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[1] The finite element method is used to solve Biot’s equations of consolidation in the
displacement‐pressure (u − p) formulation. We compute one‐dimensional (1‐D) and
two‐dimensional (2‐D) numerical quasi‐static creep tests with poroelastic media exhibiting
mesoscopic‐scale heterogeneities to calculate the complex and frequency‐dependentPwave
moduli from the modeled stress‐strain relations. The P wave modulus is used to calculate
the frequency‐dependent attenuation (i.e., inverse of quality factor) and phase velocity
of the medium. Attenuation and velocity dispersion are due to fluid flow induced by
pressure differences between regions of different compressibilities, e.g., regions (or
patches) saturated with different fluids (i.e., so‐called patchy saturation). Comparison of
our numerical results with analytical solutions demonstrates the accuracy and stability of
the algorithm for a wide range of frequencies (six orders of magnitude). The algorithm
employs variable time stepping and an unstructured mesh which make it efficient and
accurate for 2‐D simulations in media with heterogeneities of arbitrary geometries (e.g.,
curved shapes). We further numerically calculate the quality factor and phase velocity for
1‐D layered patchy saturated porous media exhibiting random distributions of patch sizes.
We show that the numerical results for the random distributions can be approximated
using a volume average of White’s analytical solution and the proposed averaging method
is, therefore, suitable for a fast and transparent prediction of both quality factor and phase
velocity. Application of our results to frequency‐dependent reflection coefficients of
hydrocarbon reservoirs indicates that attenuation due to wave‐induced flow can increase
the reflection coefficient at low frequencies, as is observed at some reservoirs.
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1. Introduction

[2] Attenuation of seismic waves in partially saturated,
porous rocks is of great interest because it has been observed
that oil and gas reservoirs frequently exhibit high attenuation
[e.g., Dasgupta and Clark, 1998; Rapoport et al., 2004],
especially at low seismic frequencies [Chapman et al.,
2006]. Korneev et al. [2004] used laboratory and field data
to show that attenuation can be related to an increase in
reflectivity at low frequencies. Goloshubin et al. [2006]
showed three examples of field data in which oil‐rich
reservoirs exhibit increased reflectivity at low seismic fre-
quencies (around 10 Hz), and that using low‐frequency

imaging has a strong potential for predicting hydrocarbon
content in reservoirs.
[3] At low seismic frequencies, wave‐induced fluid flow

on the mesoscopic scale is presumably the major cause of
wave attenuation and velocity dispersion in a partially satu-
rated, porous rock [e.g., Norris, 1993; Johnson, 2001; Pride
et al., 2004; Carcione and Picotti, 2006; Müller et al.,
2010]. The partially saturated rock is approximated as a
poroelastic medium with regions fully saturated by one fluid
and other regions fully saturated by another fluid, frequently
referred to as patchy saturation. The mesoscopic scale of
these regions (or patches) is the scale much larger than the
pore size, but much smaller than the wavelength. Wave‐
induced fluid flow is caused by fluid pressure differences
between these two regions. White [1975] and White et al.
[1975] introduced for this mesoscopic‐loss mechanism
a three‐dimensional (3‐D) model of a water‐saturated
medium with spherical gas‐saturated inclusions and a one‐
dimensional (1‐D) layered model referred to as the inter-
layer flow model, respectively (Figure 1). Dutta and Odé
[1979a, 1979b] showed that wave‐induced fluid flow can
be modeled using Biot’s equations [Biot, 1962] for wave
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propagation in poroelastic media with spatially varying
petrophysical parameters.
[4] Theoretical studies based on White’s model provide

various closed‐form analytical solutions for seismic attenu-
ation in porous, saturated media with periodic mesoscopic‐
scale heterogeneities of particular geometries, such as layered
media or media with spherical inclusions [e.g., Johnson,
2001; Pride et al., 2004; Vogelaar et al., 2010]. There are
also analytical solutions for randomly layered media [e.g.,
Gurevich and Lopatnikov, 1995], but they are restricted to
infinite media and to the type of autocorrelation function.
Müller and Gurevich [2005] showed that significant dif-
ferences in the magnitude and frequency dependence of
attenuation are caused by the use of different autocorrelation
functions. Gurevich and Lopatnikov [1995] showed that in
the low‐frequency limit, 1/Q (Q is the quality factor, and its
inverse is a measure of attenuation) scales differently in
infinite randomly layered media (1/Q is proportional to the
square root of frequency), compared to periodically layered
media (1/Q is proportional to frequency). However, for
finite random media, 1/Q scales as in periodic media
[Müller and Rothert, 2006; Pride and Masson, 2006]. Due
to limitations of the analytical solutions, accurate numerical

solutions for seismic attenuation in porous, saturated
media with mesoscopic‐scale heterogeneities are needed, for
example, for heterogeneities with complicated geometries,
presence of more than two heterogeneities such as patchy
saturation involving more than two fluids, or finite random
media with arbitrary distribution patterns.
[5] Many numerical schemes have been proposed for

solving Biot’s equations of wave propagation in heteroge-
neous poroelastic media [e.g., Zhu and McMechan, 1991;
Carcione and Quiroga‐Goode, 1995;Dai et al., 1995;Masson
et al., 2006; Wenzlau and Müller, 2009]. However, calcu-
lating seismic attenuation due to wave‐induced fluid flow
with numerical algorithms for wave propagation in por-
oelastic media is computationally inefficient because wave
propagation, fluid flow, and the diffusive fluid pressure
response occur on significantly different time scales [e.g.,
Carcione et al., 2003; Masson et al., 2006; Quintal et al.,
2007]. A method that is computationally efficient in calcu-
lating attenuation due to wave‐induced flow is a quasi‐static
creep test, as suggested byMasson and Pride [2007]. For the
quasi‐static creep test, they solved Biot’s equations [Biot,
1962] for wave propagation in poroelastic media with a
suitable finite difference algorithm [Masson et al., 2006].
Recently, Rubino et al. [2009] andWenzlau et al. [2010] have
also presented quasi‐static numerical strategies to calculate
seismic attenuation due to wave‐induced fluid flow. Rubino
et al. [2009] computed oscillatory compressibility tests in
the frequency domain to solve Biot’s equations of wave
propagation with the finite element method, and Wenzlau
et al. [2010] computed quasi‐static relaxation tests of
numerical samples showing vertical transverse isotropy due
to mesoscopic‐scale heterogeneities using the finite element
software Abaqus (Dassault Systèmes).
[6] In this study, we modified and elaborated the method

suggested by Masson and Pride [2007]. As they did, we
computed quasi‐static creep tests for calculating seismic
attenuation due to wave‐induced fluid flow. However,
(1) we solved a simpler mathematical problem, namely
Biot’s quasi‐static equations of consolidation [Biot, 1941] in
which inertial forces are excluded (Appendix A), and (2) we
used the finite element method. Attenuation due to wave‐
induced fluid flow is controlled by the fluid pressure diffu-
sion. For calculating attenuation due to only wave‐induced
fluid flow at low seismic frequencies, inertial forces are
negligible [e.g., Masson and Pride, 2007], and it is suffi-
cient to model only the related pressure diffusion. We used
the finite element method [e.g., Zienkiewicz and Taylor,
1989; Zienkiewicz et al., 1999] to solve Biot’s equations
of consolidation in the so‐called u − p formulation, where
the equations are expressed in terms of the solid displace-
ment, u, and fluid pressure, p. Our numerical scheme benefits
from (1) consistent boundary conditions due to the u − p
formulation, including natural boundary conditions for no
fluid flow; (2) an implicit solution for the time derivative
allowing larger and especially variable time steps; (3)
straightforward extension from one to two and three dimen-
sions; (4) unstructured numerical meshes allowing the
resolving of complicated geometries; and (5) no spatial
derivatives of material parameters due to the finite element
formulation, avoiding numerical inaccuracies caused by
strong variations in material properties. We validated our
1‐D and 2‐D algorithms with an analytical solution and

Figure 1. Sketches representing (a) a 1‐D layered medium
and (b) a 2‐D medium with circular patches. The dashed
boxes represent the numerical model domains used for the
quasi‐static experiments. The differently shaded areas indi-
cate regions fully saturated with different fluids (i.e., patchy
saturation).

