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Abstract. In this work, the effects of loading rate, material rate sensitivity and con-
straint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite
element simulations are performed within a mode I, plane strain modified boundary
layer framework by prescribing the two term (K − T ) elastic crack tip field as remote
boundary conditions. The material is assumed to obey a rate-dependent crystal plas-
ticity theory. The orientation of the single crystal is chosen so that the crack surface
coincides with the crystallographic (010) plane and the crack front lies along [101]
direction. Solutions corresponding to different stress intensity rates K̇ , T -stress val-
ues and strain rate exponents m are obtained. The results show that the stress levels
ahead of the crack tip increase with K̇ which is accompanied by gradual shrinking of
the plastic zone size. However, the nature of the shear band patterns around the crack
tip is not affected by the loading rate. Further, it is found that while positive T -stress
enhances the opening and hydrostatic stress levels ahead of crack tip, they are consid-
erably reduced with imposition of negative T -stress. Also, negative T -stress promotes
formation of shear bands in the forward sector ahead of the crack tip and suppresses
them behind the tip.

Keywords. Rate sensitivity; crack tip constraint; quasi-static fields;
crystal plasticity; finite elements.

1. Introduction

The stress and plastic strain fields prevailing near a stationary crack tip in an elastic–plastic solid
govern the crack initiation process. Thus, cleavage crack initiation is determined by the level of
opening stress ahead of a tip (Ritchie et al 1973). On the other hand, ductile fracture processes
like micro-void growth and coalescence in the process zone ahead of the tip are controlled by the
level of plastic strain and hydrostatic stress (Thomason 1990). It is found from recent studies on
fatigue loading of polycrystalline alloys that crack initiation and subsequent transgranular crack
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growth are determined by the plastic slip associated with individual slip systems (Zhai et al 2000;
Duber et al 2006; Blochwitz et al 2008). Thus, a thorough understanding of crack tip fields and
the influence of various factors such as fracture geometry, material parameters, loading rate and
temperature are crucial to undertake fracture mechanics-based design as well as for developing
materials which are resistant to fracture. In the context of automobile applications, this will help
in improving formability of materials such as aluminum and magnesium alloys.

A comprehensive review of stationary crack tip fields in elastic–plastic solids was recently
performed by Narasimhan et al (2009). It is clear from this review that these fields in rate-
independent, isotropic plastic solids are now well-understood. The asymptotic structure of these
fields in power law hardening plastic solids obeying the von Mises yield condition was first
studied by Hutchinson (1968) and Rice & Rosengren (1968). Their asymptotic solution (referred
to as the HRR solution) underscored the unique role played by the J -integral proposed by Rice
(1968) in controlling the stress and plastic strain variations near the tip. It also showed that high
opening and hydrostatic stresses prevail ahead of the tip under mode I plane strain conditions,
which aid both cleavage and ductile fracture mechanisms. However, in order to employ J as a
single fracture characterizing parameter in ductile materials, it is essential that the J -dominant
HRR fields should prevail over sufficiently large length scales (Hutchinson 1983).

The limitation of the single parameter characterization by J was demonstrated by McMeeking
& Parks (1979), Betegon & Hancock (1991) and O’Dowd & Shih (1991). These studies showed
that the level of stress triaxiality (or crack tip constraint) prevailing ahead of the tip under Mode
I loading is strongly dependent on the fracture geometry. Thus, while fracture geometries which
experience predominantly bending over the uncracked ligament (such as deeply cracked Three
Point Bend or TPB specimen) display high constraint (comparable to the levels predicted by the
HRR solution), tension dominated geometries such as Centre Crack Panel (or CCP) show much
reduced triaxiality levels. This has led to development of two-parameter J − Q description of
crack tip fields as well as the fracture resistance in isotropic plastic solids (O’Dowd & Shih 1991;
Anderson 2005). Here, Q is a triaxiality parameter which is close to zero or slightly positive for
high constraint geometries and significantly negative for low constraint ones. In order to define
Q, a difference stress field is constructed between the stress distribution actually prevailing near
the tip and a reference solution (O’Dowd & Shih 1991). The reference field may be chosen as
the HRR solution. Alternately, the small-scale yielding solution obtained from a boundary layer
analysis setting the T -stress, which is the second term in the elastic crack field (Williams 1957),
as zero in the remote region far away from the crack tip can be used (O’Dowd & Shih 1994).

Koppenhoefer & Dodds (1996), Basu & Narasimhan (2000) and Jayadevan et al (2002a, b)
examined constraint loss under dynamic loading in isotropic solids taking into account the com-
bined effects of rate sensitivity and material inertia. However, it must be noted that HRR solution
or the rate-independent small-scale yielding solution with T = 0 (O’Dowd & Shih 1994) are
not valid reference fields for defining the constraint parameter Q in rate-dependent solids. As
pointed out by Basu & Narasimhan (2000), use of these solutions in the context of rate-dependent
materials (as in the work of Koppenhoefer & Dodds (1996)) will lead to erroneous interpreta-
tion of the results. To resolve this issue, Basu & Narasimhan (2000) employed a modified HRR
field obtained by suitably scaling the yield strength based on the strain rate prevailing near the
tip. However, such a modification is ad-hoc in nature. Hence, Jayadevan et al (2002b) performed
systematic quasi-static analysis of a stationary crack in a rate-sensitive (power law viscous)
isotropic plastic solid under small scale yielding conditions with different stress intensity rates
K̇ . They concluded that the near-tip stress and plastic strain fields are characterized by the ratio
K̇/ (K ∈̇o) in addition to other parameters such as J and T . Here ∈̇o is a reference strain rate.
However, the exact nature of the dependence of these fields for isotropic plastic solids on the
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parameter K̇/ (K ∈̇o) was not discerned in their work. Based on the above important observa-
tion, Jayadevan et al (2002b) employed the small scale yielding solution obtained with T = 0
and the respective K̇/ (K ∈̇o) value as the reference field to define the constraint parameter Q.

