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Quasi-static transient thermal stresses in a thick annular disc
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Abstract. The present paper deals with the determination of transient thermal
stresses in a thick annular disc. A thick annular disc is considered having zero
initial temperature and subjected to arbitrary heat flux on the upper and lower
surfaces where as the fixed circular edges are at zero temperature.The governing
heat conduction equation have been solved by using integral transform technique.
The results are obtained in series form in terms of Bessel’s functions. The results
for displacement and stresses have been computed numerically and are illustrated
graphically.
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1. Introduction

During the second half of the twentieth century, non-isothermal problems of the theory of
elasticity became increasingly important. This is due to their wide application in diverse fields.
The high velocities of modern aircraft give rise to aerodynamic heating, which produces
intense thermal stresses that reduce the strength of the aircraft structure.

Nowacki (1957) has determined steady-state thermal stresses in circular plate subjected to
an axisymmetric temperature distribution on the upper face with zero temperature on the lower
face and the circular edge. The direct thermo-elastic problem in an annular fin is studied by
Shang-Sheng Wu (1997). Wankhede (1982) determined Quasi static thermal stresses in thin
circular plate. Gogulwar & Deshmukh (2002) solved the inverse problem of thermal stresses
in a thin annular disc. Also Deshmukh 2002 studied transient heat conduction problem in a thin
hollow cylinder and determined thermal stresses. Ching-Huang Chiu et al (2002) determined
thermal stresses in annular fins with temperature-dependent conductivity under periodic heat
transfer boundary condition is analysed by the Adomians decomposition method. Moreever,
Qian & Batra (2004) studied transient thermo-elastic deformation of thick functionally graded
plate.

Recently Naotake Noda et al (2003) considered infinite thick circular plate and discussed
thermal stresses due to arbitrary heat flux on the upper and lower Surfaces, while we consider
finite thick annular disc and discussed thermal stresses. Due to arbitrary heat flux on the upper
and lower surfaces, disc expands in axial direction and towards the center in radial direction.
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This is new and novel contribution of this study. No one has done such type of work on the thick
annular disc so far. The results presented here are useful in engineering problem particularly
in the determination of the state of strain in thick circular plate constituting foundations of
containers for hot gases or liquids, in the foundations for furnaces, etc.

2. Formulation of the problem

Consider a thick a annular disc of thickness 2h occupying space D defined by a ≤ r ≤ b,
−h ≤ z ≤ h. Let the disc be subjected to a transient axisymmetric temperature field on the
radial and axial directions of the cylindrical coordinate system. Initially, the plate is kept at
zero temperature. The arbitrary heat flux Qf (r)

λ
is prescribed over the upper surface (z = h)

and the lower surface (z = −h). The fixed circular edges (r = a and r = b) are at zero
temperature. Assume the upper and lower surface of thick annular disc are traction-free. Under
these realistic prescribed conditions, the quasi-static transient thermal stresses are required
to be determined.

The differential equation governing the displacement potential function φ(r, z, t) is given
in Naotake Noda et al (2003) as

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ ∂2φ

∂z2
= Kτ (1)

where K is the restraint coefficient and temperature change τ = T − Ti . Ti is initial temper-
ature. Displacement function φ is known as Goodier’s thermo-elastic potential.

The temperature of the disc at time t satisfies the heat conduction equation,

∂2T

∂r2
+ 1

r

∂T

∂r
+ ∂2T

∂z2
= 1

k

∂T

∂t
(2)

with the boundary conditions

∂T

∂z
= ±Qf (r)

λ
for z = ±h, a ≤ r ≤ b, (3)

T = 0 at r = a, −h ≤ z ≤ h, (4)

T = 0 at r = b, −h ≤ z ≤ h, (5)

and the initial condition

T = 0 at t = 0. (6)

where k is the thermal diffusivity of the material of the disc.
The displacement function in the cylindrical coordinate system are represented by the

Michell’s function defined in Naotake Noda et al (2003) as

ur = ∂φ

∂r
− ∂2M

∂r∂z
(7)

and

uz = ∂φ

∂z
+ 2(1 − ν)∇2M − ∂2M

∂z2
. (8)
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The Michell’s function must satisfy

