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1 Introduction

Einstein gravity theory extended with higher order curvature terms plays a relevant role
among modified gravity theories. It’s predicted by string theory that Einstein gravity
should be corrected by an infinite series of higher curvature terms [1, 2]. Higher curva-
ture terms have also attracted attentions in holography, they may introduce various new
phenomena on the boundary theory. For example, it’s shown that including higher curva-
ture terms can lead to the violation of the Kovtun-Son-Starinets (KSS) shear-viscosity-to-
entropy bound η/s > 1/4π [3–5]. Holography has also been used to determine the physical
bounds of higher curvature couplings by demanding the consistency of the dual CFT [5–7].

However, gravity theories with higher curvature terms are generally hard to study. One
common way to study a gravity theory is through its black hole solution, however for higher
curvature gravities the equations of motion are usually fourth-order differential equations,
making analytical solutions hard to come by. It’s thus of interest to construct higher curva-
ture theories that admit analytical black hole solutions. On the other hand, the linearized
equations of motion of these theories around maximally symmetric spacetimes typically
contain fourth derivatives too, so besides the usual massless spin-2 graviton mode, two extra
massive modes might appear, the scalar mode and the ghost-like spin-2 mode [8]. The exis-
tence of ghost-like mode signals instability of the AdS vacua and causes unitarity breaking of
the dual CFT, it is thus mandatory to decouple (set the mass to infinity) the ghost-like mode
when studying holography. The well-known example where these extra modes are absent is
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Lovelock gravity [9, 10]. Lovelock term of order k vanishes identically when D 6 2k−1 and
becomes a total derivative that does not contribute to the equations of motion for D = 2k.
A total derivative further reduces to a surface term in the action and only contribute topo-
logical characteristics, so higher curvature term of this kind is also called topological term,
no physical effects could emerge when introducing such higher curvature terms.

Quasi-topological gravity (QTG), on the other hand, is a more intriguing theory in
that the equations of motion are drastically simplified when evaluated on some special
metric ansatz, and also gives non-trivial contribution at perturbation level. In the broader
literature, such theory is defined by that it admits Schwarzschild-like solutions, i.e., the
special spherically symmetric (SSS) metric1

ds2 = −f(r)dt2 + 1
f(r)dr2 + r2dΣ2

D−2,k (1.1)

and the equation of f(r) is algebraic. Cubic quasi-topological gravity was first constructed
in [11], it’s holographic properties was later studied in [12]. Higher order ones also exist
and they have been studied extensively [13–16]. Besides quasi-topological gravities, there’s
another closely related class of theory worth mentioning, known as the generalized quasi-
topological gravity (GQTG), satisfying [17, 18]

δSf
δf

= 0, or E tt = Err (1.2)

where Sf denotes the action evaluated on the SSS metric, and Eab = 1/
√
|g|δS/δgab is the

equation of motion. It can be shown that quasi-topological gravity satisfies this condition
and thus is a subclass of GQTG. Features of GQTG have been studied comprehensively
at present [18–27]. In particular, (1.2) implies [26] the equation of f(r) is at most second
order, the existence of Schwarzschild-like solutions, and most importantly, the decoupling
of the extra massive modes.

We are more interested in quasi-topological gravities whose higher curvature terms do
not contribute to the equation of motion when evaluated on some special metric ansatz. We
refer to such class of theories as EOM-trivial quasi-topological (ETQT) gravities, mean-
ing they have trivial equation of motion (EOM) contributions. These theories obviously
satisfy (1.2) and thus ghost-free. They are first considered in [28] for Ricci polynomials,
where ETQT terms were constructed up to tenth order in Ricci tensor both on the SSS
metric and general spherically symmetric (GSS) metric

ds2 = −h(r)dt2 + 1
f(r)dr2 + r2dΣ2

D−2,k (1.3)

The advantage of this definition of quasi-topological gravity is that black hole solutions in
the original gravity theory in the form of (1.1) or (1.3) simply continue to be solutions when
the corresponding quasi-topological terms are introduced. This could be relevant when
matter are included, where even with the equation of f(r) being algebraic, the inclusion

1Unless otherwise noted, when we say spherically symmetry, we actually mean spherically, planar, or
hyperbolic symmetry, corresponding to the curvature of dΣ2 being positive, zero, or negative, respectively.
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of matter terms could make the system unintegratable. In this work we are specifically
interested in ETQT gravities on GSS metric (1.3), but not just limited to Ricci gravities.
Such metric is the most general ansatz for spacetimes with spherical/planar/hyperbolic
symmetry, thus could include a wider range of solutions. An important class of GSS metric
is black hole with scalar hair. Hairy solutions typically have a rich phase structure and in
holography they may be used to describe superconductors [29, 30]. It was shown that even
Einstein gravity with a minimally coupled self-interacting scalar field could result in a hairy
solution [31]. It’s thus interesting to investigate the effects of including higher curvature
terms in these solutions. There has been works on the hairy solutions with conformally
coupled scalar in higher curvature gravities [32, 33].

In this work we focus on ETQT gravities on GSS metric2 and construct such quasi-
topological terms up to quintic order in Riemann tensor, including dimension-generic ones
and dimension-specific ones. For the latter only D > 3 is considered since at D = 2
the Riemann tensor has only one non-zero component. We also find it possible to con-
struct dimension-independent combinations at quartic and quintic order. We then notice
that these theories satisfy a much stronger condition: the ETQT terms vanish identically
when evaluated on the non-stationary spherically symmetric metric! That is, metric of the
following form

ds2 = −h(t, r)dt2 + 2b(t, r)dtdr + 1
f(t, r)dr2 + r2dΣ2

D−2,k (1.4)

On the one hand, this further restricts the effects ETQT term could possibly have, such
as no thermodynamics contribution. This possibly simplifies the problem since introduc-
ing ETQT terms won’t lead to any new phase transitions. Thus one may only seek for
non-trivial effects of ETQT terms by considering perturbations. On the other hand, this
indicates that ETQT terms are also quasi-topological on a much wider range kinds of met-
rics, e.g., Friedmann-Roberson-Walker metric, making it simpler to study, e.g., the effects
of ETQT terms on cosmic perturbations.

This paper is organized as follows. In section 2 we construct explicitly the EOM-trivial
quasi-topological gravity theories, up to quintic order. In section 3 we discuss the basic
properties of the obtained theories, mainly the implications of the vanishing of ETQT terms
evaluated on the metric (1.4). As an example to study the physical effects of ETQT terms,
in section 4 we consider a general Einstein-scalar theory extended with ETQT terms and
calculate its holographic shear viscosity.

2 Construction of the theory

For a general Lagrangian constructed from metric and Riemann tensor L(gab, Rabcd) the
equation of motion can be written as [34]

Eab[L] = 1√
|g|

δS

δgab
= P acdeR

bcde − 1
2g

abL+ 2∇c∇dP acdb, P abcd = ∂L
∂Rabcd

(2.1)

2In the rest of the paper we’ll simply refer to ETQT gravity on GSS metric as ETQT gravity, unless
noted explicitly.
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where S =
∫

dDx
√
|g|L is the action. An ETQT term Q in the Lagrangian satisfies that

it does not contribute to the equation of motion when evaluated on (1.3), namely

E tt[Q]
∣∣∣
h,f

= Err[Q]|h,f = 0 (2.2)

which is equivalent to

δ

δh

∫
dDx

√
|g|Q

∣∣∣∣
h,f

= δ

δf

∫
dDx

√
|g|Q

∣∣∣∣
h,f

= 0 (2.3)

where . . . |h,f denotes . . . evaluated on the metric (1.3). At a given order, we first write down
the most general Riemann polynomial of that order with undetermined coefficients and
substitute the ansatz (1.3) into it. The non-zero Riemann tensor components of (1.3) are

Rt̂r̂ t̂r̂ = f(r)h′2(r)− h [f ′(r)h′(r) + 2f(r)h′′(r)]
4h2(r)

Rt̂it̂j = −δij
f(r)h′(r)

2rh(r)

Rr̂ir̂j = −δij
f ′(r)

2r

Rijkl = (δikδ
j
l − δ

i
lδ
j
k)
k − f(r)

r2

where ijkl are indices of the (D − 2) dimension subspace, and equivalent components are
not shown. By varying and integrating by parts with respect to h(r) and f(r) we get two
algebraic equations containing the undetermined coefficients, we then further convert them
into a linear system about the undetermined coefficients by regarding them as polynomials
in r, h(r), f(r) and their derivatives and requiring all coefficients vanish. The solution space
is given by the null space of the resulting linear system. For dimension-generic solutions,
we take null space directly, and for dimension-specific ones we substitute the dimension
first and then take null space, since there may be more linear independent solutions at
lower dimensions.

