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QUASI-STATIONARY DISTRIBUTIONS FOR MARKOV 

CHAINS ON A GENERAL STATE SPACE 

RICHARD L. TWEEDIE, The Australian National University, Canberra 

Abstract 

The quasi-stationary behaviour of a Markov chain which is -irreducible 
when restricted to a subspace of a general state space is investigated. It is shown 
that previous work on the case where the subspaceis finite or countably infinite 
can be extended to general chains, and the existence of certain quasi-stationary 
limits as honest distributions is equivalent to the restricted chain being R- 
positive with the unique R-invariant measure satisfying a certain finiteness 
condition. 

QUASI-STATIONARY DISTRIBUTIONS; R-THEORY; CONDITIONAL LIMITS; GENERAL 
MARKOV CHAINS; RATIO LIMITS 

1. Introduction 

Suppose that {X,} is a discrete-time, temporally homogeneous Markov chain 
on a general state space (X, ?F), and that there exists a set Te . such that {X)} 
restricted to T is 0-irreducible for some 0 (irreducible in the sense of Harris). 
In this paper we study the ergodic behaviour of {X)} given that it begins in T and 
conditional on its remaining in T. This problem has been considered by Darroch 
and Seneta [1] when T is a finite set, and by Seneta and Vere-Jones [6] when T is 
countable. In the latter paper, the main result hinges on the use of the R-theory 
for countable state space Markov chains created by Vere-Jones in [8] and [9]. 
Our extension is based on the generalization of R-theory to Markov chains on a 

general 4-irreducible state space, contained in [7]. As far as possible notation in 
this paper has been kept compatible with that of both [6] and [7]. 

2. R-theory and some R-positivity results 

For each n = 1, 2, **, we write, when xE c and Ae c , 

(2.1) P"(x, A) = Pr {X, eA Xo = x}, 

where for each x e X, P"(x, .) is a probability measure on #, and for each A e c', 
P"(. , A) is a measurable function on r, and where #- is assumed to be separable 

(that is, countably generated). We also write, for complex z, 
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0o 

G,(x, A) = I P"(x, A)z", x 
•eY, Ae• 

; 
n=1 

G.(x, A) always converges for at least zI < 1. 

Suppose that T is a set in F such that the chain {X,} restricted to T is q- 
irreducible for some 0 (cf. Orey, [4], p. 4); that is, there exists a a-finite measure 

0 on F with O(T) > 0 such that, if A E Y, A g T, then 

O(A) > 0 implies GI(x, A) > 0 for all x T. 

Since we shall be interested in the behaviour of {X,} only whilst it remains in T, 
we shall make the assumption that X \T is absorbing: that is, G+(x, T) = 0, 
x 0 T. With this assumption, {X,} restricted to T behaves exactly as {X,} on T 
We shall therefore drop the phrase "restricted to T", and use {X,} to denote the 

chain with transition probabilities P"(x, A), x e T, A -e , where 

9 = {Ac -, A E T}. 

Write, for any B -, 

B = {x e T: Gi(x, B) > 0}. 

It is shown in [7], Lemma 1.1, that the assumption of 4-irreducibility implies the 

existence of a a-finite measure M on 9 with M(T) > 0, satisfying the following 
condition. 

Condition I. (i) {X,} is M-irreducible, 

(ii) if M(B) = 0, then M(B) = 0. 

We shall henceforth use M to denote such a measure on 7-, and unless otherwise 

specified, such phrases as "almost all" will refer to M-measure. It will be con- 
venient to introduce three pieces of notation: we shall use -+ to denote the 

collection of subsets of - with positive M-measure, and, if Af = (K(j)) is a par- 
tition of T, we use -r to denote those elements of Y which are contained in K(j) 
for some j, and .Y- = 7y fNl-+. Finally, we assume that {X,} on (T, 5) is 

strictly substochastic (that is, for some set Ae 9-+, P(x, T) < 1 for every x e A), 
and that {X,} is aperiodic (cf. Orey, [4], p. 15) on (T,Y-). 

With these assumptions, the following results are all proved in [7] except (d), 
which is implicit in the proof of Theorem 6 of [7], because of [4], Theorem 7.1(i). 

