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Quasi Two-Dimensional Flows
Through a Cascade

| thin atrfoil theory is developed for airfoils spanning a slowly diverging or converging
channel, the motivation being to predict, theoretically, the effect of varving axial velocity

on the cascade performance of axial flow compressor rows.

Introduction

Tllmtb: are two problems to he solved in axial flow
turbomachine aerodynamics.  The first, the so-called “through-
flow™ problem, studies the average flow in a meridional plane.
The second, the cascade problem, studies the flow past a finite
number of blades cut by the rotational stream surfaces. In the
first problem, one usunally assumes axisymmetry corresponding
physically to having an infinite number of blades. In the second
problem, it is usual to ignore the radial velocities so that the
flow in one rotational stream surface is uncoupled from the flow
in adjacent stream surfaces,

The direct caseade problem consists of predicting the forces on
the blades given in advance the axisymmetric low through them.
If one assumes the axisymmetrie surfaces to be parallel to one
another with the gap between them constant, then by suitable
mapping the cascade problem is reduced to a two-dimensional
problem in a plane. Assuming no vorticity normal to this plane
and an incompressible fluid leads to a boundary value problem
with the two-dimensional potential equation as the governing
equation.  In this plane there are an infinite number of identical
airfoils subject to a given upstream veloeity.

Actually, however, both due to deliberate design the
growth of boundary layers on the bounding wallz, the adjacent
stream surfaces are not parallel.  The gap between them varies
with axial location and is usually decreasing in the downstream
direction.  The present work examines theoretically the effeet of
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Fig. 1 Definition sketch for class of lows considered

this contraction of the stream surfaces on the performance of the
airfoils spanning them.

Class of Flows to Be Considered

The flow is assumed to be inviseid, irrotational, and incom-
pressible.  Thus it is deseribable in terms of a velocity potential
¢ which satisfies:

Vip = 0 ()
It is assumed to be taking place in a channel as in Fig. 1 whose
height h is only a function of x. The channel represents the de-
veloped form of the annular portion between two adjacent stream
surfaces of a turbomachine. The assumed independence of h
with y then corresponds to assuming axisymmetry of the stream
surfaces of revolution in a machine or its counterpart found in
experimental tests of cascades,

A key assumption in the work to follow is that h(r) is a slowly
varying funetion of x. It is elear that if A(x) were constant, the
IT hix) is a slowly
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from a striet two-dimensional one is small—hence the use of the
phrase “quasi two-dimensional”” to describe such a flow.

The Averaged Equations

We anticipate that the flow will be nearly two-dimensional for
the reasons mentioned above and that as a consequence, the
velocity vector will lie mainly in the z-y plane. There will still be
small velocity variations across the height of the passage as equa-
tion (1) is essentially three-dimensional. But as they are ex-
pected to be small, it should be possible to use values across the
passage with little error, and as a result, a two-dimensional equa-
tion is obfained. Averages across the gap height are defined as

below:
i h 1 h
P *'j bilz, w = f wdz, ete. (2)
h Jo k Jo

[t is also eonvenient to average the continuity equation and the

z-ecomponent of irrotationality requirement. These equations
are

u, + v, +w, =10 (3)
v, —u, =0, (4)

respectively.  Averages of these over the channel height are now
formed as in equation (2). With the use of the kinematic bound-
ary condition that w(x, y, h) = h'u(z, y, h) they become

2 (hid) b hi 0 (5
% %)+ ay( p) = )
and
Qb Qu
= o e i (6)
or QY

The first is exact and the latter is only approximate.

To the order of approximation used in the above we may equate
@ with ¢, and # with ¢,. Then equation (3) gives for ¢ the
equation:

- h'
Ap+ — ¢, =0 (7)
h
and letting hii = @, and hv = — ¢, equation (6) gives for  the
equation:
B
AY — 3 g, =10 (8)
1

Henceforth, because we deal exclusively with average quantities,
bars will be dropped.  The errors involved in the approximations
used in deriving equations (6) and (7) have been discussed in
reference [1].* We should also add that to the same order of
approximation involved in deriving equation (7) and (8), the
centerplane potential ¢(x, ¥, 0) also satisfies:

}l
Ad(x, y, 0) + ’;{ é.(z, 4, 0) = 0.