2.1 Cubic order

There are 8 Riemann scalars at cubic order and the most general cubic Riemann polynomial
is given by their linear combination

Q(3) = e1R
b d
a c R

e f
b d R

a b
e f + e2R

cd
ab R ef

cd R ab
ef + e3RabcdR

abc
eR

de + e4RabcdR
abcdR

+ e5RabcdR
acRbd + e6R

b
aR

c
bR

a
c + e7R

b
aR

a
bR+ e8R

3 (2.4)

We found only one dimension-generic solution in this case, the coefficients ei are given by

e1 = 22− 26D + 9D2 −D3, e2 = 3D2

4 − 15D
4 + 4, e3 = −3(D − 3)(D − 1)

e4 = 3(D − 3)
2 , e5 = 3

(
D2 − 5D + 8

)
, e6 = 6D − 14, e7 = 3− 3D, e8 = 1 (2.5)
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D {ei}

3

(−8, 5,−12, 0, 0, 0, 0, 1)
(−2, 3

2 ,−4, 0, 0, 0, 1, 0)
(0, 1

2 ,−
3
2 , 0, 0, 1, 0, 0)

(−1, 1
4 ,−1, 0, 1, 0, 0, 0)

(0, 1,−4, 1, 0, 0, 0, 0)

4
(16,−8, 36,−3,−24,−8, 0, 1)

(2,−1, 5,−1
2 ,−4,−2, 1, 0)

5 (−8, 4,−24, 3, 24, 16,−12, 1)

6
(64,−14, 60,−3,−48,−8, 0, 1)

(6,−3
2 , 7,−

1
2 ,−6,−2, 1, 0)

Table 1. Dimension-specific solutions of cubic ETQT gravity.

As mentioned earlier, ETQT gravity is a subclass of generalized quasi-topological gravity,
so the solution (2.5) must be a special case of cubic generalized quasi-topological gravity.
In fact, by setting

c1 = 22− 26D + 9D2 −D3, c2 = 3D2

4 − 15D
4 + 4, c3 = −3(D − 3)(D − 1)

in (2.6) of [17] we get our solution (2.5). As there’s only one solution, it’s not possible to
construct dimension independent solution at cubic order.

Now we turn to dimension-specific solutions. First we found that for D > 6 the number
of independent solutions is always one, meaning they are covered by the dimension-generic
solution, so we only need to consider 3 6 D 6 6. We get two linear independent solutions
at D = 4 and D = 6 respectively, five solutions at D = 3 and one solution again at D = 5.
The solutions are given in table 1. However, not all solutions are non-trivial. It could
happen that some solutions vanish identically on any metric, just like Lovelock terms in
D < 2n, this is possible for dimension-specific cases. Firstly we note that all the solutions
in table 1 have included the cubic Lovelock term, especially the five dimensional solution
which simply coincides with it. So we are left with 4 solution for D = 3, one solution for
D = 4 and D = 6 respectively.

Besides Lovelock terms themselves, another kind of combinations that vanish in lower
dimensions may be constructed from their equation of motion. For example, in D 6 4, the
4D Lovelock, or Gauss-Bonnet term

X (4) = R2 − 4RabRab +RabcdR
abcd (2.6)
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is topological, so its equation of motion contribution should vanish

Eab[X (4)] = 1√
|g|

δ

δgab

∫
dDx

√
|g|X (4)

= −4RacRbc + 2RabR− 4RcdRa bc d + 2RacdeRbcde + 1
2g

abX (4) = 0 (2.7)

we can thus construct another vanishing Riemann polynomial

Eab[X (4)]Rab = −4RabRbcRca + 4RabRabR−
1
2R

3 − 4RabRcdRacbd

− 1
2R

abcdRabcdR+ 2RabR cde
a Rbcde = 0 (2.8)

It can be shown that the space spanned by (2.8) and 4D Lovelock term is isomorphic to
the D = 4 solution in table 1, thus both solutions are trivial. In three dimensions, the
Gauss-Bonnet term vanishes, there are three more vanishing Riemann polynomials3

RX (4),
∂X (4)

∂Rabcd
RacRbd,

∂X (4)

∂Rabcd
RcdefR ab

ef (2.9)

Again, the space spanned by these three terms, (2.8) and 4D Lovelock, is isomorphic to the
D = 3 solution in table 1, which means they are all trivial. This result is also consistent
with [35], which states non-trivial GQTG of order less than six in curvature does not exist
in D = 3.

In summary, only one (linear combination) of the D = 6 solution in table 1 is non-
trivial. This 6D solution is also covered by the dimension-generic solution (2.5). We finally
conclude that cubic ETQT term is completely given by (2.5) and it’s only non-trivial for
D > 6.

Before moving on to higher orders, it’s worthy to compare the definition of ETQT
gravity on GSS metric (2.2) with ETQT gravity on SSS metric, that is

E tt[QSSS]
∣∣∣
f,f

= Err[QSSS]
∣∣∣
f,f

= 0 (2.10)

Such class of gravities is already known, a D = 4 example is the density C given in (2.16)
of [17]. One can expect the condition (2.10) is weaker than ours (2.2). In fact, after
repeating the above computation on cubic order using this condition, we find the solutions
are almost the same, the only difference is an extra non-trivial solution at D = 4

QSSS,D=4 = 1
2R

b
aR

a
bR− 2RacRbdRabcd −

1
4RRabcdR

abcd +RdeRabcdR
abc

e (2.11)

which is exactly the density C, and it’s easy to check that it gives non-vanishing equation
of motion contribution when evaluated on the GSS metric (1.3).

3L = 0 implies ∂L/∂Rabcd = 0 if the identity ∂L/∂gmn = (∂L/∂Rabcd)(∂Rabcd/∂gmn) gives no less
equations than the independent components of ∂L/∂Rabcd, which is true for D 6 3.
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2.2 Higher orders

The method of solving higher order ETQT terms is exactly the same as we used in the
cubic case. The only difficulty is enumerating all possible Riemann scalars, as the number
of independent Riemann scalars grows rapidly in higher orders. We get 26 scalars at quartic
order [36] and 85 scalars at quintic order.

For quartic case we get 12 linear independent dimension-generic solutions, and at
D = 3, D = 4 and D = 8 we get 22, 15 and 13 solutions respectively, all other dimensions
have the same number of solutions as dimension-generic case. Again, the extra solution at
D = 8 is the 8D Lovelock term. Using the method explained in appendix A.1, we found
that the D = 3 solutions are all trivial, making it in consistency with [35], this is also true
for the quintic case below. The explicit list of solutions is lengthy and given in appendix.
Remarkably, we also found 3 dimension-independent solutions

Q(4),∗,1 = Rabcd
(
R e f
a c R

g h
b e Rdgfh −R

ef
ab R g h

c e Rdgfh −
1
4R

e
abc R

fgh
d Refgh

)
(2.12)

Q(4),∗,2 = R ef
ab Rabcd

(
R gh
ce Rdfgh −

1
2R

gh
cd Refgh

)
(2.13)

Q(4),∗,3 = RabRcd
(
R e f
a c Rbedf −

1
2R

ef
ac Rbdef

)
− 1

2R
abRcaR

def
b Rcdef (2.14)

The situation is similar for quintic case, we get 61 dimension-generic solutions and 80,
67, 62 dimension-specific solutions at D = 3, D = 4, D = 10 respectively, for dimension-
independent case we get 29 solutions. However as the solutions of the quintic case are too
lengthy, we only present some representative solutions in the appendix and the full solution
set can be found in the supplementary material.