QUINTAL ET AL.: SEISMIC ATTENUATION IN POROELASTIC MEDIA B01201B01201

2 of 17



theoretical high and low‐frequency limits. The tests show
that they are accurate over a wide frequency range.
[7] The main aims of this paper are to show (1), that the

quasi‐static creep test, described by Biot’s equations of
consolidation in the u − p formulation and solved with the
finite element method, is a powerful and accurate experi-
ment for calculating attenuation and velocity dispersion due
to wave‐induced fluid flow and (2), that averages of White’s
analytical solution for periodic heterogeneities provide good
estimates for attenuation and velocity dispersion in finite
media with random distributions of sizes of heterogeneities
in fluid saturation. For illustrating the implications of
our study, we calculate the frequency‐dependent reflection
coefficient of a reservoir which exhibits attenuation and
velocity dispersion due to wave‐induced fluid flow between
patches with randomly varying sizes.

2. Methodology of the Quasi‐Static Creep Test

[8] We do numerical modeling of a quasi‐static poroelastic
experiment to compute the time‐dependent strain response
to a compressive total stress applied at the boundaries of a
numerical rock sample withmesoscopic‐scale heterogeneities
[Masson and Pride, 2007]. Such a quasi‐static experiment
is called a creep test [e.g., Lakes, 2004]. The time‐dependent
stress‐strain relation is used to calculate the frequency‐
dependent attenuation and velocity dispersion in the medium.
[9] In the 1‐D interlayer flow model [White et al., 1975], a

partially saturated rock is represented by a poroelastic
medium composed of two periodically alternating layers;
each layer is fully saturated by one of two different fluids
(Figure 1a). The smallest piece of the medium that can
statistically represent the distribution of mesoscopic‐scale
heterogeneities within the entire medium is referred to as the
representative elementary volume (REV). Its size is of the
order of few to hundreds of mesoscopic‐scale hetero-
geneities, depending on the distribution of heterogeneities.
The (periodic) REV in the case of Figure 1a contains one
pair of layers. For the numerical simulation (Appendix B),
we chose the numerical rock sample to be the REV. Due to
the mathematical formulation of the problem, we benefit
from natural boundary conditions for the prescribed total
stress and for fluid flow (equation (B7)) and we consider
that the relative fluid velocity is zero on the boundary
(undrained test). To be consistent with the undrained condi-
tion, the numerical rock sample is selected from the layered
medium as shown by the dashed box in Figure 1a, because,
due to symmetry, the fluid flow will be zero in the middle of
the layers during the quasi‐static experiment.
[10] With 1‐D finite element modeling of Biot’s quasi‐

static equations of consolidation (equation (B15)), we sim-
ulate a 1‐D compression test by applying a total force on the
top of the sample and setting the displacement at the bottom
to zero. For that, we attribute a step function in time, S(t), to
the nodal component of F at the top of the sample, set all
other nodal components of F to zero, including the ones
corresponding to fluid flow, and set the nodal component of
the solid displacement at the bottom to zero. The loading
function, S(t), is shown in Figure 2, normalized by its
maximum value, Smax. We use variable time steps, with
small time increments at the beginning of the simulation,
and larger time increments towards the end. Their length is

linearly increased, whereby all time increments are numer-
ically stable due to the implicit formulation. For visualiza-
tion purposes, S = 0 for several of the first time steps, but it
is sufficient to set S = 0 only at the first time step and S =
Smax for all other time steps. For a porous medium, con-
sisting of a homogeneous solid frame, partially saturated
with water and gas (Figure 1a and Table 2), Figure 2 shows
the relative fluid velocity, _wz, and the fluid pressure, p, both
normalized by their respective maximum values, at four
stages of the creep test. The loading generates fluid pressure
differences between regions saturated with different viscous
fluids, and the less compressible fluid (water) flows into the
region saturated with the more compressible fluid (gas),
causing energy loss due to viscous dissipation.
[11] During the simulation, at each time step, (1) the total

stress, szz, and the strain, "zz, are calculated from the solid
displacement, uz, and fluid pressure, p; (2) their time
derivatives, _�zz and _"zz, i.e., the stress and strain rates, are
calculated with a first order finite difference operator; and
(3) the stress and strain rates are averaged (volume average)
over the sample domain as

_�zz lð Þ ¼
1
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where l is the index of the time step, n is the element index,
N is the number of elements, L is the length of the sample,
and dz is the element length. Thus, at the end of the quasi‐
static simulation, we obtain the time evolution of the aver-
aged stress and strain rates, _�zz(t) and _"zz(t), respectively.
Applying a discrete Fourier transform to the averaged stress
and strain rates, we obtain the complex and frequency‐
dependent values _�zz(w) and _"zz(w), where w is the angular
frequency. We use _�zz(w) and _"zz(w) to calculate the com-
plex and frequency‐dependent P wave modulus, H(w).The
P wave modulus is defined as

H ¼ Ku þ
4

3
�u; ð3Þ

where Ku is the undrained bulk modulus and mu is the
undrained shear modulus. For an isotropic sample, when the
fractional change of fluid mass within the sample is zero
(undrained condition), Ku and mu can be determined from

_�ij !ð Þ ¼ 2�u !ð Þ _"ij !ð Þ �
1

3
_e !ð Þ�ij

� �

þ Ku !ð Þ _e !ð Þ�ij ð4Þ

[Biot, 1962; Masson and Pride, 2007]. For the 1‐D case,
equation (4) reduces to

_�zz !ð Þ ¼ Ku !ð Þ þ
4

3
�u !ð Þ

� �

_"zz !ð Þ; ð5Þ

therefore, using equation (5) in equation (3), H(w) can be
determined from the stress‐strain ratio:

H !ð Þ ¼
_�zz !ð Þ

_"zz !ð Þ
: ð6Þ
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The frequency‐dependent quality factor is calculated from
H(w) as

Q !ð Þ ¼
Re H !ð Þf g

Im H !ð Þf g
; ð7Þ

where Re and Im denote the real and imaginary parts,
respectively. Attenuation is expressed as the inverse of
quality factor, or 1/Q. The complex and frequency‐dependent
P wave velocity is

V !ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi

H !ð Þ

�

s

; ð8Þ

where r is the bulk density of the partially saturated medium
(material properties are defined in Table 1). The frequency‐
dependent phase velocity can be calculated from the com-
plex velocity as

Vp !ð Þ ¼ Re
1

V !ð Þ

� �� ��1

ð9Þ

[e.g., Carcione, 2007]. The procedure for calculating the
frequency‐dependent values of Q and V from the time

evolution of stress and strain is illustrated by Wenzlau et al.
[2010, Figure 2].
[12] In two dimensions (equivalent to a 3‐D case in which

no strain out of the modeling plane is allowed to develop,
i.e., plane strain), a partially saturated rock can be represented
by a poroelastic medium fully saturated with one fluid, with
circular regions fully saturated by another fluid (Figure 1b).