There are two situations to which equations (7) and (8) may be
applied. First, they could be used to study the flow in a channel
of finite height as in Fig. 1. Then the equations apply in an ap-
proximate sense in that certain terms have been neglected. On
the other hand, they could be applied to the developed form of an
annular streamtube of infinitesimal width Ab as shown in Fig. 2.
The flow in this annulus is exactly described by equations (7)
and (8) in the limit as the width of the tube shrinks to zero.
This would correspond to the channel of Fig. 1 when h(z) and
h'(x) tend to zero, but h'(z)/h(z) tends to some funection of z.

! Numbers in brackets designate References at end of paper.
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In the application to the stream surfaces of Fig. 2, the only con-
ditions needed to derive equations (7) and (8) are that con-
tinuity be satisfied and that the free vorticity normal to the
stream surfaces be zero (which holds for a perfect fluid). The
shed vorticity, if any, then enters only implicitly in the deter-
mination of the stream surfaces and hence it determines h'(x)/-

hix).

Fig. 3 Cascade nomenclature

Types of Problems to Be Solved and Methods
of Solution Used

We will be interested in situations in which the basic How in the
channel is perturbed by an airfoil or a cascade of airfoils. It is
known that in plane eascade flows, this basie flow is the vector
mean of the up-and-downstream velocity vectors across the cas-
cade [2]. A similar mean velocity is also the basic flow even
when the axial velocity is not constant [3].  In the present work
we will be concerned with isolated airfoils and airfoils in cascade
as sketched in Fig. 3. The airfoils perturb the basic flow whose
magnitude at the center point of the chord is V,, and whose di-
rection is inclined at the angle 8 to the chord at this point.
Beeause of the channel convergence, the speed of the basie flow
varies unlike that of a plane flow. The angle between the axis of
convergence and the chord, denoted by A in Fig. 3, is the stagger
angle of the caseade. The problem is now that of predicting
the flow induced by a given cascade of airfoils having a known
basic flow and channel convergence.

The approach to the problem and method of solution are
modelled on that of [2].  In this, the “thin airfoil’” approximation
is used with the flow tangency condition being approximately
satisfied on the chord rather than on the surface of the airfoil
itself.  Again, as in [2], the method of distributing singularities
along the chord will be used. Thus a distribution of sources
and vortex is laid out on the blade chords as in Fig. 4 in such a
way that the flow is, approximately, tangential to blade surface.

Unlike the plane flow treatment of [2], however, the singular
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Fig. 4 Airfoil nomanclature

solutions corresponding to sources and vortex are now not
known; they appear as the fundamental solutions of equations (7)
and (8) and depend on the particular form of the channel used.

Boundary Conditions

As in thin airfoil theory, the airfoil is taken to consist of a
thickness funetion y, = "/a(y, — y;) and a camber funetion
Yo = Yaly. + u) where y, and y; are the upper and lower
ordinates of the airfoil (Fig. 4). In the thin airfoil approxima-
tion, the source strength is given by

dyy,
" dr

(9)

m(zx) = 2V

where V_, is the tangential component of the mean veloeity.
The tangency condition for the camber function is
dys, Vo

=t 10
dr ¥V, (10)

where V, is the velocity normal to the chord and V', is that tan-
gential to the chord. These velocities have components from
the mean velocities and also from the airfoils themselves, These
latter contributions are symbolically expressed in the form of
kernels K, (x, &), K, (x, £), K,,.(x, £) and K, (z, £). In these
s and v denote “source’ and “vortex,” n and ! denote normal and
tangential to the chord, and ¢ stands for “caseade.”  The mean-
ing of the kernel function K, (r, £)/2m, for example, is that it is
the normal veloeity at point x of an airfoil in an infinite cascade
due to a source of unit strength at points £ on all airfoils of the
caseade. The flow ix periodie in the easeade so that the same
source and veloecity are found at corresponding points on all
blades of the cascade, e.g., at points S_, . .. S_z, S_, So, Si .. ..
as indicated in Fig. 5. With these definitions, the flow tangency
condition for the camber function is

i " :
Vo) + g [ IMOK s, )+ VOK it )1
il -1

! 1 L
- AY e V%) +
dr 2r J _4

where m(xr) is the known source distribution and y(x) is the un-
known vorticity distribution.

