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QUASI-SYMMETRIC INVARIANT PROPERTIES OF

CANTOR METRIC SPACES

by Yoshito ISHIKI (*)

Abstract. — For metric spaces, the doubling property, the uniform disconnect-
edness, and the uniform perfectness are known as quasi-symmetric invariant prop-
erties. The David–Semmes uniformization theorem states that if a compact metric
space satisfies all the three properties, then it is quasi-symmetrically equivalent to
the middle-third Cantor set. We say that a Cantor metric space is standard if it
satisfies all the three properties; otherwise, it is exotic. In this paper, we conclude
that for each of exotic type the class of all the conformal gauges of Cantor metric
spaces exactly has continuum cardinality. As a byproduct of our study, we state
that there exists a Cantor metric space with prescribed Hausdorff dimension and
Assouad dimension.

Résumé. — Pour les espaces métriques, la propriété de doublage, la déconnexion
uniforme et la perfection uniforme sont connues comme des propriétés invariantes
par les quasi-symétries. Le théorème d’uniformisation de David–Semmes stipule
que si un espace métrique compact satisfait toutes ces trois propriétés, il est quasi-
symétriquement équivalent à l’ensemble triadique de Cantor. Nous disons qu’un
espace métrique de Cantor est standard s’il satisfait toutes les trois propriétés, et
exotique. Sinon, dans cet article, nous concluons que pour chaque type exotique la
classe de tous les jauges conformales des espaces métriques de Cantor a exactement
la cardinalité du continuum. En tant que sous-produit de notre étude, nous avons
montré qu’il existe un espace métrique de Cantor ayant la dimension de Hausdorff
et la dimension d’Assouad prescrites.

1. Introduction

The concept of quasi-symmetric maps between metric spaces provides

us various applications, especially from a viewpoint of geometric analysis

of metric measure spaces (see e.g., [3, 8]), or a viewpoint of the conformal

dimension theory (see e.g., [7]). For a homeomorphism η : [0,∞) → [0.∞),

Keywords: Cantor metric space, Quasi-symmetric invariant.
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a homeomorphism f : X → Y between metric spaces is said to be η-quasi-

symmetric if

dY (f(x), f(y))

dY (f(x), f(z))
6 η

(

dX(x, y)

dX(x, z)

)

holds for all distinct x, y, z ∈ X, where dX is the metric on X and dY

the metric on Y . A homeomorphism f : X → Y is quasi-symmetric if

it is η-quasi-symmetric for some η. The composition of any two quasi-

symmetric maps is quasi-symmetric. The inverse of any quasi-symmetric

map is also quasi-symmetric. The quasi-symmetry gives us an equivalent

relation between metric spaces.

In this paper, we focus on the following quasi-symmetric invariant proper-

ties of metric spaces: the doubling property, the uniform disconnectedness,

and the uniform perfectness (see Section 2 for the definitions). David and

Semmes [2] have proven the so-called uniformization theorem which states

that every uniformly disconnected, uniformly perfect, doubling compact

metric space is quasi-symmetrically equivalent to the middle-third Cantor

set ([2, Proposition 15.11]). The David–Semmes uniformization theorem

can be considered as a quasi-symmetric version of the well-known Brouwer

characterization of Cantor spaces ([1], see e.g., [12, Theorem 30.3]), where

a Cantor space means a topological space homeomorphic to the middle-

third Cantor set. We study the three quasi-symmetric invariant properties

of Cantor metric spaces. We attempt to complement the David–Semmes

uniformization theorem.

Before stating our results, for the sake of simplicity, we introduce the

following notations:

Definition 1.1. — If a metric space (X, d) with metric d satisfies a

property P , then we write TP (X, d) = 1; otherwise, TP (X, d) = 0. For a

triple (u, v, w) ∈ {0, 1}3, we say that a metric space (X, d) has type (u, v, w)

if we have

TD(X, d) = u, TUD(X, d) = v, TUP (X, d) = w,

where D means the doubling property, UD the uniform disconnectedness,

and UP the uniform perfectness.

We say that a Cantor metric space is standard if it has type (1, 1, 1);

otherwise, exotic. For example, the middle-third Cantor set is standard.

We consider the problem of an abundance of the quasi-symmetric equiv-

alent classes of exotic Cantor metric spaces.
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For a metric space (X, d), we denote by G(X, d) the conformal gauge of

(X, d) defined as the quasi-symmetric equivalent class of (X, d). The con-

formal gauge of metric spaces is a basic concept in the conformal dimension

theory (see e.g., [7]). For each (u, v, w) ∈ {0, 1}3, we define

M(u, v, w) = { G(X, d) | (X, d) is a Cantor space of type (u, v, w) }.

The David–Semmes uniformization theorem mentioned above states that

M(1, 1, 1) is a singleton. It is intuitively expected that M(u, v, w) has infi-

nite cardinality for each exotic type (u, v, w). As far as the author knows,

the caridinality of the class of the conformal gauges of Cantor metric spaces

has not yet been studied.

As the main result of this paper, we conclude that the cardinality of the

class of all conformal gauges of exotic Cantor metric spaces is equal to the

continuum 2ℵ0 . More precisely, we prove the following:

Theorem 1.2. — For every (u, v, w) ∈ {0, 1}3 except (1, 1, 1), we have

card(M(u, v, w)) = 2ℵ0 ,

where the symbol card denotes the cardinality.

In the proof of Theorem 1.2, the following quasi-symmetric invariant

plays an important role.

Definition 1.3. — For a property P of metric spaces, and for a metric

space (X, d) we define SP (X, d) as the set of all points in X of which no

neighborhoods satisfy P .

Remark 1.4. — If P is a quasi-symmetric invariant property (e.g., D, UD

or UP ), then SP (X, d) is a quasi-symmetric invariant. Namely, if (X, dX)

and (Y, dY ) are quasi-symmetrically equivalent, then so are SP (X, dX) and

SP (Y, dY ).

To prove Theorem 1.2, we introduce the following notion:

Definition 1.5. — For a property P of metric spaces, we say that a

metric space (X, d) is a P -spike space if SP (X, d) is a singleton.

In order to guarantee the existence of D, UD and UP -spike Cantor met-

ric spaces, we develop a new operation of metric spaces, say the telescope

spaces. Our telescope space is constructed as a direct sum with contracting

factors and the point at infinity determined as the convergent point of the

contracting factors (see Section 3).

The outline of the proof of Theorem 1.2 is as follows: We first construct a

family {Ξ(x)}x∈I of continuum many closed sets in the middle-third Cantor
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set whose members are not homeomorphic to each other. By using appropri-

ate D, UD and UP -spike Cantor metric spaces, for each member Ξ(x), for

each exotic type (u, v, w) and for each failing property P ∈ {D,UD,UP}

of (u, v, w), we can obtain a Cantor metric space (X, d) of type (u, v, w)

such that SP (X, d) is homeomorphic to Ξ(x). Since SP is a quasi-symmetric

invariant for D, UD, and UP , we obtain continuum many Cantor metric

spaces in M(u, v, w).

As a natural question, we consider the problem whether a Cantor metric

space (X, d) with SP (X, d) = X exists, where P means D, UD or UP .

Definition 1.6. — For a triple (u, v, w) ∈ {0, 1}3, we say that a

metric space (X, d) has totally exotic type (u, v, w) if (X, d) has exotic

type (u, v, w), and if SP (X, d) = X holds for all P ∈ {D,UD,UP} with

TP (X, d) = 0.

As another result, we prove the existence of totally exotic Cantor metric

spaces for all the possible types.

Theorem 1.7. — For every (u, v, w) ∈ {0, 1}3 except (1, 1, 1), there

exists a Cantor metric space of totally exotic type (u, v, w).

Theorem 1.7 states an abundance of examples of exotic Cantor metric

spaces in a different way from Theorem 1.2.

To prove Theorem 1.7, we introduce the notions of the sequentially

metrized Cantor spaces and the kaleidoscope spaces. We first explain the

sequentially metrized Cantor spaces. Let 2N denote the set of all maps from

N to {0, 1}. For each u ∈ (0, 1), the set 2N equipped with an ultrametric d

defined by d(x, y) = umin{n∈N|xn 6=yn} becomes a Cantor space. In the study

of David–Semmes [2], or in preceding studies, the metric space (2N, d) is

often utilized as an abstract Cantor space rather than the middle-third one.

The point in the proceeding studies is to use a geometric sequence {un}n∈N

in the definition of d. We modify such a familiar construction by using more

general sequences, say shrinking sequences, that are non-increasing and

converging to 0. Our sequentially metrized Cantor space means the met-

ric space 2N equipped with a metric constructed by a shrinking sequence

(see Section 6). In the proof of Theorem 1.7, Cantor metric spaces of to-

tally exotic types (1, 1, 0), (0, 1, 1) and (0, 1, 0) are obtained as sequentially

metrized Cantor spaces for some suitable shrinking sequences.

We next explain the kaleidoscope spaces. Our kaleidoscope space is de-

fined as the countable product of equally divided points in [0, 1] equipped

with a supremum metric distorted by an increasing sequence (see Section 7).

In the proof of Theorem 1.7, Cantor metric spaces of totally exotic types
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(1, 0, 1), (1, 0, 0) and (0, 0, 0) are obtained by applying the construction of

the kaleidoscope spaces.

As an application of our construction of Cantor metric spaces, we ex-

amine the prescribed Hausdorff and Assouad dimensions problem. For a

metric space (X, d), we denote by dimH(X, d) the Hausdorff dimension of

(X, d), and by dimA(X, d) the Assouad dimension. In general, the Haus-

dorff dimension does not exceed the Assouad dimension (see Subsection 8.1

for the basics of Assouad dimension).

Theorem 1.8. — For each pair (a, b) ∈ [0,∞]2 with a 6 b, there exists

a Cantor metric space (X, d) with

dimH(X, d) = a, dimA(X, d) = b.

Our constructions of Cantor metric spaces mentioned above enable us to

prove Theorem 1.8.

The organization of this paper is as follows: In Section 2, we explain the

basic facts of metric spaces. In Section 3, we introduce the notion of the

telescope spaces, and study their basic properties. In Section 4, we prove the

existence of the D, UD and UP -spike Cantor metric spaces. In Section 5,

we prove Theorem 1.2. In Section 6, we discuss the basic properties of the

sequentially metrized Cantor spaces. In Section 7, we introduce the notion

of the kaleidoscope spaces, and prove Theorem 1.7. In Section 8, we prove

Theorem 1.8.

Acknowledgments. The author would like to thank Professor Koichi

Nagano for his advice and constant encouragement. The author would also

like to thank the referee for helpful comments.

2. Preliminaries

2.1. Metric Spaces

Let (X, d) be a metric space. For a point x ∈ X and for a positive number

r ∈ (0,∞), we denote by U(x, r) the open metric ball with center x and

radius r, and by B(x, r) the closed one. For a subset A of X, we denote by

diam(A) the diameter of A.

For δ ∈ (0,∞), we denote by Fδ(X) the set of all subsets of X with

diameter smaller than δ. For a non-negative number s ∈ [0,∞), we denote

TOME 69 (2019), FASCICULE 6
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by Hs the s–dimensional Hausdorff measure on X defined as Hs(A) =

supδ∈(0,∞) Hs
δ(A), where

Hs
δ(A) = inf

{

∞
∑

i=1

diam(Ai)
s

∣

∣

∣

∣

∣

A ⊂
∞
⋃

i=1

Ai, Ai ∈ Fδ(X)

}

.

