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AbstractÐAn FPD switch module M with w terminals on each side is said to be universal if every set of nets satisfying the dimension

constraint (i.e., the number of nets on each side of M is at most w) is simultaneously routable through M [8]. Chang et al. have

identified a class of universal switch blocks in [8]. In this paper, we consider the design and routing problems for another popular model

of switch modules called switch matrices. Unlike switch blocks, we prove that there exist no universal switch matrices. Nevertheless,

we present quasi-universal switch matrices which have the maximum possible routing capacities among all switch matrices of the

same size and show that their routing capacities converge to those of universal switch blocks. Each of the quasi-universal switch

matrices of size w has a total of only 14wÿ 20 (14wÿ 21) switches if w is even (odd), w > 1, compared to a fully populated one which

has 3w2 ÿ 2w switches. We prove that no switch matrix with less than 14wÿ 20 (14wÿ 21) switches can be quasi-universal.

Experimental results demonstrate that the quasi-universal switch matrices improve routabilty at the chip level.

Index TermsÐAnalysis, architecture, design, digital, gate array, programmable logic array.
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1 INTRODUCTION

F IELD-PROGRAMMABLE DEVICES (FPDs) refer to any
digital, user-configurable integrated circuits used to

implement logic functions. Due to their short production
time and low prototyping cost, FPDs have become a very
popular alternative to realizing logic designs. Fig. 1 shows
the architectures of major commercially available FPDs. As
illustrated in Fig. 1a and Fig. 1b, a Field-Programmable Gate
Array (FPGA) consists of an array of logic modules that can
be connected by general routing resources. The logic
modules contain combinational and sequential circuits that
implement logic functions. The routing resources consist of
horizontal and vertical channels and their intersection
areas. An intersection area of a horizontal and a vertical
channel is referred to as a switch module. A net can change
its routing direction via a switch module; this requires
using at least one programmable switch inside the switch
module. A large circuit that cannot be accommodated into a
single FPGA is divided into several parts; each part is
realized by an FPGA and these FPGAs are then inter-
connected by a Field-Programmable Interconnect Chip (FPIC)
(see Fig. 1c). In a Complex Programmable Logic Device (CPLD),
logic modules are surrounded by continuous horizontal and
vertical routing tracks (see Fig. 1d). Similar to FPGAs, an
intersection area of a horizontal and a vertical channels in
an FPIC or a CPLD is also referred to as a switch module.

Recent works by [5], [17] have shown that the feasibility

of FPGA design is constrained more by routing resources

than by logic resources and, often, routing delays, rather

than logic-module delays, dominate the performance of

FPGAs. Therefore, it is desirable to facilitate routing in the

design of FPGAs and FPICs. Switch modules are the most

important component of the routing resources in FPDs.
Studies by [6], [8], [15] have shown that the higher the
routability of the switch modules, the smaller the track
count needed to achieve 100 percent routing completion.
Hence, increasing the routability of a switch module also
improves the area performance of a router. Therefore, it is
of significant importance to consider switch-module design.
In current technology, FPD programmable switches usually
consume a large amount of area. Due to the area constraint,
the number of switches that can be placed in a switch
module is usually limited, implying limited routability.
Therefore, there is a basic trade-off between routability and
area for switch-module architectures.

There are two types of switch modules in commercially
available FPDs, switch matrices and switch blocks. (See Fig. 2
for their models.) The effects of switch-module architectures
on routing for the symmetric-array-based FPGAs were first
studied experimentally by Rose and Brown [15]. A
theoretical study of flexibility and routability was later
presented based on a stochastic model [6]. The primary
conclusion in both of the studies in [6], [15] is that high pin-
to-track connectivity together with relatively low switch-
module connectivity is a better solution to the routability
and area trade-off. Therefore, the architecture of a switch
module is of particular importance, due to a relatively small
switch population in a switch module. Chang et al. [8]
proposed a class of high-routability switch blocks and
analyzed three types of well-known switch blocks; they
showed theoretically and experimentally that switch blocks
with higher routability usually lead to better area perfor-
mance, which confirms the findings by [6], [15].

In this paper, we focus on switch matrices. Not much
work has been reported on switch-matrix design. Zhu et al.
in [19] first explored the feasibility conditions for switch
matrices and presented a design heuristic based on a
stochastic approach. Chang et al. in [7] applied a network-
flow based heuristic for switch-module design. Sun et al. in
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[16] studied the effects of using the two switch-module

architecturesÐswitch matrices and switch blocksÐon rout-

ing. Based on the study in [16], an FPGA/FPIC with switch

matrices in general needs fewer switches but more routing

tracks for routing completion than that with switch blocks.

This work shows the trade-offs in using the two types of

switch modules.
In this paper, we consider the design and routing

problems for universal switch matrices. An FPD switch

module M with w terminals on each side is said to be

universal if every set of nets satisfying the dimension

constraint (i.e., the number of nets on each side of M is at

most w) is simultaneously routable through M [8]. We

prove that there exist no universal switch matrices. Never-

theless, we present quasi-universal switch matrices which

have the maximum possible routing capacities among all
switch matrices of the same size and show that their routing
capacities converge to those of universal switch modules.
Each of the quasi-universal switch matrices of size w has a
total of only 14wÿ 20 (14wÿ 21) switches if w is even (odd),
w > 1, compared to a fully populated one which has 3w2 ÿ
2w switches. We prove that no switch matrix with less than
14wÿ 20 (14wÿ 21) switches can be quasi-universal. Ex-
perimental results demonstrate that the quasi-universal
switch matrices improve routabilty at the chip level.

The rest of the paper is organized as follows: Section 2
gives the preliminaries for our problem. Section 3 explores
the feasibility conditions of switch matrices. Section 4
presents the quasi-universal switch matrices. Section 5
gives an example graph modeling for detailed routing.
Finally, experimental results are reported in Section 6.