∇2∇2M = 0, (9)

where

∇2 = ∂2

∂r2
+ 1

r
· ∂

∂r
+ ∂2

∂z2
. (10)

The component of the stresses are represented by the thermo-elastic displacement potential
φ and Michell’s function M as

σrr = 2G

[
∂2φ

∂r2
− Kτ + ∂

∂z

(
v∇2M − ∂2M

∂r2

)]
, (11)

σθθ = 2G

[
1

r

∂φ

∂r
− Kτ + ∂

∂z

(
v∇2M − 1

r

∂M

∂r

)]
, (12)

σzz = 2G

[
∂2φ

∂z2
− Kτ + ∂

∂z

(
(2 − v)∇2M − ∂2M

∂z2

)]
, (13)

and

σrz = 2G

[
∂2φ

∂r∂z
+ ∂

∂r

(
(1 − v)∇2M − ∂2M

∂z2

)]
, (14)

where G and ν are the shear modulus and Poisson’s ratio respectively.
For traction-free surfaces the stress functions

σzz = σrz = 0 at z = ± h. (15)

Equations (1) to (15) constitute mathematical formulation of the problem.

3. Solution

Taking Laplace transform of equations (2) to (5) with respect to t and using equation (6), one
obtains

∂2T

∂r2
+ 1

r

∂T

∂r
+ ∂2T

∂z2
= P

k
T (16)

with boundary conditions

∂T

∂z
= ±Qf (r)

λP
at z = ±h, (17)

T = 0 at r = a & r = b (18)

where P is Laplace transform parameter & T is Laplace transform of T .
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Introduce the finite Hankal transform over the variable r and its inverse transform defined
as in (Sneddon 1972)

T (αm, z) =
∫ b

a

rK0(αm, r)T (r, z)dr (19)

T (r, z) =
∞∑

m=1

T (αm, z)K0(αm, r) (20)

where

K0(αm, r) = R0(αm, r)√
N

, (21)

R0(αm, r) = J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)
, (22)

The normality constant

N = b2

2

•2

R0(αm, b) − a2

2

•2

R0(αm, a) (23)

and α1, α2 . . . are roots of the transcendental equation

J0(αa)

J0(αb)
− Y0(αa)

Y0(αb)
= 0, (24)

Jn(x) is Bessel function of the first kind of order n & Yn(x) is Bessel function of the second
kind of order n.

This transform satisfies the relation

H

[
∂2T

∂r2
+ 1

r

∂T

∂r

]
= −α2

mT (αm, z) (25)

and

H

[
∂2T

∂z2

]
= d2T

dz2
(26)

On applying the finite Hankal transform defined in the equation (19) to the equation (16), one
obtains

d2T

dz2
− α2

mT = P

k
T (27)

where T is the Hankal transform of T .
On solving equation (27) under condition given in equation (17), one obtains

T =
∞∑

m=1

Am cosh
[(√

α2
m + q2

)
Z
]

(28)

where q2 = P
K

.
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Now constant Am can be obtained by using equations (17) and (28)

Am = Qf (αm)

λP
√

α2
m + q2 sinh[(

√
α2

m + q2)h]
(29)

Thus equation (28) becomes

T = Q

λ

∞∑
m=1

[
f (αm) cosh[(

√
α2

m + q2)Z]

P
√

α2
m + q2 sinh[(

√
α2

m + q2)h]

]
(30)

On applying inverse Hankal transform defined in equation (20), one obtains

T =
(

Q

λ

) ∞∑
n=1

(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

][
cosh[(

√
α2

m + q2)Z]

P
√

α2
m + q2 sinh[(

√
α2

m + q2)h]

]

(31)

where f (αm) is Hankal transform of f (r).
Finally, applying inverse Laplace transform on equation (31) one obtains the expression

for temperature as,

T =
(

Q

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]

×
⎡
⎣ cosh(αmz)

αm sinh(αmh)
− e−α2

mkt

α2
mh

+ 2h

∞∑
n=1

(−1)n+1 cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)

⎤
⎦

(32)