For a subset A of X, we denote by dimH(A) the Hausdorff dimension of A

defined as

dimH(A) = sup{ s ∈ [0,∞) | Hs(A) = ∞ }

= inf{ s ∈ [0,∞) | Hs(A) = 0 }.

Let (X, dX) and (Y, dY ) be metric spaces. For c ∈ (0,∞), a map f : X →

Y is said to be c-Lipschitz if for all x, y ∈ X we have dY (f(x), f(y)) 6

cdX(x, y). A map between metric spaces is Lipschitz if it is c-Lipschitz for

some c. A map f : X → Y is said to be c-bi-Lipschitz if for all x, y ∈ X we

have

c−1dX(x, y) 6 dY (f(x), f(y)) 6 cdX(x, y).

A map between metric spaces is bi-Lipschitz if it is c-bi-Lipschitz for some

c. Two metric spaces are said to be bi-Lipschitz equivalent if there exists a

bi-Lipschitz homeomorphism between them. Note that every bi-Lipschitz

map is quasi-symmetric.

2.2. Cantor Metric Spaces

A topological space is said to be 0-dimensional if it admits a clopen base.

A metric space (X, d) is called an ultrametric space if for all x, y, z ∈ X we

have the so-called ultrametric triangle inequality

d(x, y) 6 max{d(x, z), d(z, y)};

in this case, d is called an ultrametric. Every ultrametric space is 0-dimens-

ional.

We recall the following characterization of Cantor spaces due to Brouwer

([1], see e.g., [12, Theorem 30.3]):

Theorem 2.1 ([1]). — Every 0-dimensional, compact metric space pos-

sessing no isolated point is a Cantor space.

The following example can be seen in [2]:

ANNALES DE L’INSTITUT FOURIER
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Example 2.2. — Let 2N denote the set of all maps from N to {0, 1}. Let

e be a metric on 2N defined by

e(x, y) = 3− min{n∈N|xn 6=yn}.

The metric e is an ultrametric on 2N. By the Brouwer Theorem 2.1, the

metric space (2N, e) is a Cantor space.

2.3. Doubling Property

For a positive integer N ∈ N, a metric space (X, d) is said to be N -

doubling if every closed metric ball with radius r can be covered by at

most N closed metric balls with radius r/2. A metric space is doubling if

it is N -doubling for some N .

The doubling property is hereditary. Namely, every subspace of an N -

doubling metric space is N -doubling.

Example 2.3. — The middle-third Cantor set (Γ, dΓ) is doubling since

the real line is doubling.

Let (X, d) be a metric space, and let A be a subset of X. For r ∈ (0,∞),

a subset S of A is said to be r-separated in A if for all distinct points

x, y ∈ S we have d(x, y) > r.

Lemma 2.4. — A metric space (X, d) is doubling if and only if there

exists M ∈ N such that for each r ∈ (0,∞) and for each x ∈ X, the

cardinality of an arbitrary (r/2)-separated set in B(x, r) is at most M .

2.4. Uniform Disconnectedness

Let (X, d) be a metric space. For δ ∈ (0, 1), a finite sequence x : {0, 1, . . . ,

N} → X is said to be a δ-chain in (X, d) if d(x(i−1), x(i)) 6 δd(x(0), x(N))

for all i ∈ {1, . . . , N}. A δ-chain in (X, d) is called trivial if it is constant.

For δ ∈ (0, 1), a metric space (X, d) is said to be δ-uniformly disconnected

if every δ-chain in (X, d) is trivial. A metric space is uniformly disconnected

if it is δ-uniformly disconnected for some δ.

The uniformly disconnectedness is hereditary. Namely, every subspace of

a δ-uniformly disconnected metric space is δ-uniformly disconnected.

By the definition of the uniform disconnectedness and the ultrametric

triangle inequality, we see the following:

TOME 69 (2019), FASCICULE 6
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Proposition 2.5. — Let (X, d) be an ultrametric space. Then for every

δ ∈ (0, 1) the space (X, d) is δ-uniformly disconnected.

We have already known the following characterization of the uniform

disconnectedness (see e.g., [2], [7]):

Proposition 2.6. — A metric space is uniformly disconnected if and

only if it is bi-Lipschitz equivalent to an ultrametric space.

Remark 2.7. — More precisely, every δ-uniformly disconnected metric

space is δ−1-bi-Lipschitz equivalent to an ultrametric space.

Example 2.8. — The middle-third Cantor set (Γ, dΓ) is uniformly discon-

nected. This claim can be verified as follows: Take the Cantor space (2N, e)

mentioned in Example 2.2. The ternary corresponding map T : 2N → Γ

defined as T (x) =
∑∞

i=1(2/3i)xi is a bi-Lipschitz homeomorphism. Since

(2N, e) is an ultrametric space, Proposition 2.6 tells us that (Γ, dΓ) is uni-

formly disconnected.

Remark 2.9. — More precisely, we see the following:

(1) For all x, y ∈ 2N, we have

3

2
e(x, y) 6 dΓ(T (x), T (y)) 6

5

2
e(x, y).

Indeed, if we put n = min{k ∈ N | xk 6= yk}, then

dΓ(T (x), T (y)) =

∣

∣

∣

∣

∣

∞
∑

i=1

2xi

3i
−

∞
∑

i=1

2yi

3i

∣

∣

∣

∣

∣

6
2

3n
+

∞
∑

i=n+1

2

3i
=

5

2
e(x, y),

dΓ(T (x), T (y)) =

∣

∣

∣

∣

∣

∞
∑

i=1

2xi

3i
−

∞
∑

i=1

2yi

3i

∣

∣

∣

∣

∣

>
2

3n
−

∞
∑

i=n+1

2

3i
=

3

2
e(x, y).

(2) For every δ ∈ (0, 3/5), the space (Γ, dΓ) is δ-uniformly disconnected.

Indeed, for each δ-chain x in (Γ, dΓ), the sequence T ◦x is a (5δ/3)-

chain in (2N, e).

2.5. Uniform Perfectness

For ρ ∈ (0, 1], a metric space (X, d) is said to be ρ-uniformly perfect if

for every x ∈ X, and for every r ∈ (0,diam(X)), the set B(x, r)\U(x, ρr) is

non-empty. A metric space is uniformly perfect if it is ρ-uniformly perfect

for some ρ.

From the definition we derive the following:

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.10. — Let (X, d) be a ρ-uniformly perfect bounded metric

space. For λ ∈ (1,∞), put µ = ρ/(2λ). Then for every x ∈ X and for every

r ∈ (0, λdiam(X)), the set B(x, r) \U(x, µr) is non-empty, and B(x, µr) is

a proper subset of X.

Proof. — Assume first that B(x, r) is a proper subset of X. This implies

r < diam(X). Since (X, d) is ρ-uniformly perfect, it is also µ-uniformly per-

fect. Hence B(x, r) \U(x, µr) is non-empty. Assume second that B(x, r) =

X. By the definition of µ, we have diam(B(x, µr)) < diam(X). Thus

B(x, µr) is a proper subset of X. �

Example 2.11. — The Cantor space (2N, e) mentioned in Example 2.2 is

uniformly perfect (see e.g., [2]). The middle-third Cantor set (Γ, dΓ) is also

uniformly perfect. Indeed, (2N, e) and (Γ, dΓ) are bi-Lipschitz equivalent to

each other.

In what follows, we will use the following observation:

Lemma 2.12. — The middle-third Cantor set (Γ, dΓ) is (1/5)-uniformly

perfect.

Proof. — In Example 2.8, we already observe that (2N, e) and (Γ, dΓ) are

bi-Lipschitz equivalent through the ternary corresponding map T : 2N → Γ.

For all x, y ∈ 2N we have

(2.1)
3

2
e(x, y) 6 dΓ(T (x), T (y)) 6

5

2
e(x, y)

(see Remark 2.9). Take a ∈ Γ and r ∈ (0,diam(Γ, dΓ)). Choose n ∈ N with

5

2
3−n

6 r <
5

2
3−n+1.

Since the map T is homeomorphic, we can find a point b ∈ Γ such that

n = min{ i ∈ N | (T−1(a))i 6= (T−1(b))i }.

By the right hand side of (2.1), we have

dΓ(a, b) 6
5

2
e(T−1(a), T−1(b)) =

5

2
3−n

6 r.

Hence b ∈ B(a, r). By the left hand side of (2.1), we have

1

5
r <

3

2
3−n =

3

2
e(T−1(a), T−1(b)) 6 dΓ(a, b).

Hence b 6∈ U(a, r/5). Thus the set B(a, r) \ U(a, r/5) is non-empty. �

TOME 69 (2019), FASCICULE 6
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2.6. Product of Metric Spaces

For two metric spaces (X, dX) and (Y, dY ), we denote by dX × dY the

ℓ∞-product metric on X × Y defined as dX × dY = max{dX , dY }.

The following seems to be well-known:

Lemma 2.13. — Let (X, dX) and (Y, dY ) be metric spaces. Then (X, dX)

and (Y, dY ) are doubling if and only if (X × Y, dX × dY ) is doubling.

On the uniform disconnectedness, we have:

Lemma 2.14. — Let (X, dX) and (Y, dY) be metric spaces. Then (X, dX)

and (Y, dY ) are uniformly disconnected if and only if (X × Y, dX × dY ) is

uniformly disconnected.

Proof. — Since the uniform disconnectedness is hereditary, we see that if

(X×Y, dX ×dY ) is uniformly disconnected, then so are (X, dX) and (Y, dY ).

Note that for any two ultrametric spaces the product is an ultrametric

space. Therefore Proposition 2.6 leads to that if (X, dX) and (Y, dY ) are

uniformly disconnected, then the ℓ∞-product metric space (X×Y, dX ×dY )

is uniformly disconnected. �

On the other hand, on the uniform perfectness, we have:

Lemma 2.15. — Let (X, dX) and (Y, dY ) be bounded metric spaces.

Assume that either (X, dX) or (Y, dY ) is uniformly perfect. Then (X × Y ,

dX × dY ) is uniformly perfect.

Proof. — Without loss of generality, we may assume that (X, dX) is ρ-

uniformly perfect. By Lemma 2.10, for each x ∈ X, and for each r ∈

(0,diam(X × Y )), the subset B(x, r) \ U(x, µr) of X is non-empty, where

µ = (ρdiam(X))/(2 diam(X × Y )). Take a point z = (x, y) ∈ X × Y and

a number r ∈ (0,diam(X × Y )). Choose a point x′ ∈ B(x, r) \ U(x, µr),

and put z′ = (x′, y). Then (dX × dY )(z, z′) is equal to dX(x, x′) and hence

it belongs to [µr, r]. This implies that the point z′ belongs to the subset

B(z, r) \ U(z, µr) of X × Y . �

Remark 2.16. — In Proposition 6.14, we will prove that there exist two

Cantor metric spaces that are not uniformly perfect whose product metric

space is uniformly perfect.