Table 1. Definitions of Symbols Used for the Petrophysical

Parameters

Symbol Petrophysical Parameter

k Permeability
h Viscosity of the fluid
� Porosity
m Shear modulus of the dry frame
K Bulk modulus of the dry frame
Ks Bulk modulus of the solid grains
Kf Bulk modulus of the fluid
r Bulk density of the saturated rock
rs Density of the solid grains
rf Density of the fluid
l K − 2m/3
a 1 − K/Ks

1

M

�

Kf

�
�� �

Ks

Figure 2. Four stages, t1, t2, t3, and t4, of the 1‐D creep experiment (Figure 1a). A step function, S, is
applied as a loading term at the top of the sample, and the solid displacement is set to zero at the bottom.
The time evolution of S, normalized by its maximum value, Smax, is shown in the top graph. For visualization
reasons, S = 0 at several of the first time steps. For each stage, the fluid velocity, _wz (dashed curve), and
fluid pressure, p (solid curve), both normalized by their maximum values, are shown in the lower graphs.
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For the numerical simulation (Appendix C), we chose the
numerical rock sample to be the REV, and we selected it as
a square with only one circular patch in the middle (dashed
box in Figure 1b). The numerical rock sample is discretized
with an unstructured triangular numerical mesh [Shewchuk,
1996, 2002] used in such a way that the material boundaries
coincide with the element boundaries (Figure 3).
[13] We simulate a 2‐D pure compression test by applying

normal compressive total forces of equal magnitude at the
four boundaries of the square sample. A time step function,
S(t) (Figure 4), is attributed to the nodal components of the
loading term in the z direction at the top and bottom of the
sample with opposite signs and, analogously, in the x
direction. The step is not visible in Figure 4 because S = 0
only at the first step. We use variable time steps with
linearly increasing increments towards the end of the simu-
lation. For a gas‐saturated rock with circular water‐saturated
regions (Figure 1b and Table 2), Figure 4 also shows the
fluid pressure, p, and the relative fluid velocities in the x and
z directions, _wx and _wz, respectively, normalized by their
maximum values at four stages of the simulation.
[14] During the simulation, at each time step, (1) the total

stresses, szz, sxx and sxz, and strains, "zz, "xx and "xz, are
calculated from the solid displacements, uz and ux, and fluid
pressure, p; (2) the time derivatives of their normal com-
ponents, _�zz, _�xx, _"zz and _"xx, i.e., the stress and strain rates,

are calculated with a first‐order finite difference operator;
and (3) the stress and strain rates are averaged (volume
average) over the sample domain as, for example,

_�zz lð Þ ¼
1

A

X

N

n¼1

Z

n

_�zz l; nð Þda nð Þ

0

@

1

A; ð10Þ

where A is the area of the sample, and da is the area of a
triangular element. We obtain at the end of the simulation
the time evolution of the averaged normal stress and strain
rates, _�zz(t), _�xx(t), _"zz(t), and _"xx(t). Applying a discrete
Fourier transform to the averaged normal stress and strain
rates, we obtain _�zz(w), _�xx(w), _"zz(w), and _"xx(w), which are
used to calculate the complex and frequency‐dependent
undrained bulk modulus, Ku (Appendix D). The quality
factor associated with a pure undrained compression is

QKu !ð Þ ¼
Re Ku !ð Þf g

Im Ku !ð Þf g
: ð11Þ

3. Numerical Simulations and Results

3.1. Tests of the 1‐D and 2‐D Algorithms

[15] We test the 1‐D numerical scheme for sandstone
partially saturated with water and gas, represented by a
poroelastic medium composed of two periodically alternat-
ing layers, fully saturated by one of the two fluids and
having the same solid properties (Figure 1a). The thickness
of the layers is 40 cm, and the petrophysical properties are
given in Table 2. For the numerical simulation (Figure 2),
each layer is divided into 60 finite elements and we use a
total time of 0.41 s divided into 100 time increments of
variable length. The total time was chosen as being one
thousand times the thickness of the sample, divided by the
phase velocity (from the analytical solution) at the frequency
where the minimum Q occurs. With the presented algorithm,
we obtain an excellent fit to the analytical solution of the 1‐D
interlayer flow model [e.g., Carcione and Picotti, 2006]
shown in Figure 5. Roughly a quarter of the number of
elements per layer used in this simulation is sufficient to
yield a satisfactory fit with a slight deviation in the high‐
frequency limit in the 1/Q and Vp curves.
[16] We also test the 1‐D numerical scheme for para-

meters representing a fractured rock, described as a layered
1‐D model in which the fractures are very thin compliant
layers of infinite extent, alternating with much thicker layers
of a stiffer porous rock with lower permeability and porosity
[e.g., Gurevich et al., 2009]. We assume that the sur-
rounding rock (i.e., the thicker layers) is saturated with
water while the fractures are saturated with gas. This
assumption is based on the fact that the wetting fluid, which
is the water in this case, preferentially saturates regions of
small pores due to capillary effects [Goertz and Knight,
1998]. The petrophysical parameters are given in Table 3.
The REV consists of one pair of layers composed of one
thin layer (5 mm thick) representing the fracture, and one
thick layer (5 m thick) representing the surrounding rock.
The numerical rock sample is the REV, selected similarly as
for the first 1‐D experiment (dashed box in Figure 1a), that
is, from the middle of a thin gas‐saturated layer to the
middle of the next thin gas‐saturated layer. The 5 mm layer

Figure 3. Zoom on the numerical mesh used for the 2‐D
simulations. Only a quarter of the entire grid is shown.
The numerical model domain is a 1 m side square with a cir-
cular patch of 40 cm radius in the middle (dashed box in
Figure 1b). Each triangular element of the unstructured
mesh consists of seven nodal points (one on each corner,
one in the middle of each side, and one in the middle of the
triangle), on which the solid displacements and fluid pres-
sure are calculated. Black and shaded lines are used for the
mesh inside and outside the patch, respectively, where the
elements have different petrophysical properties. The spatial
resolution of the mesh can strongly vary.
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is divided into 20 elements and the 5 m layer into 400
elements. Larger layers are divided into more elements in
order to keep the resolution relatively high close to the
boundaries between layers, where most of the fluid flow
occurs (e.g., see the curves for the relative fluid velocity in
Figure 2). The total simulated time is 7.4 s, divided into
200 time increments with variable length. Figure 6 shows
the numerical result for Vp and 1/Q, together with the
analytical solution of the 1‐D interlayer flow model [e.g.,
Carcione and Picotti, 2006]. The considerable differences in
thicknesses and petrophysical parameters of the two layers
have a significant effect on a broad range of frequencies,
compared to the simpler case of Figure 5. Our numerical
scheme is able to reproduce the theoretically predicted inter-
mediate asymptotic behavior of the frequency‐dependent
attenuation (i.e., 1/Q) and still provides very accurate results
in the low‐frequency and high‐frequency limits. Similar
numerical simulations, such as the one from Lambert et al.
[2006], who calculated Q from seismic wave propagation
modeling in poroelastic media using reflectivity algorithms,
are less accurate for low frequencies. This shows that the
quasi‐static finite element simulations are well suited when
accurate results are required over a wide frequency range.

[17] The 2‐D numerical scheme is tested for gas‐saturated
sandstone with circular water‐saturated regions of identical
solid properties (Figure 1b). The petrophysical properties
are given in Table 2. The numerical rock sample is a square

Figure 4. Four stages, t1, t2, t3, and t4, of the 2‐D creep test (Figure 1b). A step function, S, is applied in
the directions of normal compressive stresses at all the four boundaries of the square sample. The time
evolution of S, normalized by its maximum value, Smax, is shown in the top graph. The step is not visible
because S = 0 only at the first time step. For each stage, the fluid pressure, p, and the relative fluid velocities
in x and z directions, _wx and _wz, respectively, all normalized by their maximum values, are shown.