3 Properties and discussions

Having constructed the desired theories we now move on to their physical effects. The first
property we noticed is the ETQT term vanishes when evaluated on the metric (1.3)

Q(n)
∣∣∣
h,f

= 0 (3.1)

The free energy can be obtained by evaluating the Euclidean action with compactified time
direction. Since our metric is static, the Euclidean action only differs from the Minkowski
action by a minus sign, (3.1) implies the vanishing of the free energy contribution from
ETQT term, which then further implies the entropy and thermodynamic energy contribu-
tion should also vanish, thus ETQT term completely has no thermodynamics effects.

To verify the consistency of the above conclusion we need to evaluate the Wald entropy
and thermodynamic energy. The Wald entropy is given by [37]

SWald = −2π
∮
P abcdεabεcd dΣ, P abcd = ∂L

∂Rabcd
(3.2)

where the integration is taken at the horizon, εab is the binormal to the horizon, dΣ is the
volume form of the horizon surface. Using the method similar to [18] one can show that
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Q(n)|h,f = 0 implies
∂Q(n)

∂Rabcd

∣∣∣∣∣
h,f

= 0 (3.3)

thus the Q(n) contribution to (3.2) must also vanish. It remains to calculate the energy,
which can be done holographically by calculating the tt component of the boundary stress
tensor T tt = (2/

√
|h|)δS/δhtt where hab is the boundary metric. The surface term and

counter term also need to be taken into account, but since Q(n) vanishes, no new diverges
appear, the counter term contribution is zero. The surface term can be constructed by
introducing an auxiliary field Φab = Pacbdn

cnd [38]

S∂ = 1
8π

∮
∂M

dD−1x
√
|h|ΦabKab (3.4)

where na is the normal vector of the boundary, Kab = ∇anb is the exterior curvature
and hab = gab − nanb. Note that when varying this term, Φab should be kept fixed. So
we immediately see from (3.3) that the surface term contribution to T tt should vanish.
Furthermore, because Q(n) vanishes on (1.3), it’s invariant under the variation h(r) →
h(r) + δh(r), so we have δ

√
|g|Q(n)/δhtt = 0. We thus conclude the energy obtained via

holography also vanishes.
As mentioned earlier, we actually found a much stronger conclusion than (3.1), that

is Q(n) also vanishes when evaluated on the general non-stationary spherically symmetric
metric (1.4). It’s straightforward to evaluate a given ETQT terms on (1.4) and check that
it vanishes. In practice, the check was done using an equivalent metric

ds2 = −h(t, r)dt2 + 2b(t, r)dtdr +
[

1
f(t, r) −

b2(t, r)
h(t, r)

]
dr2 + r2dΣ2

D−2,k (3.5)

The advantage of it is the components of the inverse metric contain no fraction, reducing
the computation cost. The check was done for all cubic and quartic ETQT terms, but
at quintic order we encountered extreme computation difficulties so we ended up only
checked the solutions listed in (A.5). We could then conjecture that the condition for
ETQT terms (2.3) implies that they vanish when evaluated on (1.4).

The vanishing of Q(n) on (1.4) makes it quasi-topological on a much wider range of
metrics, e.g. the FRW metric

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]

(3.6)

after defining a new radial coordinate r′ by r′ = ra(t) we get

ds2 = kr′2 + r′2ȧ− a2

a2 − kr′2
dt2 − 2 r′aȧ

a2 − kr′2
dtdr′ + a2

a2 − kr′2
dr′2 + r′2dΩ2 (3.7)

which has the same form as (1.4). Another example implies Q(n) has no a-charge contribu-
tion. In 2n dimensional CFTs, the central a, c charges appears as coefficients in the trace
of the stress tensor [39] 〈

Tµµ

〉
∼ −aX (2n) +

∑
i

ciI
(2n)
i (3.8)
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where X (2n) is the 2n dimensional Lovelock term, I(2n)
i are conformal invariants in 2n

dimensional space. Generally the central charges can be calculated holographically by
evaluating the action on the FG expansion metric and identifying the ρ−1 term as the
trace anomaly [40], but to solely extract the a-charge one may use a specific metric with
conformally flat boundary, e.g., an S2n [41]

ds2 = L2

4ρ2 dρ2 + f(ρ)
ρ

(
dr2

1− r2 + r2dΩ2
D−2

)
(3.9)

again, by redefining r → r
√
ρ/f(ρ) this metric can be put into the form of (1.4), thus Q(n)

also vanish on (3.9), it doesn’t contribute to the a-charge.
The vanishing of Q(n) on the more general metric (1.4) largely reduces the possible

effects it could have when introduced to some gravity theory. To seek for non-trivial effects
one may only consider the perturbations of it around the metric (1.3), which in holography
includes shear viscosity and heat current, corresponding to perturbations hx1x2 and htx1

respectively. In the next section we’ll consider the holographic shear viscosity as an example
to study.

4 Holographic shear viscosity

We consider a general Einstein-scalar theory with the Lagrangian

LES = 1
16π

[
R− 1

2∇aφ∇
aφ− V (φ)

]
(4.1)

we are interested in the non-extremal4 asymptotic AdS black hole solutions of (4.1), so we
consider the following planar black hole ansatz

ds2 = −f(r)e−σ(r)dt2 + 1
f(r)dr2 + U(r)d~x2

D−2 (4.2)

Note that there’s one gauge freedom in the three functions f(r), σ(r), U(r). Near the
boundary we have f(r → ∞) = U(r → ∞) = r2/L2, σ(r → ∞) = 0, where L is the AdS
radius. The horizon is at r = rh, satisfies f(rh) = 0.

The reason for considering a hairy black hole solution instead of a simpler Schwarzschild
solution is that we think the shear viscosity of hairy solution may have some unique features
comparing to Schwarzschild solution. Also, as the metric of hairy solution is GSS metric
but not SSS metric, and ETQT term has vanishing equation of motion contribution on
GSS metric, we think it’s worthy to consider a hairy solution. Besides, we can easily go
back to Schwarzschild case by substituting

f(r) = r2

L2

[
1−

(
rh
r

)2
]
, σ(r) = 0, U(r) = r2

L2 , φ(r) = 0 (4.3)

into the result.
4The extremal limit T → 0 and hydrodynamic limit ω → 0 generally don’t commute, which will compli-

cate the discussion.
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The temperature and entropy density are respectively given by

T = 1
4πf

′(rh)e−σ(rh)/2, s = 1
4U

D/2−1(rh) (4.4)

Assuming φ only depends on r, the equation of motion gives

(D − 2)fU ′φ′ + U
(
2f ′φ′ − fσ′φ′ + 2fφ′′ − 2V ′

)
= 0(

D2 − 7D + 10
)
fU ′2 + 2(D − 2)U

(
f ′U ′ + 2fU ′′

)
+ 2U2

(
fφ′2 + 2V

)
= 0

2U
[
(D − 2)U ′′(r) + U(r)φ′2

]
+ (D − 2)UU ′σ′ − (D − 2)U ′2 = 0

U
(
−(D − 4)f ′U ′ + f

(
(D − 3)σ′U ′ + 2U ′′

))
+ (D − 4)fU ′2

+U2
(
−2f ′′ + 3f ′σ′ − f

(
σ′2 − 2σ′′

))
= 0 (4.5)

The last equation can be integrated to give a radially conserved quantity, as in [42]

Q = e−σ/2UD/2−2 [(f ′ − fσ′)U − fU ′] (4.6)

Evaluating it at the horizon gives

Q = e−σ(rh)/2UD/2−1(rh)f ′(rh) = 16πTs (4.7)

To calculate the holographic shear viscosity we employ the pole method as proposed in [43].
Define a new radial coordinate z by r = rh/(1− z), (4.2) becomes

ds2 = r2
h

(1− z)4
1

f( rh
1−z )dz2 − f

(
rh

1− z

)
exp

[
−σ

(
rh

1− z

)]
dt2 + U

(
rh

1− z

)
d~x2

D−2 (4.8)

Now add perturbation to (4.8) by shifting the basis dx1 → dx1 + εe−iωtdx2, substitute the
resulting metric into the Lagrangian and expand it to quadratic order in ε. Note that the
perturbation should be kept second order in the metric, and since the perturbation only
involves spatial components, the matter sector of the Lagrangian (4.1) has no contribution.
The shear viscosity can be calculated from the residue of the Lagrangian at z = 0

η = −8πT lim
ω,ε→0

Resz=0
√
|g|L

ε2ω2 (4.9)

Note that the above expression for the shear viscosity is linear in L so we can compute
the contribution to the shear viscosity of different terms in the Lagrangian separately, but
keep in mind only the summed result has physical meaning. For the Einstein-scalar theory
in (4.1), the contribution is given by

η(0) = 1
16πU

D/2−1(rh) (4.10)

which results in the standard shear-viscosity-to-entropy ratio η(0)/s = 1/4π, i.e., the exis-
tence of the scalar hair have no effect on the shear viscosity.