It must be emphasized that all the above studies pertain to isotropic plastic solids obeying
the von Mises yield condition. However, in reality, most alloys used in engineering applications
are polycrystalline in nature. In certain special situations such as high pressure turbine blades
of aircraft engines, single crystals of Ni-based superalloys are used. In such cases, the role of
material microstructure, dislocation based hardening mechanisms, and lattice orientation of the
grains surrounding the tip with respect to the crack plane and loading direction will influence
the mechanics of fracture (Crone et al 2004; Patil et al 2010; Blochwitz et al 2008). Further, as
already mentioned, the nature of the slip bands occurring in the individual grains surrounding the
tip may dictate the fracture behaviour in polycrystalline alloys (Zhai et al 2000; Duber et al 2006;
Blochwitz et al 2008). Thus, an understanding of this behaviour from a fundamental perspective
can be obtained by examining crack tip fields in single crystals.

Rice (1987) first constructed an asymptotic solution for a stationary crack in rate-independent,
ideally plastic FCC single crystal. He considered the specific orientation in which the crack plane
coincides with the (010) crystallographic plane and the crack front along the

[
101

]
direction

which has been frequently observed to occur in experimental investigations (Garrett & Knott
1975; Neumann 1974). His solution structure involves constant stress sectors separated by dis-
continuities which correspond to bands of intense shear deformation. In particular, for the above
lattice orientation, he predicted slip shear bands at 55◦ and 125◦ to the crack line which are
aligned parallel to the traces of two families of slip lines on the plane of deformation. In addi-
tion, a kink shear band at 90◦ to the crack line was predicted which is perpendicular to the trace
of a third family of slip lines. A recent experimental investigation using Electron Back Scat-
tered Diffraction (EBSD) by Patil et al (2009b) confirmed the existence of the kink shear band at
90◦ to a notch surface in TPB specimens of aluminum single crystal. However, previous experi-
mental studies on copper and copper–beryllium single crystals using optical metallography and
Moire interferometry technique (e.g., Crone et al 2004) could not detect this band.

Patil et al (2008b, 2010) showed from modified boundary layer analysis that a valid J −Q field
exists in rate-independent FCC single crystal irrespective of lattice orientation. They established
correlations between the constraint parameter Q and the T -stress, with negative values of T
inducing significant constraint loss as in isotropic plastic solids. The slip band pattern near the
tip was also found to depend on the constraint level. Guided by these numerical results, Patil
et al (2009a) constructed two families of slip line solutions in ideally plastic FCC single crystals
which display a range of constraint levels. An important feature of these solutions is that they
incorporate an elastic sector in the near-tip region. In this connection, it must be mentioned that
studies by Arakere et al (2005, 2009) in FCC single crystals of superalloys have highlighted the
importance of elastic anisotropy on the crack tip fields.

It is clear from the above review that stationary crack tip fields in rate-independent FCC sin-
gle crystals are now well-understood. On the other hand, there has been no investigation on the
effect of strain rate sensitivity and loading rate on the stress and plastic slip distribution as well
as constraint levels near a tip. Thus, the objective of this work is to examine the general structure
of these distributions and the plastic zone shapes in a rate-sensitive FCC single crystal. To this
end, modified boundary layer simulations are conducted assuming a power-law viscous response
for the single crystal. The lattice orientation analysed by Rice (1987) is considered. Finite ele-
ment solutions are generated corresponding to different values of T stress, stress intensity rate
K̇ and rate exponent m. It is found that the near-tip stress distribution scales with the parame-
ter

(
K̇/ (K γ̇o)

)m
except at very high values of K̇/ (K γ̇o), when radial distance from the tip is
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normalized by J/τo. Here τo is the initial slip resistance and γ̇o is a reference plastic slip rate. A
valid two-parameter J − Q characterization of the crack tip fields is shown to exist when Q is
defined using a reference solution with T = 0 and the same level of K̇/ (K γ̇o). Further, while
increase in loading rate does not affect the qualitative nature of the plastic slip distribution, but
only shrinks the size of the plastic zone at a given value of K , constraint level changes the pattern
of the shear bands as in rate-independent single crystal.

2. Constitutive equations

In this work, the single crystal plasticity model proposed by Asaro (1983) is employed with the
assumption of multiplicative decomposition of the deformation gradient tensor F given by

F = F∗Fp. (1)

In the above equation, F∗ constitutes the elastic stretching and rotation part of the deformation
gradient tensor, while Fp represents plastic part due to slip in the slip systems. With the assump-
tion of small elastic strains, the Jaumann rate of Kirchhoff stress based on lattice rotation is
related to the elastic part of rate of deformation tensor through the elasticity tensor.