Table 2. Petrophysical Parameters for the Benchmark Tests and

for Examples of Media With Bimodal and Random Distributions

of Sizes of Heterogeneities in Saturation

Rock‐Matrix
Parametersa Sandstone

k (mdarcy) 100
� 0.20
m (GPa) 3
K (GPa) 4
Ks (GPa) 40
rs (kg/m

3) 2700

Rock‐Fluid
Parametersa Water Gas

Kf (GPa) 2.3 0.022
rf (kg/m

3) 1000 140
h (Pa s) 0.003 10−5

aSymbols are as defined in Table 1.
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with one patch in the middle (dashed box in Figure 1b). The
side of the square is 1 m and the radius of the circular patch
is 40 cm. The spatial domain is divided into approximately
1200 triangular elements of variable area (Figure 3). This
provides higher resolution close to the boundary of
the patch, where most of the fluid flow takes place (see
Figure 4). We use a total time of 0.39 s divided in 200 time
increments of variable length. The total time was chosen as
being eight hundred times the width of the numerical rock
sample, divided by the average between the phase velocities
calculated with Gassmann‐Wood and Gassmann‐Hill for-
mulas [e.g., Mavko et al., 1998; Toms et al., 2006]. Figure 7
shows the numerical result for the real part of the undrained
bulk modulus, Re{Ku}, and for the inverse of the quality
factor associated with a pure undrained compression, 1/QKu

(equation (11)). We check the result for Re{Ku} against its
theoretical low‐frequency and high‐frequency limits (i.e.,
Gassmann‐Wood and Gassmann‐Hill limits), respectively.
For 1/QKu, we show that the low and high‐frequency
asymptotes have the theoretically predicted frequency‐
dependent behavior [e.g., Toms et al., 2006; Masson and
Pride, 2007].

3.2. Rocks With Bimodal Distributions

[18] We investigate the effect of a bimodal distribution of
sizes of mesoscopic‐scale heterogeneities on the frequency‐
dependent quality factor and phase velocity of a poroelastic

medium. In Figure 8, three layered media are shown, M1,
M2, and M3. All consist of alternating sandstone layers
saturated with water or gas (Table 2). Water and gas
saturations are represented by black and white layers in M1
and M2. The thickness of the layers in M1 is 1 m, and in M2

Figure 5. Test of the 1‐D numerical scheme for a porous
solid made of two periodically alternating fully saturated
layers with water and gas (Figures 1a, 2, and Table 2).
Each layer is 40 cm thick. Numerical and analytical results
for the phase velocity, Vp, and inverse of quality factor, 1/Q,
are shown.

Table 3. Petrophysical Parameters for the Example of a Fractured

Rock

Rock‐Matrix
Parametersa Surrounding Rock Fractures

k (mdarcy) 100 1000
� 0.10 0.20
m (GPa) 5 3
K (GPa) 6 4
Ks (GPa) 40 40
rs (kg/m

3) 2700 2700

Rock‐Fluid
Parametersa

Water Gas

Kf (GPa) 2.3 0.022
rf (kg/m

3) 1000 140
h (Pa s) 0.003 10−5

aSymbols are as defined in Table 1.

Figure 6. Result of the 1‐D numerical simulation for a
porous solid made of two periodically alternating fully sat-
urated layers of very different thicknesses and petrophysical
properties (Table 3), representing a fractured rock. The
thicker layers (5 m) are saturated with water and the thinner
layers (5 mm) with gas. Numerical and analytical results for
the phase velocity, Vp, and inverse of quality factor, 1/Q, are
shown.
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it is 10 cm. M3 represents a medium with a bimodal dis-
tribution of sizes of heterogeneities in saturation. It is
composed of a combination of different portions of media
M1 and M2 represented by light and dark grey layers in
Figure 8. The stack of layers from M1 contains one pair of
layers and is 2 m thick, and the stack of layers from M2
contains five pairs of layers and is 1 m thick. Analytical
solution for the frequency‐dependent elastic moduli is
available for media with REV consisting of only one pair of
layers, such as M1 and M2 [e.g., Carcione and Picotti,
2006]. The REV in M3 consists of one stack of layers
from M1 and one stack of layers from M2. The numerical
samples for M1 and M2 are the REV, selected as shown by
the dashed box in Figure 1a. The numerical sample for M3
is also its REV, selected from the middle of the top layer in
the stack from M1 to the middle of the top layer in the next
stack from M1. A 1‐D creep test is simulated as in the first
experiment (Figures 1a and 2). The 10 cm layer is divided
into 20 elements and the 1 m layer into 40 elements. The
total simulated time is 4.4 s, divided into 200 time incre-
ments with variable length. The numerical parameters are
the same for the three simulations, fulfilling all the time‐

space scale requirements of both M1 and M2; that is, the
total time is long enough to resolve the low‐frequency creep
in M1, and the first time increments are small enough to
resolve the higher‐frequency creep process in M2. There-
fore, the set of numerical parameters fulfills the time‐space
scale requirements of any combination of M1 and M2, such
as M3. The numerical results are shown in Figure 9, together
with the analytical solutions for M1 and M2 [e.g., Carcione
and Picotti, 2006]. The numerical results for M1 and M2
agree well with the analytical solutions, from which we
deduce that the numerical result for M3 is also accurate. The
curves in Figure 9 suggest that the result for M3 can be
predicted by a combination of the solutions for M1 and M2.
To find an approximation for the response from M3, based
on some combination of the analytical solutions for M1 and
M2, we make an analogy between our poroelastic medium
and a viscoelastic medium.
[19] A viscoelastic model commonly used to describe

anelastic effects in rocks is the Zener model or standard linear
solid model [Zener, 1948; Carcione, 2007]. The frequency‐
dependent complex P wave modulus of a poroelastic
medium with mesoscopic‐scale heterogeneities can be
approximated using an equivalent Zener model [Quintal
et al., 2009]. By analogy, we assume that our poroelastic
medium with bimodal distribution of mesoscopic‐scale
heterogeneities can be represented by a generalized Zener
model composed of two Zener elements (i.e., having two
inherent relaxation times). The two Zener elements have
equivalent frequency‐dependent behaviors to the poroelastic
media M1 and M2. Analogous to the relationship between

Figure 7. Test of the 2‐D numerical scheme for the case of
gas‐saturated rock with circular water‐saturated patches of
40 cm radius (Figures 1b, 3, and 4 and Table 2). The
numerical results are the real part of the undrained bulk
modulus, Ku, and the inverse of quality factor associated
with a pure undrained compression, 1/QKu. Theoretical low‐
frequency and high‐frequency limits of Re(Ku) and theo-
retically predicted variations of 1/QKu with frequency are
shown by dashed lines.

Figure 8. Models M1 and M2 represent layered media
composed of two periodically alternating layers with differ-
ent fluid saturation (Table 2). The layers in M1 are 1 m
thick, and the layers in M2 are 10 cm thick (for visualization
reasons, the layer thickness is exaggerated in M2, compared
to the layer thickness in M1). M3 has a bimodal distribution
of sizes of heterogeneities in saturation; it is composed of a
combination of different portions of M1 and M2. The stack
of layers from M1 in M3 is 2 m thick, and the stack of layers
from M2 is 1 m thick.
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the complex P wave modulus of the generalized Zener
model and the complex P wave moduli of its elements, we
suggest that the complex P wave modulus of the medium
M3 can be calculated as volume averages of the moduli of
its composing media M1 and M2:

H3 ¼
L1H1 þ L2H2

L1 þ L2
; ð12Þ

where L1 (=2 m) is the length of the stack of layers from M1
and L2 (=1 m) is the length of the stack of layers from M2.
The moduli H1 and H2 are the complex P wave moduli of
M1 and M2, respectively, calculated with the analytical
solution of the 1‐D interlayer flow model [e.g., Carcione
and Picotti, 2006]. The approximated result, H3, provides
a good approximation to the numerical result (Figure 9).
Because the length portion of M1 (66%) is greater than that
of M2 (33%), the attenuation in M3 is significantly higher at
the transition frequency of M1 than at the transition fre-
quency of M2. Attenuation and dispersion in M3 are sig-
nificant over a broad frequency range.
[20] The two stacks of different layer thicknesses in M3

had the same saturation ratio. We also test the approxima-
tion for a case in which the two stacks have different satu-
ration ratios. We define M1b and M2b as media composed of
two alternating layers saturated with water or gas (Table 2).

