed hierarchi- 
cally and independently at different levels [BSWSS]. 

Quasi serializability is intended to be used as a cor- 
rectness criterion for global concurrency control in In- 
terBase. It can also be used in any database system 
that meets the assumptions given in section 2. As a 
matter of fact, it can even be used in more general 
database systems (e.g., allowing restrictive value de- 
pendency between subtransactions of the same global 
transaction). We are now working on the problem 
of defining less restrictive transaction models suitable 
for quasi serializability and will report the result else- 
where. 
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