The evolution of Fp is related to the activity on individual slip systems and is given by

Lp = Ḟ
p
Fp−1 =

∑n

α=1
γ̇αmα, (2)

where n, is the number of slip systems while γ̇α and mα represents plastic slip rate and plas-
tic flow tensor or Schmid tensor, respectively, on slip system α. For a slip system α with slip
direction Sα and slip plane normal Nα , the Schmid tensor is given by

mα = Sα ⊗ Nα. (3)

As suggested by Peirce et al (1983) and Cuitino & Ortiz (1992), the material rate sensitivity
is incorporated by assuming a power-law viscous form of the constitutive response which is
given by

γ̇α = γ̇o

(
τα

τ
p
α

) 1
m

. (4)

In the above equation, τα and τ
p
α represent the resolved shear stress and current strength of slip

system α, respectively, whereas γ̇0 is a reference strain rate and m is the strain rate exponent.
The single crystal is assumed to be elastic-perfectly plastic so that τ

p
α ≡ τ0, where τ0 is the

initial slip resistance. The initial slip resistance is generally taken to be same for all slip systems.
This is because during initial stages of plastic deformation, barrier to dislocation movement is
same for all slip systems. As deformation progresses, the slip resistance may evolve differently
on various slip systems for a strain hardening single crystal. In this work, the values of γ̇0, τ0,
Young’s modulus E and Poisson’s ratio v are taken as 0.1, 10 MPa, 70 GPa and 0.3, respectively.
These values correspond to aluminum single crystals (Patil et al 2008a). Further, for simplicity,
the material is assumed to be elastically isotropic. This assumption is reasonably appropriate for
aluminum which does not exhibit pronounced elastic anisotropy.
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The above constitutive equations are implemented in a general purpose finite element code
FEAP (Zienkiewicz & Taylor 1989) and a rate tangent method is used to update the stresses and
internal variables (Peirce et al 1983).

3. Finite element model

In the modified boundary layer analysis, a large semicircular domain containing a crack along
one of its radii is modelled with 2D plane strain finite elements as shown in figure 1a. The radius
of the outer boundary is taken sufficiently large so that the plastic deformation is well-contained

(a)

(b)

Figure 1. (a) Finite element mesh and boundary conditions along with coordinate system. Due to mode
I and crystallographic symmetry, only half of the geometry is modelled with symmetry conditions applied
on X2 = 0 line. (b) Traces of slip systems on the plane of deformation.
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within the domain and small scale yielding conditions are preserved. Mode I symmetry bound-
ary conditions are imposed on the line ahead of the crack tip, while traction free boundary
conditions are maintained on the crack face. Displacement components based on first and sec-
ond terms (which are governed by K and T , respectively) of linear elastic mode I crack tip field
(Williams 1957) are prescribed on the outer boundary as indicated in figure 1a. Here (r , θ) are
polar coordinates centered at the crack tip. It must be mentioned here that the effect of the speci-
men geometry on the plastic crack tip fields under small to intermediate scale yielding conditions
is manifested through the T -stress as discussed elaborately by O’Dowd & Shih (1991, 1992) and
Betegon & Hancock (1991) for isotropic rate-independent plastic solids. It must be mentioned
that the selected single crystal orientation (the crack plane coinciding with the (010) plane and
crack front lying along

[
101

]
direction) is also symmetric with respect to the crack plane. With

this particular orientation, only three pairs of slip systems can be active to result in plane strain
deformation in the X1 − X2 plane depicted in figure 1a (Rice 1987). These three pairs of slip
systems are (i) (111)

[
110

]
and (111)

[
011

]
, (ii)

(
111

)
[110] and

(
111

)
[011], (iii)

(
111

)
[101]

and
(
111

)
[101]. Further, each system of a particular pair should have the same plastic slip. It

can be shown that the resolved shear stress on each system of a particular pair would indeed be
the same, which in view of Eq. (4) ensures that the above condition will hold. Henceforth, these
pairs will be referred to as S1, S2 and S3, respectively. The traces of S1, S2 and S3 in the plane
of deformation are shown in figure 1b. Static equilibrium solutions for various loading rates are
obtained by prescribing displacement rates at the outer boundary corresponding to different K̇
while keeping the ratio T /K fixed. The value of K is increased till the desired level of T -stress
is attained.

4. Results and discussion

In this section, results pertaining to the structure of the crack tip field in rate-dependent FCC
single crystal will be discussed. In the discussion, the loading rate is described as the prescribed
rate of stress intensity factor K̇ .

4.1 Effect of loading rate and strain rate exponent m

4.1a Radial variations of stress: Radial variations of normalized stress component σ22/τo

ahead of the crack tip at a fixed value of K = 500 N-mm
3
2 corresponding to different stress inten-

sity rates K̇ are shown in figure 2a and b for m = 0.01 and 0.1, respectively. It can be seen from
figure 2a that for the case m = 0.01, the stress distribution is relatively independent of loading
rate indicating that this case corresponds to nearly rate-independent material behaviour. Further-
more, the value of opening stress close to the crack tip (for example, at a normalized distance of
of r/ (J/τo) = 4) corroborates well with the fully plastic solution of Rice (1987). On the other
hand, for m = 0.1, the stress level ahead of the crack tip increases strongly with applied loading
rate. Thus, at a normalized distance of r/ (J/τo) = 4, the value of σ22 is 7.1τo corresponding to

K̇ = 104 N-mm− 3
2 /s, whereas it becomes 8.2τo, 8.8τo and 10.8τo when K̇ is increased to 5 ×

104, 105 and 106 N-mm− 3
2 /s, respectively. Also, the difference in slope of σ22/τo with respect

to normalized distance r/ (J/τo) can be noted between figure 2a and b. Higher strain rate near
the crack tip and larger strain rate sensitivity for m = 0.1 is responsible for the difference.