In M1b the water‐saturated layers are 1.5 m thick and the
gas‐saturated layers are 1 m thick. In M2b the water‐
saturated layers are 10 cm thick and the gas‐saturated layers
are 15 cm thick. The water saturation is 60% in M1b, and
40% in M2b. Two alternating stacks of layers from M1b and
M2b compose the medium M3b. The stack from M1b
contains one pair of layers and is 2.5 m thick, and the stack
from M2b contains five pairs of layers and is 1.25 m thick.
The 10 and 15 cm layers are divided into 20 elements and
the 1 and 1.5 m layers into 40 elements. The total simulated
time is 6.8 s, divided into 200 increments with variable
length. The numerical results are shown in Figure 10,
together with the analytical solutions for M1b and M2b [e.g.,
Carcione and Picotti, 2006], and the approximated solution
for M3b (using equation (12)). The approximation fits the
numerical result reasonably well despite the different satu-
ration ratios in the two stacks composing M3b.

3.3. Rocks With Random Distributions

[21] We investigate the effect of a random distribution of
sizes of mesoscopic‐scale heterogeneities on the frequency‐
dependent elastic moduli of a finite poroelastic medium, and
we test whether the approximation proposed in the last
section can also be applied to a random distribution. We

Figure 9. Numerical results for the layered media M1, M2,
and M3 (Figure 8). The solid lines are the analytical solu-
tions for media M1 and M2. The dashed, black lines refer to
the results for M3b calculated with the averaging procedure
given in equation (12). Gassmann‐Wood and Gassmann‐
Hill limits for Vp are shown only for M3. The maximum
attenuation in M1 occurs at 0.3 Hz and in M2 at 30 Hz.

Figure 10. Numerical results for the layered media M1b,
M2b, and M3b (see text). The solid lines are the analytical
solutions for media M1b and M2b. The dashed, black lines
refer to the results for M3b calculated with the averaging
procedure given in equation (12). Gassmann‐Wood and
Gassmann‐Hill limits for Vp are shown only for M3b. The
maximum attenuation in M1b occurs at 0.14 Hz and in M2b
at 29 Hz.
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define our model as a layered medium consisting of one
hundred pairs of layers, each pair composed of a fully gas‐
saturated layer on the top and a fully water‐saturated layer
on the bottom (Table 2). To build up the model, we gen-
erated one hundred thicknesses of pairs of layers randomly
varying between 1 cm and 1 m, and one hundred values
of gas saturation for such pairs randomly varying between
SP1 = 10% and SP2 = 90%. We used the function rand from
the software Matlab (MathWorks). Figure 11 shows histo-
grams with the frequency distribution of thicknesses of pairs
and the frequency distribution of values of gas saturation in
the pairs. The overall gas saturation in the model is 46.4%,
and the thicknesses of the 200 layers add to a total of
44.9 m. The numerical rock sample used for the quasi‐static
simulation is the entire model. The layers thinner than 5 cm
are divided into 20 elements, the ones with thicknesses
between 5 and 50 cm into 40 elements, and the ones thicker
than 50 cm into 60 elements. The total simulated time is
9.2 s, divided into 200 time increments with variable length.
The numerical results are shown in Figure 12, together with
the theoretically predicted Gassmann‐Wood and Gassmann‐
Hill limits for Vp [e.g., Toms et al., 2006]. We observe that
the low‐frequency asymptote of 1/Q has the theoretically
predicted behavior for finite random media [Müller and
Rothert, 2006], that is, 1/Q is proportional to the fre-
quency. For the averaging, the analytical solution of the 1‐D
interlayer flow model [e.g., Carcione and Picotti, 2006] is
used for calculating the P wave modulus of each of the one

hundred pairs of gas‐saturated and water‐saturated layers,
and the P wave modulus of the model is approximated as

H ¼

P

100

n¼1

LnHn

P

100

n¼1

Ln

; ð13Þ

where Ln is the thickness of the nth pair of layers having the
complex P wave modulus Hn. The approximated result, H ,
provides a good approximation to the numerical result
(Figure 12).
[22] To quantify the accuracy of the averaging procedure

given in equation (13), we use a systematic series of models.
Each model is a layered medium consisting of one hundred
pairs of layers with thicknesses randomly varying between
1 cm and 1 m. We use for all models the same set of pair
thicknesses used in the last example (Figure 11). The dif-
ference between each model is the width of the random
variation of gas saturation in those pairs; that is, all models
have the same lower bound of gas saturation in the pairs,
SP1 = 10%, but a different higher bound, SP2. From model
to model, SP2 varies from 15 to 90%. For such a variation of
SP2, the values of Vp at the low and high‐frequency limits
vary from 1924 to 1895 m/s and from 2453 to 2190 m/s,
respectively, calculated with the theoretical Gassmann‐

Figure 11. Frequency distribution of thicknesses of the one
hundred pairs of layers and of values of gas saturation in
those pairs. The minimum and maximum thicknesses of
gas‐saturated layers are 0.15 and 70 cm. The minimum
and maximum thicknesses of water‐saturated layers are
0.43 and 81 cm.

Figure 12. Numerical results and results calculated with
the averaging procedure, equation (13), for the layered
model with a random distribution of sizes of heterogeneities
in saturation as described in Figure 13. Gassmann‐Wood
and Gassmann‐Hill limits for Vp are also shown.
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Wood and Gassmann‐Hill formulas [e.g., Mavko et al.,
1998; Toms et al., 2006], and the value of the minimum
value of Q or Qmin, and the frequency at which such min-
imum occurs vary from 6.7 to 12 Hz and from 1.2 to 2.2
Hz, respectively, calculated with numerical simulations. In
Figure 13, we show the error of Vp at the low‐frequency and
high‐frequency limits, approximated with equation (13),
relative to the respective, exact values calculated with the
theoretical Gassmann‐Wood and Gassmann‐Hill formulas.
The relative error is the absolute value of the difference
between approximated and exact values, divided by the
exact value. We also show the error of Qmin approximated
with equation (13), relative to the numerically calculated
value of Qmin. In this case, the relative error is the absolute
value of the difference between values calculated with
equation (13) and with a numerical simulation, divided by
the numerically calculated value. We observe in Figure 13
that the averaging procedure yields more accurate results
for narrower variations of the saturation ratio. For variation
of gas saturation in the pairs from SP1 = 10% to SP2 = 35%,
the error of Qmin is lower than 5% and the error of Vp at
both limits is around 0.2%. However, even for a wide
variation of the saturation ratio in the pairs, such as SP1 =

10% to SP2 = 90% (Figure 11), the approximated results fits
well the numerical results (Figure 12), with error of Qmin

lower than 10% and error of Vp at both limits around 1%
(Figure 13). This indicates that the simple approximation in
equation (13) provides reasonably accurate predictions for
both Vp and Qmin for partially saturated porous rocks with
randomly varying patch sizes and saturations.