Remark 2.17. — In Lemmas 2.13, 2.14 and 2.15, the ℓ∞-product metric

dX × dY can be replaced with the ℓp-product metric on X × Y for any

p ∈ [1,∞). Indeed, the ℓ∞-product metric space (X × Y, dX × dY ) is bi-

Lipschitz equivalent to the ℓp-product one.
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2.7. Disjoint Sum of Metric Spaces

For two bounded metric spaces (X, dX) and (Y, dY ), we denote by dX ⊔dY

the metric on the disjoint union X ⊔ Y defined as

(dX ⊔ dY )(x, y) =















dX(x, y) if x, y ∈ X,

dY (x, y) if x, y ∈ Y ,

max{diam(X),diam(Y )} otherwise.

Remark 2.18. — By the Brouwer Theorem 2.1, the disjoint sum of any

two Cantor spaces is also a Cantor space.

From the definition of the doubling property, we have:

Lemma 2.19. — Two bounded metric spaces (X, dX) and (Y, dY ) are

doubling if and only if (X ⊔ Y, dX ⊔ dY ) is doubling.

On the uniform disconnectedness, we also have:

Lemma 2.20. — Two bounded metric spaces (X, dX) and (Y, dY ) are

uniformly disconnected if and only if (X ⊔Y, dX ⊔ dY ) is uniformly discon-

nected.

On the uniform perfectness, by Lemma 2.10, we see the following:

Lemma 2.21. — Two bounded metric space (X, dX) and (Y, dY ) are

uniformly perfect if and only if (X ⊔ Y, dX ⊔ dY ) is uniformly perfect.

3. Telescope Spaces

In this section, we introduce the notion of telescope spaces.

Definition 3.1. — We say that a triple B = (B, dB , b) is a telescope

base if (B, dB) is a metric space homeomorphic to the one-point compact-

ification of N, and if b is a bijective map b : N ∪ {∞} → B such that b∞

is the unique accumulation point of B. Let B = (B, dB , b) be a telescope

base. For n ∈ N we put

Rn(B) = sup{ r ∈ (0,∞) | U(bn, r) = {bn}}.

Note that Rn(B) is equal to the distance in (B, dB) from bn to B \ {bn}.

The following example of telescope base will be used later.
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Definition 3.2. — Define a function r : N ∪ {∞} → R by ri = 2−i,

and by r∞ = 0. Let

R = { ri | i ∈ N ∪ {∞}},

and let dR be the metric on R induced from R. The triple R = (R, dR, r)

is a telescope base. Note that Rn(R) = 2−n−1 for each n ∈ N.

We define the telescope spaces.

Definition 3.3. — Let X = {(Xi, di)}i∈N be a countable family of

metric spaces. Let B = (B, dB , b) be a telescope base. We say that P =

(X ,B) is a compatible pair if for each n ∈ N we have diam(Xn) 6 Rn(B).

Let P = (X ,B) be a compatible pair. Put

T (P) = {∞} ⊔
∐

i∈N

Xi,

and define a metric dP on T (P) by

dP(x, y) =























di(x, y) if x, y ∈ Xi for some i,

dB(bi, bj) if x ∈ Xi, y ∈ Xj for some i 6= j,

dB(b∞, bi) if x = ∞, y ∈ Xi for some i,

dB(bi, b∞) if x ∈ Xi, y = ∞ for some i.

We call the metric space (T (P), dP) the telescope space of P.

Notice that the compatibility of P guarantees the triangle inequality of

the metric dP on T (P). By the compatibility, we have:

Lemma 3.4. — Let P = (X ,B) be a compatible pair. If X and B consist

of ultrametric spaces, then the telescope space (T (P), dP) is an ultrametric

space.

By the Brouwer Theorem 2.1, we see the following:

Lemma 3.5. — Let P = (X ,B) be a compatible pair. If the family X

consists of Cantor spaces, then (T (P), dP) is also a Cantor space.

From the definitions we can derive the following, which provides a method

of constructing Lipschitz maps between telescope spaces.

Proposition 3.6. — Let P = (X ,B) and Q = (Y, C) be compatible

pairs of X = {(Xi, di)}i∈N and B = (B, dB , b) and of Y = {(Yi, ei)}i∈N

and C = (C, dC , c), respectively. Let {fi : Xi → Yi}i∈N be a family of M -

Lipschitz maps. Assume that the map φ : B → C defined by φ = c ◦ b−1 is
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also M -Lipschitz. Let F : T (P) → T (Q) be a map defined by

F (x) =

{

fi(x) if x ∈ Xi for some i,

∞ if x = ∞.

Then F is M -Lipschitz.

Furthermore, we have:

Corollary 3.7. — Under the same setting as in Proposition 3.6, if

all the maps fi : Xi → Yi and φ are M -bi-Lipschitz, then the map F is

M -bi-Lipschitz.

On the doubling property, we have:

Proposition 3.8. — Let P = (X ,B) be a compatible pair of a family

X = {(Xi, di)}i∈N and a telescope base B = (B, dB , b) such that

(1) there exists N ∈ N for which each (Xi, di) is N -doubling;

(2) (B, dB) is doubling.

Then the telescope space (T (P), dP) is doubling.

Proof. — Before proving the proposition, we note that for an arbitrary

N -doubling space (X, d), the ball B(x, r) in X can be covered by at most

N2 balls with radius r/2 which centers are in B(x, r).

We may assume that (B, dB) is N -doubling. We prove that (T (P), dP)

is (N3)-doubling. Namely, for each x ∈ T (P) and for each r ∈ (0,∞), the

ball B(x, r) in (T (P), dP) can be covered by at most N3 closed balls with

radius r/2.

Take n ∈ N∪ {∞} with x ∈ Xn, where we put X∞ = {∞}. It suffices to

consider the case where B(x, r) is not contained in Xn. By the definition

of dP , we have

B(bn, r) = {bi ∈ B | Xi ⊂ B(x, r)},

where B(bn, r) is the ball in (B, dB). By the definition of dP , we obtain

(3.1) B(x, r) =
⋃

bi∈B(bn,r)

Xi.

Since (B, dB) is N -doubling, there exist N2 points bn1
, . . . , bnN2 in B(bn, r)

with

B(bn, r) ⊂
N2
⋃

i=1

B(bni
, r/2).

For each i ∈ {1, . . . , N2}, by bni
∈ B(bn, r), we have Rni

(B) 6 r, and

hence diam(Xni
) 6 r.

TOME 69 (2019), FASCICULE 6



2694 Yoshito ISHIKI

For each i ∈ {1, 2, . . . N2}, take qi ∈ Xni
. Let

S = {bni
| B(qi, r/2) ⊂ Xni

}.

If bni
6∈ S, then Xni

⊂ B(qi, r/2). Hence by the definition of dP , we have

(3.2) B(qi, r/2) =
⋃

bj∈B(bni
,r/2)

Xj .

If bni
∈ S, then B(bni

, r/2) = {bni
}. Thus, by (3.1) and (3.2),

(3.3) B(x, r) \





⋃

bni
6∈S

B(qi, r/2)



 ⊂
⋃

bni
∈S

Xni
.

Since diam(Xni
) 6 r, we have Xni

⊂ B(qi, r). By the N -doubling property

of Xni
, we can take qi1, · · · qiN in Xni

with

Xni
⊂

N
⋃

j=1

B(qij , r/2).

Hence by (3.3) we obtain

B(x, r) ⊂
⋃

i 6∈S

B(qi, r/2) ∪
⋃

i∈S

N
⋃

j=1

B(qij , r/2).

Therefore (T (P), dP) is (N3)-doubling. �

On the uniform disconnectedness, we have:

Proposition 3.9. — Let P = (X ,B) be a compatible pair of a family

X = {(Xi, di)}i∈N and a telescope base B = (B, dB , b) such that

(1) there exists δ ∈ (0, 1) for which each (Xi, di) is δ-uniformly discon-

nected;

(2) (B, dB) is uniformly disconnected.

Then the telescope space (T (P), dP) is uniformly disconnected.

Proof. — We may assume that (B, dB) is δ-uniformly disconnected. By

Proposition 2.6, there exists a telescope base C = (C, dC , c) such that

(C, dC) is an ultrametric space and the map φ = c ◦ b−1 is δ−1-bi-Lipschitz

(see Remark 2.7). Note that for each i ∈ N we have

δRi(C) 6 Ri(B) 6 δ−1Ri(C).

Similary, there exist a family {(Yi, ei)}i∈N of ultrametric spaces and a family

{fi : Xi → Yi}i∈N of δ−1-bi-Lipschitz maps. Note that

δ diam(Xi) 6 diam(Yi) 6 δ−1 diam(Xi).
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Hence diam(Yi) 6 δ−2Ri(C). Let Y = {(Yi, δ
2ei)}i∈N. Then Y and C are

compatible. Since each fi is δ−3-bi-Lipschitz between (Xi.di) and (Yi, δ
2ei),

Lemma 3.4 and Corollary 3.7 complete the proof. �

On the uniform perfectness, we have:

Proposition 3.10. — Assume that a countable family X ={(Xi, di)}i∈N

of metric spaces satisfies the following:

(1) the family X and the telescope base R = (R, dR, r) defined in Def-

inition 3.2 are compatible;

(2) there exists ρ ∈ (0, 1] such that for each i ∈ N the space (Xi, di) is

ρ-uniformly perfect;

(3) there exists M ∈ (0,∞) such that for each i ∈ N

M · 2−i
6 diam(Xi).

Then for the compatible pair P = (X ,R) the telescope space (T (P), dP) is

uniformly perfect.

Proof. — By the assumption, for each i ∈ N, the space Xi has at least

two points. Note that diam(T (P)) = 2−1. We are going to prove that

(T (P), dP) is η-uniformly perfect, where

η = min

{

1

4
,
Mρ

2

}

.

Namely, we verify that for each x ∈ X and for each r ∈ (0, 2−1), the set

B(x, r) \ U(x, ηr) is non-empty.

Claim 1. — If B(x, r) = T (P), then B(x, r) \ U(x, ηr) is non-empty.

Proof. — Since diam(U(x, ηr)) < diam(T (P)), the set U(x, ηr) is a

proper subset of B(x, r). �

Claim 2. — If B(x, r) 6= T (P) and x = ∞, then B(x, r) \ U(x, ηr) is

non-empty.

Proof. — Take m ∈ N with r ∈ [2−m, 2−m+1). Then Xm ⊂ B(x, r).

From ηr < 2−m, it follows that Xm ⊂ B(∞, r) \ U(∞, ηr). �

Claim 3. — If B(x, r) 6= T (P) and x ∈ X1, then B(x, r) \ U(x, ηr) is

non-empty.

Proof. — By the assumption, we have r ∈ (0,M−1 · diam(X1)). Thus by

Lemma 2.10 and η 6 (Mρ)/2, the set B(x, r) \ U(x, ηr) is non-empty. �

Claim 4. — If B(x, r) 6= T (P) and x ∈ Xn for some n > 2, then

B(x, r) \ U(x, ηr) is non-empty.

TOME 69 (2019), FASCICULE 6



2696 Yoshito ISHIKI

Proof. — Note that dP(∞, x) = 2−n and dP(x,X1) = 2−1 − 2−n. Then

by B(x, r) 6= T (P), we have 2−n + r < 2−1. Hence there exists a positive

integer k 6 n with 2−n + r ∈ [2−k, 2−k+1). We divide the present situation

into the following two cases.