Before proceeding to solve equation (1) we will outline the
method used to obtain the source and vortex solutions for varions

{m(EIK,(E) + Y(EIK . (x, E}IIIE]

1K)

types of channels.

Fundamental Source and Vortex Type Solutions

By a fundamental source type solution is meant the most
elementary singular solution to equation (7). For example, the
velocity potential for a source should become logarithmically
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singular at the origin.

As an illustration consider the case of an exponentially con-
verging channel, with A = hy exp (—ar). Then equation (7)
becomes

Ad = ag,.

The source type solution to this equation is

1 o ar
Len(5)5(5)

where r = '\/;r'-' + y% A similar elementary singular solution
for the stream funetion gives the veloeity field for a vortex.

The finding of fundamental solutions for the above exponen-
tinlly converging channel is quite easy and involves only an
elementary transformation and separation of variables. Such a
channel is, however, physically unrealistic because it flares to an
infinite width far upstream and contracts to zero width far down-
stream. With a view to clarifying the effects of contraction for
more realistic channels, efforts were made to find the solutions
for fundamental sources and vortexes for channels in which
(h'/h) differs from zero only over a finite extent of the r-axis.
Outside of this region, the flow is two-dimensional. The proce-
dure adopted is that described by Lighthill [4] and is based upon
the use of Fourier exponential transforms. The use of Fourier
exponential transforms to reduce a partial differential equation to
an ordinary differential equation requires that the dependent
variable vanish for large arguments. Since the potentials and
stream funetions do not. possess this property, the problem has to
be formulated in terms of velocities themselves.

As an illustration the procedure of ealeulating the v-component
of velocity due to an isolated vortex of unit strength located at
the origin in the z-y plane where the channel height is ke will be
outlined following [4]. Since the field is completely free of
sources, the averaged continuity equation is just equation (5).
The averaged irrotationality condition [(equation 6)] is now writ-
ten as

¢ =

2 e~ 2 )= Mo = RBEEE) (12)
or oy

The product “hed(x)d(y)"" on the right hand side of equation (12)
represents the line vortex of strength hy, and 8 is the Dirac delta
function, Eliminating (hu) leads to



v, = o S (13)
x)

h h(

The equation is transformed to standard form by the substitution
v o= h'/th(z) =",
Then
AN YL AY
ORI
= ho'/h(x) /8 (x)B(y) (14)

We now introduce the exponential transform in the usual way
1 3 .
plx, k) = exp (iky vz, y)dy
2r J_ .
so that

vy = f exp ( —iky)p(x, k)dk.

PN o AR nndl moity this Tl
e > 1 PPy e ilegra
4 \n ik T Mt <

operator above, equation (14) reduces to

If we let g(x)

5 " — Y ()]
p" — pk? + g(x)) = iy [5 (x) + 20(0) 5[!)]

It is assumed that both v, and its y derivative vanish for large .
We have p satisfying

p" — (glz) + kDp =0, x =0 (15)
and the jump conditions
0+ | A 1 h'(0)
= and p’| = (16)
# 0— 2 # 0— 4m h(0)

It is very difficult to determine the fundamental singular solutions
from the formulation in eqllaliulls (15) and (16). The solution of
the ordinary differential equation (15) with conditions of equa-
tions of equation (16) is in itself not too difficult but the subse-
quent inversion of p(x, k) to obtain v (r, ¥) can be exceedingly
difficult. Furthermore, for the cascade problem values of v(x, y)
for all y are necessary, and hence, inversions valid for large or
small values of y alone are insufficient. For this reason we have
sought channel shapes which incorporate the contraction effect
and yet are simple enough to earry out the subsequent manipula-
tions. A very convenient choice turns out to consist of two
parallel sections separated by a portion of an exponential channel
as seen in Fig. 6. Mathematically this shape is expressed as

hl
where Hy(z) is the unit step function, i.e., equal to unity if the
argument exceeds zero and equal to zero otherwise. The shape of