The elevation in stress level at higher loading rate can have a strong implication on the fracture
mechanism, particularly for the case of brittle (cleavage) fracture. The brittle fracture mechanism
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Figure 2. Radial variations of σ22/τo ahead of the crack tip with normalized distance for different loading

rates at a fixed K of 500 N-mm− 3
2 and T = 0 corresponding to (a) m = 0.01, (b) m = 0.1.

is solely governed by the opening stress component (Ritchie et al 1973) and elevated stress level
at higher loading rate can accelerate the fracture process.

4.1b Contours of plastic slip: Contour plots of plastic slip in slip systems S1, S2 and S3

are shown in figure 3a, b and c, respectively, at a fixed value of K = 500 N-mm− 3
2 and

K̇ = 104 N-mm− 3
2 /s corresponding to m = 0.1. Similar set of plots are presented in figure 4a–c

under identical conditions but for K̇ = 106 N-mm− 3
2 /s. In all the plots, the same contour lev-

els are displayed to facilitate direct comparison. Also the coordinate axes are normalized by
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Figure 3. Fringe contours of plastic slip on slip system (a) S1, (b) S2 and (c) S3 at K = 500 N-mm− 3
2 ,

T = 0 and K̇ = 104 N-mm− 3
2 /s for m = 0.1.

(K/τo)
2. It can be seen from figure 3a that the activity on slip system S1 produces a strong slip

shear band that makes an angle θ = 55◦ with the X1 axis. On the other hand, slip activity on S2
creates a slip shear band at θ = 125◦ and another small and weak kink shear band at θ ≈ 45◦ (see
figure 3b). Figure 3c shows formation of a strong kink shear band at θ = 90◦ due to activity on
slip system S3. It must be noted here that a slip shear band is aligned parallel to the slip direction
and involves gliding of dislocations emitted from the tip. By contrast, a kink shear band is almost
perpendicular to the slip direction and involves expansion of dislocation dipole loops which are
formed from internal sources (Rice 1987). The latter gives rise to strong lattice rotation and can
be detected in experimental studies using a method such as EBSD (Patil et al 2009b).

On comparing figure 3a–c with figure 4a–c, it can be seen that imposition of higher loading
rate does not change the character of the slip bands. However, it diminishes the radial extents of
all the bands. Thus, for example, the radial extent of the contour corresponding to γ1 = 0.005 is

0.0018(K/τo)
2 for K̇ = 104 N-mm− 3

2 /s (see figure 3a). The radial spread of the same contour

becomes 0.0012(K/τo)
2 when K̇ = 106 N-mm− 3

2 /s (see figure 4a). Indeed, it was found that
the slip rate γ̇i is higher for higher loading rate. However, longer time duration needed to attain
a certain value of K for the case of lower loading rate results in larger total accumulated plastic
slip as compared to the case of higher loading rate.

4.1c Contours of maximum principal logarithmic plastic stretch: The contours of maxi-
mum principal logarithmic plastic stretch log λ

p
1 , is shown in figure 5 at a fixed K level of
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Figure 4. Fringe contours of plastic slip on slip system (a) S1, (b) S2 and (c) S3 at K = 500 N-mm− 3
2 ,

T = 0 and K̇ = 106 N-mm− 3
2 /s for m = 0.1.

500 N-mm− 3
2 for different loading rates. In this plot, figures a, b and c correspond to m = 0.1

but K̇ = 104, 105 and 106 N-mm− 3
2 /s, respectively, while figure 5d pertains to m = 0.01 and

K̇ = 104 N-mm− 3
2 /s. The same contour levels are displayed in all the figures for direct compar-

ison. On examining figure 5a and c along with figures 3 and 4, it can be easily conceived that
contributions from the slip in each slip system lead to the overall shape of the plastic zone. Thus,
the three finger-like structure of the plastic zone shape is due to the slip shear band at 55◦ and
125◦ on slip systems S1 and S2, respectively, as well as due to the kink shear band at θ = 90◦
on slip system S3. Similar to the observation made in the previous section, it can be seen that
the plastic zone retains its shape for all loading rates (compare figure 5a, b and c). However, its

size decreases with increase in loading rate. Thus, at a fixed value of K = 500 N-mm− 3
2 and

m = 0.1, the maximum spread of the contour corresponding to log λ
p
1 = 0.006 remains along

θ = 55◦ direction, but its radial extent is 0.0013 (K/τo)
2, 0.0011 (K/τo)

2 and 0.0009 (K/τo)
2

corresponding to K̇ = 104, 105 and 106 N-mm− 3
2 /s, respectively (see figure 5a, b and c). How-

ever, Jayadevan et al (2002b) found that for an isotropic rate-dependent material obeying the
von Mises yield condition, the plastic zone size is independent of loading rate. On comparing
figure 5a and d, it can be perceived that m value has similar effect on plastic zone as loading
rate. For example, the contour pertaining to log λ

p
1 = 0.006 which spreads up to 0.0013 (K/τo)

2

in figure 5a for m = 0.1, extends to a much larger distance of 0.0019 (K/τo)
2 in figure 5d for

m = 0.01.
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Figure 5. Fringe contours of log λ
p
1 at K = 500 N-mm− 3

2 and T = 0. Figure (a), (b) and (c) correspond

to m = 0.1 but K̇ = 104, 105 and 106 N-mm− 3
2 /s, respectively, while figure (d) pertains to m = 0.01 and

K̇ = 104 N-mm− 3
2 /s.

