
Geophys. J. Int. (2006) 166, 418–434 doi: 10.1111/j.1365-246X.2006.02921.x
G

JI
T
ec

to
ni

cs
an

d
ge

o
dy

na
m

ic
s

Quasi-static internal deformation due to a dislocation source
in a multilayered elastic/viscoelastic half-space
and an equivalence theorem

Yukitoshi Fukahata and Mitsuhiro Matsu’ura
Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan. E-mail: fukahata@eps.s.u-tokyo.ac.jp

Accepted 2006 January 17. Received 2006 January 17; in original form 2005 September 5

S U M M A R Y
We have obtained general expressions for quasi-static internal deformation fields due to a dis-
location source in a multilayered elastic/viscoelastic half-space under gravity by applying the
correspondence principle of linear viscoelasticity to the associated elastic solution (Fukahata
& Matsu’ura 2005). The use of the upgoing propagator matrix for the region below the source
and the downgoing propagator matrix for the region above the source in the derivation of math-
ematical expressions guarantees the numerical stability of the obtained viscoelastic solution
over the whole region. The viscoelastic deformation fields due to a dislocation source tend to a
certain steady state with the progress of viscoelastic stress relaxation. The completely relaxed
viscoelastic solution can be directly obtained from the associated elastic solution by taking the
rigidity of the elastic layer corresponding to a Maxwell viscoelastic layer to be zero. We gave an
explicit mathematical proof of this theoretical relationship, which we named the equivalence
theorem, on the basis of the correspondence principle of linear viscoelasticity and the limiting
value theorem of the Laplace transform. The equivalence theorem is applicable not only to the
elastic-viscoelastic stratified medium but also to general elastic and linear-viscoelastic com-
posite media. As numerical examples we show the quasi-static internal displacement fields due
to strike-slip motion on a vertical fault and dip-slip motion on a subduction plate boundary
in an elastic surface layer overlying a viscoelastic half-space. The temporal variation of the
computed deformation fields shows that the effective relaxation time of the elastic-viscoelastic
system is much longer than the Maxwell relaxation time defined by the ratio of viscosity to
rigidity in the viscoelastic layer.

Key words: crustal deformation, dislocation theory, equivalence theorem, layered medium,
viscoelasticity.

1 I N T RO D U C T I O N

In the computation of crustal deformation elastic half-space models have been widely used for simplicity. The elastic half-space may be a

reasonable assumption as far as short-term crustal deformation, such as coseismic deformation, is concerned. To long-term crustal deformation

such as interseismic deformation and post-glacial rebound, however, the elastic half-space model is no longer applicable, because the effects of

viscoelastic stress relaxation in the asthenosphere underlying the elastic lithosphere cannot be neglected (Thatcher & Rundle 1984; Matsu’ura

& Sato 1989; Fukahata et al. 2004).

Viscoelastic responses due to a dislocation source in an elastic-viscoelastic layered half-space have already been obtained by Rundle

(1978, 1982), Matsu’ura et al. (1981) and Iwasaki & Matsu’ura (1981) for surface displacements and strains. Their formulations have been

applied to post-seismic crustal deformation due to viscoelastic stress relaxation in the asthenosphere (Matsu’ura & Iwasaki 1983), crustal

deformation associated with earthquake cycles (Thatcher & Rundle 1984; Matsu’ura & Sato 1989; Fukahata et al. 2004), and long-term crustal

deformation due to mechanical interaction at convergent plate boundaries (Sato & Matsu’ura 1993; Takada & Matsu’ura 2004; Hashimoto

et al. 2004). In modelling earthquake generation cycles, however, we need to evaluate internal deformation fields due to fault slip, because

the physical process of earthquake generation cycles is governed by a coupled non-linear system, consisting of a slip-response function that

relates fault slip to shear stress change, a fault constitutive relation that prescribes change in shear strength with fault slip or slip velocity, and

relative plate motion as a driving force (Tse & Rice 1986; Stuart 1988; Hashimoto & Matsu’ura 2000, 2002; Matsu’ura 2005). Computation
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Quasi-static internal deformation 419

of internal deformation fields due to fault slip is also needed in estimating pressure–temperature–time paths and modelling thermal structure

evolution at plate convergence zones (England & Thompson 1984; Barr & Dahlen 1989; Fukahata & Matsu’ura 2000).

Extending the formulation of Matsu’ura et al. (1981), Matsu’ura & Sato (1997) have obtained expressions for internal deformation fields

due to strike-slip motion on a vertical fault in an elastic layer overlying a viscoelastic half-space. Their expressions are, however, numerically

unstable below the source depth, because they used only the downgoing propagator matrix in the derivation of the internal deformation

fields (Fukahata & Matsu’ura 2005). Using both the upgoing and the downgoing propagator matrices and extending the formulation of

Pan (1989), Pan (1997) derived a numerically stable solution of internal deformation for a layered transversely isotropic elastic medium.

Recently, introducing the generalized propagator matrix, Fukahata & Matsu’ura (2005) have illuminated the relationship between the upgoing

algorithm proposed by Singh (1970) and the downgoing algorithm proposed by Sato (1971), and obtained the complete expressions for

internal deformation fields due to a dislocation source in a multilayered elastic half-space. That is, they have completely solved the numerical

instability problem at large wavenumber (e.g. Singh 1970; Jovanovich et al. 1974; Rundle 1978, 1982; Ma & Kusznir 1992; Matsu’ura &

Sato 1997). In general, the viscoelastic solution can be obtained from the associated elastic solution by applying the correspondence principle

of linear viscoelasticity (Lee 1955; Radok 1957). In the present study, we apply the correspondence principle to the elastic solution derived

by Fukahata & Matsu’ura (2005), and obtain general expressions for quasi-static internal deformation fields due to a dislocation source in a

multilayered elastic/viscoelastic half-space under gravity.