2 PRELIMINARIES

A switch matrix consists of a grid of w horizontal and w
vertical tracks. We represent a switch matrix by Mw (or M if
w is not of concern). There are two types of switches in a
switch matrix, crossing switches and separating switches. (See
Fig. 2a.) If a crossing switch at the intersection of a
horizontal and a vertical tracks is ªON,º the two tracks
are connected; if it is ªOFF,º the tracks are not connected
and are thus electrically noninteracting. If a separating
switch on a track is ªOFF,º the track is split into two
electrically noninteracting routing segments so that the

1108 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 10, OCTOBER 1999

Fig. 1. Major FPD architectures. (a) The symmetric-array FPGA model. (b) The row-based FPGA model. (c) The FPIC model. (d) The CPLD model.

Fig. 2. Switch-module models. (a) Switch matrix. (b) Switch block.



terminals on opposite sides can be used independently; if it
is ªON,º the track becomes a single electrical track. In
Fig. 2a, the crossing switches are represented by solid
circles and the separating switches by hollow circles. Switch
matrices are used in various symmetric-array FPGAs [4],
[11], row-based FPGAs [1], [9], FPICs [3], and CPLDs [2].

A connection is an electrical path between two terminals
on different sides of a switch module. Connections can be of
six types, each of which is characterized by two sides of a
module, as shown in Fig. 3. For example, type-6 connections
connect terminals on the left and the bottom sides of a
module. Type-1 and type-2 connections are straight connec-
tions, whereas the others are bent connections.

A routing requirement vector (RRV) ~n is a six-tuple
�n1; n2; . . . ; n6�, where ni is the number of type-i connections
required to be routed through a switch module, 0 � ni � w,
i � 1; 2; . . . ; 6. An RRV ~n is said to be routable on a switch
module M, denoted by ~n / M, if there exists a routing for ~n
on M. For example, the RRV �0; 1; 0; 1; 1; 1� is routable on
the switch matrix shown in Fig. 4 by programming the
switches 1, 2, 3, and 7 to be ON, and a routing solution is
illustrated by the thick lines; on the other hand, the RRV
�2; 2; 1; 0; 1; 0� is not routable on the switch matrix.

An RRV ~m � �m1;m2; . . . ;m6� is dominated by another
RRV ~n � �n1; n2; . . . ; n6�, denoted by ~m � ~n, if and only if
mi � ni, 8i; 1 � i � 6. Any RRV ~m is routable on a switch
matrix M if there exists an RRV ~n that is routable on M and
~m � ~n; i.e., ~n / M ^ ~m � ~n �) ~m / M. An RRV ~n is called
maximally routable on a switch module M if ~n / M and no
additional nets can be routed through M; in other words, ~n
is maximally routable if ~n is not dominated by any other
routable RRV on M.

The routing capacity of a switch module M is referred to
as the number of distinct routable RRVs on M; that is, the
routing capacity of M is the cardinality jf~nj~n / Mgj. The
universal switch module (USM for short) is defined in [8] as
follows:

Definition 1 [8]. A switch module Mw is called universal if
the following set of inequalities is the necessary and
sufficient conditions for an RRV ~n � �n1; n2; . . . ; n6� to be
routable on M:

n1 � n3 � n6 � w �1�

n2 � n3 � n4 � w �2�

n1 � n4 � n5 � w �3�

n2 � n5 � n6 � w: �4�

Note that the number of nets routed through each side of M
cannot exceed w; this dimension constraint is characterized
by the preceding four inequalities, one for each side.
Therefore, a USM has the maximum routing capacity, and
it is desirable to find such a universal switch matrix, if any.
In this paper, we design a class of switch matrices with best
possible routing capacities and give the qualitative and
quantitative analyses for the matrices.

3 FEASIBILITY CONDITIONS

In this section, we explore the feasibility conditions of
switch matrices.

Lemma 1. An RRV ~n is routable on a switch matrix Mw

(~n / Mw) only if ~n � �w;w; 0; 0; 0; 0� or the following set of
inequalities is satisfied:

n1 � n3 � n6 � w �5�

n2 � n3 � n4 � w �6�

n1 � n4 � n5 � w �7�

n2 � n5 � n6 � w �8�

n1 � n2 �maxfn3 � n5; n4 � n6g � 2wÿ 1: �9�

Proof. The proof is inspired by the work in [19].
Obviously, �w;w; 0; 0; 0; 0� / Mw. It is trivial that (5)-
(8) are necessary conditions for an RRV ~n to be
routable on Mw because nets routed through each side
of Mw cannot exceed w. We show that (9) is also a
necessary condition for ~n / M. Consider the RRV
~n � �0; 0; w; 0; wÿ 1; 0�. We show that ~n is maximally
routable. Clearly, any increment in n1, n2, n3, n4, or n6

would result in violation of the necessary conditions
(5) or (6). To verify that it is also impossible to increase
n5, see Fig. 5a. Since n3 � w, track t1, on the left side of
the switch matrix in Fig. 5a, must be used to route a
type-3 net, say net x. Net x must turn upward
somewhere on the track t1, and this will prevent one
track on the bottom side of the switch matrix from
routing type-5 nets. For example, if net x turns upward
at the intersection of track t1 and track t3, then track t3
cannot be used to route type-5 nets. Therefore, n5 �
wÿ 1 cannot be increased and ~n is maximally routable.
Consider the RRV ~n � �i; i; wÿ i; 0; wÿ iÿ 1; 0�, for
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Fig. 3. Six types of connections.

Fig. 4.Example of a switch-matrix routing.