The reduction in plastic zone size under higher loading rate for rate-sensitive solids can retard
ductile fracture mechanisms such as void growth and coalescence. On the other hand, as already
noted, enhanced stress levels at higher loading rate will accelerate the brittle fracture process.
This implies that a ductile to brittle transition will happen in rate-sensitive ductile single crystals
as loading rate increases. However, it must be mentioned that when inertial effect is taken into
account, it may tend to decrease the stress levels at high loading rates (owing to constraint loss),
as observed recently by Biswas & Narasimhan (2011), which may counteract the above noted
influence of strain rate sensitivity.

4.2 Structure of crack-tip field

For rate-independent single crystals, the stress field ahead of a crack tip under small scale
yielding conditions can be expressed as (Patil et al 2008b):

σi j

τo
= σ̃i j

(
r

J/τo
, θ,

T

τo
,

E

τo
, Hardening parameters

)
, (5)

where, r is the radial distance from the crack tip, θ is the angle measured from the crack line and
E , τo are Young’s modulus and initial value of critical resolved shear stress. While the stress field
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shown in figure 2a corresponds to this form, the stress variation in figure 2b shows additional
dependence on K̇ . Based on dimensional consideration and motivated by the work of Jayadevan
et al (2002b) for rate-sensitive isotropic plastic solids, the structure of the near-tip stress field is
postulated to have the following form:

σi j

τo
= σ̃i j

(
r

J/τo
, θ,

K̇

K γ̇o
,

T

τo
,

E

τo
, m, Hardening parameters

)
. (6)

The above implies that for a given material and fixed T/τo, the parameter K̇/ (K γ̇o) will char-
acterize the crack tip field when the distance r from the crack tip is normalized by J/τo. In order
to verify this self-similar structure of the crack tip stress field, radial variations of normalized
stress components σ11/τo and σ22/τo corresponding to different combinations of K and K̇ (but
with the same ratio of K̇/ (K γ̇o)) are presented in figure 6a and b, respectively, for the case
m = 0.1 and T = 0. It can be seen from these figures that both the stress components become
invariant corresponding to a fixed value of K̇/ (K γ̇o) when plotted with respect to r/ (J/τo).
This confirms the validity of the form given by Eq. (6) above.

Furthermore, a reasonable form for the near-tip stress variation which explicitly reflects the
dependence on the parameter K̇/ (K γ̇o) is

σi j

τo
=

(
K̇

K γ̇o

)m

σ̂i j

(
r

J/τo
, θ,

T

τo
,

E

τo
, m, Hardening parameters

)
. (7)

Figure 6. Radial variation of (a) σ11/τo, (b) σ22/τo and (c) log λ
p
1 with normalized distance ahead of

crack tip for m = 0.1 and T = 0 at different K and K̇ but with same K̇/K ratio.



160 P Biswas and R Narasimhan

The non-dimensional function σ̂i j along θ = 0 for the case of m = 0.1 and T = 0 may be
deduced from the plots displayed in figure 6. In order to check the validity of the form suggested

in Eq. (7), the radial variations of σ11/τo and σ22/τo for m = 0.1, T = 0 and K = 500 N-mm− 3
2

are presented in figure 7a and b, respectively. Here, the variations obtained from finite element
analysis corresponding to different K̇ values are shown by continuous lines whereas those pre-
dicted by Eq. (7) are indicated by similar line styles along with symbols. It can be seen that the

two sets of curves match well for all loading rates except at very high K̇ of 106 N-mm− 3
2 /s. This

may be due to the fact that corresponding to this level of K̇/ (K γ̇o) of 20000, the plastic strain
levels are low (see figure 5c) and hence the elastic–plastic stress fields may not have fully devel-
oped. Indeed, it was verified that for this loading rate, the variation obtained directly from finite
element analysis converges to that predicted by Eq. (7) as K increases further.

The radial variation of log λ
p
1 is plotted in figure 6c for the same combinations of K and K̇

as in figure 6a and b. It can be seen that similar to the radial distribution of stress components,
log λ

p
1 distribution also becomes invariant for a fixed value of parameter K̇/ (K γ̇o) when plotted

against r/ (J/τo). Thus, the principal plastic logarithmic stretches also can be assumed to have
the functional form given by:

log λ
p
i = g̃i

(
r

J/τo
, θ,

K̇

K γ̇o
,

T

τo
,

E

τo
, m, Hardening parameters

)
. (8)

In the above equation, log λ
p
i is the i-th principal logarithmic plastic stretch.

Figure 8a and b show contour plots of log λ
p
1 for m = 0.1 corresponding to two combinations

of K and K̇ , but with the same ratio of K̇/ (K γ̇o). It can be seen that the plastic zone shape
and size also become identical for a given material with fixed K̇/ (K γ̇o) when the distance is
normalized by (K/τo)

2 or equivalently by J/τo. Thus, under small scale yielding conditions, the
radial extent of the plastic zone at an angle θ with respect to the crack line can be expressed by
the form:

rp

(K/τo)
2

= h̃

(
θ,

K̇

K γ̇o
,

T

τo
,

E

τo
, m, Hardening parameters

)
. (9)

Figure 7. Radial variation of (a) σ11/τo and (b) σ22/τo ahead of tip obtained from scaling non-
dimensional function σ̂i j by

(
K̇/ (K γ̇o)

)m
(see Eq. 7) along with those computed from finite element

simulation for K = 500 N-mm− 3
2 , T = 0 and m = 0.1. Here, the continuous solid lines represent stresses

obtained from finite element analysis and those with symbols represent variations predicted by Eq. (7).
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Figure 8. Fringe contours of log λ
p
1 for m = 0.1 and T = 0 corresponding to constant K̇/K ratio with

(a) K = 100 N-mm− 3
2 and K̇ = 104 N-mm− 3

2 /s, (b) K = 1000 N-mm− 3
2 and K̇ = 105 N-mm− 3

2 /s.