The quasi-static deformation fields due to a dislocation source tend to a certain steady state with the progress of viscoelastic stress

relaxation. In some problems we are not interested in the process of stress relaxation, but in the steady state after complete relaxation. From

consideration of the constitutive equations, Cohen (1980a,b) has derived effective reduced elastic moduli at completely relaxed states. By

using the effective reduced moduli he obtained the surface deformation fields due to a strike slip after the completion of stress relaxation

directly from the associated elastic solution. Following Cohen’s idea, Ma & Kusznir (1994a,b) computed internal deformation fields after

the complete relaxation of the viscoelastic substratum by taking the rigidity of elastic substratum to be very small in the associated elastic

solution. For vertical surface displacements due to a pure dip-slip, Ma & Kusznir (1995) have numerically confirmed that the deformation

fields obtained from the associated elastic solution by this approach almost coincides with those calculated from the viscoelastic solution by

taking the time t to be infinity. In the present paper we prove the mathematical equivalence between the completely relaxed viscoelastic solution

and the associated elastic solution with the corresponding elastic layer having zero rigidity, on the basis of the correspondence principle of

linear viscoelasticity and the limiting value theorem of the Laplace transform.

2 M AT H E M AT I C A L F O R M U L AT I O N

We consider n-1 parallel layers overlying a half-space. Every layer and interface is numbered in ascending order from the free surface as

shown in Fig. 1(a). The jth layer is bounded by the (j-1)th and jth interfaces. The depth of the jth interface is denoted by H j , and the thickness

of the jth layer by h j = H j − H j−1. Each parallel layer is homogeneous, isotropic, and elastic or viscoelastic. The rheological property of the

viscoelastic layers is assumed to be Maxwell in shear and elastic in bulk. Then, we may write the constitutive equations for elastic layers as

σij = λlεkkδij + 2μlεij, (1)

and for viscoelastic layers as

σ̇ij + μl

ηl

(
σij − 1

3
σkkδij

)
= λl ε̇kkδij + 2μl ε̇ij, (2)

where σ i j and ε i j are the stress and strain tensors, respectively, λl and μl denote the Lamé elastic constants in the lth layer, η l is the viscosity

in the lth layer, and the dot means differentiation with respect to time. Here, it should be noted that the Laplace transform of eq. (2) yields

σ̃ij = λ̂l (s)ε̃kkδij + 2μ̂l (s)ε̃ij, (3)

with

λ̂l (s) = λlτl s + Kl

τl s + 1
, μ̂l (s) = τl sμl

τl s + 1
, (4)

and

τl = ηl

μl
, (5)

where K l is the bulk modulus in the lth layer, s is the Laplace transform variable, and the tilde denotes the Laplace transform of the corresponding

physical quantity. From comparison of eqs (1) and (3), we can see that the Laplace transform of the constitutive equation for the viscoelastic

medium is formally identical with that for the elastic medium, except that the Lamé constants are replaced by the s-dependent moduli λ̂l (s)

and μ̂l (s).

First, we consider an elastic problem associated with the viscoelastic problem, where each viscoelastic layer is replaced by a perfectly

elastic layer with the corresponding elastic constants. According to the correspondence principle of linear viscoelasticity (Lee 1955; Radok

1957), the Laplace transform of the viscoelastic solution is directly obtained from the associated elastic solution by replacing the source

time function with its Laplace transform and the elastic constants, λl and μl, of the layers corresponding to the viscoelastic layers with

the s-dependent moduli, λ̂l (s) and μ̂l (s), respectively. Operation of the inverse Laplace transform on the s-dependent solution yields the

viscoelastic solution in the time domain.
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Figure 1. The coordinate system, fault geometry, and notations. (a) Numbering of the layers and interfaces. The jth layer is bounded by the (j-1)th and jth
interfaces. The depth of the jth interface is denoted by H j , and the thickness of the jth layer by h j (= H j − H j−1). A point dislocation source is located in

the mth layer. Each layer is elastic or viscoelastic. (b) Cylindrical (r , ϕ, z) and Cartesian (x, y, z) coordinate systems used. The point dislocation source with a

dip angle θ and a slip angle χ is located at depth d on the z-axis.
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2.1 The associated elastic solutions

We consider the associated elastic problem in which each viscoelastic layer is replaced by a perfectly elastic layer with the corresponding

elastic constants. Then, the complete solution of the associated elastic problem is given in Fukahata & Matsu’ura (2005). In their expressions

for the internal elastic deformation fields, the elastic constants μl and γ l are used instead of λl and μl, where γ l is defined by

γl = λl + μl

λl + 2μl
. (6)

In the following part of this section we explicitly describe the dependence of the physical quantities on the elastic constants, μl and γ l , for

convenience of the derivation of the viscoelastic solution.

We take a cylindrical coordinate system (r, ϕ, z) as shown in Fig. 1(b). The positive z-axis is taken as directed into the medium. A

tangential displacement discontinuity (dislocation) �uH(t) occurs over a unit infinitesimal area at (0, 0, d) in the mth layer (1 ≤ m ≤ n) with a

dip angle θ and a slip angle χ . Here, H(t) denotes a unit step function. Then, the elastic displacement components uE
i (i = r , ϕ, z) and stress

components σ E
zi (i = r , ϕ, z) in the jth layer due to the dislocation source are given by the following semi-infinite integrals with respect to

wavenumber ξ :⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uE
r (r, ϕ, z, t ; j ; μl , γl ) = H (t)

�u

4π

[∫ ∞

0

YE
1 (z; ξ ; j ; μl , γl )∂r J(r, ϕ; ξ ) dξ +

∫ ∞

0

Y′E
1 (z; ξ ; j ; μl )

1

r
∂ϕJ′(r, ϕ; ξ ) dξ

]
uE

ϕ (r, ϕ, z, t ; j ; μl , γl ) = H (t)
�u

4π

[∫ ∞

0

YE
1 (z; ξ ; j ; μl , γl )

1

r
∂ϕJ(r, ϕ; ξ ) dξ −

∫ ∞

0

Y′E
1 (z; ξ ; j ; μl )∂r J′(r, ϕ; ξ ) dξ

]
uE

z (r, ϕ, z, t ; j ; μl , γl ) = H (t)
�u

4π

∫ ∞

0

ξYE
2 (z; ξ ; j ; μl , γl )J(r, ϕ; ξ ) dξ (7)

and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ E
zr (r, ϕ, z, t ; j ; μl , γl ) = H (t)

�uμ j

4π

[∫ ∞

0

2ξYE
3 (z; ξ ; j ; μl , γl )∂r J(r, ϕ; ξ ) dξ +

∫ ∞

0

ξY′E
2 (z; ξ ; j ; μl )

1

r
∂ϕJ′(r, ϕ; ξ ) dξ

]
σ E

zϕ(r, ϕ, z, t ; j ; μl , γl ) = H (t)
�uμ j

4π

[∫ ∞

0

2ξYE
3 (z; ξ ; j ; μl , γl )