1 � i � wÿ 1. Since n1 � n2 � i, there are i horizontal
tracks and i vertical tracks that must be used to route
n1 type-1 and n2 type-2 nets. Further, these tracks
cannot be used to route any other type of nets.
Therefore, routing RRV ~n on Mw can be reduced to
routing ~n0 on M 0 of size wÿ i by prerouting n1 type-1
a n d n2 t y p e - 2 n e t s , w h e r e
~n0 � �0; 0; wÿ i; 0; wÿ iÿ 1; 0�. For the case where
n1 6� n2, since routing a bent net (a type-3, -4, -5, or -
6 net) requiring using a horizontal and a vertical
tracks, the combined number of type-3 and -5 (type-4
and -6) is limited by i � maxfn1; n2g. Hence, for the
case where n1 6� n2, routing RRV ~n on Mw can also be
reduced to routing ~n0 on M 0 of size wÿ i by prerouting
n1 type-1 and n2 type-2 nets, where ~n0 � �0; 0; wÿ
i; 0; wÿ iÿ 1; 0� and i � maxfn1; n2g. Based on the
preceding observation, ~n0 is maximally routable on
M 0, and so is ~n on Mw. Similarly, the RRVs
�i; i; 0; wÿ i; 0; wÿ iÿ 1�, �i; i; wÿ iÿ 1; 0; wÿ i; 0�, and
�i; i; 0; wÿ iÿ 1; 0; wÿ i� are also maximally routable
on Mw, 0 � i � wÿ 1. Thus, (9) is a necessary condition
for an RRV to be routable on Mw. tu

By Lemma 1, we have the following negative result.

Theorem 1. There exists no universal switch matrix.

Also, by Lemma 1, an RRV is simply unroutable on any
switch matrix if the RRV fails to satisfy (5)-(9). We call an
RRV nontrivial if it satisfies (5)-(9); otherwise, it is trivial
(trivially unroutable). A switch matrix M is said to be quasi-

universal if all nontrivial RRVs are routable on M. We give
the formal definition of a quasi-universal switch matrix (Q-
USM for short) as follows:

Definition 2. A switch matrix Mw is called quasi-universal if
(5)-(9) are the necessary and sufficient conditions for an RRV
~n � �n1; n2; . . . ; n6� to be routable on Mw.

Since (5)-(9) are the most fundamental routing con-
straints, a Q-USM has the maximum routing capacity
among all switch matrices. It is thus of particular
importance to find such class of switch matrices.

4 QUASI-UNIVERSAL SWITCH MATRICES (Q-USM)

In this section, we present procedures for constructing the
Q-USM and give quantitative analyses for the matrices.

4.1 Procedures for Q-USM Design

Fig. 5a, Fig. 5b, Fig. 5c, and Fig. 5d show configurations for
r o u t i n g ~n1 � �0; 0; 6; 0; 5; 0�, ~n2 � �0; 0; 5; 0; 6; 0�,
~n3 � �0; 0; 0; 6; 0; 5�, and ~n4 � �0; 0; 0; 5; 0; 6� on switch
matrices M1, M2, M3, and M4 of size w � 6, respectively.
In particular, they are the only configurations for routing
~n1; . . . ; ~n4 on M1; . . . ;M4. Clearly, for a switch matrix M to
be quasi-universal, ~ni; 1 � i � 4, must be routable on M.
This observation motivated our construction for the diagonal
switch matrix shown in Fig. 6. For the purpose of concise
description, we refer to the subdiagonals of a switch matrix
M as the conceptual slanted lines parallel and adjacent to
the two diagonals of M. Therefore, there are four
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Fig. 5. Routing configurations for four RRVs. (a) ~n1 � �0; 0; 6; 0; 5; 0�. (b) ~n2 � �0; 0; 5; 0; 6; 0�. (c) ~n3 � �0; 0; 0; 6; 0; 5�. (d) ~n4 � �0; 0; 0; 5; 0; 6�.



subdiagonals on each switch matrix (see Fig. 6). A diagonal
switch matrix D is constructed based on the following three
rules:

. Rule 1: Place crossing switches on the two diagonals
of D;

. Rule 2: Place crossing switches on the four sub-
diagonals of D;

. Rule 3: Place separating switches between the
diagonals and subdiagonals of D.

4.2 Proof of the Quasi-Universality

In this section, we show that the diagonal switch matrices
constructed by the procedures mentioned earlier are
ªcheapestº Q-USM. Let


w � f�w;w; 0; 0; 0; 0�g[

f�n1; n2; n3; n4; n5; n6�jn1 � n3 � n6 � w; n2 � n3 � n4

� w; n1 � n4 � n5 � w;

n2 � n5 � n6 � w; n1 � n2 �maxfn3 � n5; n4 � n6g

� 2wÿ 1g:

To prove that a diagonal switch matrix Dw is quasi-
universal, we must show that all RRVs in 
w are routable
on Dw. The proof of the quasi-universality is based on
mathematical induction and is informally described as
follows: It is trivial to show that D1 and D2 are quasi-
universal. Assume that all diagonal switch matrices are
quasi-universal for w � m. To prove that the claim holds for
the case where w � m� 2, we give constructive routings for
all maximally routable RRVs in 
m�2 ÿ 
m on Dw�2 by
applying the routings for the cases where w � m. Further,
we claim that the number of switches used by each of our
diagonal switch matrices is, in fact, the minimum require-
ment for a switch matrix to be quasi-universal.

To establish the proof, we first need some definitions and
lemmas. Let r�90�~n� (rÿ90�~n�) denote a 90-degree rotation
counterclockwise (clockwise), rh�~n� (rv�~n�) a reflection
along the horizontal (vertical) axis for a routing configura-
tion for ~n. For example, if

~n � �1; 2; 3; 4; 5; 6�;

r�90�~n� � �2; 1; 4; 5; 6; 3�;

rÿ90�~n� � �2; 1; 6; 3; 4; 5�;

rh�~n� � �1; 2; 6; 5; 4; 3�;

and rv�~n� � �1; 2; 4; 3; 6; 5�. We have the following definition
and lemmas:

Definition 3. Two routing configurations for ~n and ~m are
equivalent if ~n (~m) can be obtained by performing a sequence
of r�90, rÿ90, rh, and/or rv operations on ~m (~n). We say that ~n
and ~m are in the same equivalence class and denote ~n and ~m
by ~n � ~m.