First assume k 6 n− 1. Take y ∈ Xk. Then we have

dP(x, y) = 2−k − 2−n
> 2−k − 2−k−1 = 2−k−1,

and

r < 2−k+1 − 2−n < 2−k+1.

Hence ηr 6 r/4 < dP(x, y). Therefore y ∈ B(x, r) \ U(x, ηr).

Second assume k = n. In this case, we have r < 2−n, and hence

r 6
1

M
diam(Xn).

By Lemma 2.10 and η 6 (Mρ)/2, the set B(x, r) \ U(x, ηr) is non-

empty. �

This finishes the proof of Proposition 3.10. �

4. Spike Spaces

In this section, we study the existence of the spike spaces defined in

Definition 1.5 for the quasi-symmetric invariant properties, D, UD and

UP .

First we study the existence of a D-spike Cantor metric space. Before

doing that, we give a criterion of the doubling property.

Definition 4.1. — For n ∈ N and for l ∈ (0,∞), we say that a metric

space (X, d) is (n, l)-discrete if card(X) = n and the metric d satisfies

d(x, y) =

{

0 if x = y,

l if x 6= y

for all x, y ∈ X. A metric space (X, d) is n-discrete if it is (n, l)-discrete for

some l.

Lemma 4.2. — If for each n ∈ N a metric space (X, d) has an n-discrete

subspace, then (X, d) is not doubling.

Proof. — Let (Dn, en) be an n-discrete subspace of (X, d). Choose ln ∈

(0,∞) such that (Dn, en) is (n, ln)-discrete. For every p ∈ Dn, the subspace

Dn is contained in B(p, ln), and Dn is (ln/2)-separated in B(p, ln). Since

card(Dn) = n, by Lemma 2.4, the space (X, d) is not doubling. �
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We construct a D-spike Cantor metric space.

Proposition 4.3. — There exists a D-spike Cantor metric space of

type (0, 1, 1).

Proof. — For each n ∈ N, take n disjoint copies Γ1, . . .Γn of the middle-

third Cantor set Γ, and define a set Zn by

Zn =

n
∐

i=1

Γi,

and define a metric en on Zn by

en(x, y) =

{

dΓi
(x, y) if x, y ∈ Γi for some i,

1 otherwise.

Note that for each n ∈ N, the space (Zn, en) is a Cantor space. The family

Z = {(Zi, 2−i−1 ·ei)}i∈N and the telescope base R defined in Definition 3.2

form a compatible pair.

Let P = (Z,R). By Lemma 3.5, the telescope space (T (P), dP) is a Can-

tor space. We first show that (T (P), dP) is a D-spike space. For each neigh-

borhood N of ∞, there exists k ∈ N such that n > k implies Zn ⊂ N . Then

N has an n-discrete subspace for all sufficiently large n. By Lemma 4.2,

the subspace N is not doubling. Since for each i ∈ N the space (Zi, ei) is

doubling, SD((T (P), dP)) = {∞}. Hence (T (P), dP) is a D-spike space.

We next show that (T (P), dP) has type (0, 1, 1). Since (Γ, dΓ) is δ-

uniformly disconnected for δ ∈ (0, 3/5) (see Remark 2.9), each (Zi, ei)

is δ-uniformly disconnected. The space (R, dR) is uniformly disconnected.

Then Proposition 3.9 implies that (T (P), dP) is uniformly disconnected. By

Lemmas 2.10 and 2.12, for each i ∈ N, the space (Zi, di) is (1/20)-uniformly

perfect. Therefore by Lemma 3.10, the space (T (P), dP) is uniformly per-

fect. �

Second we study the existence of a UD-spike Cantor metric space. To

do this, we need the following:

Lemma 4.4. — For ρ ∈ (0,∞), let {(Xi, di)}
n
i=0 be a finite family of

compact subspaces of (R, dR) satisfying the following:

(1) each (Xi, di) is ρ-uniformly perfect;

(2) diam(Xi) = 1 for all i;

(3) dR(Xi, Xj) = 1 for all distint i, j.

Then the subspace
⋃n

i=0 Xi of R is min{1/3, ρ/4}-uniformly perfect.
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Proof. — We may assume that

{2i, 2i+ 1} ⊂ Xi ⊂ [2i, 2i+ 1]

for each i. Set ν = min{1/3, ρ/4}. Take x ∈ X and r ∈ (0,diam(X)).

We show that B(x, r) \ U(x, νr) is non-empty. If B(x, r) = X, then

diam(U(x, νr)) is smaller than (2/3) diam(X); in particular, the set

B(x, r)\U(x, νr) is non-empty. Suppose B(x, r) 6= X. Then either 0 < x−r

or x+ r < 2n+ 1 holds. The case of 0 < x− r can be reduced to the case

of x + r < 2n + 1 through the map defined by t 7→ −t + 2n + 1. Hence it

is enough to consider the case of x+ r < 2n+ 1. Let m be an integer with

x ∈ Xm. Take a positive integer k with x+r ∈ [k−1, k) so that k > 2m+1.

If k − (2m+ 1) > 2, then

x+ νr 6 x+
1

3
r <

2

3
(2m+ 1) +

1

3
k < k − 1,

and hence k − 1 ∈ B(x, r) \ U(x, νr). If k − (2m + 1) = 1, then r <

2 diam(Xm), and hence Lemma 2.10 implies that B(x, r) \U(x, νr) is non-

empty. If k = 2m + 1, then r < diam(Xm), and hence the ρ-uniformly

perfectness of Xm and ν 6 ρ lead to the desired conclusion. This finishes

the proof. �

For a subset S of R, and for real numbers a, b, we denote by aS + b the

set { ax+ b | x ∈ S }.

We construct a UD-spike Cantor metric space.

Proposition 4.5. — There exists a UD-spike Cantor metric space of

type (1, 0, 1).

Proof. — For each n ∈ N, we define a subset Fn of R by

Fn =
2−n−1

(2n− 1)

(

n−1
⋃

i=0

(2i+ Γ)

)

,

and we denote by en the metric on Fn induced from dR, where Γ is the

middle-third Cantor set. Note that Fn has a non-trivial (1/(2n− 1))-chain.

By Lemma 2.12, the middle-third Cantor set (Γ, dΓ) is (1/5)-uniformly per-

fect. Using Lemma 4.4, we see that the space (Fn, en) is (1/20)-uniformly

perfect. Note that diam(Fn) = 2−n−1. Then the family F = {(Fi, ei)}i∈N

and the telescope base R defined in Definition 3.2 is compatible.

Let P = (F ,R). By Lemma 3.5, the telescope space (T (P), dP) is a

Cantor space. We prove that (T (P), dP) is a desired space. From the con-

struction of (T (P), dP), it follows that each neighborhood of ∞ has a non-

trivial (1/(2n − 1))-chain for every sufficiently large n. Hence (T (P), dP)
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is not uniformly disconnected. A small enough neighborhood of an arbi-

trary point except ∞ is bi-Lipschitz equivalent to some open set of (Γ, dΓ).

Hence SUD(T (P), dP) = {∞}. This implies that (T (P ), dP) is a UP -spike

space. By Propositions 3.8 and 3.10, the space (T (P), dP) is doubling and

uniformly perfect. Therefore (T (P), dP) has type (1, 0, 1). �

Third we study the existence of a UP -spike Cantor metric space.

Proposition 4.6. — There exists a compatible pair P such that the

space (T (P), dP) is a UP -spike Cantor metric space of type (1, 1, 0) satis-

fying the following: For each ρ ∈ (0,∞) there exists r ∈ (0,diam(T (P)))

with

B(∞, r) \ U(∞, ρr) = ∅;

in particular, SUP (T (P), dP) = {∞}.

Proof. — Define a function v : N ∪ {∞} → R by vn = (n!)−1 if n ∈ N,

and v∞ = 0. Put V = {0} ∪ { vn | n ∈ N }. Let dV be the metric on V

induced from dR. Then V = (V, dV , v) is a telescope base. For each i ∈ N,

let

Gi =
1

(i+ 1)!
Γ,

and let di be the metric on Gi induced from dR. Since Ri(V) > 1/(i+ 1)!,

the pair of G = {(Gi, di)}i∈N and V is compatible.

Let P = (G,V). By Lemma 3.5, the telescope space (T (P), dP) is a

Cantor space. We prove that (T (P), dP) is a desired space. For each ρ ∈

(0, 1), take n ∈ N with ρ > 2/(n+ 1). Then by the definition of dP we have

B

(

∞,
1

2n!

)

= B
(

∞,
ρ

2n!

)

.

Hence ∞ ∈ SUD(T (P), dP). If x 6= ∞, then x has a neighborhood which

is Lipschitz equivalent to the middle-third Cantor set (Γ, dΓ). This implies

that SUD(T (P), dP) = {∞}. Therefore (T (P), dP) is a UD-spike space.

Since (V, dV ) is doubling and uniformly disconnected, by Propositions 3.8

and 3.9, the space (T (P), dP) is doubling and uniformly disconnected.

Therefore (T (P), dP) has type (1, 1, 0). �

Remark 4.7. — There exists a compatible pair P such that the space

(T (P), dP) is a UP -spike Cantor metric space of type (1, 1, 0) satisfying:

(1) SUP (X, d) = {∞};

(2) there exists ρ ∈ (0, 1] such that for each r ∈ (0,diam(T (P)))

B(∞, r) \ U(∞, ρr) 6= ∅.
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Remark 4.8. — Using the constructions of D, UD or UP -spike Can-

tor metric spaces discussed above, for each exotic type (u, v, w), we can

obtain the Cantor metric space (T (P), dP) of type (u, v, w) such that

SP (T (P), dP) = {∞} for all P ∈ {D,UD,UP} with TP (T (P), dP) = 0.

5. Abundance of Exotic Cantor Metric Spaces

In this section, we prove Theorem 1.2.

5.1. Leafy Cantor Spaces

Let X be a topological space, and let A be a subset of X. We denote

by D(A) the derived set of A consisting of all accumulation points of A

in X. For k ∈ N ∪ {0}, we denote by Dk(A) the k-th derived set of A

inductively defined as Dk(A) = D(Dk−1(A)), where D0(A) = A. Recall

that A is perfect in X if and only if D(A) = A.

Definition 5.1. — We say that x ∈ X is a perfect point of X if there

exists a perfect neighborhood of x in X. We denote by P (X) the set of all

perfect points of X, and call P (X) the perfect part of X.

Notice that X is perfect in X if and only if P (X) = X.

Definition 5.2. — We say that X is anti-perfect if P (X) is empty; in

other words, each open set of X has an isolated point.

We introduce the following:

Definition 5.3. — For n ∈ N, we say that a topological space X is an

n-leafy Cantor space if X satisfies the following:

(1) X is a 0-dimensional compact metrizable space;

(2) Dk(X) is anti-perfect for all k < n;

(3) Dn(X) is a Cantor space.

In order to prove the existence of leafy Cantor spaces, we refer to a

construction of the middle-third Cantor set by using the iterating function

system.