—a |[Holx + b) — Hy(x — a)|

I--b—---—c

T

h, exp(+ab)

kil

h, exp(-ax)
x 1 h,exp(—a a)

Fig. &6 Channel shape for central contraction

the channel is indicated in Fig. 6.

Equation (153) can now be solved for p(z, k) in a straightforward
way. However, the problem of inverting the extremely compli-
cated function of &k that p turns out to be was insurmountable and
an alternative approach suggested in [4] was nsed.

This method consists of writing the differential equation for p
in the form of an integral equation. Approximate solutions of the
integral equation can then be obtained by iteration. These
solutions again provide only p(r, k) but it turns out that the first
iteration can readily be inverted. For reference we reproduce
the integral here: First we put

p = Alk)pu(e, k), =« >tl} )
7
p = Bk)pax, k), <D
and then require that
m~expl(—kr) as r— o
(18)
p: ~exp (kr) as & — —=

Then py, pe satisfly (4]

- l — p—(qg—x)
pi(z, k) = e~** [l + f (_ !.)k ) glq)e*ap(q, k)!lrl:l
- 2

llll(l

s 1 — ekle—2)
palx, k) = et | 1 +f o ) 9@l palg, k)g

(19)

In the above k stands for [k|.  The A (k) and B(k) are found from
equation (16) after the first iteration of equation (19) is earried
ont.,

Only the first iteration of equation (19) was used in the present
work. These turn out to be proportional to parameter a of Fig. 6.
The second iteration, proportional to a?, like the exact solution
to equation (15), could not be exactly inverted to obtain w and v.
Nevertheless, knowledge of the exact values of p(r, k) did permit
an securate estimate to be made of the first iteration. This was
done for a number of easeade cases computed. Tt was found that
the approximate solution of equation (19) was systematically
greater than the exact one, but that the difference decreased
with inereasing & and was in no ease greater than about 0.4 per-
cent for the numerical work that will be discussed later.

The above diseussion sketches out how the velocity com-
ponents for vortices and sources in the sectionally exponential
channel of Fig. 6 can be obtained. These were carried out for
isolated singularities for situations in which the singularity is
loeated both within the region of contraction and exterior to the
contraction (either up- or downstream) and they are summarized
in Appendix 1. These same solutions are summed over the
blades of the infinite caseade to obtain the kernel functions re-
quired in equation (11), and they are presented for reference in
Appendix 2.

The convergence parnmeter e« is presumed to be small and
often, in such a ease, a perturbation expansion scheme is used to
obtain solutions of equation (7) as follows: Assume

¢ =+ ad + a'dp.. ...

The first term ¢, corresponds to plane flow which has its solution
for a line source, ¢ = '/ In (‘\/.r“ + ). Application of the

expansion to equation (7) then gives

A = —p————
2mw(x® + y*)

a Poisson equation, to be satisfied by ¢, This equation is

readily solved and it is found that the first order addition to the

veloeity field is precisely that obtained by the technique of

Fourier transforms just deseribed.  (Such an expansion procedure
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will not, however, work for the fully exponential channel.) In
retrospect it may be remarked that the main advantage in using
transforms appears to be that in the transform method, the
problem can be formulated and solved exactly so that numerical
evaluations of the expansion procedure are possible. It is de-
sirable to have such an estimate because, in the present case, for
fixed «, the first order calculation in ¢ will be increasingly in-
accurate as a and b become large, as then the channel of Fig. 6
can be less and less regarded as a perturbation from a channel of
constant height.