Next we introduce ETQT terms to (4.1) by defining the new Lagrangian as L′ =
LES + (λ/16π)Q(n), the equations of motion aren’t altered by Q(n) and it’s straightforward
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to evaluate (4.8) on them and then apply (4.9) to obtain the shear viscosity, the results
are expressed in f(r), σ(r), U(r) and their derivatives at r = rh. Interestingly, by making
use of the radially conserved quantity (4.6) we are only left with σ(rh), σ′(rh), U(rh) and
its derivatives. The contribution from Q(3) is given by5

η̂Q(3) = λ

16π
3
16(D − 5)(D − 4)(D − 2)2Q2eσ(rh)U−D/2−1(rh)

×
[
(D + 2)U ′2(rh)− 2U(rh)U ′′(rh)− U(rh)σ′(rh)U ′(rh)

]
(4.11)

Notice that this result is only non-zero for D > 6, otherwise the ETQT term is trivial, as
discussed earlier. The shear-viscosity-to-entropy ratio in this case is given by

ηQ(3)

s
= 1

4π

{
1 + 3λ

16 (D − 5)(D − 4)(D − 2)2Q2eσ
[
(D + 2)U

′2

U2 − 2U
′′

U
− σ′U

′

U

]}
(4.12)

where all functions are evaluated at the horizon. In Schwarzschild solution this reduces to

ηQ(3)

s

∣∣∣∣
Schwarzschild

= 1
4π

{
1 + 3λ

4L4 (D − 5)(D − 4)(D − 2)2(D − 1)2(D + 1)
}

(4.13)

This indicates a possible violation of the KSS bound. This is expected, since there’s already
a lot of examples of higher curvature theory that violates KSS bound. Indeed, to confirm
that (2.5) violates the bound requires determining the physical bound of the coupling
constant λ, we will not discuss it here.

For quartic and quintic case, we found that the D = 4 solutions are all analytical
at z = 0 when evaluated on the metric (4.8) and thus does not contribute to the shear
viscosity. For the dimension-generic solutions, we found their shear viscosity contribution
can written in the form

η̂Q(n) = λ

16πe
n−1

2 σQn−1U−1−n−2
2 DU ′n−3

(
aU ′2 + bUU ′σ′ + 2bUU ′′

)
(4.14)

which in Schwarzschild solution reduces to

η̂Q(n)
∣∣
Schwarzschild = λ

16π2n−1(a+ b)(D − 1)n−1rD−2
h L−D−2n+4 (4.15)

For a specific ETQT term, the coefficients a, b only depends on the dimension D, their
explicit values are given in the appendix.

5 Conclusions

ETQT gravities can be thought as a class of higher curvature gravity theories whose higher
curvature terms give no contribution to the equations of motion when evaluated on the
metric (1.3), but could have non-trivial perturbations around it. In this case black hole
solutions of the corresponding Einstein gravity continues to be solution when the higher
curvature terms are included, making it much easier to study its higher curvature effects.

5We use η̂ to denote a “partial” shear viscosity.
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In this work we constructed such theory up to quintic order in the Riemann tensor. Most
remarkably, we found that all ETQT terms we constructed actually vanish when evaluated
on the most general non-stationary spherically symmetric metric (1.4). On the one hand,
this makes these terms have no contribution on the thermodynamics and holographic a-
charge. More importantly, on the other hand, this makes them quasi-topological on a much
wider kinds of metrics, e.g., the FRW metric and the Vaidya metric. This opens a large
gate of possible applications of such ETQT gravity theories, such as one could study the
effects of these terms on the cosmic perturbations.

As an example to study the non-trivial effects of the ETQT terms we calculated the
holographic shear viscosity of a general Einstein-scalar theory. The results can be put into
a simple form (4.14). As expected, the KSS bound could possibly be violated due to the
nature of higher curvature gravities.
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A Quartic and quintic EOM-trivial quasi-topological gravities

In this section we list all solutions of quartic and quintic ETQT terms. The full set of
solutions is also available in the supplementary material, in the form of Mathematica .wl
file, with further instructions included in the usage messages.

A.1 Quartic order

For quartic order, the most general Riemann polynomial is

Q(4) = e1R
4 + e2R

2RabRab + e3RR
a
bR

b
cR

c
a + e4(RabRab)2 + e5R

a
bR

b
cR

c
dR

d
a

+ e6RR
acRbdRabcd + e7R

acRbeR
edRabcd + e8R

2RabcdRabcd + e9RR
deRabcdRabce

+ e10R
abRabR

cdefRcdef + e11R
abRcaR

def
bRdefc + e12R

abRcdRefacRefbd

+ e13R
abRcdRe f

a bRecfe + e14R
abRcdRe f

a cRebfd + e15RR
abcdR ef

ab Refcd

+ e16RR
abcdR e f

a c Rbedf + e17R
abR c d

a b R
efg

cRefgd + e18R
abRcdefR g

cd aRefgb

+ e19R
abRcdefR g

c eaRdgfb + e20(RabcdRabcd)2 + e21R
abcdR e

abc R
fgh

dRfghe

+ e22R
abcdR ef

ab R gh
ef Rcdgh + e23R

abcdR ef
ab R gh

ce Rdfgh + e24R
abcdR ef

ab R g h
c e Rdgfh

+ e25R
abcdR e f

a c R
g h
e f Rbgdh + e26R

abcdR e f
a c R

g h
e b Rfgdh (A.1)

There are totally 12 dimension-generic solutions, their coefficients ei,j are listed in table 2
below, where i labels different solutions and j labels the 26 coefficients of one solution.
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e1,1
2D9−61D8+773D7−5451D6+23821D5−67174D4+121930D3−135736D2+81920D−19456

2(D−4)(D−3)(D−2)5(D−1)D(D3−9D2+26D−22)

e1,2
−3D10+94D9−1237D8+9168D7−42780D6+131846D5−271580D4+367060D3−308704D2+145024D−29184

(D−4)(D−3)(D−2)5(D−1)D(D3−9D2+26D−22)

e1,3
4(2D9−59D8+733D7−5103D6+22103D5−61918D4+111738D3−123512D2+73632D−17024)

(D−4)(D−3)(D−2)4(D−1)D(D3−9D2+26D−22)

e1,4
2D8−56D7+633D6−3948D5+15253D4−37812D3+58752D2−51840D+19456

(D−4)(D−3)(D−2)5(D−1)D

e1,5
−2D7+45D6−398D5+1895D4−5476D3+9776D2−10112D+4864

(D−4)(D−3)(D−2)4(D−1)D

e1,6
4(2D8−59D7+730D6−5041D5+21496D4−58348D3+98636D2−94560D+38912)

(D−4)(D−3)(D−2)3(D−1)D(D3−9D2+26D−22)

e1,7 − 4(D6−19D5+131D4−409D3+520D2+88D−608)
(D−4)(D−3)(D−2)3(D−1)D

e1,8
D10−36D9+557D8−4979D7+28834D6−113919D5+312276D4−587102D3+723424D2−525760D+170240

2(D−4)(D−3)(D−2)4(D−1)D(D3−9D2+26D−22)

e1,9 − 2(D8−30D7+376D6−2636D5+11493D4−32254D3+57146D2−58160D+25536)
(D−4)(D−3)(D−2)2(D−1)D(D3−9D2+26D−22)

e1,10 −D8−30D7+353D6−2250D5+8748D4−21514D3+32672D2−27712D+9728
2(D−4)(D−3)(D−2)4(D−1)D

e1,11
D6−23D5+199D4−861D3+1996D2−2216D+608

(D−4)(D−3)(D−2)2(D−1)D

e1,15
D3−12D2+41D−38

(D−1)D(D3−9D2+26D−22)

e1,17
76−20D

D3−5D2+6D

e1,20 −D5−10D4+28D3+18D2−173D+160
8(D−3)(D−2)3(D−1)

e1,26 1

e2,1
12D8−244D7+2138D6−10521D5+31695D4−59494D3+67138D2−40696D+9728

(D−4)(D−3)(D−2)5(D−1)D(D3−9D2+26D−22)

e2,2 − 4(9D9−191D8+1766D7−9316D6+30809D5−65961D4+90838D3−76978D2+36256D−7296)
(D−4)(D−3)(D−2)5(D−1)D(D3−9D2+26D−22)

e2,3
8(11D8−224D7+1964D6−9662D5+29067D4−54398D3+61026D2−36552D+8512)