Theorem 1. (a) There exists a partition )' = (K(j)) of T, an M-null set N 

and a real number R ? 1 such that: 

(i) R is the radius of convergence of the power series G,(x,A) for every 
x eT\ N and every Ae= &_7; 

(ii) either G,(x,A) = oo for every such x and A, in which case we shall call 

{X,} R-recurrent; or G,(x,A) < co for every such x and A, and we shall call 

{X,} R-transient. 
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(b) When {Xn} is R-recurrent, there is a unique (up to a constant multiple) 

a-finite measure Q, not identically zero, which satisfies 

(2.2) Q(A) = 
Rf. 

Q(dy)P(y, A), A e-; 

Q is equivalent to M on Y-. There is also a unique (up to a constant multiple and 

definition on M-null sets) measurable non-negative function f, positive almost 

everywhere, which satisfies 

(2.3) f(x) = 
Rf P(x, dy)f(y), almost all x e T 

(c) When {X,} is R-current, there is a partition .f = K(j)) and a null set 

Nf with Nf, Nf, such that for all x 0 Nf and A E-f,, 

(2.4) n(x, A) = lim RnP"(x, A) = 
f(x)Q(A)/f f(y)Q(dy), 

where f and Q are as in (b). 
Either fTf(y)Q(dy) = co, and r(x, A) = O for all such x and A, when we shall 

call {X)} R-null; or fSf(y)Q(dy) < co, and ir(x, A) > 0 for all such x, A, when 

we shall call {X)} R-positive. 

(d) If {Xn} is R-positive, then (2.4) is true for every A such that inf,,Af(y) > 0. 

If A is such that 
infy,,ef(y) 

> 0, and {X)} is R-positive, we can in fact assert that 

R" 
nr(dy)P((yf) 

- fT (dY ) f(y) Q I f(Y)Q(dy) -+0, 

for any u-finite measure rn( ) (including that which allots unit measure to the 

point {x}) which satisfies frTl(dy)f(y)< oo 
and nr(Nf) = 0, where 

1/• 
l1A 

is the 

total variation of a signed measure p on A. 

In the sequel, the null set Nf of (c) and (d) above will be assumed to contain 

the null set on which (2.3) fails to hold. Our assumption that 
#" 

is separable 

is needed precisely to ensure the existence of this "global " null set: in the non- 

separable case the nullset in (c) may depend on the set A e -F,, and whilst our 

results in Section 3 can be adjusted to account for this, the notation becomes 

exceedingly tedious. 

Note that, in (c), the criterion of R-positivity for R-recurrent chains is the 

convergence of fTQ(dy)f(y). In [7], Sections 4 and 5, various criteria similar to 

this for chains not necessarily R-recurrent are given. Another such, which we shall 

need to use, is the following lemma. 

Lemma 1. Suppose H is a a-finite measure, not identically zero, on ', 

satisfying, for some real r > 0, 
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(2.5) H(A) = r 
f H(dy)P(y, A), Ae 9, 

and g is a non-negative measurable function, positive on a set of positive measure, 

satisfying 

(2.6) g(x) r 
P(x, dy)g(y) 

for all x e T; and further that 

(2.7) f g(y) H(dy) 
< co. 

Then r = R, {X,} is R-positive, and g =f and H = Q, the unique R-invariant 

function and measure for {X,} of Theorem 1(b). 

Proof. Since g and H satisfy (2.5), (2.6) and (2.7), 

oo > 
fg(y)H(dy) 

r> r f T 
P(y, dw)g(w) H(dy) 

=,fT TH(dw) 
g(w). 

Hence g satisfies (2.6) with equality for H-almost all (and hence M-almost all, 
since H satisfies (2.5)) x e T, and so g is r-invariant. The result then follows from 

[7], Sections 4 and 5. 

Finally in this section we give some results which are extensions of Theorem 1(c) 
and (d) in the R-positive case when Q(T) < co. From here on we shall assume 
that whenever the chain {X,} is R-positive on (T,.Y), the unique R-invariant 

measure Q and function f are chosen normalized so that fTf(w)Q(dw) = 1. 

Lemma 2. Suppose that {X,} is R-positive and Q(T) < oo. Then for any 
A 

e•-, 
and any probability measure n on Y which is bounded by some multiple 

of Q, 

(2.8) R" f n(dw)P"(w, A)-+ [f n(dw)f(w) ] Q(A). 