4. Discussion

[23] Biot’s equations of consolidation have been solved
with implicit finite element approaches in geomechanical
engineering for many years [e.g., Zienkiewicz and Taylor, 1989;
Zienkiewicz et al., 1999]. We apply this well‐established
quasi‐static finite element technique to creep simulations for
calculating seismic attenuation and velocity dispersion in
poroelastic media due to the mesoscopic‐loss mechanism.
Comparison of the numerical results with analytical solu-
tions show that the algorithm is accurate and stable, and it is
well suited to determine the complex moduli over a very
broad frequency range (e.g., six orders of magnitude, as
shown in Figure 6) and able to handle heterogeneities of
very different sizes (e.g., three orders of magnitude, as in the
example for a fractured rock). The algorithm is also fast,
mainly because the time derivative is solved implicitly,
allowing for larger and variable time increments. The fluid
flow directly after the loading step at the beginning of the
simulations (i.e., high frequencies) is accurately resolved
with small time increments, and the pressure relaxation
towards the end of the simulations (i.e., low frequencies) is
resolved with much larger time increments. On a standard
personal computer, the duration of the 1‐D simulation
(Figure 2) was less than 1 s and the 2‐D simulation (Figure 4)
was performed within a few minutes. Another advantage of
the coupled (u − p) formulation are the boundary conditions
for the pore fluid flow (drained/undrained) and for the total
stress, which are fulfilled automatically due to the employed
weak formulation. In addition, the extension from a 2‐D
algorithm to its 3‐D version is straightforward in the finite
element method and because of the unstructured mesh
the finite element method is well suited for 2‐D and 3‐D
simulations for numerical domains having complicated
geometries [Frehner and Schmalholz, 2010].
[24] Furthermore, we applied an averaging procedure of

analytical solutions for calculating attenuation and velocity
dispersion in media with bimodal and random distributions
of sizes of heterogeneities in saturation (equations (12)
and (13), respectively). We showed that this approximation
is accurate when the composing pairs of layers with dif-
ferent sizes exhibit approximately the same fluid saturation,
and therefore the same average petrophysical properties. But
the proposed averaging procedure is also suitable, with a
small loss in accuracy, when the saturation ratio varies
widely among pairs. When well logging data are available
yielding information such as variation of fluid content and
porosity with depth, this averaging procedure can be used to
estimate the frequency‐dependent quality factor and velocity
dispersion (in the seismic range) of a finite rock unit.
[25] An important application of this work is to study

and interpret low‐frequency reflections. For example, the

Figure 13. Relative error of Vp at the low‐frequency and
high‐frequency limits and of the minimum value of Q (Qmin)
calculated with the averaging procedure, equation (13), for a
series of models consisting of the same one hundred pairs of
layers with randomly varying thickness, but different widths
of variation of gas saturation in those pairs. The gas satu-
ration in the pairs varies from SP1 = 10% to SP2. (The model
with SP2 = 90% is the one shown in Figure 11, with Vp and
1/Q shown in Figure 12.) The error is plotted as a function
of the higher bound of gas saturation in the pairs, SP2. The
errors ofVp at the low and high‐frequency limits are relative to
the respective theoretical Gassmann‐Wood and Gassmann‐
Hill limits. The error of Qmin is relative to the numerically
calculated value of Qmin.
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normal‐incidence reflection coefficient of a layer is [e.g.,
Brekhovskikh, 1980]

RL ¼
1� z

1þ z
1�

4zu

1þ zð Þ2� u 1� zð Þ2

 !

; ð14Þ

where u = exp(−2ihw)/V2, h is the thickness of the layer,
and z = V2r2/V1r1 is the impedance ratio. Index 2 refers to
the layer. Index 1 refers to the background medium where
the layer is embedded (i.e., the half‐spaces below and
above the layer). We calculate the normal‐incidence
reflection coefficient of an attenuating layer that has the
properties of one of the layered models discussed in the
section 3.3 (Figure 13). The layer is the model having gas
saturation in the pairs randomly varying between SP1 =
10% and SP2 = 20%. The overall gas saturation in the layer
is 15%, and the overall density is 2334 kg/m3. The
thickness of the layer is h = 44.9 m. For V2, we use the
complex velocity of the layered model calculated with
the averaging procedure, equation (13), andwith equation (8).
The complex velocity accounts for attenuation and velocity
dispersion in the layer. The phase velocities in the low‐

frequency and high‐frequency limits are 1915 and 2428 m/s,
respectively, the minimum value of Q is 6.7 and occurs at
around 1.2 Hz. For the background medium we consider a
nondispersive shale with velocity equal to 2560 m/s (V1) and
density equal to 2250 kg/m3. We refer to this example as
case A. For comparison with case A, we calculate in case B
the reflection coefficient of a layer which is fully saturated
with water and presents constant and low attenuation (Q =
100). The properties of the rock matrix and of the water in
the layer are the same as in case A (Table 2), yielding
phase velocity equal to 2584 m/s (V2p) and density equal to
2360 kg/m3. To include the constant attenuation, we use for
V2 [Carcione, 2007]

V2 ¼ V2p 1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ 1

p

� Q
� �� ��1

: ð15Þ

The thickness of the layer and the properties of the back-
ground medium are the same as in case A. In Figure 14 we
show the magnitude or absolute value of RL, denoted ∣RL∣,
versus frequency for cases A and B. We also show the ratio
between ∣RL∣ from case A and ∣RL∣ from case B. The
oscillation of ∣RL∣ with frequency is due to tuning. Tuning is
the effect of the positive and negative interferences of
reflections from the top and bottom of the layer [e.g.,
Kallweit and Wood, 1982; Liu and Schmitt, 2003]. We
observe that ∣RL∣ is approximately the same in cases A and
B at about 20 Hz, but for lower frequencies the effect of high
attenuation and velocity dispersion in case A yields larger
values of ∣RL∣ than in case B. At 10 Hz, ∣RL∣ in case A is
twice larger than in case B; at 2 Hz, ∣RL∣ in case A is three
times larger than in case B.
[26] The comparison between (case A) the reflection

coefficient of a water‐saturated layer with patches of gas
saturation (15%) exhibiting high attenuation and velocity
dispersion caused by wave‐induced fluid flow and (case B)
a layer fully saturated with water exhibiting constant and
low attenuation, shows that seismic wave attenuation and
velocity dispersion can cause a significant increase in the
reflection coefficient of a rock unit at low frequencies
(Figure 14). This shows that the observations from
Goloshubin et al. [2006] that oil‐rich reservoirs exhibit
increased reflectivity at low‐frequencies (around 10 Hz), in
comparison to the frequencies used by the conventional
seismic industry (greater than 20 Hz), can be explained by
high attenuation and velocity dispersion in those reservoirs.
[27] Although we only show P wave attenuation model-

ing, it is equally possible to model S wave attenuation by
changing the loading setup in the 2‐D (or 3‐D) quasi‐static
experiment [Masson and Pride, 2007].

5. Conclusions

[28] We presented a numerical technique based on stan-
dard finite elements to calculate frequency‐dependent
attenuation and velocity dispersion in the seismic frequency
range due to fluid flow in poroelastic media with meso-
scopic‐scale heterogeneities using a quasi‐static creep test.
The methodology for the quasi‐static experiment is based on
the work presented byMasson and Pride [2007], but instead
of solving Biot’s equations of wave propagation in porous