(D−4)(D−3)(D−2)4(D−1)D(D3−9D2+26D−22)

e2,4
2(13D7−228D6+1730D5−7392D4+19201D3−30196D2+26400D−9728)

(D−4)(D−3)(D−2)5(D−1)D

e2,5 − 2(14D6−185D5+1018D4−3059D3+5380D2−5344D+2432)
(D−4)(D−3)(D−2)4(D−1)D

e2,6 − 4(D8−45D7+671D6−5095D5+22712D4−62348D3+104224D2−97464D+38912)
(D−4)(D−3)(D−2)3(D−1)D(D3−9D2+26D−22)

e2,7 − 8(4D5−41D4+144D3−167D2−116D+304)
(D−4)(D−3)(D−2)3(D−1)D

e2,8
7D9−178D8+2013D7−13299D6+56610D5−161107D4+306544D3−375726D2+268688D−85120

(D−4)(D−3)(D−2)4(D−1)D(D3−9D2+26D−22)

e2,9 − 8(3D7−62D6+551D5−2733D4+8181D3−14787D2+14903D−6384)
(D−4)(D−3)(D−2)2(D−1)D(D3−9D2+26D−22)

e2,10 − 2(3D7−56D6+445D5−1959D4+5160D3−8093D2+6928D−2432)
(D−4)(D−3)(D−2)4(D−1)D

e2,11
2(7D5−89D4+437D3−1031D2+1108D−304)

(D−4)(D−3)(D−2)2(D−1)D

e2,15
−D3+12D2−41D+38

D5−10D4+35D3−48D2+22D

e2,17 − 4(D2−8D+19)
(D−3)(D−2)D

e2,20 −D5−12D4+61D3−167D2+242D−137
4(D−3)(D−2)3(D−1)

e2,25 1

e3,1
D9−30D8+380D7−2695D6+11858D5−33610D4+61132D3−68000D2+40960D−9728

(D−4)(D−3)(D−2)5(D−1)D(D3−9D2+26D−22)

e3,2
−3D10+92D9−1207D8+8988D7−42238D6+131008D5−270984D4+366928D3−308704D2+145024D−29184

(D−4)(D−3)(D−2)5(D−1)D(D3−9D2+26D−22)

e3,3
8(D9−29D8+360D7−2521D6+10999D5−30982D4+56036D3−61888D2+36816D−8512)

(D−4)(D−3)(D−2)4(D−1)D(D3−9D2+26D−22)
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e3,4
2(D8−27D7+307D6−1947D5+7638D4−19104D3+29728D2−26112D+9728)

(D−4)(D−3)(D−2)5(D−1)D

e3,5 − 2(D7−22D6+199D5−970D4+2832D3−5040D2+5152D−2432)
(D−4)(D−3)(D−2)4(D−1)D

e3,6
4(2D8−59D7+736D6−5129D5+22006D4−59796D3+100632D2−95616D+38912)

(D−4)(D−3)(D−2)3(D−1)D(D3−9D2+26D−22)

e3,7 − 4(D6−18D5+123D4−382D3+468D2+136D−608)
(D−4)(D−3)(D−2)3(D−1)D

e3,8
D10−35D9+541D8−4887D7+28686D6−114666D5+316648D4−596688D3+733520D2−529984D+170240

2(D−4)(D−3)(D−2)4(D−1)D(D3−9D2+26D−22)

e3,9 − 2(D2−7D+14)(D6−22D5+195D4−906D3+2364D2−3280D+1824)
(D−4)(D−3)(D−2)2(D−1)D(D3−9D2+26D−22)

e3,10 −D8−28D7+329D6−2138D5+8496D4−21248D3+32576D2−27712D+9728
2(D−4)(D−3)(D−2)4(D−1)D

e3,11
D6−22D5+195D4−866D3+2020D2−2216D+608

(D−4)(D−3)(D−2)2(D−1)D

e3,15
D3−12D2+41D−38

(D−1)D(D3−9D2+26D−22)

e3,17
2(D2−13D+38)
D(D2−5D+6)

e3,20 − (D−4)(D3−10D2+31D−26)
4(D−3)(D−2)3(D−1)

e3,24 1

e4,1
2(11D5−140D4+668D3−1502D2+1544D−512)

(D−4)(D−3)(D−2)5(D−1)D

e4,2 − 16(4D6−55D5+293D4−780D3+1083D2−728D+192)
(D−4)(D−3)(D−2)5(D−1)D

e4,3
32(5D5−64D4+306D3−687D2+700D−224)

(D−4)(D−3)(D−2)4(D−1)D

e4,4
8(5D7−100D6+838D5−3856D4+10553D3−17148D2+15232D−5632)

(D−4)(D−3)(D−2)5(D−1)D

e4,5 − 8(6D6−89D5+530D4−1675D3+3036D2−3072D+1408)
(D−4)(D−3)(D−2)4(D−1)D

e4,6
64(3D4−37D3+167D2−335D+256)

(D−4)(D−3)(D−2)3(D−1)D

e4,7 − 32(2D5−23D4+88D3−111D2−60D+176)
(D−4)(D−3)(D−2)3(D−1)D

e4,8
2(5D6−99D5+778D4−3182D3+7250D2−8800D+4480)

(D−4)(D−3)(D−2)4(D−1)D

e4,9 − 16(2D−7)(D3−12D2+41D−48)
(D−4)(D−3)(D−2)2(D−1)D

e4,10 − 8(D6−22D5+188D4−827D3+2013D2−2600D+1408)
(D−4)(D−3)(D−2)4D

e4,11
8(3D5−45D4+245D3−607D2+652D−176)

(D−4)(D−3)(D−2)2(D−1)D

e4,15
4

D−D2

e4,17 − 16(D2−6D+11)
(D−3)(D−2)D

e4,20 −D5−14D4+79D3−224D2+316D−170
2(D−3)(D−2)3(D−1)

e4,23 1

e5,1
4(11D5−140D4+668D3−1502D2+1544D−512)

(D−4)(D−3)(D−2)5(D−1)D

e5,2 − 32(4D6−55D5+293D4−780D3+1083D2−728D+192)
(D−4)(D−3)(D−2)5(D−1)D

e5,3
64(5D5−64D4+306D3−687D2+700D−224)

(D−4)(D−3)(D−2)4(D−1)D

e5,4
16(5D7−100D6+838D5−3856D4+10553D3−17148D2+15232D−5632)

(D−4)(D−3)(D−2)5(D−1)D

e5,5 − 16(6D6−89D5+530D4−1675D3+3036D2−3072D+1408)
(D−4)(D−3)(D−2)4(D−1)D

e5,6
128(3D4−37D3+167D2−335D+256)

(D−4)(D−3)(D−2)3(D−1)D
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e5,7 − 64(2D5−23D4+88D3−111D2−60D+176)
(D−4)(D−3)(D−2)3(D−1)D

e5,8
4(5D6−99D5+778D4−3182D3+7250D2−8800D+4480)

(D−4)(D−3)(D−2)4(D−1)D

e5,9 − 32(2D−7)(D3−12D2+41D−48)
(D−4)(D−3)(D−2)2(D−1)D

e5,10 − 16(D6−22D5+188D4−827D3+2013D2−2600D+1408)
(D−4)(D−3)(D−2)4D

e5,11
16(3D5−45D4+245D3−607D2+652D−176)

(D−4)(D−3)(D−2)2(D−1)D

e5,15
8

D−D2

e5,17 − 32(D2−6D+11)
(D−3)(D−2)D

e5,20
−D5+14D4−79D3+224D2−316D+170

(D−3)(D−2)3(D−1)

e5,22 1

e6,1 − 2D(D2−D−4)
(D−4)(D−2)5(D−1)

e6,2
8D2(D2−3D+1)