4.3 Crack tip constraint

In this section, the effect of loading rate and rate exponent m on crack tip constraint is discussed.
Attention is restricted to the radial variation of stress components ahead of the tip, plastic slip in
individual slip system and overall plastic zone shape and size.

4.3a Radial variation of stress: The radial variations of opening stress component correspond-

ing to K̇ = 104 N-mm− 3
2 /s and 105 N-mm− 3

2 /s are shown in figure 9a and b, respectively.

These plots pertain to a fixed value of K = 500 N-mm− 3
2 , but at different T/τo levels. It can

be seen from these figures that imposition of negative T -stress lowers the opening stress com-
ponent considerably compared to T = 0 case. On the other hand, positive T -stress marginally
enhances the opening stress level. Thus, for example, at r/ (J/τo) = 4 and corresponding to

K̇ = 104 N-mm− 3
2 /s (see figure 9a), the value of σ22 increases to 7.5τo for T/τo = 1 from

7.1τo for T/τo = 0. At the same radial location, it drops to 6τo when T/τo = −1. Further, in
both the figures, the curves pertaining to different T -stress levels remain fairly parallel to each

Figure 9. Radial variation of σ22/τo ahead of crack tip with normalized distance for different T -stress

levels corresponding to (a) K̇ = 104 N-mm− 3
2 /s and (b) K̇ = 105 N-mm− 3

2 /s at a fixed value of K =
500 N-mm− 3

2 .
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other for fixed K̇ . These characteristics are similar to rate-independent single crystal (Patil et al
2008b). On comparing figure 9a and b it can be observed that there is an increase in σ22 stress
component as K̇ increases for a fixed T -stress level.

4.3b Difference stress field: One of the primary ingredients in determining the validity of two-
parameter (J − Q) characterization of crack-tip field, as proposed by O’Dowd & Shih (1992),
is the choice of the reference field. The choice of the reference field could be a HRR-type
asymptotic solution for single crystal (see, for example Saeedvafa & Rice 1989) or a small scale
yielding solution corresponding to T = 0. However, these solutions based on rate-independent
material behaviour are not suitable to serve as the reference field for the rate-sensitive case since
the loading rate strongly influences the stress distribution ahead of the tip (see figure 2b). Hence,
the stress variation obtained from the small scale yielding analysis with T = 0 corresponding to
the respective rate sensitivity index m and value of K̇/ (K γ̇o) is employed as the reference solu-
tion in order to compute the difference field. This is justified in view of the forms suggested by
Eqs. (6) and (7) for the near-tip stress distribution. Thus, the difference stress field components
are defined as

Qσ̂i j = σi j − (
σi j

)
T =0

τo
, (10)

where σi j and (σi j )T =0 are evaluated at the same value of K̇/ (K γ̇o).
The components of the difference stress field Qσ̂11 and Qσ̂22 are plotted against normalized

distance ahead of the tip (figure 10a and b) corresponding to K̇ = 104 and 105 N-mm− 3
2 /s at

the same value of K = 500 N-mm− 3
2 . These figures pertain to m = 0.1. It can be seen from

these figures that components of the difference field are positive when T is positive and becomes
highly negative as T becomes negative. Thus, for example at r/ (J/τo) = 4, the value of Qσ̂22 is

0.4 and −1.1 corresponding to T/τo = 1 and T/τo = −1, respectively, for K̇ = 104 N-mm− 3
2 /s

(see figure 10b). Interestingly, loading rate is seen to have only a marginal effect on the difference
stress field. Further, the difference stress components remain fairly constant over the range 1 ≤
r/ (J/τo) ≤ 10 indicating that they are slowly varying functions of distance.

The influence of rate exponent m on the radial variation of the difference stress components is

shown in figure 11a and b corresponding to fixed K̇ = 104 N-mm− 3
2 /s and K = 500 N-mm− 3

2 .

Figure 10. Radial variation of the components of difference stress field (a) Qσ̂11 and (b) Qσ̂22 with

normalized distance subjected to various T -stress levels at K = 500 N-mm− 3
2 for two loading rates.
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Figure 11. Radial variation of the components of difference stress field (a) Qσ̂11 and (b) Qσ̂22 with

normalized distance subjected to various T -stress levels at a fixed value of K = 500 N-mm− 3
2 and K̇ =

104 N-mm− 3
2 /s for two m values.

It can be seen from these figures that the basic characteristic of the difference field remains same
irrespective of the m value. However, higher m value shifts the curves slightly upwards indicating
marginal gain in constraint when compared to lower m value.