Since initial temperature Ti = 0, τ = T (33)

Now assume Michell’s function M which satisfies condition (9) as,

M =
(

QK

λ

) ∞∑
m=1

∞∑
n=1

{(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]

×[Bmn sinh(αmz) + Cmnαmz cosh(αmz)]

}
(34)

where Bmn and Cmn are the arbitrary functions, which can be determined finally by using
condition (15).
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To obtain displacement potential φ using equations (32) and (33) in equation (1) one have,

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ ∂2φ

∂z2

=
(

QK

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]

×
⎡
⎣ cosh(αmz)

αm sinh(αmh)
− e−α2

mkt

α2
mh

+ 2h

∞∑
n=1

(−1)n+1 cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)

⎤
⎦ (35)

Considering first term of equation (35) as

∂2φ1

∂r2
+ 1

r

∂φ1

∂r
+ ∂2φ1

∂z2
=
(

QK

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

] [
cosh (αmz)

αm sinh(αmh)

]

(36)

To solve equation (36) assume

φ1 =
∞∑

m=1

{
Dm

f (αm)√
N

[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]
[z sinh(αmz)]

}
(37)

Using equation (37) in equation (36) one obtains

Dm = QKf (αm)

2λ
√

Nα2
m sinh(αmh)

Hence

φ1 =
(

QK

2λ

) ∞∑
m=1

(
f (αm)

α2
m

√
N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

] [
z sinh(αmz)

sinh(αmh)

]
(38)

Now considering second and third term of equation (35) as

∂2φ2

∂r2
+ 1

r

∂φ2

∂r
+ ∂2φ2

∂z2

=
(

QK

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]

×
⎡
⎣−e−α2

mkt

α2
mh

+ 2h

∞∑
n=1

(−1)n+1 cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)

⎤
⎦ (39)

To solve equation (39) using

∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
≈ 1

k

∂

∂t
in equation (39) (40)
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and on integrating with respect to t , one obtains

φ2 =
(

QK

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]

×
⎡
⎣e−α2

mkt

α4
mh

+ 2h3
∞∑

n=1

(−1)n cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

⎤
⎦ (41)

Finally φ = φ1 + φ2

φ =
(

QK

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]

×
⎧⎨
⎩

z sinh(αmz)

2α2
m sinh(αmh)

+ e−α2
mkt

α4
mh

2h3
∞∑

n=1

(−1)n cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

⎫⎬
⎭

(42)

Now using equations (32), (33), (34) and (42) in equations (7), (8) and (11) to (14), One
obtains the expressions for displacement and stresses as

ur =
(

QK

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J1(αmr)

J0(αmb)
− Y1(αmr)

Y0(αmb)

]{ −z sinh(αmz)

2αm sinh(αmh)

− e−α2
mkt

α3
mh

− 2αmh3
∞∑

n=1

(−1)n cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

+ α2
mBmn cosh(αmz) + α2

mCmn[cosh(αmz) + αmz sinh(αmz)]

}
(43)

uz =
(
QK

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]{
sinh(αmz) + αmz cosh(αmz)

2α2
m sinh(αmh)

− 2h2π

∞∑
n=1

(−1)nn sin
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

− α2
m Bmn sinh(αmz) + α2

mCmn[2(1 − 2ν) sinh(αmz) − αmz cosh(αmz)]

}

(44)
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σrr =
(

2GQK

λ

) ∞∑
m=1

(
f (αm)√

N

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎣

•
J1(αmr)

J0(αmb)
−

•
Y1(αmr)

Y0(αmb)

⎤
⎦
⎡
⎣ −z sinh(αmz)

2αm sinh(αmh)

− e−α2
mkt

α3
mh

− 2αmh3
∞∑

n=1

(−1)n cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

⎤
⎦

−
[

J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]⎡⎣ cosh(αmz)

αm sinh(αmh)
− e−α2

mkt

α2
mh

+2h

∞∑
n=1

(−1)n+1 cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)

⎤
⎦

+ Bmnα
2
m

⎡
⎣

•
J1(αmr)

J0(αmb)
−

•
Y1(αmr)

Y0(αmb)

