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1. Introduction
/k natural method for constructin an invariant subspace for an operator on

Hilbert space is to find a second, known operator which is similar in some weak
sense to the given operator and then to use this second operator and the weak
similarity to construct the desired subspace. One such weak similarity is the
notion of quasi-similarity introduced by Sz.-Nagy and Foia [13].

In what follows, 3C will denote a complex Hilbert space and (3C) will be
the algebra of all bounded linear operators on . (The term operator is meant
to imply boundedness and linearity. Unless specified otherwise, all operators
are assumed to be acting on the Hilbert space .) An operator X from a
Hilbert space 3C to a Hilbert space is said to beqs-wr if X has zero
kernel and dense range. Operators and T acting onC and respectively are
qs-sr if there are quasi-invertible operators X from to and Y from
3C to which satisfy the equations

X-- X and TY-- Y.

It is clear that quasi-similarity is an equivalence relation on the class of all
operators. A closed subspace E of 3C iswr for an operator in ()
if (x) is in E for every x in E. The subspace is hyprvr if it is
neither the zero subspace nor all of and if it is invariant for every operator
in() which commutes with. Hyperinvariantsubspaces have been studied
in [3], [4], [8], [13]. If is an operator which is quasi-similar to an operator
with an invariant subspace, then it is not known if need have an invariant
subspace, but the following is proved in [8]:

THEOREM. If S and T are quasi-similar operators acting on the Hilbert spaces
C and respectively, and if S has a hyperinvariant subspace, then so does T. If
in addition, S is normal, then the lattice of hyperinvariant subspaces for T con-
tains a sublattice which is lattice isomorphic to the lattice of spectral projections
for S.

The purpose of this paper is to discover which properties of operators are
preserved by quasi-simiIarity and which are not. In Section 2 we use the fact
that quasi-similar normal operators are unitarily equivalent to show that
quasi-similar spectral operators are very closely related. We also investigate
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the relationship between our quasi-similarity and the weak similarity notions
of Feldzamen [6] and of Tzafriri [14]. Then we show that quasi-similar iso-
metries are unitarily equivalent. The last section contains two examples; one
example shows that quasi-similarity preserves neither spectra nor compact-
ness, the second shows that not every quasi-similarity is a direct sum of simi-
larities in sense to be made precise below.

if S is an operator, its spectrum will be denoted by a(S). The symbols
and will be used to denote orthogonal direct sums of both Hilbert

spaces and operators. The closure of some subset U of a topological space will
be denoted by U-.

2. Quasi-similarity of spectral operators

The following theorem is proved by Douglas in [2]. It shows, in particular
that quasi-similar normal operators are unitarily equivalent.

THEORE 2.1. Let N and N be normal operators acting on the spaces
and respectively, and let X be an operatorfrom to satisfying X1V
If 9E denotes the orthogonal compliment in C of the kernel of X, and if 9 denotes
the closure in of the range of X, then E and 9 reduce N and N. respectively,
and NI gE is unilarily equivalent to NI g via the unitary operator
where X UP is the polar decomposition of X(P (X*X)). In par-
ticular, if X is quasi-invertible, the N and N are unitarily equivalent.

Briefly, an operator T on is spectral if it has a resolution of the identity
much like that of a normal operator. Let E be a a-homomorphism of the
a-algebra of Borel subsets of the complex plane onto a a-algebra of uniformly
bounded (in norm) idempotents in 2() which contains the zero and the
identity operators. The map E is a resolution of the identity for T if for every
Borel set B in the plane, E(B)T TE(B), and (r(T E(B)(C))

_
B-

(the closure of B) where T E(B) (C) denotes the restriction of T to the
range of E(B). The operator T is called a spectral operator if it has a resolu-
tion of the identity.
The following properties of spectral operators are important to our discus-

sion. For a thorough discussion of spectral operators see [5]. First, an
operator T is spectral if and only if it can be written in the form T hr - S
where hr, the scalar part, is similar to a normal operator, S is quasi-nilpotent
(a(S) {0} ), and hr commutes with S. This decomposition of spectral
operators, called the canonical decomposition, is unique. The invertible
operator A for which ANA- is normal transforms the resolution of the
identity E of T onto the spectral measure of ANA-. The spectrum of T is
the spectrum of N, and if R is an operator which commutes with T then for
every Borel set B, R commutes with E(B) and hence R commutes with N.

THEOR. 2.2. Suppose for i 1, 2, T N - S are spectral operators
written in their canonical decomposition. If there is a quasi-invertible operator
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X such that XT1 T.X, then
XSI SX XN NX.