Figure 14. Absolute values of the normal‐incidence reflec-
tion coefficients of a layer, RL, in cases A and B, and their
ratio, versus frequency. In case A, the layer is the model
having gas saturation in the pairs randomly varying between
SP1 = 10% and SP2 = 20% (Figure 13), that yields an overall
gas saturation of 15%. The layer exhibits high attenuation
and velocity dispersion at low seismic frequencies (Qmin =
6.7 at 1.2 Hz) due to wave‐induced fluid flow. The complex
P wave modulus is calculated with the averaging procedure,
equation (13). In case B, the layer is fully saturated with
water and presents constant and low attenuation (Q = 100).
The thickness of the layer (h = 44.9 m) and the density and
velocity in the nondispersive background medium are the
same for both cases.
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media [Biot, 1962] using the finite difference method, we
solve Biot’s quasi‐static equations of consolidation [Biot,
1941] using the finite element method. Our alternative
method provides additional benefits such as (1) more
accurate calculations for heterogeneities having compli-
cated, curved geometries due to the usage of unstructured
mesh; (2), the simpler set of equations neglecting inertial
effects increases the computational efficiency; (3) implicitly
solving the time derivatives allows for larger and variable
time increments, also increasing the computational effi-
ciency; and (4) Biot’s equations of consolidation written in
the u − p formulation provide natural boundary conditions
for no fluid flow which are consistent to an undrained rock
sample.
[29] Comparison of our 1‐D and 2‐D numerical results

with analytical solutions shows that they are accurate over a
wide range of frequencies. Our numerical scheme is well
suited for modeling seismic attenuation and dispersion due
to fluid flow in realistic media, such as 3‐D rock samples
with heterogeneities with complicated geometries and arbi-
trary distribution patterns. Additionally, rock and fluid
properties can be varied independently and a larger number
of different fluids (e.g., water, gas, and oil) can be modeled.
[30] We applied the numerical scheme to porous rocks

with bimodal and random distributions of sizes of hetero-
geneities in fluid saturation. For such rocks, we proposed a
volume average of analytical solutions for approximating
the complex wave modulus. The approximate solutions
yielded good fits to the numerical results. The proposed
averaging method allows a fast, transparent and reasonably
accurate prediction of the quality factor and P wave velocity
in partially saturated porous rocks. Application of our results
to reflection coefficients of hydrocarbon reservoirs suggests
that the increased reflectivity at low frequencies, observed
by, for example, Goloshubin et al. [2006], can be explained
with frequency‐dependent attenuation and velocity disper-
sion caused by wave‐induced fluid flow.

Appendix A: The u − p Formulation of Biot’s
Equations of Consolidation

[31] Neglecting body forces, Biot’s quasi‐static equations
for a linear consolidation process [Biot, 1941] on the spatial
domain W 2 Rd, where d is the number of dimensions, over
the time = = [t0, T] are

�r � s ¼ 0; in W�=;

r � �
k

�
rp

� �

þ �r � _uþ
_p

M
¼ 0; in W�=;

ðA1Þ

where a dot on the top of a variable represents the first
partial time derivative and the symbol r is the Nabla
operator for spatial derivatives. The material properties k, h,
a, and M are defined in Table 1. The symbol p represents
the pore fluid pressure, u is the vector of solid displacement
with its components ui in the ith directions (e.g., for the full
3‐D case i = {x, y, z}), and s is the total stress tensor with
components sij. The boundary ∂W consists of the nonover-
lapping Dirichlet part, GD

f /s, and Neumann part, GN
f /s, of the

fluid and the solid frame (superscripts f and s, respectively),

i.e., ∂W = GD
f /s [ GN

f /s and GD
f /s \ GN

f /s = ;. The boundary
conditions are given for p and u as

u ¼ ^
u

on G
s
D;

p ¼ ^
p

on G
f
D;

s�n ¼ ^
t

on G
s
N ;

_w�n ¼ ^
_	

on G
f
N ;

ðA2Þ

in which _w is the vector of the velocity of the fluid relative
to the solid with its components _wi in the ith directions, n
stands for the unit outward normal vector on the boundary,

the symbols ^
u

and ^
p

are the solid displacement vector and
the fluid pressure, respectively, prescribed on the Dirichlet

boundaries, and ^
t

and ^
_	
are the stress vector and the fluid

flow, respectively, prescribed on the Neumann boundaries.
The associated initial conditions at time t = t0 are given for p
and u as

u ¼ u0 at W� t0;

p ¼ p0 at W� t0:

ðA3Þ

The velocity of the fluid relative to the solid is defined by
Darcy’s law

_w ¼ �
k

�
rp; ðA4Þ

and the components sij of the total stress tensor s are [Biot,
1941, 1962]

�ij ¼ 2�"ij þ 
e�ij � �p�ij; ðA5Þ

where dij is the Kronecker delta, and m and l are the Lamé
parameters defined in Table 1. The components of the strain
tensor, "ij, are defined as

"ij ¼
1

2

@ui

@xj
þ
@uj

@xi

� �

ðA6Þ

and the cubical dilatation, e, is given by the trace of the
strain tensor

e ¼
X

n

i¼1

"ii: ðA7Þ

Using the constitutive relations, equation (A5), for the total
stress sij, the system of equations (A1) can be expressed in
terms of the two unknowns u and p and their derivatives in
space and time, the so‐called u − p formulation [e.g.,
Zienkiewicz and Shiomi, 1984].

Appendix B: Finite Element Discretization Scheme
(1‐D)

[32] Biot’s equations of consolidation, equations (A1), on
the spatial domain W 2 R1 over the time = = [t0, T ] are

�
@�zz

@z
¼ 0; in W�=;

�
@

@z

k

�

@p

@z

� �

þ �
@ _uz

@z
þ

_p

M
¼ 0; in W�=;

ðB1Þ
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where szz is the normal stress in the z direction. The
boundary conditions are given for the fluid pressure, p, and
for the solid displacement in the z direction, uz, as

uz ¼ ^
u

z on G
s
D;

p ¼ ^
p

on G
f
D;

@

@z
�zz ¼ ^

�
z on G

s
N ;

@

@z
_wz ¼ ^

_	
z on G

f
N ;

ðB2Þ

where ^
u

z and ^
p

are the solid displacement in the z
direction and the fluid pressure, respectively, prescribed on

the Dirichlet boundaries, and ^
�

z and ^
_	
z are the normal

stress and the fluid flow flux, respectively, prescribed on the
Neumann boundaries. The initial conditions are given for p
and uz as

uz ¼ uz0 at W� t0;

p ¼ p0 at W� t0:

ðB3Þ

The normal stress in the z direction, szz, using equations (A5)
and (A6), is

�zz ¼ 2�þ 
ð Þ
@uz

@z
� �p: ðB4Þ

Substituting equation (B4) into equations (B1), the system
of equations (B2) can be written in terms of the two
unknowns, uz and p (i.e., the u − p formulation):

@

@z
� 2�þ 
ð Þ

@uz

@z
þ �p

� �

¼ 0;

�
@

@z

k

�

@p

@z

� �

þ �
@ _uz

@z
þ

_p

M
¼ 0:

ðB5Þ

The 1‐D initial boundary value problem given by equations
(B1) is solved by the finite element method. Therefore, the
equations are multiplied with test functions duz and dp and
integrated over the spatial domain. Furthermore, the con-
tinuous functions uz and p are approximated by uzh and ph
and we introduce the shape functions Ni [e.g., Zienkiewicz
and Taylor, 1989]. For a linear 1‐D element consisting of
two nodes (i.e., subscripts 1 and 2), the interpolated dis-
placement and pressure are

uzh zð Þ � N1 zð Þuzh1 þ N2 zð Þuzh2 ¼ N1 zð Þ N2 zð Þ½ �
uzh1
uzh2

	 


¼ Nuz;

ph zð Þ � N1 zð Þph1 þ N2 zð Þph2 ¼ N1 zð Þ N2 zð Þ½ �
ph1
ph2

	 


¼ Np:

ðB6Þ

Note that the shape functions Ni are functions of z, while uzhi
and phi are the discrete nodal quantities. The resulting set of
the discretized weak formulation in the domain R is
Z

R

@NT

@z
2�þ 
ð Þ

@N

@z
uz �

@NT

@z
�Np

	 


dr ¼

Z

@R

NTN^
�

zdl;

Z

R

@NT

@z

k

�

@N

@z
pþ NT�

@N

@z
_uz þ NT 1

M
N_p

	 


dr ¼ �

Z

@R

NTN^
_	
zdl:

ðB7Þ

We applied the Bubnov‐Galerkin method, in which the test
functions are chosen from the same function space as the
shape functions [e.g., Zienkiewicz and Taylor, 1989]. NT is
the transpose of N. Equations (B7) were integrated over a
certain region R, bounded by ∂R. Applying Green’s theo-
rem, equations (B7) were integrated by parts according to
convenient natural boundary conditions, expressed on the
right‐hand side. The right‐hand side of the first equation of
(B7) is the boundary term of the total stress applied at
the boundary ∂R of the domain R. The right‐hand side of the
second equation in (B7) is the relative fluid velocity at the
boundary ∂R of the region R.
[33] To solve this 1‐D problem, equations (B7), for the

unknown vectors uz and p, the components of the shape
functions, N, are defined as linear polynomial functions. For
the local 1‐D element (length dz) consisting of two end
nodes, the components of N are

N1 ¼ 1�
z

dz
; N2 ¼

z

dz
: ðB8Þ

The partial derivatives and integrals in equations (B7) can
be solved analytically and the one‐element problem can be
written as

C _V þ KV ¼ F; ðB9Þ

where V is the vector with the unknown components of uz
and p,

V ¼

uz1
p1
uz2
p2

2

6

6

4

3

7

7

5

; ðB10Þ

C and K are the element damping matrix and element
stiffness matrix, respectively,

C ¼

0 0 0 0

�
�

2

dz

3M

�

2

dz

6M

0 0 0 0

�
�

2

dz

6M

�

2

dz

3M

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

; ðB11Þ

K ¼

2�þ 


dz

�

2
�
2�þ 


dz

�

2

0
k

�dz
0 �

k

�dz

�
2�þ 


dz
�
�

2

2�þ 


dz
�
�

2

0 �
k

�dz
0

k

�dz

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

; ðB12Þ

and F is the vector containing the boundary terms expressed
on the right‐hand side of equations (B7). For the time
derivative in equation (B9), we use a first‐order finite dif-
ference operator,

_V �
V n � V o

dt
; ðB13Þ

where superscripts n and o denote the value after (i.e., new)
and before (i.e., old) a time increment, dt, respectively
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[Strang, 1986]. Furthermore, we solve the system of
equations (B9) implicitly,

C
V n � V o

dt
þ KV n ¼ F; ðB14Þ

where V n is the solution we seek:

V n ¼ C þ dtK½ ��1
CV o þ dtF½ �: ðB15Þ

Appendix C: The 2‐D Finite Element Scheme

[34] WithBiot’s equations of consolidation (equations (A1))
and the constitutive relations (equations (A2)) in the 2‐D case,
the equations of consolidation in the u − p formulation are

The equations are multiplied with test functions dux, duz, and
dp and integrated over the spatial domain. The continuous
functions ux, uz, and p are approximated by the approx-
imations uxh, uzh, and ph and we introduce the shape func-
tions Nui and Npi [e.g., Zienkiewicz and Taylor, 1989]

uxh x; zð Þ � Nu x; zð Þux;
uzh x; zð Þ � Nu x; zð Þuz;
ph x; zð Þ � Np x; zð Þp:

ðC2Þ

The values of the unknowns at the element nodes are the
components of vectors ux, uz, and p: uxhi, uzhi, and phi,
respectively. The shape functions for the displacements and
fluid pressure, respectively, are the components of the
matrices Nu and Np: Nui and Npi. Applying the Bubnov‐
Galerkin method, in which the test functions are chosen
from the same function space as the shape functions, [e.g.,
Zienkiewicz and Taylor, 1989], we have the set of the dis-
cretized weak form

where ^
�

x, ^
�

z, ^
_	
x, and ^

_	
z are the normal stress in x and z

directions, and the fluid flow flux in x and z directions,
respectively, prescribed on the Neumann boundaries
(equations (A2)). Equations (C3) were integrated over a
certain region R, bounded by ∂R. Applying Green’s theo-

rem, they were integrated by parts according to convenient
natural boundary conditions expressed on the right‐hand
side. The right‐hand side of the first equation of (C3) is the
boundary term of the total stress applied at the boundary ∂R
of the domain R. The right‐hand side of the second equation
of (C3) is the relative fluid velocity at the boundary ∂R of
the region R.
[35] The 2‐D problem described by equations (C3) is

solved as

G �QT

0 H

" #

u

p

� �

þ
0 0

Q S

	 


_u

_p

� �

¼
f

q

� �

$ KV þ C _V ¼ F:

ðC4Þ

In equation (C4), the vector u contains the discrete nodal
values of ux and uz and V is a vector containing all
unknowns (i.e., ux and uz and p). The vector f contains the
discrete nodal values of fx and fz, and F is a vector con-
taining the vector f and the vector q. Matrices K and C are
the element stiffness matrix and the element damping
matrix, respectively, whose components are defined as

G ¼

Z

R

BT
uGDBuGdr;

Q ¼

Z

R

NT
p�BuQdr;

H ¼

Z

R

BT
p

k

�
Bpdr;

S ¼

Z

R

NT
p

1

M
NTdr:

ðC5Þ

In equations (C5), matrices BuG and BuQ contain the spatial
derivatives of the displacement shape function Nu in a
suitably organized way and matrix Bp contains the spatial
derivatives of the pressure shape functions Np in a suitably
organized way [e.g., Zienkiewicz and Taylor, 1989].
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[36] The actual element used in this study is an isopara-
metric 7‐node triangular element [Zienkiewicz and Taylor,
1989]. The seven corresponding shape functions are
biquadratic and continuous across element boundaries. We
use the same set of shape functions for approximating dis-
placements and pressure (i.e., Nu equal Np). The unstruc-
tured triangular numerical mesh is created by the software
Triangle [Shewchuk, 1996, 2002] in such a way that the
material boundaries coincide with the element boundaries.
With this mesh, we are able to apply a variable resolution in
the model domain to best suit the problem under consider-
ation, that is, the resolution is high where the physical
processes take place on a short length scale (i.e., close to the
boundaries of heterogeneities) and lower elsewhere in the
model domain. This provides both the best possible numeri-
cal accuracy and computational performance [Frehner et al.,
2008]. The integrals in equations (C5) are solved numerically
using seven Gauss‐Lobatto quadrature points [Zienkiewicz
and Taylor, 1989].
[37] Finally, equation (C4) is discretized in time and solved

using an implicit finite difference approach (equation (B15)).

Appendix D: Undrained Bulk Modulus for the 2‐D
Case

[38] In the 2‐D case, using equation (4), _�zz(w) and _�xx(w)
are

_�zz !ð Þ ¼ 2�u !ð Þ _"zz !ð Þ þ Ku !ð Þ �
2

3
�u !ð Þ

� �

_"zz !ð Þ þ _"xx !ð Þð Þ;

ðD1Þ

_�xx !ð Þ ¼ 2�u !ð Þ _"xx !ð Þ þ Ku !ð Þ �
2

3
�u !ð Þ

� �

_"zz !ð Þ þ _"xx !ð Þð Þ:

ðD2Þ

Adding equations (D1) and (D2), we obtain

Ku !ð Þ ¼
1

2

_�zz !ð Þ þ _�xx !ð Þ

_"zz !ð Þ þ _"xx !ð Þ
�
1

3
�u !ð Þ; ðD3Þ

and subtracting equation (D2) from equation (D1), we
obtain

�u !ð Þ ¼
1

2

_�zz !ð Þ � _�xx !ð Þ

_"zz !ð Þ � _"xx !ð Þ
: ðD4Þ

Then, the undrained bulk modulus, Ku(w), can be calculated
with equations (D3) and (D4).
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