Definition 5.4. — Let S be a compact subset of R with (1/3)S ⊂ S

and diam(S) 6 2−1. Let f0(x) = (1/3)x and f1(x) = (1/3)x + (2/3). We

inductively define a family {Vi(S)}i∈N∪{0} of subsets of R by

V0(S) = (−S) ∪ (1 + S), Vi+1(S) = f0(Vi(S)) ∪ f1(Vi(S)).
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Put

L(S) =
⋃

i∈N

Vi(S),

and Λ(S) = CLR(L(S)), where CLR is the closure operator in R.

Remark 5.5. — The construction in Definition 5.4 contains the middle-

third Cantor set. Namely, we have Λ({0}) = Γ.

By definition, we have the following:

Lemma 5.6. — Let S be a compact subset of R with (1/3)S ⊂ S and

diam(S) 6 2−1. Then for each n ∈ N ∪ {0} we have

Dn(Λ(S)) = Γ ∪ L(Dn(S)).

We verify the existence of leafy Cantor spaces.

Proposition 5.7. — For every n ∈ N, there exists an n-leafy Cantor

space.

Proof. — Put S = {0} ∪ {3−i | i ∈ N ∪ {0}}. We inductively define a

family {Si}i∈N of subsets of R by

S1 = S, Si+1 = Si + S.

Then D(S1) = {0}. For each n ∈ N, we have D(Sn) = Sn−1, and hence

Dn(Sn) = {0}. Let Tn = (1/2n) · Sn. Note that Tn is a compact subset of

R and satisfies (3−1) · Tn ⊂ Tn and diam(Tn) = 2−1. Then we can define

the space Λ(Tn) for Tn (see Definition 5.4). By Lemma 5.6, we conclude

that Λ(Tn) is surely an n-leafy Cantor space. �

5.2. Topological Observation

For a topological space X, let C(X) be the set of all closed sets in X,

and let H(X) be the quotient set C(X)/≈ of C(X) divided by ≈, where

the symbol ≈ denotes the homeomorphic relation on C(X).

Definition 5.8. — For each n ∈ N, by Proposition 5.7, there exists an

n-leafy Cantor space Λn. We may assume Λn ⊂ [2−2n, 2−2n+1]. Note that

if n 6= m, then Λn ∩ Λm is empty. Let I be the set of all points x ∈ 2N such

that card({ i ∈ N | xi = 1}) is infinite. Note that card(I) = 2ℵ0 . For each

x ∈ I, we define

Ξ(x) = {0} ∪
⋃

xi=1

Λi.
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Then Ξ(x) is a 0-dimensional compact metrizable space. Since a 0-dimens-

ional compact metrizable space can be topologically embedded into the

middle-third Cantor set Γ ([11], see e.g., [5, Theorem 2 in §26.IV]), the

space Ξ(x) can be considered as a closed subspace of Γ. Thus we obtain a

map Ξ : I → C(Γ) by assigning each point x ∈ I to the space Ξ(x).

Remark 5.9. — Since each Λi is anti-perfect, so is Ξ(x) for each x ∈ I.

The following proposition is key to prove Theorem 1.2.

Proposition 5.10. — The map [Ξ] : I → H(Γ) defined by [Ξ](x) =

[Ξ(x)] is injective, where [Ξ(x)] stands for the equivalence class of Ξ(x).

Proof. — We inductively define a family {Ai}i∈N of topological opera-

tions by

A1(X) = P (D(X)), Ai(X) = P (D(Di−1(X) \ P (Di−1(X))))

if i > 2. By definition, if X and Y are homeomorphic, then so are Ai(X)

and Ai(Y ) for each i ∈ N.

If i ∈ N satisfies xi = 1, then the space Λi is an open set in Ξ(x). Note

that for each k ∈ N, we have

Dk(Ξ(x)) = {0} ∪
⋃

xi=1

Dk(Λi).

Since each Λi is an i-leafy Cantor space, any neighborhood of 0 in Dk(Ξ(x))

has an isolated point, and hence

P (Dk(Ξ(x))) =
⋃

xi=1,i6k

Di(Λi).

This implies that if k > 2, then

D(Dk−1(X) \ P (Dk−1(X))) = {0} ∪
⋃

xi=1,i>k

Dk(Λi).

From the argument discussed above, it follows that if n ∈ N satisfies xn = 1,

then An(Ξ(x)) = Dn(Λn), and hence An(Ξ(x)) ≈ Γ; if n ∈ N satisfies

xn = 0, then An(Ξ(x)) = ∅. Therefore, if x, y ∈ I satisfy x 6= y, then

Ξ(x) 6≈ Ξ(y). Namely, the map [Ξ] : I → H(Γ) is injective. �

As an application of Proposition 5.10, we have:

Corollary 5.11. — For the middle-third Cantor set Γ, we have

card(H(Γ)) = 2ℵ0 .

Proof. — From the second countability of Γ, we have card(H(Γ)) 6 2ℵ0 .

By Proposition 5.10, we conclude card(H) > 2ℵ0 . �
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Since an uncountable polish space contains a Cantor space as a subspace

(see e.g., [4, Corollary 6.5]), we obtain:

Corollary 5.12. — Let X be an uncountable polish space. Then we

have card(H(X)) = 2ℵ0 .

5.3. Proof of Theorem 1.2

Let P be a property of metric spaces, and let (X, d) be a metric space.

Recall that SP (X, d) is the set of all points in X of which no neighborhoods

satisfy P (see Definition 1.3).

Lemma 5.13. — For a property P of metric spaces, and for metric

spaces (X, d) and (Y, e), we have

SP (X ⊔ Y, d ⊔ e) = SP (X, d) ⊔ SP (Y, e).

Lemmas 2.19, 2.20 and 2.21 imply:

Lemma 5.14. — Let (X, dX) and (Y, dY ) be metric spaces of type

(v1, v2, v3) and of type (w1, w2, w3), respectively. Then (X ⊔ Y, dX ⊔ dY )

has type (v1 ∧ w1, v2 ∧ w2, v3 ∧ w3).

This leads to the following:

Lemma 5.15. — For each (v1, v2, v3) ∈ {0, 1}3, there exists a Cantor

metric space of type (v1, v2, v3).

Proof. — Notice that the set {(1, 1, 1), (1, 0, 1), (0, 1, 1), (1, 1, 0)} gener-

ates {0, 1}3 by the minimum operation ∧. By Propositions 4.3, 4.5, and 4.6,

we already obtain Cantor metric spaces whose types are (1, 1, 1), (0, 1, 1),

(1, 0, 1) or (1, 1, 0). Therefore Lemma 5.14 completes the proof. �

By Lemmas 2.13 and 2.14, we see the following:

Lemma 5.16. — Let (A, dA) be a closed metric subspace of (Γ, dΓ). Let

P stand for either D or UD. Let (X, dX) be a P -spike Cantor metric space

with SP (X, dX) = {x}. Then (X×A, dX ×dA) is a Cantor space such that

SP (X ×A, dX × dA) = {x} ×A. In particular, SP (X ×A, dX × dA) ≈ A.

Let H = { Ξ(x) | x ∈ I }, where Ξ : I → C(Γ) is the map defined in

Definition 5.8. Then H satisfies the following:

(1) every A ∈ H is anti-perfect (see Remark 5.9); in other words, the

set of all isolated points of A is dense in A;

(2) if A,B ∈ H satisfy A 6= B, then A 6≈ B (see Proposition 5.10).
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Since card(I) = 2ℵ0 , we have card(H) = 2ℵ0 .

Lemma 5.17. — Let (X, dX) be a UP -spike Cantor metric space men-

tioned in Proposition 4.6. Then for every A ∈ H, the space (X×A, dX ×dA)

is a Cantor space such that SUP (X×A, dX ×dA) = {∞}×A. In particular,

SUP (X ×A, dX × dA) ≈ A.

Proof. — Each point in X except ∞ has a uniformly perfect neighbor-

hood. By Lemma 2.15, each point in (X \{∞})×A has a uniformly perfect

neighborhood. If y ∈ A is an isolated point of A, then for sufficiently small

r ∈ (0,∞) the closed ball B((∞, y), r) in X × A is isometric to B(∞, r)

in X. In this case, each neighborhood of (∞, y) is not uniformly perfect,

and hence (∞, y) ∈ SUP (X × A, dX × dA). If y is an accumulation point

of A, then a neighborhood U of (∞, y) contains a point (∞, z) for some

isolated point z in A. Thus U is not uniformly perfect, and hence (∞, y) ∈

SUP (X ×A, dX × dA). Therefore SUP (X ×A, dX × dA) = {∞} ×A. �

Proof of Theorem 1.2. — By Propositions 4.3 and 4.5, we can take

a D-spike Cantor metric space (F, dF ) of type (0, 1, 1), and a UD-spike

Cantor metric space (G, dG) of type (1, 0, 1). Let (H, dH) be a UP -spike

Cantor metric space of type (1, 1, 0) stated in Proposition 4.6. For each

(u, v, w) ∈ {0, 1}3, we can certainly take a Cantor metric space (Luvw, duvw)

of type (u, v, w) as seen in Lemma 5.15. We define three maps f0vw : H →

M(0, v, w), gu0w : H → M(u, 0, w) and huv0 : H → M(u, v, 0) as follows:

f0vw(A) = G((F ×A) ⊔ L1vw, (dF × dA) ⊔ d1vw),

gu0w(A) = G((G×A) ⊔ Lu1w, (dG × dA) ⊔ du1w),

huv0(A) = G((H ×A) ⊔ Luv1, (dH × dA) ⊔ duv1).

By Lemmas 5.13, 5.16 and 5.17, we have

SD(f0vw(A)) ≈ A, SUD(gu0w(A)) ≈ A, SUP (huv0(A)) ≈ A.

Since the operators SD, SUD and SUP are quasi-symmetric invariants (see

Remark 1.4), the maps f0vw, gu0v and huv0 are injective. Therefore for each

exotic type (u, v, w) ∈ {0, 1}3 we have

card(M(u, v, w)) > 2ℵ0 .

In general, for a separable space X, the cardinality of the set of all

continuous real-valued functions on X is at most 2ℵ0 . Hence the set of all

metrics on the middle-third Cantor set compatible with the Cantor space

topology has cardinality at most 2ℵ0 . Therefore we have

card(M(u, v, w)) 6 2ℵ0 .
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This completes the proof of Theorem 1.2. �

Remark 5.18. — For each (u, v, w) ∈ {0, 1}3 and for each A ∈ H, by

taking a direct sum of spaces in f011(A), g101(A) or h110(A), we can obtain

a Cantor metric space (X, d) with

SP (X, d) = A

for all failing property P ∈ {D,UD,UP} of (u, v, w), where f011, g101, h110

are the maps appeared in the proof of Theorem 1.2.

6. Sequentially Metrized Cantor Spaces

In this section, we generalize the construction of the symbolic Cantor

sets studied by David and Semmes [2]. The same generalized construction

is discussed by Semmes in [10, 9] in other contexts.

6.1. Generalities

We take the valuation map v : 2N × 2N → N ∪ {∞} defined as

v(x, y) =

{

min{n ∈ N | xn 6= yn} if x 6= y,

∞ if x = y.

Definition 6.1. — We say that a positive sequence α : N → (0,∞) is

shrinking if α is monotone non-increasing and if α converges to 0. For a

shrinking sequence α, we define a metric dα on 2N by

dα(x, y) =

{

α(v(x, y)) if x 6= y,

0 if x = y.