(ii) N is similar to N.
(iii) a(T) a(T).

Proof. There are invertible operators A such that for i 1, 2, A-NA
is normal. Thus, replacing T by A-/T A, it suffices to assume that the
operators N are normal. Consider the following operators acting on the
Hilbert space

Since XT T2 X, these two operators commute. But T is a spectral opera-
tot so Y commutes with the scalar (normal) part of T. It follows that
XN1 N X and thus XSI S. X. By Theorem 2.1, N is unitaril equiva-
lent to N and since a(T) a(N), a(T1) a(T).

Part (iii) of Theorem 2.2 is not new; Colojoara and Foias [1] show that
quasi-similar decomposable operators have the same spectrum, and the
class of decomposable operators properly includes the class of spectral op-
erators.
Two generalizations of similarity have been defined on the class of spectral

operators. One of these, introduced by L. Tzafriri [14], has the misfortune of
being called quasi-similarity. In order to avoid confusion, we introduce the
term weakly similar for Tzafriri’s notion. Suppose T and T are spectral
operators with resolutions of the identity E1 and E respectively. We say
T. is weakly similar to T if there is a densely defined closed linear trans-
formation A on with densely defined inverse such that

(i) (AT A-1)x T. x for every x in the domain of A-1 and
(ii) for every Borel set B, there is a constant MB such that

for each x in the domain of A-.
TaEORE 2.3. If T and Tz are spectral operators with resolutions of the

identity E andE and ifX is a quasi-invertible operator such that XTI T X,
then T is weakly similar to T

Proof. It suffices to show that for every Borel set B, XE(B)X- is bounded
on the domain of X-, for then the operator X satisfies all the conditions of the
definition of weak similarity. For i 1, 2, write T as N q- S and we may
assume that N is normal and that E is the spectral measure for N. Write
X in its polar decomposition X UP where P (X’X)/ and U is unitary.
By Theorem 2.2, XN N.X and by Theorem 2.1, U is a unitary equivalence
between N1 and N. Consequently, UE(B)U* E(B) for every Borel
set B. It also follows by the Putnam-Fuglede Theorem that N X* X*N
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and therefore
N, X*X X*N X X*XN,

or X*X commutes with hrl. Thus P commutes with hrl and hence with
E1 (B). If x is in the domain of X-1, then

(XE(B)X-)x UPE(B)P-IU*)x (UE(B) U*)x E(B)x.

So, we have shown what we need to show and the proof is complete.

COROLLARY 2.4. Quasi-similar spectral operators are weakly similar.

Another generalized similarity notion defined for spectral operators, called
semi-similarity, was introduced by/k. N. Feldzamen [7]. Suppose T and
are spectral operators which act on the Hilbert space C and which have
resolutions of the identity E1 and E. respectively. Feldzamen calls T and
T semi-similar if for each i 1, 2, there is a family {P a in A} of pairwise
disjoint nonzero idempotents in the weak closure of the range of E with
k/, P I and such that for each a in A, the restriction of T to the range
of P. is similar to T restricted to the range of P. That semi-similarity
implies quasi-similarity is a consequence of the following theorem.

THEOREM 2.5. Suppose that for each a in some index set A, there are Hilbert
spaces C and and operators Ta and S, in (C) and 2(3) respectively
which are quasi-similar. Let T be the operator T ,, (9 T, acting on the
Hilbert space which is the direct sum of the spaces C, and let S ,, S
in () where , . Then T is quasi-similar to S.

Proof. Suppose X, and Y are the quasi-invertible operators such that
X T, S X, and T Y Y S. If

then X and Y are quasi-invertible and satisfy the desired equations.

COROLL/KRY 2.6.
quasi-similar.

If TI and T. are semi-similar spectral operators, they are

Proof. The operators T1 and T, are similar to spectral operators whose
scalar parts are normal. Thus, since both semi-similarity and quasi-similarity
are equivalence relations which generalize similarity [6, Thin. 26], we may

piassume that the scalar parts of T and T are normal. Let a e A} be
the collections of projections whose existence semi-similarity asserts, and let
T be the restriction of T to the range of P. The idempotents P are
self-adjoint, so their ranges reduce T and hence T ,a T,. Also,
T is similar to T, so by Theorem 1.7, T is quasi-similar to T.
The notion of multiplicity can be generalized from normal operators to

spectral operators [6]. For spectral operators with no part of infinite uniform
multiplicity, an object called the Weyr characteristic of the operator can be
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defined. Both Feldzamen and Tzafriri show that this Weyr characteristic
is a complete similarity invariant for their special similarity and Tzrafriri’s
proof is valid for spectral operators on Banach spaces. Thus for spectral
operators on Hilbert space with no part of infinite uniform multiplicity, all
three generalizations of similarity coincide. It does not seem to be known
if this is true in general.