Proof. Suppose n is bounded by some multiple KQ of Q. Let AV = (K(i)) and 

Nf be as in Theorem 1(c), and A be an arbitrary set in Y. Write 

A' = A ( ( 

-U 

K(k)J). 
We have 
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(2.9) R" nf (dw)P"(w, A) = 
R" f ir(dw)Pn(w, 

A \ A) + R" (dw)Pn(w, 
Ay) 

and from Theorem 1(d), since A \ Aj A as j- cco, the first term on the right of 

(2.9) tends with n and j to [ fn(dw)f(w)]Q(A), since 

fT (dw)f(w) ?< Q(dw)f(w) = K < co, 

and 

nr(Nf) IcQ(Nf) = 0. 

The second term on the right of (2.9) is bounded, since Q is R-invariant, by 

(2.10) R" Kx fQ(dw)P"(w, A) = K 
Q(Aj) 

for all n; since Q(T) < cco, (2.10) tends to zero with j, and so (2.8) holds. 

Corollary 1. For almost all xe T and all 
Ae•7-, 

(2.11) lim inf R"P"(x, A) = f(x)Q(A) 

whenever {X,) is R-positive and Q(T) < oo. 

Proof. From Theorem 1(c), defining A, as in the lemma, 

lim inf R"P"(x, A) 
_ 

lim lim inf R"P"(x, A\Aj) 
n-+ oo J-+ o n-+ 

(2.12) f (x) Q(A), 

for almost all x. 

Applying Fatou's lemma to (2.8) shows, on the other hand (with n(.) 
= Q(. )/Q(T)), 

[fj 
Q(dw) f (A) - Q(dw) lim inf 

R"P"(w, 

A) 

so that (2.12) holds with strict inequality on at most a set of Q-measure zero. Since 

Q and M are equivalent, the corollary is proved. 

Corollary 2. If {X,} is R-positive and Q(T) < co, and for almost all x e T, 

(2.13) lim R"P"(x, T) = t(x, T) 

exists, then for almost all x E T and all A 
e• 

, 

lim R"P"(x, A) = f(x) Q(A). 

Proof. From the previous corollary ir(x, T) = f(x) Q(T), and so, as in (2.9), 
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(2.14) lim lim R"P"(x, Tj) = 0 
j- c00 n- - O 

for almost all x. But for any A E -, 

R"P"(x, A) = R"P"(x, A \ A) + R"P"(x, A1) 

and the first of these terms tends with n and j to f(x)Q(A) for almost all x, whilst 
the second is bounded by R"P"(x, Tj) and hence from (2.14) tends to zero with n 
and j for almost all x. 

3. Quasi-stationarity and the main limit theorem 

Suppose that the probability of being absorbed into X \ T is one, from every 
starting point x e T: the quantities in which we are interested in a study of quasi- 
stationarity of {X,} on T are then (cf. [6], (1)-(4)) 

(3.1) c(x, A, n) = P"(x, A) /P"(x, T), A e J, x e T, 

(3.2) z(x, A, n) = 
v, 

JPv(x, dy)P 

-•(y,T)}/P(x,T), 

Ae -, xe T, 

(3.3) a(x, A, m, n) = f P.(x, dy)P'(y, T)/Pm+n(x, T), Ae -, x e T, 

(3.4) fl(x, y, n) = P"(y, T) /P"(x, T), x, y e T. 

A discussion of the probabilistic meanings of (3.1)-(3.4) in the countable case is 

given in [6], and we will not repeat it in detail here. We remark only that (3.1) 
represents the probability distribution of {X,} after n steps conditional on 

Xo = x e T and X, e T, whilst (3.2)-(3.4) are related quantities conditioned on the 
same type of event. 