Lemma 2. 8~m;~n; ~m � ~n�)�~m / D()~n / D�.

Proof. Since the diagonal switch matrix D is symmetrical,
we can obtain the same diagonal switch matrix by
performing the rotation or reflection operations. The
claim thus follows. tu

Lemma 3.

�n1; n2; n3; n4; n5; n6� / Dw�)

�n1 � 2; n2 � 2; n3; n4; n5; n6� / Dw�2:

Proof. If ~n � �n1; n2; n3; n4; n5; n6� / Dw, ~n must satisfy (5)-
(9), according to Lemma 1. When routing ~n0 � �n1 �
2; n2 � 2; n3; n4; n5; n6� on Dw�2 (see Fig. 7), we can use
tracks t1 and t2 (t3 and t4) to preroute two type-1 (type-2)
nets. Hence, as illustrated in Fig. 7, the routing on the
remaining part of Dw�2 is identical to routing ~n on Dw.
The claim thus follows. tu

Lemma 4.

�n1; n2; n3; n4; n5; n6� / Dw�)

�n1; n2; n3 � 1; n4 � 1; n5 � 1; n6 � 1� / Dw�2:
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Fig. 6. The diagonal switch matrix of size 6 (D6).



Proof. If ~n � �n1; n2; n3; n4; n5; n6� / Dw, ~n must satisfy (5)-

(9), according to Lemma 1. When routing ~n0 �

�n1; n2; n3 � 1; n4 � 1; n5 � 1; n6 � 1� on Dw�2 (see Fig. 8),

we can use the crossing switches on the four corners of

Dw�2 to preroute a type-3, a type-4, a type-5, and a type-6

nets. As illustrated in Fig. 8, the routing on the remaining

part of Dw�2 is identical to routing ~n on Dw. Therefore,

~n0 / Dw�2. tu

Lemma 5.

�n1; n2; n3; n4; n5; n6� / Dw�)

�n1 � 1; n2 � 1; n3 � 1; n4; n5; n6� / Dw�2

(also,

�n1 � 1; n2 � 1; n3; n4 � 1; n5; n6�;

�n1 � 1; n2 � 1; n3; n4; n5 � 1; n6�

and �n1 � 1; n2 � 1; n3; n4; n5; n6 � 1� / Dw�2).
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Fig. 7. Prerouting two type-1 nets and two type-2 nets on Dw�2. Fig. 8. Prerouting a type-3, a type-4, a type-5, and a type-6 nets on the

respective four corners of Dw�2.

Fig. 9. Prerouting a type-1, a type-2 nets on two outermost tracks and a corresponding bent net on the unused corner.



Proof. If ~n � �n1; n2; n3; n4; n5; n6� / Dw, ~n must satisfy (5)-
(9), according to Lemma 1. When routing ~n0 � �n1 �
1; n2 � 1; n3 � 1; n4; n5; n6� on Dw�2 (see Fig. 9a), we can
use the bottom- and right-most tracks of Dw�2 to
preroute a type-1 and a type-2 nets, the crossing switch
on the upper-left corner of Dw�2 to preroute a type-3 net.
As illustrated in Fig. 9a, the routing on the remaining
part of Dw�2 is reduced to routing ~n on Dw. Applying
similar techniques, the RRV ~n0 � �n1 � 1; n2 � 1; n3; n4 �
1; n5; n6�; �n1 � 1; n2 � 1; n3; n4; n5 � 1; n6� or �n1 � 1; n2 �
1; n3; n4; n5; n6 � 1� can also be routed on Dw�2 (see
Fig. 9b, Fig. 9c, Fig. 9d). Therefore, ~n0 / Dw�2. tu

Lemma 6.

�n1; n2; n3; n4; n5; n6� / Dw�)

�n1 � 1; n2; n3 � 1; n4 � 1; n5; n6� / Dw�2

(also,

�n1; n2 � 1; n3 � 1; n4; n5; n6 � 1�;

�n1 � 1; n2; n3; n4; n5 � 1; n6 � 1�

and �n1; n2 � 1; n3; n4 � 1; n5 � 1; n6� / Dw�2).

Proof. If ~n � �n1; n2; n3; n4; n5; n6� / Dw, ~n must satisfy (5)-
(9), according to Lemma 1. When routing ~n0 � �n1 �
1; n2; n3 � 1; n4 � 1; n5; n6� on Dw�2 (see Fig. 10), we can
use the crossing switches on the two upper corners of

Dw�2 to preroute a type-3 and a type-4 nets, and the

bottom-most track to preroute a type-1 net. As illustrated

in Fig. 10a, the routing on the remaining part of Dw�2 is

reduced to routing ~n on Dw. Applying similar techni-

q u e s , t h e RRV ~n0 � �n1; n2 � 1; n3 � 1; n4; n5; n6 �

1�; �n1 � 1; n2; n3; n4; n5 � 1; n6 � 1� or �n1; n2 � 1; n3; n4 �

1; n5 � 1; n6� can also be routed on Dw�2 (see Fig. 10b,

Fig. 10c, Fig. 10d). Therefore, ~n0 / Dw�2. tu

Lemmas 3-6 give constructive routings for most maxi-

mally routable RRVs in 
w�2 ÿ 
w on Dw�2 by extending

the routings for Dw. However, there exist some RRVs in


w�2 ÿ 
w that can not be derived from Lemmas 3-6. We

proceed to identify those RRVs in the following discussion.
If an RRV ~n � �n1; n2; n3; n4; n5; n6� is nontrivial for Dw,

then any of the following RRVs (say ~n0)
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Fig. 10. Prerouting two bent nets on the corresponding corners and a straight net on the unused outermost track.