1

r
∂ϕJ(r, ϕ; ξ ) dξ −

∫ ∞

0

ξY′E
2 (z; ξ ; j ; μl )∂r J′(r, ϕ; ξ ) dξ

]
σ E

zz (r, ϕ, z, t ; j ; μl , γl ) = H (t)
�uμ j

4π

∫ ∞

0

2ξ 2YE
4 (z; ξ ; j ; μl , γl )J(r, ϕ; ξ ) dξ, (8)

where the superscript E denotes quantities related to the associated elastic solution. The z-independent vectors J and J′ are defined by

J(r, ϕ; ξ ) =

⎛⎜⎜⎝
a0(ϕ)J0(ξr )

a1(ϕ)J1(ξr )

a2(ϕ)J2(ξr )

⎞⎟⎟⎠ , J′(r, ϕ; ξ ) = ∂ϕ

⎛⎝ a1(ϕ)J1(ξr )

a2(ϕ)J2(ξr )

⎞⎠ , (9)

with⎧⎪⎨⎪⎩
a0(ϕ) = 1

4
sin χ sin 2θ

a1(ϕ) = − sin χ cos 2θ sin ϕ + cos χ cos θ cos ϕ

a2(ϕ) = 1
4

sin χ sin 2θ cos 2ϕ + 1
2

cos χ sin θ sin 2ϕ

(10)

Here, J k(ξr ) denotes the Bessel function of order k. The z-dependent kernel vectors YE
k (k = 1, 2, 3, 4) and Y′E

k (k = 1, 2) compose the 4 ×
3 and 2 × 2 deformation matrices Y E and Y′E , respectively, as

YE (z; j ; μl , γl ) =

⎛⎜⎜⎜⎜⎜⎝
YE

l (z; j ; μl , γl )

YE
2 (z; j ; μl , γl )

YE
3 (z; j ; μl , γl )

YE
4 (z; j ; μl , γl )

⎞⎟⎟⎟⎟⎟⎠ , Y′E (z; j ; μl ) =
(

Y′E
l (z; j ; μl )

Y′E
2 (z; j ; μl )

)
. (11)

Hereafter we omit the ξ -dependence for simplicity. In obtaining the deformation matrices, as demonstrated by Fukahata & Matsu’ura (2005),

we must use the downgoing algorithm for z < d and the upgoing algorithm for z > d to suppress numerical instability. Then, we can express

the deformation matrices in the following form:{
YE (z; j ; μl , γl ) = exp(−qξ )S jm(z; μl , γl ) + δnjδnmexp(− |z − d| ξ )Ys(z; γn)

Y′E (z; j ; μl ) = exp(−qξ )S′
jm(z; μl ) + δnjδnmexp(− |z − d| ξ )Y′s(z)

, (12)

with

q =
{

|z − d| ( j �= n or m �= n)

z + d − 2Hn−1 ( j = m = n)
, (13)

where δnj and δnm represent the Kronecker delta. The explicit expressions for S(′)
jm and Y(′)s are given in the Appendix. Here, S(′)

jm represents

Sjm or S′
jm, and Y(′)s represents Ys or Y′s .
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422 Y. Fukahata and M. Matsu’ura

2.2 Viscoelastic solution

According to the correspondence principle, we can directly obtain the Laplace transform of the viscoelastic displacement components

ũi (i = r, ϕ, z) and stress components σ̃zi (i = r, ϕ, z) by replacing H(t) with 1/s and μl and γ l corresponding to the viscoelastic layers

with μ̂l (s) and γ̂l (s) in eqs (7) and (8):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ũr (r, ϕ, z, s; j) = �u

4π

[∫ ∞

0

Ỹ1(z, s; j)∂r J(r, ϕ) dξ +
∫ ∞

0

Ỹ′
1(z, s; j)

1

r
∂ϕJ′(r, ϕ) dξ

]
ũϕ(r, ϕ, z, s; j) = �u

4π

[∫ ∞

0

Ỹ1(z, s; j)
1

r
∂ϕJ(r, ϕ) dξ −

∫ ∞

0

Ỹ′
1(z, s; j)∂r J′(r, ϕ) dξ

]
ũz(r, ϕ, z, s; j) = �u

4π

∫ ∞

0

ξ Ỹ2(z, s; j)J(r, ϕ) dξ, (14)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ̃zr (r, ϕ, z, s; j) = �uμ j

4π

[∫ ∞

0

2ξ Ỹ3(z, s; j)∂r J(r, ϕ) dξ +
∫ ∞

0

ξ Ỹ′
2(z, s; j)

1

r
∂ϕJ′(r, ϕ) dξ

]
σ̃zϕ(r, ϕ, z, s; j) = �uμ j

4π

[∫ ∞

0

2ξ Ỹ3(z, s; j)
1

r
∂ϕJ(r, ϕ) dξ −

∫ ∞

0

ξ Ỹ′
2(z, s; j)∂r J′(r, ϕ) dξ

]
σ̃zz(r, ϕ, z, s; j) = �uμ j

4π

∫ ∞

0

2ξ 2Ỹ4(z, s; j)J(r, ϕ) dξ, (15)

where⎧⎪⎨⎪⎩
Ỹk(z, s; j) = 1

s
YE

k (z; j ; μ̂l , γ̂l ) (k = 1, 2, 3, 4)

Ỹ′
k(z, s; j) = 1

s
Y′E

k (z; j ; μ̂l ) (k = 1, 2), (16)

with

γ̂l (s) = γl s + κl

s + κl
, (17)

and

κl = 4γl − 1

3τl
. (18)

Here, we assumed the jth layer to be elastic. As shown in the next subsection, YE
k (z; j ; μ̂l , γ̂l ) and Y′E

k (z; j ; μ̂l ) in eq. (16) can be expressed

as the rational functions of the Laplace transform variable s in the following form:

Y(′)E
k (z; j ; μ̂l , γ̂l ) =

∑M
i=0 a(i)si∑M
i=0 b(i)si

, (19)

with

a(M)

b(M)
= Y(′)E

k (z; j ; μl , γl ). (20)