(D−4)(D−2)5(D−1)

e6,3 − 16D(D2−D−4)
(D−4)(D−2)4(D−1)

e6,4 − 4(2D5−13D4+15D3+68D2−192D+128)
(D−4)(D−2)5(D−1)

e6,5
4(D4+3D3−36D2+80D−64)

(D−4)(D−2)4(D−1)

e6,6 − 32(3D−8)
(D−4)(D−2)3(D−1)

e6,7
16(D3−5D2+12D−16)

(D−4)(D−2)3(D−1)

e6,8 − 2(D4−4D3−9D2+56D−64)
(D−4)(D−2)4(D−1)

e6,9
8(D2−D−8)

(D−4)(D−2)2(D−1)

e6,10
4D(D4−9D3+29D2−39D+16)

(D−4)(D−2)4(D−1)

e6,11 − 4D(D2−D−8)
(D−4)(D−2)2(D−1)

e6,17 − 8
D−2

e6,20 −D3−8D2+21D−16
2(D−2)3

e6,21 1

e7,1 − D6−16D5+103D4−336D3+570D2−458D+128
(D−4)(D−3)(D−2)2(D−1)D(D3−9D2+26D−22)

e7,2
3D7−51D6+356D5−1305D4+2665D3−2984D2+1692D−384

(D−4)(D−3)(D−2)2(D−1)D(D3−9D2+26D−22)

e7,3
−7D6+114D5−743D4+2440D3−4140D2+3296D−896

(D−4)(D−3)(D−2)(D−1)D(D3−9D2+26D−22)

e7,4 − 2(D2−5D+8)(D3−9D2+23D−16)
(D−4)(D−3)(D−2)2(D−1)D

e7,5
2(D4−10D3+33D2−48D+32)
D(D4−10D3+35D2−50D+24)

e7,6
−9D5+139D4−851D3+2561D2−3728D+2048

(D−4)(D−3)(D−1)D(D3−9D2+26D−22)

e7,7
2(D3−7D2+6D+16)
(D−4)(D−3)(D−1)D

e7,8 −D7−22D6+206D5−1059D4+3213D3−5733D2+5554D−2240
2(D−4)(D−3)(D−2)(D−1)D(D3−9D2+26D−22)

e7,9
(D−2)(4D5−65D4+428D3−1409D2+2258D−1344)

2(D−4)(D−3)(D−1)D(D3−9D2+26D−22)

e7,10
D5−15D4+85D3−229D2+290D−128

2(D−4)(D−3)(D−2)(D−1)D
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e7,11 − (D−2)(D3−10D2+25D−8)
(D−4)(D−3)(D−1)D

e7,15
3D2−15D+16

−4D4+36D3−104D2+88D

e7,17
4−D

(D−3)D

e7,19 1

e8,1
2(3D2−9D+4)

(D−3)(D−2)2(D−1)D

e8,2
−18D3+70D2−72D+24
(D−3)(D−2)2(D−1)D

e8,3
4(11D2−33D+14)

(D−3)(D−2)(D−1)D

e8,4
4(3D4−28D3+101D2−160D+88)

(D−3)(D−2)2(D−1)D

e8,5 − 4(3D3−14D2+25D−22)
(D−3)(D−2)(D−1)D

e8,6
16(3D−8)

(D−3)(D−1)D

e8,7
−20D2+40D+44

D3−4D2+3D

e8,8
3D3−26D2+73D−70
D(D3−6D2+11D−6)

e8,9 − 2(D−2)(5D−21)
(D−3)(D−1)D

e8,10
−3D4+32D3−119D2+182D−88

D(D3−6D2+11D−6)

e8,11
6D3−42D2+74D−22

D(D2−4D+3)

e8,15 − 1
D

e8,17 − 2(D2−6D+11)
(D−3)D

e8,18 1

e9,1
1

−D3+9D2−26D+22

e9,2
3(D−1)

D3−9D2+26D−22

e9,3
14−6D

D3−9D2+26D−22

e9,6 − 3(D2−5D+8)
D3−9D2+26D−22

e9,8 − 3(D−3)
2(D3−9D2+26D−22)

e9,9
3(D−3)(D−1)

D3−9D2+26D−22

e9,15
3D2−15D+16

−4D3+36D2−104D+88

e9,16 1

e10,1
D2−4D+2

2(D−4)(D−2)2(D−1)

e10,2 − (3D−2)(D2−4D+2)
2(D−4)(D−2)2(D−1)

e10,3
4(D2−4D+2)

(D−4)(D−2)(D−1)

e10,4
D4−10D3+39D2−68D+40

(D−4)(D−2)2(D−1)

e10,5
−D3+5D2−8D+8

(D−4)(D−2)(D−1)

e10,6
2(2D−7)

D2−5D+4

e10,7
−2D2+6D+4

D2−5D+4
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e10,8
(D−3)(D2−6D+10)
4(D−4)(D−2)(D−1)

e10,9 − (D−3)2

(D−4)(D−1)

e10,10 − (D−3)(D3−8D2+20D−12)
4(D−4)(D−2)(D−1)

e10,11
D3−8D2+19D−8

2(D−4)(D−1)

e10,14 1

e11,1
D

2(D−4)(D−2)2(D−1)

e11,2 − D(3D−2)
2(D−4)(D−2)2(D−1)

e11,3
4D

(D−4)(D−2)(D−1)

e11,4
2(D3−7D2+17D−12)
(D−4)(D−2)2(D−1)

e11,5 − 2(D2−3D+4)
D3−7D2+14D−8

e11,6 − 2(D−6)
D2−5D+4

e11,7 − 8
D2−5D+4

e11,8
(D−3)(3D−8)

4(D−4)(D−2)(D−1)

e11,9
6−2D

D2−5D+4

e11,10 − (D−3)(3D2−12D+8)
4(D−4)(D−2)(D−1)

e11,11
(D−3)D

(D−4)(D−1)

e11,13 1

e12,1
D2−4D+2

(D−4)(D−2)2(D−1)

e12,2 − (3D−2)(D2−4D+2)
(D−4)(D−2)2(D−1)

e12,3
8(D2−4D+2)

(D−4)(D−2)(D−1)

e12,4
2(D4−10D3+39D2−68D+40)

(D−4)(D−2)2(D−1)

e12,5 − 2(D3−5D2+8D−8)
(D−4)(D−2)(D−1)

e12,6
4(2D−7)

D2−5D+4

e12,7
−4D2+12D+8

D2−5D+4

e12,8
(D−3)(D2−6D+10)
2(D−4)(D−2)(D−1)

e12,9 − 2(D−3)2

(D−4)(D−1)

e12,10 − (D−3)(D3−8D2+20D−12)
2(D−4)(D−2)(D−1)

e12,11
D3−7D2+14D−4

(D−4)(D−1)

e12,12 1

Table 2. Coefficients of dimension-generic quartic ETQT gravity solutions. Zero coefficients are
omitted.

There are also dimension-specific solutions for D = 3 and D = 4, given in table 3 and 4
respectively.
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J
H
E
P
0
3
(
2
0
2
3
)
0
5
5

{ei}
(1

6 ,−
1
2 ,

4
3 ,−

3
2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(1
6 , 0,

4
3 ,−3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

( 1
12 ,−

1
2 ,

2
3 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

(7
6 ,−4, 16

3 ,−4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)
(7

3 ,−8, 32
3 ,−8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

(1
3 , 0,

8
3 ,−6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

(−1, 8, 0,−16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
( 1

12 ,−
1
2 ,

2
3 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

(4
3 ,−5, 14

3 ,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
(1

3 ,−1, 5
3 ,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(1
4 ,−

3
2 , 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(3,−12, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
( 7

12 ,−
9
4 ,

5
3 ,−

1
2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

( 1
12 ,−

1
4 ,

2
3 ,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(5
6 ,−

7
2 ,

8
3 , 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(1
3 ,−1, 2

3 ,−1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 1, 0,−4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(1,−4, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(1,−4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(1

3 ,−
3
2 ,

7
6 , 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(1
2 ,−

5
2 , 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(−1
6 , 1,−

4
3 ,−

1
2 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Table 3. Coefficients of quartic ETQT gravity for D = 3.