⎤
⎦ cosh (αmz)

+ Cmnα
2
m

⎡
⎢⎢⎢⎣

2vαm

[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]
cosh (αmz)

+
[

•
J1(αmr)

J0(αmb)
−

•
Y
1
(αmr)

Y0(αmb)

]
[cosh (αmz) + (αmz) sinh (αmz)

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(45)

σθθ =
(

2GQK

λ

) ∞∑
m=1

(
f (αm)√

N

)]⎧⎪⎨
⎪⎩

1

r

[
J1(αmr)

J0(αmb)
− Y1(αmr)

Y0(αmb)

]

×
⎡
⎣ −z sinh(αmz)

2αm sinh(αmh)
− e−α2

mkt

α3
mh

− 2 αmh3
∞∑

n=1

(−1)n cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

⎤
⎦
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−
[

J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]⎡⎣ cosh(αmz)

αm sinh(αmh)
− e−α2

mkt

α2
mh

+2h

∞∑
n=1

(−1)n+1 cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)

⎤
⎦

+ Bmnα
2
m

r

[
J1(αmr)

J0(αmb)
− Y1(αmr)

Y0(αmb)

]
cosh (αmz)

+ Cmnα
2
m

⎡
⎢⎣

2vαm

[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]
cosh (αmz)

+ 1
r

[
J1(αmr)

J0(αmb)
− Y1(αmr)

Y0(αmb)

]
[cosh (αmz) + (αmz) sinh (αmz)

⎤
⎥⎦
⎫⎪⎬
⎪⎭

(46)

σzz =
(

2GQK

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]{
z sinh(αmz)

2 sinh(αmh)
+ e−α2

mkt

α2
mh

+ 2α2
mh3

∞∑
n=1

(−1)n cos
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

− α3
mBmn cosh(αmz) + α3

mCmn[(1 − 2ν) cosh(αmz) − αmz sinh(αmz)]

}

(47)

σrz =
(

2GQK

λ

) ∞∑
m=1

(
f (αm)√

N

)[
J1(αmr)

J0(αmb)
− Y1(αmr)

Y0(αmb)

]

×
{− sinh (αmz) − αmz cosh(αmz)

2αm sinh (αmh)

+ 2h2παm

∞∑
n=1

(−1)nn sin
(

nπz
h

)
e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

+ α3
mBmn sinh(αmz) + α3

m Cmn[2ν sinh (αmz) + (αmz) cosh(αmz)]

}

(48)
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In order to satisfy condition (15), solving equations (47) and (48) for Bmn and Cmn one
obtains

Bmn =
∞∑

m=1

{
1 − 2ν

2α4
m sinh (αmh)

+ 2ν sinh(αmh) + αmh cosh(αmh)

α4
m[sinh(αmh) cosh(αmh) + αmh]

×
⎡
⎣e−α2

mkt

αmh
+ 2α3

mh3
∞∑

n=1

e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

⎤
⎦
⎫⎬
⎭ (49)

and

Cmn =
∞∑

m=1

{
1

2α4
m sinh (αmh)

− sinh(αmh)

α4
m[sinh(αmh) cosh(αmh) + αmh]

×
⎡
⎣e−α2

mkt

αmh
+ 2α3

mh3
∞∑

n=1

e
−k

[
(n2π2+α2

mh2) t

h2

]

(n2π2 + α2
mh2)2

⎤
⎦
⎫⎬
⎭ (50)

4. Numerical calculations

Setting

f (r) = (r2 − a2)(r2 − b2) (51)

Applying finite Hankal transform as defined in equations (19) to (26), one obtains

f (αm) =
∫ b

a

1√
N

[
J0(αmr)

J0(αmb)
− Y0(αmr)

Y0(αmb)

]
r
(
r2 − a2

) (
r2 − b2

)
dr,

f (αm) = 8
{(

a2α2
m − 3b2α2

m + 16
)
J0(αma) − (

b2α2
m − 3a2α2

m + 16
)
J0(αmb)

}
π

√
Nα6

mJ0(αma)J0(αmb)Y0(αmb)

(52)

The numerical calculations have been carried out for steel (SN50◦C) plate with the parameters
a = 1 m, b = 2 m, h = 0·3 m. thermal diffusivity k = 15·9 × 10−6(m2s−1) and poisson ratio
ν = 0·281 with α1 = 3·120, α2 = 6·2734, α3 = 9·4182, α4 = 12·5614, α5 = 15·7040 are
the roots of transdental equation

[
J0(αa)

J0(αb)
− Y0(αa)

Y0(αb)

] = 0.