Here, it should be noted that Y′E
k does not depend on γ̂l in reality, and so the degree M of the polynomials for Y′E

k is different from that for

YE
k . When the source is located in the elastic surface layer overlying a viscoelastic half-space, for example, the degree Mof the polynomial

is three for YE
k and one for Y′E

k . Given the explicit expressions for the rational functions, we can obtain the viscoelastic solution in the time

domain by using the algorithm developed by Matsu’ura et al. (1981); that is, with division algorithm and partial fraction resolution, we can

rewrite eq. (16) as

Ỹ(′)
k (z, s; j) = 1

s
Y(′)E

k (z; j ; μl , γl ) −
M∑

i=1

ci

(
1

s
− 1

s − di

)
, (21)

where

ci = 1

b(M)di

M
�

l=1(l �=i)

1

(di − dl )

M∑
l=0

a(l)dl
i , (22)

and d i are the roots of the algebraic equation
∑M

i=0 b(i)si = 0, which always take real negative values. Operation of the inverse Laplace

transform on Ỹ(′)
k yields

Y(′)
k (z, t ; j) = H (t)

[
Y(′)E

k (z; j ; μl , γl ) −
M∑

i=1

ci {1 − exp (di t)}
]

. (23)

Finally, replacing Ỹ(′)
k (z, s; j) in eqs (14) and (15) with Y(′)

k (z, t ; j) in eq. (23), we obtain the viscoelastic displacement components ui (i =
r , ϕ, z) and stress components σ zi (i = r , ϕ, z) in the time domain. When the jth layer is viscoelastic, we must also replace μ j in eq. (15)

with μ̂ j . In this case we can obtain the expressions for stress components σ zi (i = r , ϕ, z) in the time domain with additional partial fraction

resolution.
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From eq. (23) we can see that the viscoelastic solution consists of the instantaneous elastic deformation due to a dislocation source (the

first term), and the viscoelastic transient deformation decaying with time (the second term). Here, it should be noted that the real negative

roots d i have strong wavenumber dependence (Matsu’ura et al. 1981), and so the viscoelastic transient deformation is expressed by the

superposition of Mmodes with different wavenumber-dependent decay time functions. On the other hand, the completely relaxed viscoelastic

solution Y(′)
k (z; j ; t → ∞) is given by

Y(′)
k (z; j ; t → ∞) = Y(′)E

k (z; j ; μl , γl ) −
M∑

i=1

ci = a(0)

b(0)
. (24)

2.3 Derivation of the rational functions

In this subsection we give the algorithm to derive the explicit expressions for eq. (19). If the substratum is viscoelastic, using eq. (17), we can

rewrite eq. (12) as{
YE (z; j ; μ̂l , γ̂l ) = exp(−qξ )S jm(z; μ̂l , γ̂l ) + δnjδnmexp(− |z − d| ξ )

(
sYs(z; γn) + κnYs(z; 1)

)/
(s + κn

)
Y′E (z; j ; μ̂l ) = exp(−qξ )S′

jm(z; μ̂l ) + δnjδnmexp(− |z − d| ξ )Y′s(z), (25)

otherwise{
YE (z; j ; μ̂l , γ̂l ) = exp(−qξ )S jm(z; μ̂l , γ̂l ) + δnjδnmexp(− |z − d| ξ )Ys(z; γn)

Y′E (z; j ; μ̂l ) = exp(−qξ )S′
jm(z; μ̂l ) + δnjδnmexp(− |z − d| ξ )Y′s(z). (26)

Then, in order to obtain the expressions for Y(′)E
k (z; j ; μ̂l , γ̂l ) in the form of eq. (19), we need to rewrite the s-dependent factors S(′)

jm(z; μ̂l , γ̂l )

in eq. (25) or (26) in a similar form to eq. (19), that is

S(′)
jm(z; μ̂l , γ̂l ) =

∑M
i=0 A(′)(i)si∑M
i=0 B(′)(i)si

. (27)

As shown in the Appendix, both the numerator and the denominator of S(′)
jm(z;μl , γ l ) in the associated elastic solution are defined by the

products of the matrices with the elements including the elastic constants, μl or γ l , which are replaced by the corresponding s-dependent

moduli in the viscoelastic solution. The formal expressions for the s-dependent matrices appearing in the numerator or denominator of

S(′)
jm(z; μ̂l , γ̂l ) are given by

F(z; γ̂l ) = 1

s + κl
(sF(z; γl ) + κlF(z; 1)) , (28)

D(′)(μl−1, μ̂l ) = 1

s

(
sD(′)(μl−1, μl ) + 1

τl
D(′)

s (μl−1, μl )

)
, (29)

D(′)(μ̂l , μl+1) = 1

s + 1/τl

(
sD(′)(μl , μl+1) + 1

τl
D(′)(0, μl+1)

)
, (30)

with

Ds(μl−1, μl ) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 μl−1/μl 0

0 0 0 μl−1/μl

⎞⎟⎟⎟⎟⎟⎠ , D′
s(μl−1, μl ) =

(
0 0

0 μl−1/μl

)
, (31)

if the viscoelastic layer intervenes between elastic layers. When the viscoelastic layer is adjacent to another viscoelastic layer, eqs (29) and

(30) should be replaced by

D(′)(μ̂l , μ̂l+1) = 1

s + 1/τl

(
sD(′)(μl , μl+1) + 1

τl
D(′)(ηl , ηl+1)

)
. (32)

In addition to these, if the source is located in the viscoelastic layer, the following s-dependent matrix appears in the numerator of S jm(z; μ̂l , γ̂l ):

Δ(γ̂m) = 1

s + κm
(sΔ(γm) + κmΔ(1)) . (33)

If the substratum is viscoelastic, we use

E(z; γ̂n) = 1

s + κn
(sE(z; γn) + κnE(z; 1)) . (34)

The explicit expressions for F, D(′), Δ and E are given in the Appendix. Here, it should be noted that all the s-dependent matrices in eqs (28)–

(30) and (32)–(34) have the form of a rational function of first-degree polynomials in s. The product of two polynomials can generally be

calculated with the following rule:
n1∑

i=0

a(i)si
n2∑
j=0

b( j)s j =
n1+n2∑

p=0

c(p)s p, (35)
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424 Y. Fukahata and M. Matsu’ura

where

c(p) =
E∑

k=I

a(p−k)b(k), (36)

with{
I = 0 (p ≤ n1)

I = p − n1 (p > n1),

{
E = p (p ≤ n2)

E = n2 (p > n2).
(37)

Here, a(i) and b(i) may be vectors or matrices. Therefore, applying the rule in eq. (35) to the numerator and to the denominator of S(′)
jm(z; μ̂l , γ̂l )

repeatedly, we can obtain the expressions for S(′)
jm(z; μ̂l , γ̂l ) in the form of eq. (27).