Comparison with Previous Works

Two recent papers, references [3] and [6] have used a surface
distribution of sources in the mean plane (z = 0) to achieve the
effect of varying axial velocity component of freestream velocity.
This undoubtedly alters V,,, and V_,, from the two-dimensional
value in equation (11). The velocity fields of the singularity
distributions were, however, still caleulated on a two-dimensional
basis.  For an isolated airfoil, e.g., K, .(x, £) would then simply

be (a: 1_ 5)

The present approach takes note of the fact that the flow fields
of the singularities themselves are subject to the same limitation
as the freestream velocity, namely that they take place in a chan-
nel of varving height. In both equations (5) and (6), the in-
crease in axial velocity for positive stagger leads to a decrease of
total ecirculation as compared to a two-dimensional caleulation
with constant axial velocity. It will be shown that when the
departure from two-dimensionality is taken into account in the
computation of the flow fields of the sources and vortexes, there
is a further reduction of eirculation. The reduction of circulation
due to this latter consideration is at least as great as that due to
variation of freestream velocity. Hence the incorporation of such
an additional detail is not merely of academic interest. The
formulation itself is in more general terms and enables a wider
class of problems to be solved than merely that of cascade per-
formance with varying axial veloeity. For example, one could
estimate the effect of contractions fully upstream or fully down-
stream of the airfoil chord, as will, in fact, be done.

Solution of the Integral Equation

With the channel geometry and mean angle of attack 8 given,
V,..and V. in equation (11) are then known, and from Appendix
2, the kernel functions also, It only remains to solve the integral
equation (11), to determine y(x), and from that the other charac-
teristics of the cascade. The integral equation was solved by
methods outiined in [7] and for reference the procedures adopted
for the present problem are outlined in Appendix 3.

Discussion of Results

A number of examples including isolated airfoils and airfoils
in cascade have been worked out. In all these, attention has
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Fig. 7 Variation of circulation with dist of an upstream contraction
from an isolated flat plate airfoil; stagger = 0 deg, « = 0.1, height ratic
= 0.819

been focused on the change in cireulation about the airfoils
caused by the contraction effect. In the following figures, this
is given as the ratio of the quasi two-dimensional circulation
(I r..) to the two-dimensional circulation (I'y 5, ). To ecarry
out the computations the value of the contraction parameter, «,
was sel equal to 0.1 and the mean angle of attack of the airfoil
was put at 15 deg. The contraction effect is linear in @, how-
ever, so that the above ratio of the two circulations ecan be sealed
to other values of &. The worked examples include flat plate
cascades, circular arc cascades, and cascades with thickness. In
the latter examples, the thickness distribution was that of sym-
metrieal Joukowski airfoils.

The prineipal results are given in Figs. 7-13. In Figs. 7-9,
the effect of up- and downstream contractions on an otherwise
plane eascade is shown for the circulation of an isolated flat plate.
The first two graphs show the effect of an 18 percent contraction
on an airfoil located at various distances away from the contrac-
tion. The effeet, though small, could amount to a few percent
in some applications. In Fig. 9, one end of the airfoil touches the
contraction but the length of the contraction region varies, thus
varying, with a fixed a of 0.1, the channel height ratio up to a
maximum of 1.82. Again the effects are modest but noticeable.
The remaining examples treated all have the airfoil within the
contracting region. In these, one of the principal variables is the
extent of the region of contraction, denoted by K. In all cases
it was greater than the axial projection of blade chord.

A typical result for a compressor caseade in a contracting chan-
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Fig. 8 Variation of circulation with distance of a downstream contraction from an isolated

flat plate airfoil; stagger = O deg, o = 0.1
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nel is shown in Fig. 10. There, while there are some differences
with thickness and camber, the effect of contraction is to reduce
the circulation below its two-dimensional value by about 10
percent. For comparison, the channel contraction ratio is 0.87.
The extent of contraction also has an effect on the airfoil circula-
tion even if the contraction across the cascade itself remains
constant as shown in Fig. 11.  This effect is more noticeable in
a cascade than for an isolated airfoil but depends somewhat upon
airfoil geometry (Fig. 12). The effect of stagger angle is shown in
Fig. 13, where it is seen that a minimum appears. In these cases,
the speed-up of the axial velocity across the cascade is about 15
percent or so; there is a somewhat lesser reduction in eirculation,
but still it is of sufficient magnitude to be important in a tech-
nical application.