�n1 � 2; n2 � 2; n3; n4; n5; n6�;

�n1; n2; n3 � 1; n4 � 1; n5 � 1; n6 � 1�;

�n1 � 1; n2 � 1; n3 � 1; n4; n5; n6�;

�n1 � 1; n2 � 1; n3; n4 � 1; n5; n6�;

�n1 � 1; n2 � 1; n3; n4; n5 � 1; n6�;

�n1 � 1; n2 � 1; n3; n4 � 1; n5; n6 � 1�;

�n1 � 1; n2; n3 � 1; n4 � 1; n5; n6�;

�n1 � 1; n2; n3; n4; n5 � 1; n6 � 1�;

�n1; n2 � 1; n3 � 1; n4; n5; n6 � 1�;

and

�n1; n2 � 1; n3; n4 � 1; n5 � 1; n6�

is nontrivial for Dw�2. We say an RRV such as ~n0 is derivable

from 
w since it is in 
w�2 and can be obtained by

performing some operation defined in Lemmas 3-6 on an

RRV ~n 2 
w; it is underivable, otherwise. Based on Lemmas

3-6, we have the fact that ~n / Dw�)~n0 / Dw�2. Do there

exist any underivable RRVs? As an example, �0; 0; w�

1; 1; w� 1; 1� 2 
w�2 is underivable from 
w. (At first

glance, it seems that the RRV can be obtained by performing

the operation defined in Lemma 4 on �0; 0; w; 0; w; 0�;

unfortunately, �0; 0; w; 0; w; 0� 62 
w.) We have the following

lemmas.

Lemma 7. Table 1 lists all maximally underivable RRVs in


w�2 ÿ 
w.

Proof. We partition all maximal, nontrivial RRVs ~n0 �

�n0
1
; n0

2
; n0

3
; n0

4
; n0

5
; n0

6
� into five sets A;B; . . . ; E as follows:

A �f~n0j~n0 2 
w�2 ÿ 
w; n
0
1
� 2 ^ n0

2
� 2g

B �f~n0j~n0 2 
w�2 ÿ 
w; n
0
3
� 1 ^ n0

4
� 1 ^ n0

5
� 1 ^ n0

6
� 1g

C �f~n0j~n0 2 
w�2 ÿ 
w; n
0
1
� 1 ^ n0

2
� 1 ^ n0

3
� 1g

[ f~n0j~n0 2 
w�2 ÿ 
w; n
0
1
� 1 ^ n0

2
� 1 ^ n0

4
� 1g

[ f~n0j~n0 2 
w�2 ÿ 
w; n
0
1
� 1 ^ n0

2
� 1 ^ n0

5
� 1g

[ f~n0j~n0 2 
w�2 ÿ 
w; n
0
1
� 1 ^ n0

2
� 1 ^ n0

6
� 1g

D �f~n0j~n0 2 
w�2 ÿ 
w; n
0
1
� 1 ^ n0

3
� 1 ^ n0

4
� 1g

[ f~n0j~n0 2 
w�2 ÿ 
w; n
0
1
� 1 ^ n0

5
� 1 ^ n0

6
� 1g

[ f~n0j~n0 2 
w�2 ÿ 
w; n
0
2
� 1 ^ n0

3
� 1 ^ n0

6
� 1g

[ f~n0j~n0 2 
w�2 ÿ 
w; n
0
2
� 1 ^ n0

4
� 1 ^ n0

5
� 1g

Set E : The remaining RRV s:

We first prove that all RRVs in A are derivable. For
each ~n0 � �n0

1
; n0

2
; n0

3
; n0

4
; n0

5
; n0

6
� 2 A; ~n0 satisfies the fol-

lowing set of inequalities (by Lemma 1):

n0
1
� n0

3
� n0

6
� w� 2; �10�

n0
2
� n0

3
� n0

4
� w� 2; �11�

n0
1
� n0

4
� n0

5
� w� 2; �12�

n0
2
� n0

5
� n0

6
� w� 2; �13�

n0
1
� n0

2
�maxfn0

3
� n0

5
; n0

4
� n0

6
g � 2�w� 2� ÿ 1; �14�

n0
1
� 2 ^ n0

2
� 2: �15�

By Lemma 3, ~n0 can be derived from from

~n � �n1; n2; n3; n4; n5; n6�;

n1 � n0
1
ÿ 2;

n2 � n0
2
ÿ 2;

n3 � n0
3
;

n4 � n0
4
;

n5 � n0
5
;

n6 � n0
6
:

Substituting ~n for ~n0 in (10), . . . , (24), we have

n1 � n3 � n6 � w;

n2 � n3 � n4 � w;

n1 � n4 � n5 � w;

n2 � n5 � n6 � w;

n1 � n2 �maxfn3 � n5; n4 � n6g � 2wÿ 1:

Therefore, ~n 2 
w. The claim that all RRVs in Set A are

derivable holds.
We then identify all underivable RRVs in BÿA. For

each ~n0 � �n0
1
; n0

2
; n0

3
; n0

4
; n0

5
; n0

6
� 2 BÿA; ~n0 satisfies the

following set of inequalities:

n0
1
� n0

3
� n0

6
� w� 2; �16�

n0
2
� n0

3
� n0

4
� w� 2; �17�

n0
1
� n0

4
� n0

5
� w� 2; �18�

1114 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 10, OCTOBER 1999

TABLE 1
The Five Classes of Generic Maximally Routable RRVs on Dw�2 that Are Underivable from 
w



n0
2
� n0

5
� n0

6
� w� 2; �19�

n0
1
� n0

2
�maxfn0

3
� n0

5
; n0

4
� n0

6
g � 2�w� 2� ÿ 1; �20�

n0
3
� 1 ^ n0

4
� 1 ^ n0

5
� 1 ^ n0

6
� 1 and ~n0 62 A: �21�

By Lemma 4, ~n0 can be derived from

~n � �n1; n2; n3; n4; n5; n6�;

n1 � n0
1
;

n2 � n0
2
;

n3 � n0
3
ÿ 1;

n4 � n0
4
ÿ 1;

n5 � n0
5
ÿ 1;

n6 � n0
6
ÿ 1:

Substituting ~n for ~n0 in (16), . . . , (20), we have

n1 � n3 � n6 � w; �22�

n2 � n3 � n4 � w; �23�

n1 � n4 � n5 � w; �24�

n2 � n5 � n6 � w; �25�

n1 � n2 �maxfn3 � n5; n4 � n6g � 2w� 1: �26�

By (9) in Lemma 1, ~n 2 
w except that

n1 � n2 � n3 � n5 � 2w� 1; �27�

n1 � n2 � n4 � n6 � 2w� 1; �28�

n1 � n2 � n3 � n5 � 2w; or �29�

n1 � n2 � n4 � n6 � 2w: �30�

We show that (27) and (28) are illogical. Combining
(22) and (23), (23) and (24), (22) and (25), and (24) and
(25), we have

n1 � n2 � n4 � n6 � 2n3 � 2w; �31�

n1 � n2 � n3 � n5 � 2n4 � 2w; �32�

n1 � n2 � n3 � n5 � 2n6 � 2w; �33�

n1 � n2 � n4 � n6 � 2n5 � 2w: �34�

By (28) and (31), we have

2w� 1 � n1 � n2 � n4 � n6

� n1 � n2 � n4 � n6 � 2n3

� 2w;

a contradiction. Similarly, (27) is illogical. Therefore, we

need to consider only (29) and (30).
We identify the underivable RRVs induced by (29)

and (30) in the following. Subtracting (29) from (32) and
(33), we have n4 � n6 � 0. Substituting zeros for n4 and
n6 in (22), . . . , (25), we have

n1 � n3 � w; �35�

n2 � n3 � w; �36�

n1 � n5 � w; �37�

n2 � n5 � w: �38�

By (29), (35), . . . , (38), we have

n1 � n3 � n2 � n3 � n1 � n5 � n2 � n5 � w:

Therefore, n1 � n2 and n3 � n5. Since ~n0 62 A �~n0 62 BÿA�
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TABLE 2
Capacity Comparison of the Universal Switch Modules

and the Diagonal Switch Matrices

Fig. 11. The graph modeling. (a) A symmetrical-array-based FPGA architecture. (b) Switches in the connection module and the switch matrix. (c)

The graph topology.



and n1 � n0
1

and n2 � n0
2
, n1 � 1 and n2 � 1. ~n �

�0; 0; w; 0; w; 0� or �1; 1; wÿ 1; 0; wÿ 1; 0� satisfies (29).
Similarly, we can show that ~n � �0; 0; 0; w; 0; w� or
�1; 1; 0; wÿ 1; 0; wÿ 1� are underivable, by (30). Substi-
tuting ~n0 for ~n, we conclude that

~n0 � �0; 0; w� 1; 1; w� 1; 1�; �1; 1; w; 1; w; 1�;

�0; 0; 1; w� 1; 1; w� 1�;

and �1; 1; 1; w; 1; w� are underivable in BÿA. Let the
equivalence class induced by set x be �x. We represent
an equivalence class by symbol [ ]. Since �0; 0; w�
1; 1; w� 1; 1� � �0; 0; 1; w� 1; 1; w� 1� and

�1; 1; w; 1; w; 1� � �1; 1; 1; w; 1; w�;

we have �AÿB � ��0; 0; w� 1; 1; w� 1; 1�; �1; 1; w; 1; w; 1��.
Applying similar techniques, we can obtain all

underivable RRVs in 
w�2 ÿ 
w, listed as follows:

�E � ��0; 0; w� 2; 0; w� 1; 0�; �1; 0; w� 1; 0; w� 1; 0��

= � in Classes 3 and 5 � =

�BÿA � ��0; 0; w� 1; 1; w� 1; 1�; �1; 1; w; 1; w; 1��

= � Class 4 � =

�Cÿ�A[B� � ��1; 1; w; 0; w� 1; 0�; �2; 1; w; 1; wÿ 1; 0�;

�2; 1; w; 0; w; 0��

= � in Classes 2; 3; and 5 � =

�Dÿ�A[B[C� � ��1; 0; 1; w� 1; 0; w��= � in Class 1 � =:

Table 1 summarizes those underivable RRVs into five
equivalence classes. Note that �1; 0; 1; w� 1; 0; w� is in
Class 1 since it can be obtained by performing the rv�~n

0�
operation on �1; 0; w� 1; 1; w; 0� (see Section 4.2 for the
equivalence operation). (Similarly, �1; 1; w; 0; w� 1; 0�
belongs to Class 3.) tu

Lemma 8. Algorithms 1-5 (Figs. 14, 15, 16, 17, 18) give
respective routing solutions for the five classes of underivable
RRVs listed in Table 1.

Based on Lemmas 3-8, we have the following theorem.

Theorem 2. The diagonal switch matrices are quasi-universal.

Proof. By definition, we shall show that all nontrivial RRVs
are routable on a diagonal switch matrix Dw. By
Lemma 2, we only need to show that there exists one
RRV in each maximal, nontrivial equivalence class that is

routable onDw. We proceed by induction on the size w of

a diagonal switch matrix. The claim trivially holds for

w � 2 since it is easy to enumerate all RRVs and check if

the RRVs are routable on the corresponding diagonal

switch matrices. Assume that all diagonal switch

matrices are quasi-universal for w � m. Consider the

case where w � m� 2. Lemmas 3-6, and Algorithms 155

(Figs. 14, 15, 16, 17, 18) give constructive routings for all

maximally routable RRVs in 
m�2 ÿ 
m by applying the

routing for the cases where w � m and w � mÿ 2. (See

Algorithms 1-5 (Figs. 14, 15, 16, 17, 18) for the routings

for RRVs in the five equivalence classes (listed in Table 1)

on the diagonal switch matrix.) Hence, by induction, the

diagonal switch matrices are quasi-universal. tu

Thus, we have shown that the diagonal switch matrices

are quasi-universal and they thus have the maximum

routing capacity among all switch matrices of the same size.