3 E Q U I VA L E N C E T H E O R E M

The quasi-static deformation field due to a dislocation source tends to a certain steady state with the progress of stress relaxation in viscoelastic

layers. In some problems we are not interested in the process of stress relaxation, but in the steady state after complete relaxation. In this

section we show that the completely relaxed viscoelastic solution can be obtained directly from the associated elastic solution without passing

through the complicated viscoelastic calculation described in the previous section.

With the limiting value theorem of the Laplace transform we can directly evaluate the ultimate displacement field ui at t → ∞ from the

viscoelastic solution ũi in the s-domain as

lim
t→∞

ui (r, ϕ, z, t ; j) = lim
s→0

sũi (r, ϕ, z, s; j). (38)

On the basis of the correspondence principle, as shown in eqs (7), (14) and (16), we can express the viscoelastic step response in the s-domain

in terms of the associated elastic response as

ũi (r, ϕ, z, s; j) = 1

s
uE

i (r, ϕ, z, t > 0; j ; μ̂l , γ̂l ). (39)

Here, we assumed that only one layer is viscoelastic, for simplicity. Substituting eq. (39) into eq. (38), we obtain

lim
t→∞

ui (r, ϕ, z, t ; j) = lim
s→0

uE
i (r, ϕ, z, t > 0; j ; μ̂l , γ̂l ). (40)

Using the explicit expressions for μ̂l (s) in eq. (4) and γ̂l (s) in eq. (17), we can obtain the limiting values of the s-dependent moduli μ̂l (s) and

γ̂l (s) at s → 0 as

lim
s→0

μ̂l (s) = 0, lim
s→0

γ̂l (s) = 1. (41)

Then, we may rewrite eq. (40) as

lim
t→∞

ui (r, ϕ, z, t ; j) = uE
i (r, ϕ, z, t > 0; j ; μl → 0, 1). (42)

In the same way, we can obtain the following parallel relations for stress and strain components:

lim
t→∞

σij(r, ϕ, z, t ; j) = σ E
ij (r, ϕ, z, t > 0; j ; μl → 0, 1), (43)

and

lim
t→∞

εij(r, ϕ, z, t ; j) = εE
ij (r, ϕ, z, t > 0; j ; μl → 0, 1). (44)

Based on eq. (24), we can confirm the validity of eqs (42)–(44) from the direct calculation described in the previous section.

Eqs (42)–(44) mean that the viscoelastic step response at t → ∞ is mathematically equivalent to the associated elastic response with

μl → 0 and γ l = 1. In other words, the viscoelastic medium cannot support any deviatoric stress at t → ∞. Here, we should note that the

completely relaxed solution does not depend on the value of viscosity, which just controls the speed of viscous relaxation. Hereafter, we refer

to the theoretical relation described by eqs (42)–(44) as the ‘equivalence theorem’ in linear viscoelastic problems.

If we take the elastic constants (μl , K l ) or (μl , λl ) instead of (μl , γ l ) to express the deformation fields, we obtain other expressions for

the equivalence theorem. Denoting the viscoelastic step response by q(t ; μl , K l ) or q′(t ; μl , λl ) and the associated elastic response by qE (t ;
μl , K l ) or q′ E (t ; μl , λl ), we obtain

lim
t→∞

q(t ; μl , Kl ) = qE (t > 0; μl → 0, Kl ), (45)

Table 1. Two-layer structure model used for the com-

putations in Section 4.

No. H (km) Vp (km s−1) Vs (km s−1) ρ (kg m−3)

1 30 6.0 3.5 2.6 × 103

2 ∞ 8.0 4.5 3.4 × 103
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Figure 2. Coseismic vertical (left) and horizontal (right) surface displacements due to unit (1 m) left-lateral strike-slip displacement on a vertical fault in an

elastic surface layer overlying a viscoelastic half-space. The fault length is taken to be 100 km (x = −50 to 50 km), and the fault width to be 30 km (z = 0

to 30 km), which is the same as the thickness of the elastic surface layer. The structural parameters are given in Table 1. The contour interval of the vertical

displacement is 10 mm, and the uplift is taken to be positive.
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Figure 3. Variation of the coseismic displacement fields with depth. The vertical and horizontal components in the fourth quadrant at z = 0, 20 and 40 km are

shown in the left and right columns, respectively. See Fig. 2 caption for fault model and structural parameters. The contour interval of the vertical displacement

is 10 mm, and uplift is taken to be positive.
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Figure 4. Variation of the completely relaxed viscoelastic displacement fields with depth. The vertical and horizontal components in the fourth quadrant at

z = 0, 20 and 40 km are shown in the left and right columns, respectively. See Fig. 2 caption for fault model and structural parameters. The contour interval of

the vertical displacement is 10 mm, and uplift is taken to be positive.

or

lim
t→∞

q′(t ; μl , λl ) = q′ E
(t > 0; μl → 0, Kl ). (46)

Here, we used

lim
s→0

λ̂l (s) = Kl . (47)

When the half-space contains more than one Maxwell viscoelastic layer with different viscosities, we need to pay special attention to

taking the limit μl → 0, because the relaxation speed in each layer depends on its viscosity. As an example, let’s consider a half-space with

two Maxwell viscoelastic layers, (μi , K i , η i ) and (μ j , K j , η j ). In this case the equivalence theorem is expressed as

lim
t→∞

q(t ; μi , Ki , μ j , K j ) = qE (t > 0; μi → 0, Ki , μ j → 0, K j ), (48)

but the limit μi → 0 and μ j → 0 must be taken under the following condition:
μi

μ j
= ηi

η j
. (49)

Thus, the completely relaxed viscoelastic solution depends on the ratio of viscosities η i/η j .
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Figure 5. Temporal variation of fault-parallel displacements on the y-axis. The four curves in each diagram show the displacement profiles at t = 0, τ , 10τ and

100τ from bottom to top, respectively. Here, τ is the Maxwell relaxation time of the viscoelastic substratum defined in eq. (5) of the text. See Fig. 2 caption for

fault model and structural parameters.

In the present study we assumed Maxwell viscoelasticity. When a medium has isotropic linear viscoelasticity, we can express the

equivalence theorem as

lim
t→∞

q(t ; μl , Kl ) = qE
(
t > 0; μ∞

l , K ∞
l

)
, (50)

with

μ∞
l = lim

s→0
μ̂l (s) , K ∞

l = lim
s→0

K̂l (s) . (51)

Here, μ̂l (s) and K̂l (s) are the Laplace operators for the linear viscoelastic medium considered.