3. Quasi-similarity and isometries

The isometrics make up another class of operators in which quasi-similarity
reduces to unitary equivalence. Important to our discussion is Wold’s charac-
terizations of isometries [13, p. 3]. If O is a Hilbert space, then H denotes
the direct sum 0 @ where each is 0. We identify O with the sub-
space of H consisting of those vectors f in H for which f(i) 0 for i 0.
The forward shift on H is the operator U defined by

(Uf)(O) O, (Uf)(i) =f(i- 1) for i> O.

Wold’s theorem sys that every isometry is of the form U F acting on

H 9 where F is unitary.

THEOREM 3.1. Quasi-similar isometrics are uni$arily equivalenL

Proof. Suppose V and V are quasi-similar isometrics and let X and Y be
the quasi-invertible operators such taat XV Vo. X and V Y YVs.
Write V and V according to their Wold decompositions: V U F
acting on H (3 . Taking the adjoint of the equation relating X and
the V we obtain V* X* X*V* so if f is in 0 the kernel V* then

V X*)f * *x v )f o.
Thus X*(0) is in , the kernel of V* It follows that the dimension of ,.
is less than or equal to the dimension of x and that X*(I-I) __c I-I. The
adjoint of the last containment is X(ff) __c ff. Viewing X as an operator
from fix to ff we have XF F X. By Proposition 2.1, X(ff)- reduces
F and F is unitarily equivalent to the restriction of F. to .
Using the equation involving Y in the same way the one involving X was

used, we get that dim 0 _< dim 0 and that F is unitarily equivalent to the
restriction of Fx to some reducing subspaee. Since the dimensions of 0 and
0,. are the same, U is unitarily equivalent to U. So it remains to show that
Fx is unitarily equiwlent to F, but this is accomplished by citing the operator
theoretic version of the Sehroder-Bernstein theorem [9].

4. I:xomples
Quasi-similar normal operators, isometrics, or even spectral operators are

very much alike, but in general quasi-similar operators can be quite different.
S.-Nagy and Foias show that quasi-similarity need not preserve the spectrum
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[13, p. 250]. Unfortunately, their example involves the rather complicated
"function caractristique" and still leaves unanswered the question of whether
or not the boundary of the spectra of quasi-similar operators need be the
same. In the following example we exhibit quasi-similar operators A and B
where (A) {z z -< 1} and (B) {0}. It turns out that B is compact
while A is not, so we discover that quasi-similarity need not preserve com-
pactness.

LetA and B. be the operators on n-dimensional Hilbert space given by the
following n X n matrices"

0
1
0

A

0

0 0
1/n 0
0 1In

Then A. and B. are similar, in fact A. is the Jordan canonical form for B..
If A -1 ) A and B ,_1 $ B, then by Theorem 2.5, A is quasi-
similar to B. Both A and B are weighted shift operators [7, p. 46] and hence
their spectra are disks centered at the origin [10, Thm. 5, p. 20]. It remains
to compute the spectral radii r(A) and r(B). /k simple computation shows
that for k < n, A is the n X n matrix with ones along the kh diagonal below
the main diagonal and zeros elsewhere, and A 0 for k >_ n. Thus for
k < n, ]]AII 1 and so JJAj] 1. It follows that the spectral radius
r(A) is

r(A) lim A 1.

S [[ (A/n) (l/n) !] A
Thus B is 0 if k >_ n and is (l/n)* if k < n. Consequently

B Ii sup,> (l/n) 1/(k - 1)

and r(B) lim. II B 0. That B is compact while A is not follows
from [7, p. 86].

In a sense, this is the best (or worst) possible example of a quasi-similarity

TEoE 4.1. If T and S are quasi-similar operators on C, then
a( T) (r( S) is non-empty.

Proof. Suppose X is the quasi-invertible operator such that TX XS.
Define an operator Dr. s on 2 () by Dr. s(A) TA AS for each A
in .c(C). By [11], Drs is invertible if a(T) and (S) are disjoint. But
Drs(X) 0, so Drs is not invertible and there must be an a in a(T) n a(S).