If we assume that G+(x, X \ T)> 0 for x e T, and also that the probability of 

staying in T forever, starting at x e T, is positive, then the limits in (3.1)-(3.3) are 
all zero for transient A, and we must define certain more general quantities (cf. 
[6], (6)-(9)). We shall write 

q(x) = lim P"(x, .7\ T) 
n -+ oo 

for the probability of ultimate absorption in • \T; Condition I and our assump- 
tion of strict substochasticity of {X,} on (T, 9) imply qr(x) > 0 for x e T. Let us 
now replace (3.1)-(3.4) with 

(3.5) a(x, A, n) = 

faP"(x, dy)nq(Y)/f' P"(x, dy)q(y); 

n--1 " r= vAP(x, dy) fTP"-'(y, dw)l(w) 
(3.6) t(x,A,n) = 

frP"(x, dw)4(w) 

jAP"(X, dy) fP"(y, dw)il(w) 
(3.7) s(x, A, mn, n) = 

fTrPm+"(x, dw)i(w) 
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(3.8) b(x, y,n) = P"(y, dw)q(w) P"(x, dw)i(w). 
ST IJT 

The quantities (3.5)-(3.8) are all related to ergodic properties of {X,) conditional 

on remaining in T for a time n but being ultimately absorbed into X \ T; again, 
see [6] for a somewhat more detailed explanation in the countable case. 

In [6], Theorem 3.1, the convergence of the quantities analogous to (3.1)-(3.4) 
is discussed, and then in [6], Theorem 3.2, it is stated without proof that essentially 
the same results hold for the quantities analogous to (3.5)-(3.8), when qt(x)t 1. 

Although, for general T, convergence properties of (3.5)-(3.8) do flow reasonably 

easily from the results for (3.1)-(3.4) (because of the equivalence of convergence 
set-wise on all sets in a r-field and convergence of integrals of bounded functions; 

see, for example, Gainssler [2]) we shall state and prove the theorem for 

arbitrary 'i. 

Theorem 2. Suppose as in the previous section that {X,,} on (T, ) is aperio- 

dic, strictly substochastic and M satisfies Condition I. Then the following two 

sets of conditions are equivalent. 

(A) There is a null set N such that, for x c T\N, the limits (3.5)-(3.8) all 

exist and the limits (3.5)-(3.7) define honest probability measures on Y-, whilst 

(3.8) is not almost everywhere zero. 

(B) The chain {X,) on (T,.f) is R-positive (as defined in Theorem 1) with 

R > 1, and the unique R-invariant measure Q satisfies 

(3.9) 

fTql(x) 

Q(dx) < oo; 

and for x outside an M-null set N1 eY, 

(3.10) lim R" P~(x, dy) (y) = n7(x, T) 
n-+ oo JT 

exists. 

Either (A) or (B) implies that the probability of remaining in Tfor n steps or 

longer conditional on ultimately being absorbed into X\ T tends geometrically 

to zero as R-" from almost all starting points in T. 

When (A) holds, the limit distributions (3.5)-(3.7) are independent of the 

initial state xe T\N and the limits of (3.5)-(3.8) are related to the unique 

R-invariant measure Q and function f for almost all xc ET by 

(3.11) lim a(x,A, n) = 
Q(dw)q(w)/f 

Q(dw)q1(w), AE c ; 

lim t(x, A, n) = lim lim s(x, A, m, n) 

(3.12) 

= 
Q(dw)f(w), A 

e•; 
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(3.13) lim b(x, y, n) = f(y)/f(x), almost all y e T. 
n -+ 

4. Proof of the main theorem 

We now prove that (B) implies (A). Notice first that throughout Lemma 2 and 
its corollaries we could have assumed (3.9) and looked at the sequences 

R"~ fP"(x, dy)q(y) rather than assuming Q(T) < oo and examining sequences 

R"P"(x, A), and the results would have remained unchanged. Thus R-positivity 
and the assumptions (3.9) and (3.10) imply, as in the second corollary to Lemma 2, 
that 

(4.1) llim R " 
P"(x, dw)q(w) = f(x) Q Q(dw)l(w) 

for almost all x e T and all A e-.5. 