In the derivation of the equivalence theorem, we only used the correspondence principle of linear viscoelasticity, the limiting value

theorem of the Laplace transform, and the constitutive equations of viscoelastic media. Therefore, we may apply the equivalence theorem

not only to the stratified elastic-viscoelastic medium but also to general elastic and linear-viscoelastic composite media. Incidentally, we can

regard the equivalence theorem as a particular case of the Tauberian theorem for the Laplace transform.

4 N U M E R I C A L E X A M P L E S

On the basis of the mathematical expressions derived in Section 2, we developed a computer program to calculate the internal viscoelastic

deformation fields due to faulting. In order to obtain the deformation fields due to a finite-dimensional fault, we numerically integrate the

solutions for point dislocation sources over a fault surface. Usually it is not difficult to obtain results around the accuracy of 1 per cent, in

comparison with the analytical solution for an elastic half-space. Our semi-analytical solution has singular points at the depth z = d. From
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Figure 6. Temporal change of the viscoelastic displacement field due to uniform (1 m) dip-slip displacement at t = 0 on a curved plate interface that divides

the layered elastic-viscoelastic half-space into two blocks. The structural parameters are given in Table 1. The plate interface, indicated by the thin solid line

in each diagram, extends to a depth of 600 km and infinitely in the direction parallel to its strike without changing the geometry. In each diagram the centre of

mass of the total system is taken as the fixed point to measure the displacements.

the continuity condition of displacement and stress, however, we obtain{
limz→d− ui (r, ϕ, z) = limz→d+ ui (r, ϕ, z)

limz→d− σzi (r, ϕ, z) = limz→d+ σzi (r, ϕ, z)
(i = r, ϕ, z), (52)

except for the points on the dislocation source itself, and so we can avoid the singularity problem by substituting z = d + ε for z = d in the

computation of deformation fields, where ε represents a small value. In the following part of this section we show some numerical examples

obtained by the computer program. If our interest is limited to the completely relaxed solution, we can use the elastic solution (Fukahata &

Matsu’ura 2005) instead of the viscoelastic solution, owing to the equivalence theorem.

First, we consider the case of unit (1 m) strike-slip motion on a vertical fault in an elastic surface layer overlying a viscoelastic half-space.

The fault length is taken to be 100 km (x = −50 to 50 km), and the fault width to be 30 km (z = 0 to 30 km), which is the same as the

thickness of the elastic surface layer. The values of the structural parameters used for the computation are given in Table 1. In Fig. 2 we show

the vertical (left) and horizontal (right) surface displacements at t = 0. Here, the contour interval of the vertical displacement is 10 mm, and

the uplift is taken to be positive. In the case of vertical strike slip, as can be seen from Fig. 2, the displacement fields at any depth z have

good symmetry about the point (0, 0, z). So, in Figs 3 and 4, we show the displacement fields only in the fourth quadrant. The variation of the

coseismic displacement fields with depth is shown in Fig. 3. We can see from Fig. 3 that the coseismic displacement rapidly decreases with

depth.
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Figure 6. (Continued.)

In Fig. 4 we show the displacement fields at t = ∞. Based on the equivalence theorem, we can calculate the same displacement field

as in Fig. 4 with the computer program for elastic displacements by replacing only the value of S-wave velocity in the substratum with a

very small value. The displacements at t = ∞ in Fig. 4 are much larger than the displacements at t = 0 in Fig. 3 particularly in the far field.

This is the effect of stress relaxation in the viscoelastic substratum. Furthermore, we should note that the pattern of horizontal components

(right column) at t = ∞ does not change within the elastic surface layer (z = 0 to 30 km), while the vertical components (left column) show

a symmetric pattern with respect to the horizontal plane at z = 15 km. These features of the displacement field at t = ∞ can be intuitively

understood from the equivalence theorem; that is, after the completion of stress relaxation in the viscoelastic substratum, the surface layer

behaves just like an elastic plate floating on water, because the viscoelastic substratum cannot support any deviatoric stress at t = ∞.

In Fig. 5 we show the temporal variation of fault-parallel displacements on the y-axis at t/τ = 0, 1, 10 and 100. Here, τ is the Maxwell

relaxation time of the viscoelastic substratum, defined by eq. (5). From Fig. 5 we can see that rapid variation of fault-parallel displacements

occurs during the period from t/τ = 1 to 10. The displacement profile at t/τ = 100 is almost identical to that at t = ∞ (they look the same on

the graph).

The next numerical example is the internal displacement field due to mechanical interaction at a subduction-zone plate interface. As

demonstrated in a series of papers by Matsu’ura and his coworkers (Matsu’ura & Sato 1989, 1997; Sato & Matsu’ura 1988, 1992; Hashimoto

& Matsu’ura 2000, 2002; Takada & Matsu’ura 2004), we can rationally represent mechanical interaction at a plate interface by the increase of

tangential displacement discontinuity (fault slip) across it. So, in computation, we consider the case of uniform (1 m) dip-slip motion at t = 0

on a curved plate interface that divides the layered elastic-viscoelastic half-space into two blocks. Here, we use the same structural parameters

as given in Table 1. In Fig. 6 we show the temporal change of the viscoelastic internal displacement field from t = 0 to ∞ together with the

geometry of the plate interface (thin solid line in each diagram). Here, the curved plate interface extends to a depth of 600 km and infinitely
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Figure 7. Different representation of the completely relaxed viscoelastic displacement field due to uniform (1 m) dip-slip motion over the whole plate interface.

A point distant from the plate interface on the hangingwall side is taken as the fixed point to measure the displacements. The geometry of the plate interface is

as in Fig. 6, and the structural parameters are given in Table 1. (a) The total displacement field. The displacements of the hangingwall block are very small, but

not completely zero. (b) The displacement field of the hangingwall block, magnified 20 times.

in the direction parallel to its strike without changing the geometry. In such a case we can use the solution for a line source instead of that

for a point source. The explicit expressions for a line dislocation source can be directly obtained from those for a point dislocation source by

replacing the z-independent vectors, J and J′, in eq. (9) with the corresponding vectors, b′
x , by and bz , in eq. (63) of Fukahata & Matsu’ura

(2005). The displacement fields at t = 0 and τ (the first two diagrams of Fig. 6) show a large uplift of the hangingwall block and a small

subsidence of the footwall block. On the other hand, the displacement fields at t = 100τ and ∞ (the last two diagrams) are characterized by

a horizontal convergence of the two blocks. The transition from the first instantaneous elastic response to the ultimate viscoelastic response,

caused by the stress relaxation in the viscoelastic substratum under gravity, are shown in the middle two diagrams (t = 10τ and 30τ ). Here, it

should be noted that the centre of mass of the total system does not move in this computation except for the effect of gravity, and so we take

it as the fixed point to measure the displacements.