The quasi-similarity in the above example and in [8] are constructed using
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Theorem 2.5 in the case where the summands are not only quasi-similar, but
similar. This raises the question of whether or not all quasi-similarities come
about in this way. With the following example we show that the answer to
this question is no by constructing a non-invertible operator T with no re-
ducing subspaces but which is quasi-similar to a unitary operator. Since T
is not invertible, it cannot actually be similar to the unitary operator, and
since it has no reducing subspaces, it cannot be a direct sum. Central to this
construction is a theorem of Sz.-Nagy and Foia, [13, p. 72] which asserts
that if T is an operator on C which is power bounded (i.e., T -< M for
n 1, 2,... ) and if for every non-zero f n C, neither T’f nor I! T*"f il
converge to zero, then T is quasi-similar to a unitary operator.

If is a Hilbert space, let Lc denote the Hilbert space direct sum
_

9 C where each C is C. We shall view the elements of Lc as C
valued functions defined on the integers and we identify with the subspace
of Lc consisting of the functions f such that f(i) 0 for i n. If A and B
are operators on , define TaB in 2(Lc) by

(Taaf)(0) Af(-1), (TaBf) (1) Bf(O),

(TaBf)(n) =f(n-- 1) for n 0,1.

Matricially, TaB is the following two way infinite matrix acting on Lc in the
usual fashion:

TAB

0
1 0
A (0)

B

A simple computation shows that for n >_ 1,

max {1,

and thus TaB is power bounded.
In case A and B are invertible, so is T. and T]* Ta-I,B-1,

Thus
T- (T)* T-I.B-,.

and T is power bounded. It follows by a theorem of Sz.-Nagy that TaB
is similar to a unitary operator [12].
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Now suppose that A and B are only quasi-invertible and let f be any non-
zero element of Lc. Then for some integer , f() is non-zero and so for
each positive integer n,

(T]Bf)(a.+n) =f(a.) for > 0

=Af(a) fora <0, a+n 0

=BAf(a) fora <O, aWn > 0

Bf(a) for a 0

=f(a) for a+n < 0.
In any case,

T Bf

_
(Taf)(i) > [I (Tf)(a -t- n)II

> min {]If(a)][2, Af(a)]12, Bf(a)II, BAr(a) I]} > O.

Consequently Tf is bounded away from zero. A similar argument
shows that the same is true of *"Tf and thus by the theorem of Sz.-Nagy
and Foia, T, is quasi-similar to some unitary operator.
Choose A and B to be positive quasi-invertible operators with no common

non-trivial reducing subspaces and arrange things so that A is not invertible
and both A and B have norm strictly less than one. To be explicit, choose
C to be L2 of the unit circle with Lebesgue measure, let h be the function in
L defined by h(et) t/4v, 0 _< _< 2r, and let A be the multiplication
operator determined by h:

Af= hf for fin.
The reducing subspaces for A are the subspaces of functions which vanish
almost everywhere on some specified set. Let {e.}_<,< be the standard
orthonormal basis for C, e,,(z) z’, and let {b,}_<.< be a sequence of
distinct positive scalars 0 < b. _< 1/2. Define B by B(e,,) b,,e,, and extend
linearly and continuously to all of C. The reducing subspaces of B are those
subspaces of C spanned by subsets of the e.. Since A is not invertible, there
are vectors f in such that ]] f. I1 1 and Af, converges to zero. If
f are the corresponding vectors in -1, then /] converges to zero so
Ts is not invertible.
Consider the yon Neumann algebra ( generated by Ts T. (a is the

smallest weakly closed *-subalgebra of (Lc) which contains T.) A simple
matricial calculation shows that (TT*) converges in the uniform topology
to the projection M onto /0,1 C. (Here projection means orthogonal
projection, and /0,1 C is the closed subspace spanned by the C, i 0, 1.
More computations show that (MT)’(MT*) converges weakly to the pro-
jection E onto /4<0 and (T’T) ’(1 E) converges uniformly to F,
the projection onto />0.

Let P be any projection in (Le) which commutes with every operator in a.
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In particular, P commutes with E, F, and 1 (E q- F), so P Q $ R $ S
where Q, R and S are projections in

.( 2-= B C), (e0), and (-1 ).

But P also commutes with both TT* and T*T so R commutes with both
BB* and A*A. The operators A and B were chosen to be positive operators
so R commutes with both A and B. Therefore R is either the zero or the
identity operator. If R is the identity, then since P commutes with T,
T’(C0)- C is in the range of S and consequently S must be the identity
operator. Similarly T*"(C0)- C_ is in the range of Q, so Q and hence P
is the identity operator. If, on the other hand, R is zero, then 1 P is also
a projection which commutes with a, and 1 P is restricted to C will be
the identity. Thus 1 P is i as above or P is the zero projection.
Any projection which commutes with T will also commute with T* and

hence with a, so we have shown that T has no non-trivial reducing subspaces.
This completes our example.
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