It follows immediately that (3.11) and (3.13) are both true: a little more work is 

necessary to prove (3.12). Let M = (K(j)) be a partition of T\Nf such that 

infy•, 
(j) = 6j > 0, and write 

T(j) = U K(k), H(j) = U K(k). 
k>j k<j 

Let C e T\ Nf satisfy (4.1). If we write 

(4.2) s(C, A, m, n) = 
fARmP"(' 

dy) 
fTRRPn(y, 

dw)q(w) 
fTRn + mpn +m(, dw)q(w) 

then the denominator of (4.2) tends with n to f(O) fQ(dw)q(w), for any m. Write 
the numerator as 

(4.3) 

RmPm(', 

dy) R"P"(y, 
dw)/(w) 

+ Rmpm((,dy) R"P"(y, dw)t(w); 
A 

fl(j) JT(j) 

for fixed m, Rmpm(C, ") 
satisfies Rmpm(C, Nf) = 0 since C 0 N,, and 

FR"mm(C, dy)f(y) 
< 

f(C) < co. 

Since ql is a bounded function on T, from Theorem 1(d) the first term in (4.3) 
tends as n -+ oo to 

(, 
dwhich tends -y(y) Q(dw)(w) t 

[R"P'"(1, 
d ) f 

I~(yw) Qdwv)]() 
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But in [7], Theorem 6, it is shown that for all C e T\ Nf and all A e 9, 

fR.P(C, 
dy)f(y) -+f() 

fQ(dy)f(y) 

(it is from this that the first statement of Theorem 1(d) above is deduced). Thus 

the first term in (4.3) tends, for almost all C T, to 

(4.4) f()[, Q(dy)f(y)][ Q(dw)q(w)] 

as successively n, j and m tend to infinity. 
The second term in (4.3), on the other hand, is bounded above by 

fRmPm(C, dy) f RP"(y, dw)t(w) 
= 

TT()R +ipn 
+m(, dw)q(w) 

which tends to zero as first n and then j tend to infinity, from (4.1). Thus (4.4) is 

the limit of the numerator of (4.2) as n and m tend to infinity. 
We can in fact interchange the limits with m and n in this calculation without 

affecting the limit; for if we fix n, fSR"P"(y, dw)q(w) is a bounded function of y 
in A, and so for almost all ( the numerator of (4.2) tends with m to 

(4.5) f (() f (dy) fR"P"(y, 
dw),(w), 

and the limit of (4.5) with n -+ oo, when divided by the limit of the denominator 

of (4.2), is then (3.12) from Lemma 2. 

Finally, we evaluate the limit of (3.6). We need to show the convergence of 

1 
n 

(4.6) + 
1 R'P'(x, 

dy)fP-'V(y, 
dw)q(w)Rn ' 

n v=1A T 

Choose N to be a fixed large number. Since z,( )= -=, R'Pv(x,.) satisfies, 

for all x e T\ Nf, Sfrn(dy)f(y) 
= Nf(x) < oo, and n7,(Nf) = 0, it follows from 

Theorem 1(d) that for x T\ Nf, 

N 

lim 1 RPv(x, dy) P"-v(y, dw)q(w)R"•v n-+00o v=1 JA , T 

(4.7) = ~ RvPv(x, dy)f(y) 

rQ(dw)q(w) 

< 
N 

f(x) Q(dw(w) . 
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Next, note that as n -+ oo 

(4.8) 
- 

R 

P"-• 

(y, dw) (w)-+f(y) Q(dw)q(w) 
v=1 ITT 

for all x e T\(Nf 
U.N), 

from (3.10). 

By Egorov's Theorem and Condition I we can therefore construct a partition 
.) = (K(j)) of T with the property that M(K(O)) = 0 and 

K(O) = (K(O) U Nf UN, UN, ), 

and for j > 0, M(K(j))> 0, (3.10) and (4.8) both hold uniformly for y e K(j), 
and both f and f-' are bounded functions on K(j). 

From these properties it follows that for any fixed N, 

(4.9) 1 
RN+ 

-v'P"-(y,dw)(w) -+ f(y) Q(dw)q(w) v=N+1 T T 

uniformly in ye K(j), j > 0. 