In order to quantify the difference field further, the value of Qσ̂22 and the ratio Qσ̂22/Qσ̂11
at r/ (J/τo) = 4 are summarized in table 1 for two loading rates and three m values. It can be
seen that irrespective of loading rate and m values, the component Qσ̂22 and Qσ̂11 changes sign
with T -stress. This is similar to the observation made by Patil et al (2008b) for rate-independent
FCC single crystal. The ratio Qσ̂22/Qσ̂11 remains reasonably close to unity for most of the
cases. However, it was found that unlike isotropic solids (O’Dowd & Shih 1992), the difference
field is not truly hydrostatic in nature since Qσ̂33 is not equal to the in-plane components of
the difference stress field (see also Patil et al 2008b). Thus, a constraint parameter Q is defined
based on the hydrostatic part of the difference stress field components as Q = Qσ̂kk/3 evaluated
at r/ (J/τo) = 4. This parameter is also presented in table 1. It can be seen that Q is marginally
positive when T is positive but it becomes strongly negative as T becomes negative. Further,

Table 1. Values of different parameters associated with difference stress field for various T/τo, K̇ and m

values at a fixed value of K = 500 N-mm− 3
2 .

m K̇
(

N-mm− 3
2 /s

)
T/τo Qσ̂22 Qσ̂22/Qσ̂11 Q Q′

0.01 1.0 × 104 1 0.31 1.16 0.25 0.003
−1 −1.53 1.04 −1.3 −0.018

1.0 × 105 1 0.25 1.17 0.33 −0.004
−1 −1.51 1.04 −1.29 0.019

0.05 1.0 × 104 1 0.35 1.0 0.31 −0.002
−1 −1.26 0.91 −1.14 −0.004

1.0 × 105 1 0.39 1.02 0.33 0.004
−1 −1.19 0.91 −1.08 −0.005

0.1 1.0 × 104 1 0.4 0.82 0.38 0.012
−1 −1.1 0.87 −1.02 0.008

1.0 × 105 1 0.42 0.84 0.39 0.008
−1 −1.0 0.85 −0.94 −0.008
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comparing Q values at a fixed loading rate but for different m values, a small enhancement in
constraint can be observed with increase in strain rate sensitivity index. Similarly, higher loading
rate causes a marginal gain in constraint.

In addition, to assess the robustness of two-parameter characterization of crack tip field by J
and Q, a quantity Q′ which is defined by:

Q′ = Q|r/(J/τo)=8 − Q|r/(J/τo)=2

6
(11)

is included in table 1. Lower magnitude of the parameter Q′ implies that the constraint parameter
Q is a slowly varying function of distance. It can be seen from the table that the parameter Q′
has a very small magnitude irrespective of loading rate and m.

4.3c Plastic slip in individual slip systems and maximum principal plastic stretch: The con-

tours of plastic slip in individual slip systems S1, S2 and S3 for m = 0.1 and K̇ = 104 N-mm− 3
2 /s

at K = 500 N-mm− 3
2 are shown in figure 12a, b and c, respectively, corresponding to T/τo =

−1. Also, contours of log λ
p
1 are presented in figure 12d. A strong slip shear band which makes

an angle θ = 55◦ with the crack line can be seen to emanate from the crack tip in figure 12a
due to activity on S1. On the other hand, activity on S2 creates a weak but larger kink shear band
at θ = 45◦ and a weak, small slip shear band at θ = 125◦ (figure 12b). Finally, activity on S3

Figure 12. Fringe contours of plastic slip on slip system (a) S1, (b) S2, (c) S3 and (d) contours of log λ
p
1

at K = 500 N-mm− 3
2 and K̇ = 104 N-mm− 3

2 /s for m = 0.1 and T/τo = −1.
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produces a strong kink shear band at θ = 90◦ (see figure 12c). On comparing figure 12a–c with
figure 3a–c, it can be seen that imposition of negative T -stress, increases the radial extent of the
shear bands that are located in the forward sector (0◦ ≤ θ ≤ 90◦) of the crack tip and decreases
their radial extent in the backward sector (90◦ ≤ θ ≤ 180◦). For example, the radial extent of
the slip shear band at θ = 55◦ is 0.003(K/τo)

2 for T/τo = −1 as compared to 0.0018(K/τo)
2

for T = 0 (figure 3a). On the other hand, the slip shear band at θ = 125◦ decreases in its radial
extent from 0.0008(K/τo)

2 for T = 0 (figure 3b) to 0.0003(K/τo)
2 for T/τo = −1. Patil et al

(2008b) noted similar trends for rate-independent FCC single crystal. Similarly, on comparing
figures 5a and 12d, it can be noticed that the plastic zone shape for T/τo = −1 is dominated
mainly by the strong slip shear band at θ = 55◦ and does not possess the three finger-like shape
seen in figure 5a for T = 0. From the above discussion, it follows that the T-stress may play an
indirect role in changing the slip directions through the formation of kink shear bands near the
tip (see, in particular, the kink shear band at θ = 45◦ in figure 12(b)).

The angular distribution of plastic slip γi in slip system Si at a radial distance r/ (J/τo) = 4

is plotted in figure 13a, b and c for m = 0.1 and K̇ = 104 N-mm− 3
2 /s at K = 500 N-mm− 3

2 .
Results pertaining to different T -stress levels are displayed. Also, the angular variation of log λ

p
1

at the same radial distance is presented in figure 13d. In these plots θ = 0◦ and 180◦ represent
points directly ahead of the crack tip and on the crack flank, respectively. A distinct peak in γ1
distribution at θ ≈ 55◦ can be seen from figure 13a due to the presence of strong slip shear band

Figure 13. Angular variation of plastic slip (a) γ1 on S1, (b) γ2 on S2, (c) γ3 on S3 and (d) maximum prin-

cipal logarithmic plastic stretch log λ
p
1 for different T -stress levels at a fixed value of K = 500 N-mm− 3

2

corresponding to K̇ = 104 N-mm− 3
2 /s and m = 0.1.
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at this angular location. The magnitude of the peak increases as T becomes negative. Thus, the
peak value of γ1 for T/τo = 1 is 0.01 whereas, it is 0.017 for T/τo = −1.