We call (2N, dα) the sequentially metrized Cantor space metrized by α.

Lemma 6.2. — Let α be a shrinking sequence. Then (2N, dα) is an ul-

trametric space. In particular, (2N, dα) is uniformly disconnected.

Proof. — To prove the first half, it is enough to show that dα sat-

isfies the ultrametric triangle inequality. For all x, y, z ∈ 2N, we have

min{v(x, z), v(z, y)} 6 v(x, y); in particular,

dα(x, y) 6 max{dα(x, z), dα(z, y)}.

Hence (2N, dα) is an ultrametric space. The second half follows from Propo-

sition 2.5. �

TOME 69 (2019), FASCICULE 6



2706 Yoshito ISHIKI

The Brouwer Theorem 2.1 tells us that the space (2N, dα) is a Cantor

space for any shrinking sequence α.

The doubling property of (2N, dα) depends on how the shrinking sequence

α decreases.

Lemma 6.3. — Let α be a shrinking sequence. Then (2N, dα) is doubling

if and only if there exists N ∈ N such that for all k ∈ N we have

(6.1) card({n ∈ N | α(k)/2 6 α(n) 6 α(k) }) 6 N.

Proof. — For i ∈ N, we put Jα(i) = {n ∈ N | α(i)/2 6 α(n) 6 α(i) }.

First we show that the condition (6.1) for some N implies the

doubling property. Take x ∈ 2N and r ∈ (0,∞). Choose k ∈ N with

r ∈ [α(k), α(k − 1)). Note that B(x, r) = B(x, α(k)), and

B(x, α(k)) = { y ∈ 2N | k 6 v(x, y) }.

Let Sk+N be the set of all points z ∈ 2N such that zi = 0 for all i > k+N .

Then B(x, r) ∩ Sk+N consists of 2N+1 elements. For every y ∈ B(x, r),

there exists z ∈ B(x, r) ∩Sk+N with k+N 6 v(y, z). Since k+N 6∈ Jα(k),

we have

dα(y, z) 6 α(k +N) <
α(k)

2
6
r

2
.

This implies that B(x, r) can be covered by at most 2N+1 balls with radius

r/2. Hence (2N, dα) is doubling.

Next, to show the contrary, we assume that for each N ∈ N there exists

k ∈ N such that card(Jα(k)) > N. Note that k+1, . . . , k+N are contained

in Jα(k) since so is k. For each i ∈ {1, . . . , N}, we define a point x(i) =

{xi,n}n∈N in B(0, α(k)) by

xi,n =

{

0 if n 6= k + i,

1 if n = k + i.

For all distinct i, j ∈ {1, . . . , N}, we have

v(x(i), x(j)) ∈ {k + 1, . . . , k +N}.

Hence dα(x(i), x(j)) > α(k)/2. This implies that the set {x(1), . . . , x(N)}

is (α(k)/2)-separated in B(0, α(k)), and it has cardinality N . Therefore,

(2N, dα) is not doubling. �

On the uniform perfectness of (2N, dα), we also have the following:

Lemma 6.4. — Let α be a shrinking sequence. Then (2N, dα) is uni-

formly perfect if and only if there exists ρ ∈ (0, 1) such that for all n ∈ N

we have

(6.2) ρα(n) 6 α(k)
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for some k > n.

Proof. — First we show that the condition (6.2) for some ρ ∈ (0, 1)

implies the uniform perfectness. Take x ∈ 2N and r ∈ (0,diam(X)). Choose

n ∈ N with r ∈ [α(n+ 1), α(n)). Note that B(x, r) = B(x, α(n+ 1)). Since

for some k > n we have

ρr < ρα(n) 6 α(k) 6 α(n+ 1),

and since there exists y ∈ B(x, r) with v(x, y) = k, we see that the set

B(x, r) \B(x, ρr) is non-empty. Hence (2N, dα) is uniformly perfect.

Second, we show the contrary. Assume that for every ρ ∈ (0, 1) there

exists n ∈ N such that for every k > n we have ρα(n) > α(k). In this case,

we can choose m ∈ N satisfying α(m+ 1) < α(m) and α(m+ 1) < ρα(m).

Take r ∈ (α(m+ 1)/ρ, α(m)), then

B(0, r) = B(0, ρr) = B(0, α(m+ 1)).

Therefore, the set B(0, r) \B(0, ρr) is empty. This implies that (2N, dα) is

not uniformly perfect. �

From Lemma 6.4 we can deduce the following characterization of the

non-uniform perfectness:

Lemma 6.5. — Let α be a shrinking sequence. Then (2N, dα) is not

uniformly perfect if and only if there exists a function ϕ : N → N with

(6.3) lim
n→∞

α(ϕ(n) + 1)

α(ϕ(n))
= 0.

6.2. Concrete Examples

We next apply the previous lemmas to our construction of examples.

For u ∈ (0, 1), let [u] denote the shrinking sequence defined by [u](n) =

un. Then we have:

Lemma 6.6. — For every u ∈ (0, 1), the Cantor space (2N, d[u]) has type

(1, 1, 1).

Proof. — The shrinking sequence [u] satisfies (6.1) and (6.2). Lemmas 6.3

and 6.4 imply that (2N, d[u]) has type (1, 1, 1). �

Remark 6.7. — The metric d[1/3] on 2N coincides with the metric e

mentioned in Example 2.2. From the same argument as in the proof of

Lemma 6.6, we deduce that (2N, e) has type (1, 1, 1).
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For a shrinking sequence α, and for m ∈ N, we define the m-shifted

shrinking sequence α{m} of α by α{m}(n) = α(n + m − 1). Note that

(2N, dα{m}) is isometric to a closed ball B(x, α(m)) in (2N, dα).

By Lemmas 6.3 and 6.4, we obtain the following two lemmas:

Lemma 6.8. — Let α be a shrinking sequence. The space (2N, dα) is

doubling if and only if for each m ∈ N the space (2N, dα{m}) is doubling.

Lemma 6.9. — Let α be a shrinking sequence. The space (2N, dα) is

uniformly perfect if and only if for each m ∈ N the space (2N, dα{m}) is

uniformly perfect.

Remark 6.10. — By Lemmas 6.8 and 6.9, and by the hereditary of the

uniform disconnectedness, for every shrinking sequence α, we see that every

closed ball in (2N, dα) has the same type as (2N, dα).

We quest the types realized by sequentially metrized Cantor spaces.

Lemma 6.11. — Let α be a shrinking sequence defined by α(n) = 1/n.

Then the Cantor space (2N, dα) has type (0, 1, 1).

Proof. — Since α(n)/2 = α(2n) for all n ∈ N, the sequence α satis-

fies (6.2) and does not satisfy (6.1). By Lemmas 6.3 and 6.4, the space

(2N, dα) has type (0, 1, 1). �

Lemma 6.12. — Let β be a shrinking sequence defined by β(n) = 1/n!.

Then the Cantor space (2N, dβ) has type (1, 1, 0).

Proof. — For each ρ ∈ (0, 1), choose m ∈ N with 1/m < ρ. Then we have

β(n + 1) 6 ρβ(n) for all n > m. Hence the sequence β satisfies (6.1) and

does not satisfy (6.2). From Lemmas 6.3 and 6.4 it follows that the space

(2N, dβ) has type (1, 1, 0). �

Lemma 6.13. — There exists a shrinking sequence γ for which the Can-

tor space (2N, dγ) has type (0, 1, 0).

Proof. — Let β be the shrinking sequence defined by β(n) = 1/n!. For

each n ∈ N, choose distinct n numbers r1,n, r2,n, . . . , rn,n in the set

(β(2n− 1)/2, β(2n− 1)).

Define the shrinking sequence γ as the renumbering of

β(N) ∪ { ri,n | n ∈ N, i ∈ {1, . . . , n} }

in decreasing order. Since for each n ∈ N the set

γ(N) ∩ (β(2n− 1)/2, β(2n− 1)))
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has cardinality n, the sequence γ does not satisfy (6.1). Define a function

ϕ : N → N by ϕ(n) = γ−1(1/(2n− 1)!). Then ϕ satisfies

γ(ϕ(n)) = 1/(2n− 1)!, γ(ϕ(n) + 1) = 1/(2n)!.

From Lemmas 6.3 and 6.5, we deduce that (2N, dγ) has type (0, 1, 0). �

Using the sequentially metrized Cantor spaces, we see the following (cf.

Lemma 2.15):

Proposition 6.14. — There exist shrinking sequences σ and τ satisfy-

ing the following:

(1) (2N, dσ) and (2N, dτ ) have type (1, 1, 0);

(2) (2N × 2N, dσ × dτ ) is quasi-symmetrically equivalent to (Γ, dΓ).

Proof.

(1). — Let β be the shrinking sequence defined by β(n) = 1/n!. Define

a function f : N → N by

f(n) = max{ k ∈ N | 2−kβ(n) > β(n+ 1) }.

We define the shrinking sequence σ as the renumbering of the set

β(N) ∪ { 2−iβ(2n) | n ∈ N, i = 1, . . . , f(2n) }

in decreasing order. We also define the shrinking sequence τ as the renum-

bering of the set

β(N) ∪ { 2−iβ(2n+ 1) | n ∈ N, i = 1, . . . , f(2n+ 1) }

in decreasing order.

Define a function ϕ : N → N by ϕ(n) = σ−1(1/(2n− 1)!) and ψ : N → N

by ψ(n) = τ−1(1/(2n)!). Note that ϕ satisfies

σ(ϕ(n)) = 1/(2n− 1)!, σ(ϕ(n) + 1) = 1/(2n)!

and ψ satisfies

τ(ψ(n)) = 1/(2n)!, τ(ψ(n) + 1) = 1/(2n+ 1)!.

Then ϕ and ψ satisfy (6.3), and hence by Lemma 6.5, both (2N, dσ) and

(2N, dτ ) have type (1, 1, 0).

(2). — By Lemmas 2.13 and 2.14, the space (2N×2N, dσ ×dτ ) is doubling

and uniformly disconnected. By the David–Semmes uniformization theorem

([2, Proposition 15.11]), it suffices to prove that (2N × 2N, dσ × dτ ) is uni-

formly perfect. Take z = (x, y) ∈ 2N × 2N and r ∈ (0,diam(X × Y )). There

exists n ∈ N with r ∈ (β(n+ 1), β(n)]. If n is even, then there exists i ∈ N

with σ(i) ∈ (r/2, r). Hence the set B(x, r)\U(r/2) in (2N, dσ) is non-empty.

Choose x′ ∈ B(x, r) \ U(r/2), and put z′ = (x′, y). Since (dσ × dτ )(z, z′)
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is equal to dσ(x, x′), it belongs to [r/2, r]. Therefore, B(z, r) \ U(z, r/2) in

(2N × 2N, dσ × dτ ) is non-empty. If n is odd, then there exists j ∈ N with

τ(j) ∈ (r/2, r). Hence the set B(y, r) \ U(y, r/2) in (2N, dτ ) is non-empty.