However, the D = 3 solutions must be trivial otherwise it contradicts with the obser-
vation made in [35]. To check this, we can expand the solutions into the six independent
components of the three dimensional Riemann tensor under some tetrad

R1212, R1213, R1223, R1313, R1323, R2323 (A.2)

Although on a generic tetrad this introduces metric components, which are not independent
from the Riemann tensor, the metric components can be treated as the flat one δij . This is
because it’s always possible to choose an orthonormal tetrad where the metric component
matrix is diagonalized with components being either 1 or −1

ds2 = gijdxidxj = ηijθ
iθj (A.3)

where θi is the dual tetrad, η = diag(−1, · · · , 1, · · · ). We can then further transform ηij into
δij by multiplying some basis vectors by a factor of i, similar to Wick rotation. This turns
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J
H
E
P
0
3
(
2
0
2
3
)
0
5
5

{ei}
(35

48 ,−
23
4 ,

20
3 ,

5
2 ,−4, 3, 0, 1

4 , 0,−
1
4 , 0,−2, 0, 0,− 1

12 , 0, 0, 0, 0,−
1
16 , 0, 0, 0, 0, 0, 1)

(19
32 ,−5, 20

3 ,
13
4 ,−

11
2 , 2, 0,

3
16 , 0,−

1
4 , 0,−

5
2 , 0, 0,

1
12 , 0, 0, 0, 0,−

5
32 , 0, 0, 0, 0, 1, 0)

(11
24 ,−

7
2 , 4, 1,−2, 2, 0, 1

8 , 0, 0, 0,−1, 0, 0,− 1
12 , 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

(41
24 ,−14, 16, 7,−10, 8, 0, 3

4 , 0,−1, 0,−6, 0, 0,−1
3 , 0, 0, 0, 0,−

1
8 , 0, 0, 1, 0, 0, 0)

(41
12 ,−28, 32, 14,−20, 16, 0, 3

2 , 0,−2, 0,−12, 0, 0,−2
3 , 0, 0, 0, 0,−

1
4 , 0, 1, 0, 0, 0, 0)

(13
12 ,−9, 32

3 , 6,−8, 4, 0, 1
2 , 0,−1, 0,−4, 0, 0, 0, 0, 0, 0, 0,−1

4 , 1, 0, 0, 0, 0, 0)
(1

3 ,−
5
2 ,

8
3 ,

1
2 ,−1, 3

2 , 0,
1
8 , 0, 0, 0,−

1
2 , 0, 0,−

1
8 , 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

(5
8 ,−

21
4 , 6, 3,−4, 3, 0, 3

8 , 0,−
3
4 , 0,−3, 0, 0,−1

4 , 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
( 7

12 ,−
19
4 ,

17
3 , 3,−4, 2, 0, 1

4 , 0,−
3
4 , 0,−2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(5
8 ,−

9
2 , 4, 0, 0, 3, 0,

3
8 , 0, 0, 0, 0, 0, 0,−

1
2 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(− 1
12 ,

5
8 ,−

2
3 , 0, 0,−

1
2 , 0, 0, 0,−

1
8 , 0,−

1
2 , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(3
8 ,−3, 4, 3

2 ,−3, 1, 0, 1
8 , 0,−

1
4 , 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(−1
6 ,

5
4 ,−

4
3 , 0, 0,−1, 0, 0, 0,−1

4 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(−1

4 , 2,−2, 0, 0,−2, 0,−1
4 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(− 1
12 ,

3
4 ,−

7
6 ,−

1
2 , 1,−

1
2 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Table 4. Coefficients of quartic ETQT gravity for D = 4.

some components in (A.2) into imaginary numbers, but does not affect our results. Apply-
ing this method to the solution in table 3 and also the quintic case below, we found the D =
3 solutions are all trivial, that is, vanish identically when evaluated on any D = 3 metric.

A.2 Quintic order

For the quintic order, we first need to enumerate all the possible Riemann scalars since the
explicit list is never mentioned in the literature. We employ the following inefficient but
straightforward way: first enumerate all possible scalars that can be formed by the contrac-
tion of their indices, taking into the account the symmetries, but not the cyclic identity.
Then for each resulting scalar we replace each of its Riemann tensor factor respectively
with the cyclic identity

Rabcd +Racdb +Radbc = 0 (A.4)

with each replacement two new terms are obtained. If both terms are contained in the
Riemann scalar list then this term is equivalent to the already known scalars by the cyclic
identity and should be removed.

As mentioned in the text, we get too many solutions at quintic order, so we are not
going to present the full set of them here, which is included in the supplementary material.
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Instead, we only present a small portion of the dimension-generic solutions below.

Q(5),1 =−2RR ef
ab RabcdR gh

ce Rdfgh +RR ef
ab RabcdR gh

cd Refgh (A.5a)

Q(5),2 =2RabRcdR ef
ac R gh

be Rdfgh −2RabRcdR e f
a c R

gh
be Rdfgh

+R c
a R

abR def
b R gh

cd Refgh (A.5b)

Q(5),3 = 8(3D−7)R2

3D2−15D+16R
c
a R

abRbc−
12(D−1)R3

3D2−15D+16RabR
ab+ 4R5

3D2−15D+16

+ 12
(
D2−5D+8

)
R2

3D2−15D+16 RabRcdRacbd+ 6(D−3)R3

3D2−15D+16RabcdR
abcd

− 12(D−3)(D−1)R2

3D2−15D+16 RabR cde
a Rbcde

− 4
(
D3−9D2+26D−22

)
R2

3D2−15D+16 R e f
a c R

abcdRbedf

+R2R ef
ab RabcdRcdef (A.5c)

Q(5),4 = 4
(
D3−5D2+8D−8

)
D4−11D3+44D2−72D+36R

c
a R

abR d
b RcdR

− 4
(
D4−10D3+39D2−68D+40

)
(D−2)(D4−11D3+44D2−72D+36)RabR

abRcdR
cdR

− 16
(
D2−4D+2

)
D4−11D3+44D2−72D+36R

c
a R

abRbcR
2

+ 2
(
3D3−14D2+14D−4

)
(D−2)(D4−11D3+44D2−72D+36)RabR

abR3

− 2
(
D2−4D+2

)
(D−2)(D4−11D3+44D2−72D+36)R

5

− 8
(
2D2−11D+14

)
D4−11D3+44D2−72D+36R

abRcdR2Racbd

− D2−6D+10
D3−8D2+20D−12R

3RabcdR
abcd+ 4

(
D2−5D+6

)
D3−8D2+20D−12R

abR2R cde
a Rbcde

+ 8
(
D3−5D2+4D+4

)
D4−11D3+44D2−72D+36R

c
a R

abRdeRRbdce

+ 2
(
D4−10D3+35D2−46D+16

)
D4−11D3+44D2−72D+36 RabRcdRR ef

ac Rbdef

− 4
(
D4−9D3+28D2−32D+8

)
D4−11D3+44D2−72D+36 R

abRcdRR e f
a c Rbedf +RabRabRRcdefRcdef (A.5d)

Q(5),5 = 2
(
D5−14D4+67D3−142D2+132D−32

)
(D−4)(D−3)(D−2)(D3−8D2+20D−12)R

c
a R

abR d
b RcdR

+ 2
(
5D4−45D3+154D2−236D+128

)
(D−4)(D−3)(D−2)2(D3−8D2+20D−12)RabR

abRcdR
cdR

− D5−13D4+50D3−80D2+68D−8
(D−4)(D−3)(D−2)(D3−8D2+20D−12)R

c
a R

abRbcR
2

− −D5+19D4−100D3+222D2−232D+88
(D−4)(D−3)(D−2)2(D3−8D2+20D−12)RabR

abR3
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+ 2
(
D3−5D2+7D−4

)
(D−4)(D−3)(D−2)2(D3−8D2+20D−12)R

5

− 2
(
D4−13D3+56D2−106D+88

)
(D−4)(D−3)(D3−8D2+20D−12)R

abRcdR2Racbd

− D2−10D+22
2(D−4)(D3−8D2+20D−12)R

3RabcdR
abcd

− −3D3+28D2−64D+12
2(D−4)(D3−8D2+20D−12)R

abR2R cde
a Rbcde

+ 2
(
D5−13D4+60D3−126D2+116D−16

)
(D−4)(D−3)(D3−8D2+20D−12) R c

a R
abRdeRRbdce

− −3D4+34D3−141D2+238D−112
(D−4)(D−3)(D3−8D2+20D−12)R

abRcdRR ef
ac Rbdef

− 2
(
D4−8D3+19D2−12D+4

)
(D−3)(D3−8D2+20D−12)R

abRcdRR e f
a c Rbedf

− 3−D
D−4R

2R e f
a c R

abcdRbedf

−D
2−3D
D−4 RabRR cde

a R f g
b d Rcfeg

+RabRR c d
a b R

efg
c Rdefg (A.5e)