It is easy to see that each diagonal switch matrix of size w

contains 6wÿ 8 (6wÿ 9) crossing switches if w is even

(odd), and 8wÿ 12 separating switches, w > 1. In particular,

the numbers of switches are also the minimum requirement

for a switch matrix to be quasi-universal.
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Fig. 12. Algorithm for finding the set of mutually exclusive switch pairs on a switch matrix.

TABLE 3
CGE (Top 5) and SEGA (Bottom 9) Benchmark Circuits



Theorem 3. No switch matrix with less than 6wÿ 8 (6wÿ 9 if

w is odd) crossing switches and 8wÿ 12 separating switches

can be quasi-universal, w > 1.

Proof. Consider the four RRVs

�0; 0; w; 0; wÿ 1; 0�; �0; 0; wÿ 1; 0; w; 0�; �0; 0; 0; w; 0; wÿ 1�;

and �0; 0; 0; wÿ 1; 0; w�. Since they all satisfy (5)-(9), they

must be routable on a quasi-universal switch matrix. The

set of switches needed to route the the four RRVs is

equivalent to the ªunionº of the switches in the four

corresponding routing topologies shown in Fig. 5 (Fig. 5

shows an example for the case where w � 6). It is thus

easy to see that 6wÿ 8 (6wÿ 9 if w is odd) crossing

switches and 8wÿ 12 separating switches, w > 1, are the

minimum requirement for a switch matrix to be quasi-

universal by counting the number of switches in the

ªunionº set. tu

Hence, the diagonal switch matrices are the ªcheapestº
quasi-universal switch matrices. Note that the number of
switches required for a diagonal switch matrix is very small
compared to a fully populated switch matrix which has w2

crossing switches and 2w2 ÿ 2w separating switches.

4.3 Routing-Capacity Analysis

Let Dw and Uw be a diagonal switch matrix and a universal
switch module of size w, respectively. Let FDw

be the feasible
set for Dw; that is, FDw

� f~nj~n / Dwg. FUw
is similarly

defined. We have the following theorem.
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TABLE 4
Number of Tracks Needed for Detailed-Routing Completion for the CGE (Top 5) and SEGA (Bottom 9) Benchmark Circuits

The three schemes for net order are 1) original net order as given in the benchmark circuits, 2) shortest net first (nondecreasing order of net lengths),
and 3) longest net first (nonincreasing order of net lengths).

TABLE 5
Comparison of the Area Performance by Using the Diagonal
Switch Matrices and Randomly Generated Switch Matrices for

Various Connection Densities, Based on 15� 15 FPGA

Fig. 13. Comparison of the area performance by using the diagonal

switch matrices and randomly generated switch matrices for different

numbers of connections on a 15� 15 FPGA.



Theorem 4.

jFDw
j � jFUw

j ÿ 2w

�
5

6!
�2w6 � 24w5 � 119w4 � 312w3 � 464w2 � 96w

�

� 144�c:

Proof.

FDw
� f~njn1 � n3 � n6 � w;

n2 � n3 � n4 � w; n1 � n4 � n5 � w;

n2 � n5 � n6 � w;

n1 � n2 �maxfn3 � n5; n4 � n6g � �2wÿ 1�g

[ f�w;w; 0; 0; 0; 0�g:

The closed form for the cardinality of FDw
, w > 0, can be

obtained as follows:

jFDw
j � jf~njn1 � n3 � n6 � w;

n2 � n3 � n4 � w;

n1 � n4 � n5 � w;

n2 � n5 � n6 � wgj

ÿ
[

wÿ1

i�0

f�i; i; 0; wÿ i; 0; wÿ i�g

�

�

�

�

�

�

�

�

�

�

ÿ
[

wÿ1

i�0

f�i; i; wÿ i; 0; wÿ i; 0�g

�

�

�

�

�

�

�

�

�

�

�
5

6!
�2w6 � 24w5 � 119w4 � 312w3 � 464w2 � 384w

�

�144�c ÿ 2w

�
5

6!
�2w6 � 24w5 � 119w4 � 312w3 � 464w2 � 96w

�

�144�c:

Note that the identity

jFDw
j � jf~njn1 � n3 � n6 � w;

n2 � n3 � n4 � w;

n1 � n4 � n5 � w;

n2 � n5 � n6 � wgj

�
5

6!
�2w6 � 24w5 � 119w4 � 312w3 � 464w2 � 384w

�

�144�c

is given by [8]. tu

Based on the above lemma, it is simple to verify the

following theorem.

Theorem 5. (Capacity ratio)

1. jFDw
j=jFUw

j is a strictly increasing function of w,
w > 0;

2. limw!1 jFDw
j=jFUw

j � 1.

Proof.

1. For w > 0,

jFDw�1
j

jFUw�1
j
ÿ
jFDw

j

jFUw
j
�

jFUw
jjFDw�1

j ÿ jFDw
jjFUw�1

j

jFUw�1
jjFUw

j

�
jFDw�1

j�jFDw
j � 2w� ÿ jFDw

j�jFDw�1
j � 2w� 2�

jFUw�1
jjFUw

j

�
jFDw�1

jjFDw j�2wjFDw�1
jÿjFDw�1

jjFDw jÿ2wjFDw jÿ2jFDw j

jFUw�1
jjFUw j

�
2wjFDw�1

j ÿ 2wjFDw
j ÿ 2jFDw

j

jFUw�1
jjFUw

j

�
~A~w

72jFUw�1
jjFUw

j
> 0;

where
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Fig. 14. Algorithm for routing the maximal underivable Equivalence Class 1 on the diagonal switch matrix Dw�2.