Let A be any set in J-' and pick Ec T\Nf. For arbitrary 6 > 0 we find 

N = N(6, A, 9) large enough that 

II ,) - f)Q( ) 
II 

6 

for all n 
_ 

N, from Theorem 1(d). Consequently, for n > N, 

(4.10) - 1 vRvP, y) R-vpf 
- 

(ydw)1(w) 
v=N+1 AfT 

differs from 

(4.11) f(O) fQ(dy) -[ 1 fRn- v- (y,,dw)q(w)] 

by at most 6SA, where SA < oo is the upper bound on the left-hand side of (4.9) 
for y e A. Since (4.9) holds uniformly for ye A, as n -+ co (4.11) tends to 

(4.12) f() 
[fA Q(dy)f(y)][.f 

Q(dw)q(w)]; 
so for A E J+, A sK(j) for some j > 0, (4.7) and (4.10)-(4.12) imply that the limit 

as n -+ 
oo of (4.6) is (4.12) for almost all x e T. Write T(j) = 

Uk?jK(k); as before, 

(4.6) tends to (4.12) for arbitrary A e and x e T\ K(0) if and only if 

(4.13) lim lim - I RvPv(x, dy) P"-`(y, dw)q(w)R"- = 0. 
j-' 00 

n' 
o v = 1 (j) 

Since (4.6) for A = T is merely R" 
fSP"(x,dw)r(w) 

which tends by assumption to 

f(x) frSQ(dw)q(w) for x 4 N1 

_K(0), 
(4.13) is true. Putting (4.12) into (3.6) leads 

to (3.12), as claimed. 
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We next prove that (A) implies (B). Unlike the countable case, this is in fact 
the easier direction, mainly due to our assumption in (A) of the existence of 
those limits, the proof of whose existence from (B) has taken up so much of this 
section. In the countable case, Seneta and Vere-Jones [6] were able to use standard 
Abelian arguments to establish many of these limits, but here we have had to 
resort to the specific R-invariance of Q and f, and the semigroup nature of 

{P"(., .)}, 
to do this. On the other hand, we have established, even in the 

countable case, the ergodic nature of (2.12)-(2.14) for all Ae 7-, not merely for 
A E - for some partition .•. 

When we are given (A) of Theorem 2, we have in fact a plethora of limits, and 
we need only some of these, as noted in [6]. Specifically, we choose a particular 

• ET which satisfies: 

A(i) limn...a(C,A,n) = x(A) exists for each AEc , and 
a(.) 

is a proper 
probability measure on -T; 

A(ii) f/(y)= liminf,,, b(C, y, n) is a measurable non-negative function on T 
with M{y: f/(y) > 0} > 0, and for all y in T\ N, where M(N) = 0, 

f/(y) = lim b(C, y, n); 
n-+ oo 

A(iii) xt and / in A(i) and A(ii) satisfy 

(4.14) 

fr 

[fl(y) /q(y)]a(dy) < co. 

That ( can be found to satisfy A(i) and A(ii) is clear from the assumption of the 
existence of limits for (3.5) and (3.8); A(iii) follows on writing the double limit 

(3.7) as 

fAPm(C, dy) [ fP"(y, dw)tl(w) / fP"(, dw)tl(w)]/ fPP"((, dw)tl(w) 

frP"'(, dy) [ JfP"(y, dw)q(w) / JP"(", dw)q(w)] / J,P"p(, dw)q(w)' 

for A on which fl(y) is approached uniformly and on which P /t is bounded (from 
A(ii) and Egorov's Theorem, T\N' can be partitioned into such A, where 

M(N') = 0): the numerator tends with n and then m to the finite limit 

fAa(dy)fl(y) /l(y) and hence if s(., 
", 

m, n) is to approach a probability measure, 
the denominator must also remain finite. From Fatou's lemma, this denominator 

is greater than (4.14), and so A(iii) holds. 
The proof now follows that in [6]. We have, firstly, 

fr 

a(C, dy, 
n)[ 

f, 

P(y, 
dw)r(w) /l(y) ] 

(4.15) = 

f Pf+ 1([, dw)1(w)If PM((, dw)1(w) 

= 
a(,A,, 

n + 1) 
P"+(, dw)i(w)/f 

Pf(, dw)1(w). 
JT IJT 
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Write 

(4.16) p((, n)= f pP"+ 
((, 

dw)l(w)/f 
P"(, dw)n(w). 

Since n(y) is the probability of ultimate absorption starting from y, 

7(y) = 1 -P(y, T) + f P(y, dw)n(w), 

so for any AE 9 and all y, fAP(y, dw)t(w) /t(y) ? 1; by Assumption A(i), the 
left-hand side of (4.15) therefore converges, for every A e c, to 

(4.17) f [a(dy) /t(y)] 

fAP(y, 
dw)n(w). 