Similarly to the case where n is even, we see that the set B(z, r)\U(z, r/2)

is non-empty. Thus (2N × 2N, dσ × dτ ) is (1/2)-uniformly perfect. �

7. Totally Exotic Cantor Metric Spaces

In Section 6, we already know the existence of some totally exotic Cantor

metric spaces for the doubling property and the uniformly perfectness. In

this section, we prove Theorem 1.7. Using Lemmas 6.8 and 6.9, we obtain

the following three propositions (see Remark 6.10):

Proposition 7.1. — Let (X, d) be the Cantor metric space stated in

Lemma 6.11. Then (X, d) has totally exotic type (0, 1, 1).

Proposition 7.2. — Let (X, d) be the Cantor metric space stated in

Lemma 6.12. Then (X, d) has totally exotic type (1, 1, 0).

Proposition 7.3. — Let (X, d) be the Cantor metric space stated in

Lemma 6.13. Then (X, d) has totally exotic type (0, 1, 0).

For the proof of Theorem 1.7, we construct totally exotic Cantor metric

spaces for the uniform disconnectedness property. Note that such spaces

can not be constructed as sequentially metrized Cantor spaces.

We introduce the notion of kaleidoscope spaces.

Definition 7.4. — For each n ∈ N, we define a subset Kn of R by

Kn = { k/n | k ∈ {0, . . . , n} },

and we denote by dn the metric of Kn induced from dR. Note that for each

n ∈ N, the space (Kn, dn) has a (1/n)-chain, and it is 3-doubling, and that

for each x ∈ Kn, we have B(x, r) = {x} in (Kn, dn) if and only if r < 1/n.

Let a : N → (0,∞) be a sequence satisfying

(7.1) 2nan < an+1

for all n. Note that the condition (7.1) implies that

(7.2) kak < an

for all n and k < n. Put K(a) =
∏

n∈N
Kn, and define a metric dK(a) on

K(a) by

dK(a)(x, y) = sup
n∈N

1

an
dn(xn, yn),
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where x = (xn) and y = (yn). We call (K(a), dK(a)) the kaleidoscope space

of a. Since the metric dK(a) on K(a) induces the product topology of the

family {Kn}n∈N, the Brouwer Theorem 2.1 tells us that (K(a), dK(a)) is a

Cantor space.

Remark 7.5. — By replacing the product factors in the construction of

the kaleidoscope space of a with {0, 1}, we obtain the sequentially metrized

Cantor space metrized by 1/a.

Lemma 7.6. — Let a : N → (0,∞) be a sequence satisfying (7.1). Let

r ∈ (0,∞) and x ∈ K(a). Take n ∈ N with r ∈ [1/an+1, 1/an). Then

B(x, r) = {x1} × · · · × {xn−1} ×B(xn, ran) ×
∏

i>n

Ki.

Proof. — By the definition of dK(a), we have

B(x, r) =
∏

i∈N

B(xi, air).

For every y ∈ B(x, r), by (7.2), for all k < n we have

dk(xk, yk) 6 rak <
ak

an
<

1

k
,

and hence xk = yk. Therefore B(xk, akr) = {xk} for all k < n. For each

i > n, by an+1r > 1 we have air > 1. Hence B(xi, air) = Ki. Therefore we

obtain the claim. �

Similary to Lemma 7.6, we can prove:

Lemma 7.7. — Let a : N → (0,∞) be a sequence satisfying (7.1). Let

r ∈ (0,∞) and x ∈ K(a). Take n ∈ N with r ∈ [1/an+1, 1/an). Then

U(x, r) = {x1} × · · · × {xn−1} × U(xn, ran) ×
∏

i>n

Ki.

We next prove the doubling property of kaleidoscope spaces.

Lemma 7.8. — Let a : N → (0,∞) be a sequence satisfying (7.1). Then

(K(a), dK(a)) is 3-doubling.

Proof. — Let r ∈ (0,∞), and take n ∈ N with r ∈ [1/an+1, 1/an).

Case (i). — First we consider the case where 1/n 6 anr. We can take

points p1, p2 ∈ Kn such that

B(xn, ran) ⊂ B(p1, ran/2) ∪B(p2, ran/2) ∪B(xn, ran/2)
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holds in (Kn, dn). For each j ∈ {1, 2}, define q(j) ∈ K(a) by

q
(j)
i =

{

xi if i 6= n,

pj if i = n.

By (7.1) and the assumption 1/n 6 anr, for each i > n, we have rai/2 > 1

and hence B(xi, rai/2) = Ki. Then

B(q(j), r/2) = {x1} × · · · × {xn−1} ×B(pj , anr/2) ×
∏

i>n

Ki

holds in (K(a), dK(a)). Therefore, so does

B(x, r) ⊂ B(q(1), r/2) ∪B(q(2), r/2) ∪B(x, r/2).

Namely, B(x, r) can be covered by at most 3 balls with radius r/2.

Case (ii). — Second we consider the case where anr < 1/n. In this case,

B(xn, anr) = {xn}. We can take points p1, p2 ∈ Kn+1 such that

B(xn+1, ran+1) ⊂ B(p1, ran+1/2) ∪B(p2, ran+1/2) ∪B(xn+1, ran+1/2)

holds in (Kn+1, dn+1). Since for each i > n+ 1 we have air/2 > 1,

B(x, r/2) = {x1} × · · · × {xn} ×B(xn+1, an+1r/2) ×
∏

i>n+1

Ki.

Hence, similary to Case (i), by defining q(1), q(2) ∈ K(a) appropriately, we

can prove that B(x, r) can be covered by at most 3 balls with radius r/2.

Thus we conclude that (K(a), dK(a)) is 3-doubling. �

Since for each n ∈ N the space (Kn, dn) has a (1/n)-chain, we see:

Lemma 7.9. — Let a : N → (0,∞) be a sequence satisfying (7.1). Then

we have

SUD(K(a), dK(a)) = K(a).

The idea of kaleidoscope spaces provides us examples of totally exotic

Cantor metric spaces of remaining types.

Proposition 7.10. — There exists a Cantor metric space of totally

exotic type (1, 0, 1).

Proof. — Define a sequence a : N → (0,∞) by an = 2n · n!. Then

the sequence a satisfies (7.1). By Lemmas 7.8 and 7.9, we see that

SUD(K(a), dK(a)) = K(a), and that (K(a), dK(a)) is doubling and non-

uniformly disconnected.

We are going to prove that (K(a), dK(a)) is (1/16)-uniformly perfect. To

do this, for each x ∈ K(a) and for each r ∈ (0, 1/2), we show that the set

B(x, r) \ U(x, r/16) is non-empty. Take n ∈ N with r ∈ [1/an+1, 1/an).
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Case (i). — Assume B(xn, ran) = Kn. Since ran < 1, we have

diam(U(xn, ran/16)) 6 1/8.

By diam(Kn) = 1, we see that B(xn, ran) \ U(xn, ran/16) is non-empty.

Hence so is B(x, r) \ U(x, r/16).

Case (ii). — Assume B(xn, ran) 6= Kn and B(xn, ran) 6= {xn}. Take an

end point y ∈ Kn of B(xn, ran). Without loss of generality, by considering

the map defined by t 7→ −t+1, we may assume that y is the right end point

of B(xn, ran) and y 6= 1. By the assumption B(xn, ran) 6= {xn}, we may

also assume y 6= xn. Note that y is the maximum of B(xn, ran). Define a

point z ∈ K(a) by

z =

{

xi if i 6= n,

y if i = n.

Then we have dK(a)(x, z) 6 r. By the construction of Kn, we may assume

that y = x+m/n holds for some positive integer m 6 n with

m

n
6 ran <

m+ 1

n
.

This implies

dK(a)(x, z) =
1

an

m

n
>

1

an

1

16

m+ 1

n
>

1

16
r.

Hence B(x, r) \ U(x, r/16) is non-empty.

Case (iii). — Assume B(xn, ran) = {xn}. Then ran < 1/n, and

diam(U(xn+1, ran+1/16)) 6
ran+1

8
=
ran · 2(n+ 1)

8
<

1

2
.

Hence U(xn+1, ran+1/16) 6= Kn+1. Recall that B(xn+1, ran+1) = Kn+1.

Therefore the set B(x, r) \U(x, r/16) is non-empty. Thus we conclude that

(K(a), dK(a)) is a desired space. �

Remark 7.11. — It is known that any subset of R with positive Lebesgue

measure is not uniformly disconnected (see e.g., [6, Corollary 4.6]). Let A

be a Cantor space in R whose every non-empty open subset has positive

Lebesgue measure. By the arguments in Subsection 2.6, we see that A ×

Γ also has type (1, 0, 1) and that every non-empty open set of A × Γ is

not uniformly disconnected. The author does not know whether such A is

uniformly perfect or not.

Proposition 7.12. — There exists a Cantor metric space of totally

exotic type (1, 0, 0).
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Proof. — Define a sequence b : N → (0,∞) by bn = (2n)!. Then the

sequence b satisfies (7.1). We prove that (K(b), dK(b)) is a desired space.

By Lemmas 7.8 and 7.9, we see that the space (K(b), dK(b)) is doubling

and satisfies SUD(K(b), dK(b)) = K(b). We show that SUP (K(b), dK(b)) =

K(b). Namely, we show that for each x ∈ K(b), and for each ρ ∈ (0, 1],

there exists r ∈ (0,diam(K(b))) such that B(x, r) \ U(x, ρr) = ∅. For each

ρ ∈ (0, 1], we can take n ∈ N with ρbn+1/2nbn > 1. Let r = (2nbn)−1.

Then r ∈ [1/bn+1, 1/bn). Since bnr < 1/n, we have

B(x, r) = {x1} × · · · × {xn−1} × {xn} ×
∏

i>n

Ki.

From ρrbn+1 > 1 we derive

U(x, ρr) = {x1} × · · · × {xn−1} × {xn} ×
∏

i>n

Ki.

Therefore B(x, r) = U(x, ρr), hence SUP (K(b), dK(b)) = K(b). �

By modifying the product factors in the construction of the kaleidoscope

spaces, we obtain:

Proposition 7.13. — There exists a Cantor metric space of totally

exotic type (0, 0, 0).

Proof. — For each n ∈ N, take an (n, 1/2n)-discrete space (An, en) (see

Definition 4.1). Put (Ln, Dn) = (An ×Kn, en × dn). Let

L =
∏

i∈N

Li,

and define the metric dL on L by

dL(x, y) = sup
n∈N

1

bn
Dn(xn, yn),

where bn = (2n)!. We prove that (L, dL) is a desired space. Since B(x, r)

has (1/n)-chains and n-discrete subspaces for all sufficiently large n, we

have SD(L, dL) = L and SUD(L, dL) = L. We next show SUP (L, dL) = L.

Let x ∈ L and ρ ∈ (0, 1]. We can take n ∈ N with ρbn+1/4nbn > 1. Put

r = (4nbn)−1. Since bnr < 1/2n, similary to Lemma 7.6, we see

B(x, r) = {x1} × · · · {xn} ×
∏

i>n

Li.

Since ρbn+1/4nbn > 1, we have

U(x, ρr) = {x1} × · · · {xn} ×
∏

i>n

Li.

Hence B(x, r) \ U(x, ρr) is empty. Therefore SUP (L, dL) = L. �
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To finish the proof of Theorem 1.7, we next show the following:

Proposition 7.14. — There exists a Cantor metric space of totally

exotic type (0, 0, 1).