The flow angle leaving the cascade is of more direct interest in
application. Two effects contribute to changing the flow direc-
tion through cascades with axial contraction, the eirculation
about the blades and the speed-up of axial velocity. The latter
effect tends to make the leaving velocity vector more axial, and
thus it increases the flow turning for a compressor cascade. On
the other hand the general reduction of circulation caused by the
channel contraction tends to offset this effect, suggesting that the
leaving flow angle may be relatively unchanged from its two-
dimensional value.

The leaving angle is conveniently expressed as the deviation
from the airfoil exit camber angle. Calculations of the deviation
angle, flow turning and inlet incidence angle were carried out for a
circular are cascade in both two-dimensional and quasi two-
dimensional flow. The channel contraction resulted in a 13 per-
cent, increase in axial velocity across the cascade. These results
are tabulated in Table 1. There it is seen that for the larger
angle of attack and higher solidities the effect of channel con-
traction is to increase the deviation by about two deg or less.
These comparisons are not made at the same inlet incidence
angle, however, although the effect of incidence should be slight
at the highest =olidity. A similar result was found for cascades
of flat plate airfoils where for stagger angles ranging from —30
to 60 deg and solidity of 0.5 to 1.25, channel contraction of the
above amount caused only a slight change in deviation, being
greater for the higher solidities and lesser than the corresponding
two-dimensional value for the lower solidities,

The reduction in circulation is somewhat greater for purely
cambered blades as is seen from Table 1. Then, the deviation
angle departs only slightly from the two-dimensional value and it
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is generally less except at the highest solidity than for the equiva-
lent plane flow. It should be mentioned that the entering and
leaving angles for the quasi two-dimensional case were computed
at the entrance and exit to the blade row.

In a recent experimental study [8] on the effects of channel
contraction on performance of cascades, it is proposed that the
increase in axial velocity reduces the deviation angle linearly with
the axial velocity ratio across the cascade section. The present
caleulations do indicate a similar linear dependence upon the
axial velocity ratio; however, as the results of Table 1 show, there
is not always a decrease in deviation angle. In faet, the change
in deviation angle seems to depend upon all the parameters of the
cascade and flow geometry. It does appear that the change in
deviation angle is relatively modest in the examples tabulated in
Table 1 and that the more important change is in the circulation
about the blades.

A computing program has been developed to carry out the
caleulations in the present work. It is available in the form of a
report [9].
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of isolated airfoils; & = 0.1, stagger = 45 deg, Cb = lift coefficient of
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Table 1 Characteristics of circular arc cascades in two-dimensional and quasi two-dimensional flow

Cb = 1.00, Stagger Angle = 45 deg, Contraction of Caseade = 0.87, Q.7.D. = quasi two-dimensional —

ngle ol
Inlet ineidence angle Flow turning angle attack at
Q.7.D. T Q.7.D. 17.D. Deviation angle center of

Solidity deg deg deg deg Q.7T.D. .D. Te.r7.0/T'7.D. chord
1.25 7.01 6.35 34 .84 36.07 9.96 8.08 0.905 15 deg
1.00 6.56 5.85 32.18 32.78 12.19 10.88 0.907 15 deg
0.80 5.90 5.11 28.57 28.39 15.13 14 .52 0.910 15 deg
0.67 5.22 4.34 25.28 24.46 17.74 17.68 0.912 15 deg
0.50 4.02 3.01 20.32 18.69 21.51 21.11 0.915 15 deg
0.00 0.916 15 deg
1.25 —0.74 —10.69 20.48 19.68 7.58 7.43 0.848 0 deg
1.00 —10.48 —11.53 18.48 17.27 8.83 9.00 0.850 0 deg
0.80 ~11.30 —12.47 16.37 14.70 10.13 10.62 0.846 0 deg
0.67 —11.98 —13.26 14 .69 12.66 11.14 11.87 0.848 0 deg
0.50 —12.97 —14.42 12.31 9.79 1252 13.58 0.850 0 deg
0.00 0.858 0 deg
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APPENDIX 1