In Fig. 7(a) we show the internal displacement field at t = ∞ again, but taking a point distant from the plate interface on the hangingwall

side as the fixed point. In this more familiar representation, the displacements of the hangingwall block become very small, but not completely

zero. In order to see the deformation field of the hangingwall block we magnify the displacement vectors 20 times in Fig. 7(b). The displacement

fields in Fig. 7 are the completely relaxed viscoelastic response to a unit step slip over the whole plate interface. As demonstrated by Matsu’ura

& Sato (1989) and Sato & Matsu’ura (1993) on the basis of the method of hereditary integral, however, the completely relaxed viscoelastic

step-response gives the deformation rate due to a steady slip for sufficiently large time (t � τ ). That is to say, we can read the displacement

fields at t = ∞ in Fig. 7 as the long-term velocity fields due to a steady slip over the whole plate interface. From Fig. 7(a) we can see that

the steady subduction of an oceanic plate is realized by giving the steady increase of tangential displacement discontinuity across the plate

interface. From Fig. 7(b), on the other hand, we can see that the steady plate subduction brings about the steady subsidence of ocean trenches

and the steady uplift of island arcs (Sato & Matsu’ura 1988, 1993). Furthermore, the steady uplift of island arcs induces upward motion in

mantle wedges. In actual situations, however, such upward motion may largely be affected by thermal convection in mantle wedges.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We obtained general expressions for quasi-static internal deformation fields due to a dislocation source in a multilayered elastic/viscoelastic

half-space under gravity by applying the correspondence principle of linear viscoelasticity to the associated elastic solution derived by Fukahata

& Matsu’ura (2005). The difficulty in obtaining the viscoelastic solution in the time domain is to perform the inverse Laplace transform for

the s-dependent solution. For example, Rundle and his colleagues (Rundle 1978, 1982; Yu et al. 1996; Fernández et al. 1996) have introduced
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an approximation technique to perform the inverse Laplace transform. In the present study we developed a systematic approach to the inverse

Laplace transform without approximation by repeatedly applying the rule of the product of two polynomials together with the algorithm

developed by Matsu’ura et al. (1981).

The viscoelastic step response at t = ∞ is equivalent to the associated elastic response obtained by taking the rigidity of the elastic

medium corresponding to a Maxwell viscoelastic layer or substratum to be zero. In Section 3 we gave an explicit mathematical proof of this

theoretical relationship, named the ‘equivalence theorem’ in linear viscoelastic problems, on the basis of the correspondence principle of linear

viscoelasticity and the limiting value theorem of the Laplace transform. The equivalence theorem is applicable not only to the stratified elastic-

viscoelastic medium but also to general elastic and linear-viscoelastic composite media. Owing to the equivalence theorem, we can obtain

the completely relaxed viscoelastic solution directly from the associated elastic solution without passing through the complicated viscoelastic

calculation. Furthermore, the equivalence theorem enables us to check the complicated computation code for viscoelastic deformation not

only at t = 0 (elastic solution) but also at t = ∞ by using a simple code for elastic deformation.

The inherent stress relaxation time of a viscoelastic medium is given by the Maxwell relaxation time τ , defined in eq. (5). As shown

through the numerical computations in Section 4, however, the effective stress relaxation time of the elastic-viscoelastic total system is much

longer than the Maxwell relaxation time τ . If we take the viscosity of the viscoelastic substratum to be 1019 Pa s, the Maxwell relaxation time

τ is about 5 yr, but the effective stress relaxation time of the total system can be 100 yr or more.
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A P P E N D I X : E X P L I C I T E X P R E S S I O N S F O R S (′)
jm A N D Y(′)s

Explicit expressions for S(′)
jm(z;μl , γ l ) are given as follows:

(i) j �=n and z < d:

S jm(z; μl , γl ) = R j (z)Vm

δ
, S′

jm(z; μl , γl ) = R′
j (z)V′

m

δ′ , (A1)

where⎧⎪⎪⎨⎪⎪⎩
R j (z) = F(z − Hj−1; γ j )

j−1

�
l=1

[D(μ j−l , μ j−l+1)F(h j−l ; γ j−l )]G(μ1)

R′
j (z) = F′(z − Hj−1)

j−1

�
l=1

[D′(μ j−l , μ j−l+1)F′(h j−l )],

(A2)

Vm =

⎛⎜⎜⎜⎜⎝
(P22 + P42)

(
Qm

1 + Qm
3

) − (P12 + P32)
(
Qm

2 + Qm
4

)
−(P21 + P41)

(
Qm

1 + Qm
3

) + (P11 + P31)
(
Qm

2 + Qm
4

)
0

0

⎞⎟⎟⎟⎟⎠ , V′
m =

(
Q′m

1 + Q′m
2

0

)
, (A3)

δ = (P11 + P31)(P22 + P42) − (P12 + P32)(P21 + P41), δ′ = P ′
11 + P ′

21, (A4)

with

P = E−1(0; γn)
n−1

�
j=1

[D(μn− j , μn− j+1)F(hn− j ; γn− j )]G(μ1), P′ = n−1

�
j=1

[D′(μn− j , μn− j+1)F′(hn− j )], (A5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Qm =

{
E−1(0; γn)�n−m−1

j=1

[
D(μn− j , μn− j+1)F(hn− j ; γn− j )

]
D(μm, μm+1)F(Hm − d; γm)Δ(γm) (m �= n)

E−1(0; γn)Ys(Hn−1; γn) (m = n)

Q′m =
{

�n−m−1
j=1 [D′(μn− j , μn− j+1)F′(hn− j )]D′(μm, μm+1)F′(Hm − d)Δ′ (m �= n)

Y′s(Hn−1) (m = n). (A6)

(ii) j = n or z > d:

S jm(z; μl , γl ) = R̄ j (z)V̄m

δ̄
, S′

jm(z; μl , γl ) = R̄′
j (z)V̄′

m

δ̄′ , (A7)

where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R̄ j (z) =

{
F(z − Hj ; γ j )D(μ j+1, μ j )�

n−1
l= j+1[F(−hl ; γl )D(μl+1, μl )]E(0; γn) ( j �= n)

E(z − Hn−1; γn) ( j = n)

R̄′
j (z) =

{
F′(z − Hj )D′(μ j+1, μ j )�

n−1
l= j+1 [F′(−hl )D′(μl+1, μl )] ( j �= n)

I′ ( j = n), (A8)

V̄m =

⎛⎜⎜⎜⎜⎝
−(P̄42 − P̄44)Q̄m

3 + (P̄32 − P̄34)Q̄m
4

(P̄41 − P̄43)Q̄m
3 − (P̄31 − P̄33)Q̄m

4

(P̄42 − P̄44)Q̄m
3 − (P̄32 − P̄34)Q̄m

4

−(P̄41 − P̄43)Q̄m
3 + (P̄31 − P̄33)Q̄m

4

⎞⎟⎟⎟⎟⎠ , V̄′
m =

(
−Q̄′m

2

Q̄′m
2

)
, (A9)

δ̄ = (P̄31 − P̄33)(P̄42 − P̄44) − (P̄32 − P̄34)(P̄41 − P̄43), δ̄′ = P̄ ′
21 − P̄ ′

22, (A10)

with

P̄ = G−1(μ1)�n−1
j=1[F(−h j ; γ j )D(μ j+1, μ j )]E(0; γn), P̄′ = �n−1

j=1[F′(−h j )D
′(μ j+1, μ j )], (A11)
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Q̄m =
⎧⎨⎩ G−1(μ1)�m−1

j=1 [F(−h j ; γ j )D(μ j+1, μ j )]F(Hm−1 − d; γm)Δ(γm) (m �= n)

G−1(μ1)�n−1
j=1[F(−h j ; γ j )D(μ j+1, μ j )]Ys(Hn−1; γn) (m = n)

Q̄′m =
⎧⎨⎩ �m−1

j=1 [F′(−h j )D′(μ j+1, μ j )]F′(Hm−1 − d)Δ′ (m �= n)

�n−1
j=1[F′

j (−h j )D′(μ j+1, μ j )]Y′s(Hn−1) (m = n).
(A12)

Here, Pij, P ′
ij, P̄ ij and P̄ ′

ij are the ij elements of the matrices P, P′, P̄ and P̄′, and Qm
k , Q′m

k , Q̄m
k and Q̄′m

k are the k-th rows of the matrices

Qm, Q′m, Q̄m and Q̄′m , respectively.

Explicit expressions for Y(′)s are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ys (z; γn) =

⎛⎜⎜⎜⎜⎜⎝
2

4sgn (zd )

sgn (zd )

−1

−sgn (zd )

−1

0

0

2

0

−sgn (zd )

1

⎞⎟⎟⎟⎟⎟⎠ + γn

⎛⎜⎜⎜⎜⎜⎝
1 − 3 |zd | ξ

−4sgn (zd ) + 3zdξ

−4sgn (zd ) + 3zdξ

1 − 3 |zd | ξ

zdξ

1− |zd | ξ
1− |zd | ξ

zdξ

−1− |zd | ξ
zdξ

zdξ

−1− |zd | ξ

⎞⎟⎟⎟⎟⎟⎠ ,

Y′s(z) =
(

sgn (zd ) −1

−1 sgn (zd )

)
(A13)

with

zd = z − d, (A14)

and the other matrices are defined as follows:

Δ(γm) = 2

⎛⎜⎜⎜⎜⎜⎝
0 1 0

−4 + 4γm 0 0

−1 + 4γm 0 1

0 0 0

⎞⎟⎟⎟⎟⎟⎠ , Δ′ = −2

⎛⎝1 0

0 1

⎞⎠ , (A15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(z; γl ) =

⎛⎜⎜⎜⎜⎜⎝
C(z) −S(z) 2S(z) 0

−S(z) C(z) 0 2S(z)

0 0 C(z) S(z)

0 0 S(z) C(z)

⎞⎟⎟⎟⎟⎟⎠ + γl

⎛⎜⎜⎜⎜⎜⎝
zξ S(z) S(z) − zξC(z) −S(z) + zξC(z) −zξ S(z)

S(z) + zξC(z) −zξ S(z) zξ S(z) −S(z) − zξC(z)

S(z) + zξC(z) −zξ S(z) zξ S(z) −S(z) − zξC(z)

zξ S(z) S(z) − zξC(z) −S(z) + zξC(z) −zξ S(z)

⎞⎟⎟⎟⎟⎟⎠ ,

F′(z) =
⎛⎝C(z) S(z)

S(z) C(z)

⎞⎠
(A16)

E(z; γn) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 γnzξ

0 2 + γn(zξ − 1) 1 0

0 1 + γn(zξ − 1) 1 0

1 0 0 1 + γnzξ

⎞⎟⎟⎟⎟⎟⎠ , E−1(0; γn) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 −1 0

0 −1 + γn 2 − γn 0

−1 0 0 1

⎞⎟⎟⎟⎟⎟⎠ , (A17)

D(μl , μl+1) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 μl/μl+1 0

0 0 0 μl/μl+1

⎞⎟⎟⎟⎟⎟⎠ , D′(μl , μl+1) =
⎛⎝1 0

0 μl/μl+1

⎞⎠ , (A18)
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G(μ1) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 ρ1g
2μ1ξ

0 1

⎞⎟⎟⎟⎟⎟⎠ , G−1(μ1) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 − ρ1g
2μ1ξ

0 1

⎞⎟⎟⎟⎟⎟⎠ , (A19)

with⎧⎨⎩C(z) = 1+e−2zξ

2
, S(z) = 1−e−2zξ

2
(z > 0)

C(z) = e2zξ +1
2

, S(z) = e2zξ −1
2

(z < 0)
(A20)

Here, sgn(z) denotes the sign function, which takes the value of 1 for z > 0 and -1 for z < 0, ρ 1 the density of the surface layer, and g the

acceleration due to gravity at the Earth’s surface.

C© 2006 The Authors, GJI, 166, 418–434

Journal compilation C© 2006 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/166/1/418/2001996 by guest on 20 August 2022