The right-hand side of (4.15) is a(Q, A, n + l)p(C, n): the first of these factoi s 

converges to x(A), from A(i), and so 

(4.18) p = lim p(C, n) 
n -+00 

exists, and from (4.17) satisfies, for all A E c , 

(4.19) (A)p = 
f [a(dy) /~(y)] P(y, dw)t(w). 

Clearly from (4.19), p > 0. We can rewrite (4.19) as 

(4.20) p f x(dw) /q(w) = f [a(dy) /l(y)]P(y, A), AE -; 

that is, H(A) = fAac(dw) /l(w), A ef is a p-'-invariant measure for {X,} H is 

a-finite because a is a probability measure and n is nowhere zero). 
Secondly, we have for all x E T 

(4.21) 
f P(x, dy)b((, y, n) = 

fP""(x, dw)q(w)/f 
P"(C dw)q(w) 

= b(, x,n + 1)p(, n) 

where p((, n) is defined by (4.16). Applying Fatou's Lemma and A(ii) to (4.21) 
gives, for all x E T, 

(4.22) pfi(x) f P(x,dy)#(y). 

From (4.20), (4.22) and Assumption A(iii), it is clear that H(A) = SAc(dw) /I(w) 
and g = f satisfy the conditions of Lemma 1. Thus we conclude immediately that: 

(i) {X,} is R-positive, with R = p-; 
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(ii) fl = f almost everywhere and H = Q, where f and Q are the unique R- 

invariant function and measure for {X,}. 

The assumption that a is a probability measure thus implies that fTQ(dw)r(w) 
= L(T) = 1. The radius of convergence R must be strictly greater than unity, for 

a 1-positive chain must be stochastic, and we have assumed that {X,) on (T, -) is 

strictly substochastic. 

Now let N' = {(: A(i) fails to hold}; by assumption M(N') = 0. For all 

x N', we have 

R" f 
AP"(x, 

dw)ri(w) (4.23) Ix(A) = lim , 
Ae• 

n-.oo R" fTP"(x,dw)q(w) 

exists, and cx is a probability measure on 5-. The numerator in (4.23) tends to 

f(x) fAQ(dw)q(w) for all A c 5- and x 0 Nf, where M is a partition of T as in 

Theorem 1, since {X,} is R-positive; thus the denominator in (4.23) must tend to 

a finite limit ir(x, T) for all x 4 N, = Nf UN', and (3.10) is true. 

Finally, the probability of remaining in T for n steps or more, conditional on 

final absorption into X \ T, is 

SP"(x,dw)(w) /q(x); 

and when (3.10) holds, this clearly goes to zero geometrically as R-", when n - oo, 
for all x N,. 

5. Arbitrary initial distributions 

As remarked in [6], Section 4, the results of Theorem 2 do not carry over 

completely to arbitrary initial distributions. For example, consider the natural 

analogue of (3.5) 

(5.1) x(n, A, n) = 

r n(dx) fP(x, dw)q/(w) IfIn(dx)f P"(x, 
dw)q(w) 

where r is as before and n is a probability measure on T. We leave to the reader 

the proof of the following general analogue of [6], Theorem 4.1: if a,() 
= 

lim,-ox(n,.-,n) 
exists and is an honest probability measure on T, then 

Q,(A) 
= fAac(dy) /q(y) is p-invariant for some p < R; but if Q, is any p-invariant 

measure with p ? R and Q,(T) = 1, then 

=,(A) 

T 
QP,(dy)(y)/f Q,(dy)t(y) 

is obtained as the limit of x(Q,,,A,n). 
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The situation envisaged in this result can occur: thus R-positivity is essentially 
a condition equivalent to all of (3.11)-(3.13) holding. In the countable case this 

is shown by the semi-infinite random walk considered in [6], Section 6, whilst the 

behaviour may also be exhibited on a continuous state space: for example, the 

skeletons of the (continuous-time) conditioned waiting time process of an M/G/1 

queue considered by Kyprianou in [3] are not R-positive, but have quasi-stati- 

onary limits 
,(. 