Fundamental Solutions For Isolated Singularities

For the channel of Fig. 6 with subseripts s and » denoting
“source’” and vortex’’ respectively and for —b < z < a, the
velocity components for a unit strength of singularity are

| Ji 4 o’
Uy = -
foon L4yt 22+ )

a ‘((20 — @)+ ¥+ 2)* + ;'12)}]
(z? + 32)?

1 Y o z 4+ 2b
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= T Y § ——— &
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2r | z2 gt o 202 %)
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For a fully upstream contraction for which

h = hyexp [a(b — a)] forx < —b

h = hoexp [—a(x — b)] for —b <x < —a
and

h = ho for —a < =,

the solutions are
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For a fully downstream contraction for which

2 | ot + ts
h = hy forr < a

h = hyexp |a(z — a)] fora <z <b

and

h = ho exp [e(b — a)]

for b < =,

the solutions are
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APPENDIX 2

Fundamental Singular Solutions in a Cascade

Consider the ease of a contraction that fully covers the chords.
The chords are taken as two units long. The axis of convergence
is along the cascade axis and the convergence is located so that
the centerline of the convergence and that of the chords coincide.
The extent of the contraction is E so that [F =+ 2 cos (A)] is the
fraction of the chords covered by the contraction. Since the
contraction is assumed to fully cover the chord, [E =+ 2 cos (A)]
is always greater than unity.

The fundamental solutions in Appendix 1 are in terms of an
z-y coordinate system with the z-axis along the axis of con-
vergence. In evaluating the contribution to K, (z, £), for ex-
ample, from a unit vortex located at S, in Fig. 5, one uses the
fundamental solutions of Appendix 1 with an z’-y’ coordinate
system as shown in Fig. 5.

In terms of @, £

a' = (x — &) cos (N)

y = —ng 4+ (x — E)sin (A)
B B
a = - — eos (A), b= 2 + & cos (N)

With these values of z’, ¥, a, b one determines »’, v’ which are
velocities parallel to the =" and y’-axes at P due to the unit
vortex at S,.

T _2]“ [(I + 3 (x — &) cos ?\)

5 I: (x _,E) sin (N) —ns ]
(x — E)? 4+ n2s? — 2ns(x — £) sin (N)

+ j {i\nn" [!‘1-7_ -+ E)_('ns_)\:l

ns — (z — E)sin A
~ tand [E+<?+§)_""-*_’\]]
o ns — (x — ) sin A
S L & e — 108
v = B [(1 -+ 5 (& — &) cos )\)

X[ - (x — & eos A :'
(x — £)? + n2%? — 2ns (x — £)sin X

+ S In { [((x + &) cos N + E)* + n%s® — 2ns(x — £) sin A

+ (@ — £)2sin? A] (B — (z + £))* + n%? — 2ns(z — E)sin A
4+ (x — E)2sin? N + [(x — £)? + n?s? — 2ns(z — £) sin A]?})

The velocity normal to the chord at P due to the unit vortex at S,
is

v = —u’ sin (N) 4 v’ cos (A).

K, .a(x, £) will consist of an infinite sum of such contributions
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from unit vortexes at S_, ... S_1, So, Sy, . .. S..
The first portion of K, (x, £)is

(z — &) = ns sin (N) }

n= o

ET— £)? — 2ns(x — &) sirﬁ)\) -+ Rt

< 4
x (l -+ = (x — &) cos {)\)).

n= — o

This portion is summable in closed form and the sum is (see
Appendix 1 of [2]):

(1 + % (@ — §) cos ?\)

The remaining part of K, ., is:

e

]

ns — (x — £)sin (N)

The N to be used above will be discussed later.
3 Compute (N 4 1)(N + 2) coeflicients in the double Fourier
series expansion of K (z, £), i.e.,

