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QUASI-TAUBERIAN THEOREMS, APPLIED TO THE SUMMABILITY

OF FOURIER SERIES BY RIESZ'S LOGARITHMIC MEANS

Kozό YABUTA
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1. In [6] N. Wiener has introduced the quasi-Tauberian method to prove
some problems concerning the summability of Fourier series and integrals by
Cesaro sums, which had been proposed and solved partially by Hardy and
Littlewood and completely by L. S. Bosanquet and R. Paley [1], [2]. He gave
there some problems to which it is desirable to apply the quasi-Tauberian
method. G. Sunouchi has given some applications to the summability of the
conjugate or derived Fourier series etc. We show in this note that Wiener's
method is also applicable to the summability of Fourier series by Riesz's
logarithmic means, though F. T. Wang has solved this problem by another
method.

Now let f{f) be a summable and periodic function with period 27Γ, and let

oo

(1,1) f(t) ~~ ao/2 + Σ (αΛcos nt + 6nsin nt).
n=l

The Fourier series (1,1) is said to be summable (i?, ct), for t = x, to sum s,
provided

Rl = -f + ( log^ Σ (log -J-j (αncos nx 4- δwsin nx)

tends to a limit 5, when ω->oo.

Let

~

We write

>0, provided
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as £->0.

F. T. Wang has proved the following theorems.

THEOREM l. If a>0 and

(1,2) *.(0 =

when £—•(), ίΛ̂ w £/*£ Fourier series (1,1) is summable (R,a + $) (8>0), /or
£ = x, to sum s.

THEOREM 2. If a>0 and the Fourier series (1,1) is summable (R,oί),
for t = x, to sum s, then

when t —> 0, for every δ > 0.

2. We shall prove Theorem 1 and Theorem 2 by the quasi-Tauberian
method. To prove the theorems we may assume clearly that fit) is even and
s = 0, x — 0, α0 = 0. Thus if # > 0, we have

where

Γ1 / 1 \α

La{t) = I log ) cos ut du.
Jo \ u I

By simple calculation one can see that if Λ§^

and that if
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as ω—> oo.
One can see easily that

implies

for every / 3 > # > 0 . (For instance, we can show it in the same way as in the
proof of the following Theorem 3 quite easily.)

Now there is a lemma which was obtained by M. Riesz [3],

L E M M A 1. If 0<a<β and if

Rl = OO) and Rβ

ω = o(l)

for ω—> oo, then Rl+δ = o(l) for ω—> oo and for every δ > 0.

Combining this lemma with the above considerations, we have the following
proposition,

PROPOSITION 1. If a>0, φ(t) as in the Theorem 1, and if

then we have

lim R* =
<*>-><»

for every β>a.

This proposition reduces Theorem 1 and Theorem 2 to the following
Theorem 3 and Theorem 4, respectively.

THEOREM 3. Let a>0 and φ(f)zLι(P,ϊ). Then
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S? Ίΰkΰirί. (log1r) i -
implies

r1 / i X

**>**,/, ( l o g τ )
every 3>ct.

l o g τ ) cos Ί Γ

THEOREM 4. Let β>0 and φ(x) £ Lι(0,1). Then for every a>β+l

ΪS? f(log i/ey J ^ ^ J ( l o g "TJ cos Ί Γ <** = °
1 Γ1 Γ1 / 1

ΪS? f(log i/ey J, ^ ^ J , ( l o g "T

implies

li/εy I ( l o g T")

3. Proof of Theorem 3. Let

and

\0

= f (log -i COS

Then their asymptotic properties are as follows

(3.1) Ki(x) = O(l) (β>-ΐ).

(3.2) Kl(x) = O((log xf-'χ-1) (β > 0, a: ̂  2) ,

(3.3) Xf(a:) = O(l) ( β ^ l ) ,

(3.4) / \Ki(x)\χ-1dx<oo (

shall first find the solution i?(α;) of the following integral equation by
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Mellin transform.,

(3,5) Kζ(x) =

The Mellin transforms of Kΐ(x) and K\(x) are given as follows

kliw) = J χ-wKa

x(x)dx = T(a)zv-a,

kξ(w)=j x~wKξ(x)dx= -Γ(β+l)w-βΓ(-w) sin-~?

Let

Then we have

jo ( l o s ~~j
Γ(/3+l) , ,. x , ,
—̂  — ' ' '• cos α z dz .

where

If cc<β, the unicity of Mellin trnsform shows that this function R(x) satisfies
(3,5), because there exists l > £ > 0 , such that Kl{x)x~\ Kξ(x)x~b, R(x)x~b

€ LX(0, oo),
Considering the following Lemma 2, we have, for every φ(x) € L\0f 1),

(3.7) = -i f

LEMMA 2. Suppose that N(x) and R(x) satisfy the following four
conditions,

1) there exist N, θ>0 such that \N(x)\ <Nfor 0<x<θ,
2) for every δ > 0, there exists Mψ) > 0 such that j R(x) \ < M(S) for
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3) there exists η>0 such that I \R(x)\x~ιdx<ooy

v

4) / \N(x)\χr1dx< oo.
0

Then for every £, 0 < £ < ̂ —, we have

^NIX

y / y

In fact we have

x \ dy
y / y

x
y

dy

y

< oo.