) as defined above (for r( ) = 6(y, ), yE T) which correspond 
to p = R. 

Our final result, for which we shall only sketch a proof, is the analogue of [6], 
Theorem 4.2. 

Theorem 3. Suppose that {X,} on (T,YF) is R-positive, and 7r is an initial 

probability distribution for X0 on !7. Sufficient conditions to ensure the validity 

of the analogues of (3.11)-(3.13) are either: 

(A') the R-invariant measure Q satisfies (3.9), and the initial distribution 7r(A) 
is bounded by some multiple of SAQ(dw)1(w); or 

(B') the R-invariant function f satisfies ff(y)ir(dy)< oo, and f(y)/q(y) is 

bounded away from zero. 

Proof. If (A') holds we can appeal to Lemma 2 to show that 

(5.2) lim R" 

fir(dw) 
P"(w, dy)q(y) n'-+0 c C TT 

exists and has the value 

(dw)f(w) 
][f Q(dy)(y) 

(dk(y] K 
dw)f(w)J Q(dy)q(y) 

< -xD 

by R-positivity and (3.9). 

If (B') holds we can appeal to Theorem 1(d) to show that (5.2) tends to 

[T 
r(dw)fw) j[jTQ(dy)q(y)j 

which is again finite, the first factor by assumption, the second because 

fjQ(dy)f(y) < co and f(y)/rl(y) is bounded away from zero. 

The analysis then proceeds as in the preceding section. 

We have given this theorem to show that in the uncountable case, an initial 

starting distribution may prove more tractable when not concentrated at a single 

point: the reader should note that in the theorem, under either (A') or (B'), we do 

not need the assumption that the limits analogous to (3.10) exist. I conjecture 
that in fact, even in the uncountable case, the limits (3.10) always do exist, and so, 
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from Corollary 2 to Lemma 2, have the desired form: but I have not so far been 
able to prove this. 

In the uncountable case, one might often be willing to assume that the chain 

starts, not at a single point, but rather with a distribution over some set of positive 
M-measure. The theorem then ensures that for a large class of initial distributions, 
the 'correct' quasi-stationary limit is obtained, and is independent of the initial 

distribution. 

In particular this theorem covers the following two cases when the initial 

distribution is actually concentrated at a point {x}: 

(i) T is countable and {X,) is irreducible in the usual sense. Here M({x})> 0, 
and so 0 < Q({x}) < co, so that (A') holds for 

n(.) 
= 6(x, 

.). 
(ii) For some m > 0, P'(x, 

.) 
< Q( - ) and the density p'(x, y) of P'(x, 

") 
with 

respect to Q is a bounded function of y. Here the 'initial distribution' P'(x, ) 
satisfies (A'), and we may use 

R"P"(x, T) = R"" f [RP"(x, dy)]P'~m(y,T) 

to see that 
limn-_,R"P"(x, 

T) exists, and so (3.10) need not be assumed. 

This second case, and variations of this approach, may well show the way to 

checking (3.10) in particular cases. However, we conclude with an example to 

show that the bounded density of this case is by no means necessary to ensure the 

existence of the limit (3.10). 

Example. (This is an adaptation of Example 4 in [5], and details of the 

working may be found there.) 
Let { Y,} be a chain on T such that (B) of Theorem 2 holds for { Y,}, and assume 

that Q 
r, 

the R y-invariant measure for {Y,), allots zero measure to points in T. 
Define {Xj by 

Pr {X, eA I Xo = x} = x Pr { YeA I Yo 
= x} + P 6(x,A), ,f > 0, + = 1. 

Then it is shown in [5] that {X,} is Rx-positive, with Rx = R y/(co + fiR y), that 

the Rx-invariant measure and function for {X,} are the R y-invariant measure 

and function for {Y,}, and that 

lim R" Pr{X, A IXo = x} = lim R nPr {Y, e A Yo = x} 
n-+00 n- +0 

for every A e - such that the right-hand limit exists. Thus, since { Y,} satisfies (B) 

of Theorem 2, so does {X,}; and in particular, (3.10) holds for {X,}. 
However, by construction, for every m 

Pr{Xm = x IXo = x} = 8" > 
0, 

and (X,} does not satisfy Case (ii) above. 
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