Koz, &) = E Z by, cos (18) cos (me)
0 o

compute bey, b, . . . by v

4 Compute the first (N 4 1) coeflicients, i.e, dy, . . . dy in the

2 .
cos A sin h ( :r (x — &) cos )\) + sin A sin (hf sin ANz — E})
: 8

By :
cos h ( :r cos Az — E)) — cos (Z;r (x — E)sin A

© [a sin (N) l‘m]_l ({5_— (x + E) cos ()\)) e (}g_'_—i— (if)f““’j (M)]
4 ns — (x — &) sin (N)

poacos ), T + &) cos A) + B) + y)(E — @ + £) cos V) + y2)

8

where y/ = —ns + (x — &) sin (M).
The above sum is taken exactly with n from —z to +r.

E (z—§)

term r designates an integer large enough so that —,

s rs
r + £
rs

by expanding the above expressions in a Taylor series for large
(ns) and retaining the leading terms.  The result for the remainder
of the sum is, approximately:
a sin A 2 sin (2N)
4 52

acos N[ 4 o 1 1
= 3 ls” (B* + 4zt cos P\)]] I:J‘ i +2('_+ ”2]

reference [10]

The

, and

) are quite small.  The remainder of the sum is found

(_ra — E‘J)}

APPENDIX 3

Solution of the Integral Equation
Equation (11) governing the distribution of vorticity can be
expressed in the form

1 1
o f Y(E)K (x, E)E = flz) (20)
2w 1

where —1 < & < 1 and the most singular term of K (z, £) is
1

(&— 8

on [7].

The formal steps needed to solve equation (20) are as follows:

We follow in the subsequent treatment methods based

1 Letzx = cos (f), £ = cos (¢) so that as z, £ run from —1 to
1, @ and ¢ run from 7 to 0. Let

Ka:(:rs E) = _(J’—I—E_) + K”,(:I', E‘l

2 Assume for y(cos €) the usual airfoil type series with the
square root singularity at the leading edge and with all terms
vanishing at the trailing edge (due to the Kutta Joukowski
condition):

N
F(cos (8)) = ap tan (g) + Z a, sin (nf)

n=1
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((x — £)* 4+ n?s® — 2ns(x — £) sin (A))? ]]

Fourier analysis of

2f(x) = ds + z d, cos (nf)
1

5 The ay, . . . ay may be found by solving the set of simul-

taneous equations:

by b b,
’10(5r0 + b — j) + m (j;ﬂ == ; + ﬁrl)
N 1
= E ay, (anr + 4 (br-n—l o br.n.;‘l)) = (I‘..
2

Withr = 0, 1,...N, 8, is the Kronecker delta function, equal to
zero if m # n, and equal to one if m = n.

With regard to the N, we select arbitrarily some N, carry out
the solution of the set of simultaneous equations, and then check
whether the decay of the last a,’s is rapid enough for the chosen
N. IEven for complicated cascade geometries, the use of N = 4,
e, using a 5-term description of the vorticity series, seems
satisfactory (i.e., rapid decay of the last few a,’s is observable).

(-+3)
LI

and de-

pends only on the first two terms of the vorticity series. For
chosen N, one has to compute (N + 1) coefficients in the d-series
and (N + 1)(N + 2) coefficients in the b-series, and so the labor
of computation increases rather steeply with inerease of N.

There is one analytical difficulty associated with K, (z, £).
For all cases where the contraction fully covers the airfoils
K, (x, £) has a weak logarithmic singularity behaving like
ln('a: — EE) The rest of K, (x, £) is continnous and can be
direetly fed into the computer for double Fourier analysis. The
double Fourier analysis of In ]x — E| can be got by using Cauchy
principal values. This expansion is, of course, not convergent
alongxr = £ Itis:

The integrated total circulation equals

cos (nf) cos (ne)
n

Injr—§ = —In(2) — ‘.Zi
1

forz # £and 8 = ¢.

The by, matrix associated with In [z — £ can be added on
separately to the double Fourier analysis of the continuous por-
tion of K, (x, £).
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