The angular distribution of γ2 shows two distinct peaks (see figure 13b). The first peak at
θ ≈ 45◦ is due to the kink shear band and the second peak at θ ≈ 125◦ is due to the slip shear
band. It can be seen from this figure that as T decreases, the value at the first peak increases
and eventually dominates over the second peak. The second peak displays exactly opposite trend
indicating the slip shear band loses its intensity as the value of T decreases. On the other hand,
the angular distribution of γ3 (see figure 13c) shows one distinct peak at θ = 90◦. This peak
corresponds to the kink shear band formed due to activity on S3. The magnitude of this peak
increases with decrease in T .

However, the angular distribution of log λ
p
1 shows more than one peak irrespective of the

level of T -stress (see figure 13d). The locations of these peaks for a particular T -stress level
correspond to the peaks in individual slip systems. For, example, the first peak at θ = 50◦–60◦
in log λ

p
1 distribution for T/τo = −1 forms primarily due to the contribution from the strong

slip shear band at θ = 55◦ on S1. On the other hand, kink shear band at θ = 90◦ is responsible
for the second peak. Further, the location of the prominent peak identifies the dominant shear
band. Thus, the location of the prominent peak at θ ≈ 55◦ indicates that the slip shear band at
θ = 55◦ is the dominant band for T/τo = −1, wheras, it is the kink shear band at θ = 125◦ that
dominates for T/τo = 1. The features discussed above agree well with the observation by Patil
et al (2008b) for rate-independent single crystal.

Figure 14. Angular variation of plastic slip (a) γ1 on S1, (b) γ2 on S2, (c) γ3 on S3 and (d) maximum prin-

cipal logarithmic plastic stretch log λ
p
1 for different T -stress levels at a fixed value of K = 500 N-mm− 3

2

corresponding to K̇ = 105 N-mm− 3
2 /s and m = 0.1.
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Figure 14a–d show the angular distributions of plastic slip and log λ
p
1 at r/ (J/τo) = 4 for

higher loading rate of K̇ = 105 N-mm− 3
2 /s with m = 0.1. In these plots, the K level is same

as in figure 13. On comparing figures 13 and 14, it can be seen that the effect of T -stress on the
plastic slip remains qualitatively unaltered with change in loading rate. However, the magnitudes
of the peaks reduce with increase in loading rate. Thus, the peak value of γ1 corresponding to

T/τo = −1 is 0.017 for K̇ = 104 N-mm− 3
2 /s, whereas it is 0.014 for K̇ = 105 N-mm− 3

2 /s.

5. Conclusions

In this work, modified boundary layer simulations are conducted to investigate the role of mate-
rial rate sensitivity, loading rate and constraint level on mode I crack tip fields in a ductile FCC
single crystal. The following are the important conclusions of this work.

(i) At a given level of stress intensity factor K , the stress components ahead of the crack tip
are enhanced at higher loading rate K̇ for a rate-sensitive single crystal. On the other hand,
the size of the plastic zone and magnitude of plastic slips at comparable distances from the
tip are reduced at higher K̇ . The combined effect of these two trends will be to suppress
ductile fracture mechanisms (like void growth and coalescence) and promote brittle mode
of fracture.

(ii) It has been shown that the near-tip stress and plastic slip distributions for a given rate-
sensitive single crystal under small scale yielding conditions are functions of T/τo and
K̇/ (K γ̇o). The results also suggest that the stress distribution shows a simple power law
scaling by the factor

(
K̇/ (K γ̇o)

)m
when the distance from the tip is normalized by (J/τo),

except at very high values of the parameter K̇/ (K γ̇o).
(iii) The stress distribution is highly sensitive to the value of T/τo. There is a marginal enhance-

ment in the direct stress components for T/τo > 0, whereas there is significant reduction
in the stresses for T/τo < 0. The constraint parameter Q, defined in terms of the change
in hydrostatic stress with reference to the T = 0 solution (at the same level of K̇/ (K γ̇o))

along with J , is shown to provide a robust two-parameter characterization of crack tip fields
in rate-sensitive single crystals, irrespective of loading rate and index m.

(iv) The constraint parameter Q increases (i.e., there is a gain in constraint) with increase in rate
sensitivity index m, at a given K and K̇ . A similar effect of K̇ on Q for a given material
(i.e., fixed m) is observed, although it is only marginal.

(v) The plastic slip shear band patterns and plastic zone shape and size depend strongly on the
constraint level. Thus, negative T/τo promotes development of shear bands in the forward
sector ahead of the tip and suppresses their formation behind the tip. It is important to
distinguish between the effect of loading rate and that of T/τo. While increase in K̇ does
not affect the qualitative nature of the shear bands and the plastic zone, but only shrinks
their sizes, change in T/τo affects both the shape and size of the bands.

(vi) The operative fracture mechanism (brittle versus ductile) in rate-sensitive single crystal is
expected to governed by the complex interplay of loading rate and constraint level. The
latter reflects the role of fracture configuration and is known to be low for tension dom-
inated geometries and shallow cracked bend geometries. Also, a recent study by Biswas
& Narasimhan (2011) for rate-independent single crystals and earlier works by Basu &
Narasimhan (2000), Jayadevan et al (2002a) and Biswas & Narasimhan (2002) for isotropic
plastic solids have shown that the material inertia can promote constraint loss at high load-
ing rates even for a specimen such as a deeply cracked bend specimen which exhibits high
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constraint under static loading. The contrasting effects of rate sensitivity and the inertia-
driven constraint loss will govern the operative failure mechanism and the dependence of
fracture toughness on loading rate in rate-sensitive single crystals. This issue needs to be
studied in a future investigation.
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