Q(5),6 =−16(2D9−57D8+639D7−3863D6+14059D5−31812D4+43724D3

−32916D2+9424D+1088)/[(D−4)(D−3)(D−2)
(
D3−8D2+20D−12

)
×
(
D5−14D4+79D3−224D2+316D−170

)
]R c

a R
abR d

b RcdR

−16(D10−23D9+262D8−1914D7+9661D6−34319D5+85300D4−144708D3

+159028D2−101552D+28480)/[(D−4)(D−3)(D−2)2
(
D3−8D2+20D−12

)
×
(
D5−14D4+79D3−224D2+316D−170

)
]RabRabRcdRcdR

+32(3D11−99D10+1368D9−10752D8+54161D7−184897D6+437712D5

−717804D4+794228D3−556336D2+214928D−32032)/[(D−4)(D−3)(D−2)

×
(
3D2−15D+16

)(
D3−8D2+20D−12

)
(D5−14D4+79D3−224D2

+316D−170)]R c
a R

abRbcR
2

+32(3D11−45D10+183D9+869D8−12856D7+66448D6−201530D5

+395034D4−507818D3+413656D2−193024D+39008)/[(D−4)(D−3)

×(D−2)2
(
3D2−15D+16

)(
D3−8D2+20D−12

)
×
(
D5−14D4+79D3−224D2+316D−170

)
]RabRabR3

−4(17D10−356D9+3319D8−18114D7+63896D6−151338D5+240888D4

−247784D3+147192D2−35360D−2816)/[(D−4)(D−3)(D−2)2

×
(
3D2−15D+16

)(
D3−8D2+20D−12

)
(D5−14D4+79D3−224D2
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+316D−170)]R5

+32(3D10−99D9+1361D8−10615D7+52980D6−178926D5+417676D4

−669720D3+708764D2−447392D+127552)/[(D−4)(D−3)
(
3D2−15D+16

)
×
(
D3−8D2+20D−12

)(
D5−14D4+79D3−224D2+316D−170

)
]RabRcdR2Racbd

−4(3D9−78D8+943D7−6838D6+32308D5−102114D4+214432D3

−286992D2+221088D−74336)/[(D−4)
(
3D2−15D+16

)
×
(
D3−8D2+20D−12

)(
D5−14D4+79D3−224D2+316D−170

)
]R3RabcdR

abcd

−16(3D9−84D8+948D7−5760D6+20693D5−44340D4+52004D3

−21480D2−14272D+13008)/[(D−4)
(
3D2−15D+16

)(
D3−8D2+20D−12

)
×
(
D5−14D4+79D3−224D2+316D−170

)
]RabR2R cde

a Rbcde

−64(D9−24D8+245D7−1405D6+4982D5−11217D4+15640D3

−12198D2+3768D+352)/[D−4)(D−3)
(
D3−8D2+20D−12

)
(D5

−14D4+79D3−224D2+316D−170)]R c
a R

abRdeRRbdce

+16(D9−28D8+336D7−2286D6+9737D5−26860D4+47638D3

−51642D2+30272D−7024)/[(D−4)(D−3)
(
D3−8D2+20D−12

)
×
(
D5−14D4+79D3−224D2+316D−170

)
]RabRcdRR ef

ac Rbdef

+ 32
(
D8−18D7+134D6−532D5+1203D4−1534D3+1082D2−544D+256

)
(D−3)(D3−8D2+20D−12)(D5−14D4+79D3−224D2+316D−170)

×RabRcdRR e f
a c Rbedf

− 32
(
2D7−35D6+263D5−1098D4+2743D3−4087D2+3352D−1164

)
(D−4)(3D2−15D+16)(D5−14D4+79D3−224D2+316D−170)

×R2R e f
a c R

abcdRbedf

+ 32
(
D6−14D5+82D4−254D3+433D2−380D+132

)
(D−4)(D5−14D4+79D3−224D2+316D−170) RabRR cde

a R f g
b d Rcfeg

− 2
(
D5−10D4+39D3−74D2+68D−24

)
D5−14D4+79D3−224D2+316D−170RR

ef
ab RabcdR gh

ce Rdfgh

+RRabcdRabcdRefghRefgh (A.5f)

B Results of holographic shear viscosity

In this section we present the values of the coefficients a, b in (4.14) for dimension-generic
quartic and quintic ETQT terms. The coefficients for quartic case are given in table 5 below.

For quintic ETQT terms, we only present the coefficients of the terms presented in the
previous section in (A.5).
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a1 − (D−4)(2D8−29D7+145D6−245D5−101D4+226D3+1362D2−1984D+304)
16(D−2)(D−1)D(D3−9D2+26D−22)

b1
(D−4)(2D7−33D6+188D5−375D4−224D3+1722D2−1744D+304)

16(D−2)(D−1)D(D3−9D2+26D−22)

a2 − (D−4)(D8−15D7+98D6−344D5+573D4+9D3−1376D2+1366D−152)
8(D−2)(D−1)D(D3−9D2+26D−22)

b2
(D−4)(D7−15D6+108D5−481D4+1303D3−1930D2+1246D−152)

8(D−2)(D−1)D(D3−9D2+26D−22)

a3 − (D−4)(D8−13D7+45D6+51D5−466D4+178D3+1828D2−2248D+304)
16(D−2)(D−1)D(D3−9D2+26D−22)

b3
(D−4)(D7−16D6+71D5+38D4−1002D3+2452D2−2008D+304)

16(D−2)(D−1)D(D3−9D2+26D−22)

a4 − (D−4)(D5−8D4+17D3+3D2−37D+4)
2(D−2)(D−1)D

b4
(D−4)(D4−10D3+32D2−37D+4)

2(D−2)(D−1)D

a5 − (D−4)(D5−8D4+17D3+3D2−37D+4)
(D−2)(D−1)D

b5
(D−4)(D4−10D3+32D2−37D+4)

(D−2)(D−1)D

a6 − (D−4)2(D−3)(D+1)
4(D−2)

b6
(D−4)2(D−3)

4(D−2)

a7
(D−4)(D−2)2(4D3−9D2−55D+8)

32D(D3−9D2+26D−22)

b7 − (D−4)(D−2)2(D3+3D2−40D+8)
32D(D3−9D2+26D−22)

a8
(D−4)(D−2)2

16D

b8 − (D−4)(D−2)2

16D

a9
3(D−5)(D−4)(D−2)2(D2+5D−2)

32(D3−9D2+26D−22)

b9 −3(D−5)(D−4)(D−2)2(2D−1)
16(D3−9D2+26D−22)

Table 5. Coefficients a, b of the shear viscosity contribution from quartic ETQT terms. Each
entry corresponds to the solution with the same index in table 2. Entries with zero coefficients are
omitted.

a3
3(D−5)(D−4)(D−2)2D(D2+8D−4)

16(3D2−15D+16)

b3 −3(D−5)(D−4)(D−2)2D(7D−4)
16(3D2−15D+16)

a5
1
64(D − 3)(D − 2)2D

b5 − 1
64(D − 3)(D − 2)2D

a6 − (D−3)(D−2)2(6D8−81D7+380D6−508D5−1660D4+7593D3−12210D2+8512D−1792)
4(3D2−15D+16)(D5−14D4+79D3−224D2+316D−170)

b6
(D−3)(D−2)2(21D7−336D6+2194D5−7582D4+15001D3−16834D2+9472D−1792)

4(3D2−15D+16)(D5−14D4+79D3−224D2+316D−170)

Table 6. Coefficients a, b of the shear viscosity contribution from quintic ETQT terms. Each entry
corresponds to the solution with the same indices in (A.5). Entries with vanishing coefficients are
omitted.
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