For convenience setting A = QK

105πλ
, B = 2GQK

105πλ
. in the expressions (43) to (48). The

numerical expressions for temperature, displacement and stress components are obtained by
equations (32) & (43) to (48).

In order to examine the influence of heat flux on the upper and lower surface of
thick plate, one performed the numerical calculations r = 1, 1·2, 1·4, 1·6, 1·8 and 2,
z = −0·3, −0·15, 0, 0·15 and 0·3 and t = 5. Numerical variations in radial and axial
directions are shown in the figures with the help of computer programme (figures 1–12).
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Figure 1. The radial displacement function ur/A in radial direction.

Figure 2. The radial displacement function ur/A in axial direction.

Figure 3. The axial displacement function uz/A in radial axial direction.
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Figure 4. The axial displacement function uz/A in axial direction.

Figure 5. The radial stress function σrr/B in radial direction.

Figure 6. The radial stress function σrr/B in axial direction.
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Figure 7. The stress function σθθ/B in radial direction.

Figure 8. The stress function σθθ/B in axial direction.

5. Conclusion

In this paper a thick annular disc is considered which is subjected to a transient axisymmet-
ric temperature field on the radial and axial directions of the cylindrical coordinate system
and determined the expressions for temperature, displacements and stress functions, due to

Figure 9. The axial stress function σzz/B in radial direction.
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Figure 10. The axial stress function σzz/B in axial direction.

Figure 11. The stress function σrz/B in radial direction.

arbitrary heat flux on the upper and lower surface. As a special case, mathematical model
is constructed for f (r) = (r2 − a2)(r2 − b2) and performed numerical calculations. The
thermo-elastic behaviour is examined such as temperature change, displacements and stresses
with the help of arbitrary heat flux on the upper and lower surface of plate.

Figure 12. The stress function σrz/B in axial direction.
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From figures 1 and 2, radial displacement decreases from inner circular surface to outer
circular surface in radial direction, where as in axial direction it takes places at upper and
lower surfaces of the disc.

From figures 3 and 4, axial displacement occurs at the centre i.e. r = 1·5 in radial direction
where as in axial direction decreases from lower surface to upper surface.

From figures 5 and 6, radial stress function σrr develops tensile stress at upper and lower
surface of the disc,where as it develops compressive stress in the middle of disc.

From figures 7 and 8, the stress function σθθ develops tensile stress at upper and lower
surface of the disc, where as it develops compressive stress in the middle of disc.

From figures 9 and 10, axial stress function σzz develops compressive stress in radial as
well as in axial direction. Also is zero at upper and lower surface of the disc.

From figures 11 and 12, stress function σrz is zero at the upper, middle and lower surface
of the disc. Also it is zero at center of circular region. It develops compressive stress at the
upper half of the disc where as tensile stress at the lower half within 1 ≤ r ≤ 1·5. Also it
develops tensile stress at the upper half of the disc where as compressive stress at the lower
half is within 1·5 ≤ r ≤ 2.

It means we may find out that displacement and stress components occur near heat source.
From the figures of radial and axial displacements it can observed that the displacements occur
at the boundary surfaces of the disc. From the figures of stress functions it can observed that
the compressive stress occurs at the center where as the tensile stress occurs at outer surfaces
of the disc. Therefore, it may be concluded that due to arbitrary heat flux on the upper and
lower surfaces of the annular disc, the disc expands towards the center (r = 0), and also in
axial direction.

The results obtained here are useful in engineering problems particularly in the determi-
nation of state of strain in thick annular disc. Also any particular case of special interest
can be derived by assigning suitable values to the parameters and function in the expression
(43)–(48).
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