Proof. — By Propositions 7.1 and 7.10, we can take a Cantor metric

space (X, dX) of totally exotic type (0, 1, 1), and a Cantor metric space

(Y, dY ) of totally exotic type (1, 0, 1). Using Lemmas 2.13, 2.14 and 2.15,

we see that the space (X×Y, dX ×dY ) has totally exotic type (0, 0, 1). �

Proof of Theorem 1.7. — Propositions 7.1–7.14 complete the proof. �

8. Prescribed Hausdorff and Assouad Dimensions

In this section, we prove Theorem 1.8.

8.1. Basics of Assouad Dimension

Let (X, d) be a metric space. Define a function N : (0, 2) → N∪ {∞} by

defining N (ǫ) to be the infimum of N ∈ N such that every closed metric

ball in (X, d) with radius r can be covered by at most N closed metric balls

with radius ǫr. The Assouad dimension dimA(X, d) of (X, d) is defined as

the infimum of s ∈ (0,∞) for which there exists K ∈ (0,∞) such that for

all ǫ ∈ (0, 2) we have

N (ǫ) 6 Kǫ−s.

Note that (X, d) is doubling if and only if dimA(X, d) is finite.

Define a function M : (0, 2) → N ∪ {∞} by defining M(ǫ) to be the

supremum of the cardinality of (ǫr)-separated sets of closed metric balls

with radius r. Note that for every ǫ ∈ (0, 2) we have

M(3ǫ) 6 N (ǫ) 6 M(ǫ).

Moreover, dimA(X, d) is equal to the infimum of s ∈ (0,∞) for which there

exists K ∈ (0,∞) such that for all ǫ ∈ (0, 2) we have

M(ǫ) 6 Kǫ−s.

The Assouad dimension satisfies the following finite stability:

Proposition 8.1. — Let A and B be subsets of a metric space. Then

dimA(A ∪B) = max{dimA(A),dimA(B)}.

The Assouad dimension can be estimated from above as follows:
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Lemma 8.2. — Let λ ∈ (0, 1). Let (X, d) be a metric space. If every

closed ball in (X, d) with radius r can be covered by at most N closed balls

with radius λr, then we have

dimA(X, d) 6
log(N)

log(λ−1)
.

For a positive number ǫ ∈ (0,∞), and for a metric space (X, d), the

function dǫ is said to be a snowflake of d with parameter ǫ if dǫ is a metric

on X. Note that the induced topology from dǫ coincides with the original

one.

Remark 8.3. — Let (X, d) be a metric space. If ǫ ∈ (0, 1), then dǫ is a

metric on X. If d is an ultrametric on X, then so is dǫ for any ǫ ∈ (0,∞).

For the snowflakes, we have:

Lemma 8.4. — Let ǫ ∈ (0,∞). Let (X, d) be a metric space. If dǫ is a

snowflake of d with parameter ǫ, then we have

dimA(X, dǫ) =
1

ǫ
dimA(X, d).

From the definitions, we see the following:

Proposition 8.5. — The Hausdorff dimension does not exceed the As-

souad dimension.

8.2. Prescribed Dimensions

We first calculate the Assoud dimension of the Cantor metric space men-

tioned in Lemma 6.12.

Lemma 8.6. — Let β be a shrinking sequence defined by β(n) = 1/n!.

Then

dimA(2N, dβ) = 0.

In particular, dimH(2N, dβ) = 0.

Proof. — For each k ∈ N, let n(k) ∈ N be the integer satisfying

1

(n(k) + 1)!
<

1

k
6

1

n(k)!
.(8.1)

For a fixed r ∈ (0,∞), let m ∈ N be the least positive integer with

1

(m+ 1)!
6 r.
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Since B(x, r) coincides with B(x, 1/(m+ 1)!), we have

B(x, r) = {y ∈ 2N | v(x, y) > m}.

Let Tk be the subset of B(x, r) consisting of all points y ∈ B(x, r) such that

yi = 0 for all i > m+n(k). Then card(Tk) = 2n(k)+1. For every y ∈ B(x, r),

there exists z ∈ Tk such that v(y, z) > m+ n(k) + 1, and hence we have

dβ(y, z) 6
1

(m+ n(k) + 1)!
6

1

(m+ 1)!

1

(m+ 2) · · · (m+ n(k) + 1)

6
1

(m+ 1)!

1

(n(k) + 1)!
<
r

k
.

Therefore every closed ball in (2N, dβ) with radius r can be covered by at

most 2n(k)+1 balls with radius r/k. By Lemma 8.2, we have

dimA(2N, dβ) 6
n(k) + 1

log k
.

Using (8.1), we estimate

n(k) + 1

log k
6

n(k) + 1

log 1 + log 2 + · · · + logn(k)
.

The right hand side tends to 0 as k → ∞. Hence dimA(2N, dβ) = 0; in

particular, by Proposition 8.5 we have dimH(2N, dβ) = 0. �

The following sequentially metrized Cantor space plays a key role in the

proof of Theorem 1.8.

Proposition 8.7. — There exists a shrinking sequence θ with

dimH(2N, dθ) = 0, dimA(2N, dθ) = 1.

Proof. — Take a shrinking sequence α defined by α(n) = 2−n3

. Define a

shrinking sequence θ by the renumbering of the set

α(N) ∪ { 2−kα(n) | n ∈ N, k = 1, . . . , n }

in decreasing order. Define a function ϕ : N → N by ϕ(n) = n(n + 1)/2.

Then θ(ϕ(n)) = α(n) = 2−n3

and ϕ(n) 6 n2 hold for each n ∈ N.

First we estimate the Hausdorff dimension. For each finite sequence

{ik}m
k=1 valued in {0, 1}, we define

Si1,i2,...,im
= {x ∈ 2N | x1 = i1, x2 = i2, . . . , xm = im }.

Then for each fixed m ∈ N we have

2N =
⋃

i1,i2...,im

Si1,i2,...,im
.

TOME 69 (2019), FASCICULE 6



2718 Yoshito ISHIKI

By diam(Si1,i2,...,im
) = θ(m+ 1), for each s ∈ (0,∞)

Hs
θ(m+1)(2

N, dθ) 6
∑

i1,i2,...,im

diam(Si1,i2,...,im
)s = 2m · (θ(m+ 1))s.

Put m = ϕ(n) − 1, then for each s ∈ (0,∞), we see that

Hs
α(n)(2

N, dθ) 6 2ϕ(n)−1(2−n3

)s
6 2−sn3+n2−1.

Since α(n) and 2−sn3+n2−1 tend to 0 as n → ∞, we have Hs(2N, dθ) = 0

for any s ∈ (0,∞). Hence dimH(2N, dθ) = 0.

Next, we prove dimA(2N, dθ) = 1. Since (2N, dθ) is 2-doubling, Lemma 8.2

implies dimA(2N, dθ) 6 1. Take a number t larger than dimA(2N, dθ) for

which there exists K ∈ (0,∞) such that for each ǫ ∈ (0, 2) we have

(8.2) M(ǫ) 6 Kǫ−t,

where M is the function defined in Subsection 8.1. For each n ∈ N, the

ball B(0, α(n)) in (2N, dθ) coincides with the set

{ y ∈ 2N | v(x, y) > ϕ(n) }.

Let Tn be the set of all points z ∈ B(0, α(n)) such that zi = 0 for all

i > ϕ(n) + n. We see that Tn is an (α(n)/2n)-separated set in B(0, α(n))

consisting of 2n+1 elements. Hence by (8.2) we have

2n+1
6 K2tn.

Since K does not depend on n, we obtain t > 1. Then dimA(2N, dθ) > 1.

Therefore dimA(2N, dθ) = 1. �

We next show the following:

Lemma 8.8. — Take u ∈ (0, 1). Let [u] be the shrinking sequence defined

by [u](n) = un. Then we have

dimH(2N, d[u]) = dimA(2N, d[u]) =
log 2

log(u−1)
.

Proof. — It is already known that

dimH(Γ, dΓ) =
log 2

log 3
.

Then (2N, d[1/3]) has the same Hausdorff dimension (see Example 2.8). Put

c =
log(u−1)

log 3
.

Since (2N, dc
[1/3]) coincides with (2N, d[u]), we have

dimH(2N, d[u]) =
1

c

log 2

log 3
=

log 2

log(u−1)
.
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Next we estimate the Assouad dimension. Every closed ball in (2N, d[u])

with radius r can be covered by at most 2 closed balls with radius ur.

Then by Lemma 8.2, we have

dimA(2N, d[u]) 6
log 2

log(u−1)
.

Proposition 8.5 completes the proof. �

We are going to prove Theorem 1.8.

Proof of Theorem 1.8. — We divide the proof into the following five

cases.

Case (i). — Assume a = b = 0. The space (2N, dβ) mentioned in Lem-

ma 8.6 satisfies the desired properties.

Case (ii). — Assume that a = 0 and 0 < b < ∞. Let (2N, dθ) be the

space mentioned in Proposition 8.7. By Lemma 8.4, we have

dimH(2N, d
1/b
θ ) = 0, dimA(2N, d

1/b
θ ) = b.

Case (iii). — Assume that 0 < a < ∞ and 0 < b < ∞. Let u = 2−1/a.

By Lemma 8.8, we have

dimH(2N, d[u]) = dimA(2N, d[u]) = a.

By the finite stabilities of the Hausdorff and Assouad dimensions, we see

that the space (2N ⊔ 2N, d[u] ⊔ d
1/b
θ ) satisfies the desired properties.

Case (iv). — Assume that 0 6 a < ∞ and b = ∞. We can take a Cantor

space (C, d) with dimH(C, d) = a and diam(C, d) = 1/2. For each n ∈ N,

take disjoint n copies C1, . . . Cn of C, and define a set An by

An =

n
∐

i=1

Ci,

and define a metric en on An by

en(x, y) =

{

d(x, y) if x, y ∈ Ci for some i,

1 otherwise.

Note that for each n ∈ N, the space (An, en) is a Cantor space. Let

A = {(Ai, 2
−n−1di)}i∈N. For the telescope base R defined in Definition 3.2,

the pair P = (A,R) is compatible. By Lemma 3.5, the telescope space

(T (P), dP) is a Cantor space. By the countable stability of the Hausdorff

dimension, we have dimH(T (P), dP) = a. Since for each n ∈ N the space

(An, en) has an n-discrete subspace, by Lemma 4.2 the space (T (P), dP) is

not doubling. Namely, dimA(T (P), dP) = ∞.
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Case (v). — Assume a = b = ∞. For each n ∈ N, we can take a Cantor

metric space (Tn, dn) with dimH(Tn, dn) = n and diam(Tn, dn) = 2−n−1.

Let T = {(Ti, di)}i∈N. For the telescope base R defined in Definition 3.2,

the pair Q = (T ,R) is compatible. By Lemma 3.5, the telescope space

(T (Q), dQ) is a Cantor space. By the countable stability of the Hausdorff

dimension, we have dimH(T (Q), dQ) = ∞; in particular, Proposition 8.5

implies dimA(T (Q), dQ) = ∞.

We have completed the proof of Theorem 1.8. �

Remark 8.9. — Let α be a shrinking sequence defined by α(n) = 1/n.

The Cantor space (2N, dα) mentioned in Proposition 6.11 also satisfies

dimH(2N, dα) = dimA(2N, dα) = ∞.
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