Now we shall finish the proof. By the assumption, for any η > 0, there
exists δ > 0 such that if 0 < ; y < δ

(3,8)

We may assume 2£<δ. Let

fί. Hf
Then, since i?(α:) is bounded as seen in (3,1) and

k,X)4,-0(.(tog

as θ—>0, we have
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log -jλ dy = ΨO [ε{\og

Since R(x) = x-1), x^2, we have

^ CηB (log j^j (β-αY* [(log I-J " -(log 2^

e log-

X
And since Kl I 1 = 0 for J>>1, we have

tx

ϊl-yj\\φ{x)\dx

log \4^)\dx

^ ) ' 3 " XJΓX I Φ ^ I

Ύ 'J 1 \φ(x)\dxf' \K"1(y)\y-idy

5£θ(θ[log I

These estimations, combined with (3,7), complete the proof.
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4. Proof of Theorem 4. We may assume 2>ct—β>l, because evidently

implies

if

Now let

2V(ά)

then we have

r{w) = f x~wR(x)dx
Ό

where

°(log z)a~β~2 . z j
±—$—{ sin dz

Gog a)"*"8 « ^
— —* sin α ε

2 3 x

1 1 ΓQog *)
-β-l) x Jx z2

) g ~ * ~ a

c o s

Γ(a-β-l) x Jx z2 x

Ui( say.

We first write down the properties of these functions, which are obtained by
simple calculation, considering the periodicity of trigonometric functions.
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(4,1) Let Rδ(x) = I (log^y z~2 sin ~dz, then we have
J\ x

2) Rδ(x) = CKίlogxγ+'x-1), * ^ 2 , δ > - 1 ,

3) #,(*) = O(x), x->0, δ^O,

= O(x1+δ\ x-+0, 0 > δ > - 1 .

(4, 2) Let Qδ{x) = I (log z)δz~3 sin J^, then we have the same estimationsas
Ji x

for Rδ(x).

(4, 3) Let Pδ{x) = ί (log 2)δ£-3(s - 1) sin — dz, then we have
Λ -̂

1) P/Λ) = O((log xT'x-ι), a: ̂  2, δ > - 2 ,

2) i>(α:) = O(^+<), x-*0, - l ^ δ > - 2 ,

), Λ-»0, 0 ^ δ > - 1 ,

, Λ—0, δ > 0 .

(4, 4) Let 53(Λ;) = x~ι I (log 2)*2"2 cos — cf2, then we have

2) 5a(α:)

3) 5a(x) = O(Λ0, X-*0, 0 > δ > - 1 .

We give here only the proof of (4, 4), 3). The proofs of another propositions
are obtained in a similar way. Since (log z)J2~2 decreases monotonously as z—>co

and cos is a periodic function with period 2τtx, we have

\Six)\ t^x-1 f {log zfz-dz,
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which shows (4, 4), 3).

Now, if we set b = °^~ , then considering (4,1), (4, 2), (4, 3) and (4, 4)

we have

Kί(x)χ-\ Kξ(x)χ-\ R(x)x~b € 1/(0, oo) .

Hence K", Kξ and R(x) satisfy the following integral equation,

(4,5) Kΐ(x) = fR(y)Kt
Jo

By (4,1), (4, 2) and (4, 3) we have

Rlx)χ-\ Rlx)x~\ Rs(x)x~ι € Lι(0, oo).

Hence we have

Next we shall show that (4,6) remains valid if R(x)—R±(x) is replaced by
R,(x). Let δ > 0 and k=a-β-2. Let

(logί)* & , Γ /, 1 \̂  xz

y I ^ C O S T ^ ( l l o g v j COS-Γ

dy .

Then ΛOr) is bounded for 0 < δ < o o , 0 ^ J : ^ 1 . In fact we have

T / x f00 cos St'/y cos .rs/y 7 Γ1 δ

 Ί

Jδ{Xi t,z)= I ~—2 ay = I cos ^ί^ cos ^^3/ dy
J* y^ Jn
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{cos(β£ + xz)y + cos(£t — xz)y] dy

127

and thus we have \Jδ(x,t,z)\^l if £t^ {±xz}. This shows that Iδ(x) is

bounded for 0 < δ < o o and O ^ ^ c ^ l , because (log t)k t 2 (log ) is summable

in (1, oo)χ(0,1). Now applying Lebesgue's dominated convergence theorem and

Fubini's theorem, we have

which, combined with (4, 5) and (4,6), shows that

ix

We finish now the proof. First note that

R(x) =

By the assumption, for every η > 0, there exists δ > 0 such that

η, (0<y<B).

Let

F
0

. s,y.
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Then we have

(t)

K.

hi)
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β

dy

because

« (log ±-J\,

For Io we have

£ Λ ( i " ) ( l o g 1 ) " ̂  I - Cηε ί ( l o g 1 ( l o g jrf dy

l o g — -(log 2 ) - β ;•(«-/

For I3, since K$(x) is bounded and φ(x) is summable, we have

\it\^cef hog-;

a-β-Y

These estimations, combined with (4, 8), show that
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which is the desired conclusion.

REMARK. In the case a = β in Theorem 3, R(x) is given by . Thus

in a similar way to the proof of Theorem 3, we can show that

ί(l o g ~ § 7 x
// χ Y

implies

In the case a = β-\-l in Theorem 4, R(x) is given by cos — - . By calculation

we can check that (4,5) and (4,8) remain valid. However, we can not obtain

by our method the same result as in the above remark. We have not succeeded

in estimating the following integral,
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