~A � �10; 126; 637; 1608; 2008; 777;ÿ144�;

~w � �w6; w5; w4; w3; w2; w; 1�:

Because jFDw j
jFUw j

<
jFDw�1

j

jFUw�1
j , jFDw

j=jFUw
j is a strictly

increasing function of w, w > 0.

2. limw!1
jFDw j
jFUw j

� limw!1
jFDw j

jFDw j�2w � 1. tu

Therefore, the routing capacity of a diagonal switch

matrix converges to that of a universal switch module of the

same size. Table 2 summarizes the routing capacities for the
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Fig. 15. Algorithm for routing the maximal underivable Equivalence Class 2 on the diagonal switch matrix Dw�2.

Fig. 16. Algorithm for routing the maximal underivable Equivalence Class 3 on the diagonal switch matrix Dw�2.



universal switch module and the diagonal switch matrices

and their capacity ratios.

5 GRAPH MODELING FOR DETAILED ROUTING

In the previous section, we showed theoretically that the
diagonal switch matrices have high routing capacities. To
explore the effects of switch-matrix architectures on chip-
level routing, we shall test the area performance of a router
on an FPD chip using benchmark circuits. To develop a
router for experimentation, we may model an FPD as a
graph and apply the graph-search technique to FPD
routing. In this section, we use a symmetrical-array-based
FPGA as an example to demonstrate the graph modeling.

Given an FPGA architecture, we use a vertex to represent
a wire segment or a logic-module pin and an edge to
represent a connection that can be established by program-
ming a switch or by using a track in the switch matrix. See
Fig. 11 for an illustration. Fig. 11b shows a logic module
with two pins on one side. We introduce two vertices p1 and
p2 for the two pins shown in the figure. There are two
horizontal (vertical) routing tracks partitioned into four
wire segments (for the portion considered here), two on
each of the left and right (the top and bottom) sides of the
switch matrix. We introduce a vertex for each wire segment
(i1; i2; . . . ; i8 in Fig. 11c) and an edge between the two
vertices associated with each pair of wire segments abutted
on the switch matrix (edges �i1; i3�; �i6; i8�, etc.). If there is a
crossing switch connected to any pin or wire segment, then
introduce an edge between the two corresponding vertices.
(Note that the switches in the connection module can be
viewed as crossing switches. A connection module is, in
fact, a switch module with no separating switches.) For

instance, since pin p1 can connect to wire segment i1 (i2), an

edge e1 (e2) between vertices p1 and i1 (i2) is created. For

each crossing switch, we create an additional four edges for

its incident wire segments (thus, a clique for the four

vertices associated with those segments is formed). The

graph modeling is thus done. In addition to the graph

modeling, however, we need to use two data structures to

cope with the problems of connection conflicts. The conflicts

arise in two forms:

. Mutually exclusive crossing switches: Two crossing
switches with no separating switch between them
are mutually exclusive. For example, in Fig. 11,
crossing switches s1 and s2 cannot be used for
different connections at the same time since there is
no separating switch between them. In this case, we
say that s1 and s2 are in the same exclusion set. The
algorithm in Fig. 12 provides a method to find the
exclusion sets for a switch matrix.

. Mutually exclusive connections: Two connections are
mutually exclusive if they do not belong to the same
net and are incident on the same crossing switch. For
example, in Fig. 11, edges �i1; i5� and �i3; i7� cannot
be used for different connections at the same time
since the connections are mutually exclusive. It is
easy to derive an algorithm similar to The algorithm
in Fig. 12 to identify all mutually inclusive connec-
tions.

With the data structures, we can incorporate the detection

for illegal connections and exclusion sets into a router.
Based on the graph modeling, we may formulate the

routing problem as finding a set of disjoint trees (a forest),

one tree for a net and each tree connecting all terminals of a
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Fig. 17. Algorithm for routing the maximal underivable Equivalence Class 4 on the diagonal switch matrix Dw�2.



net. Any graph search-based algorithm such as maze router
can be used for detailed routing.

6 EXPERIMENTAL RESULTS

To explore the effects of switch-matrix architectures on
routing, we implemented a maze router based on the graph
modeling mentioned in the preceding section in the
C language and ran on a Sun Ultra workstation. We tested
the area performance of the router based on the CGE [15]
and SEGA [14] benchmark circuits. Table 3 gives the names
of the circuits, the numbers of logic modules in the FPGAs,
and the numbers of nets and connections in the circuits. A
logic-module pin was connected to any of the w tracks in
the adjacent routing channel. The switch-matrix architec-
tures used were the diagonal switch matrices, randomly
generated switch matrices with the same numbers of
switches as those in the diagonal switch matrices, and the
switch matrices designed by [19].

The quality of a switch matrix was evaluated by the area
performance of the detailed router. Table 4 shows the
results. For the results listed in this table, we determined the
minimum number of tracks w required for 100 percent
routing completion for each circuit, using the three kinds of
switch matrices. Because net ordering often affects the
performance of a maze router, we routed the benchmark
circuits by using the following three net-ordering schemes
to avoid possible biases: 1) net order as given in the original
benchmark circuits, 2) shortest net first (nondecreasing
order of net lengths), and 3) longest net first (nonincreasing
order of net lengths). Also, since our main goal is to make
fair comparisons for various switch-matrix architectures, no
rip-and-reroute phase was incorporated in the maze router
(optimization might bias the comparison). The running

times ranged from 3 sec for the smallest circuit (9symml) to

160 sec for the largest one (Z03). Our results show that,

among the three kinds of switch matrices, the diagonal

switch matrices usually needed the minimum ws for

100 percent routing completion, no matter what order was

used. The results show that our diagonal switch matrices

can improve the routability at the chip level.
It should be noted that the design in [19] is based on a

different switch-matrix routing model from oursÐin [19],

only one crossing or separating switch can be used for

routing a connection on a switch matrix, and at most 2w

separating switches can be placed on a switch matrix,

whereas ours allows multiswitch routing and does not have

the upper-bound constraint, 2w; therefore, it is impossible

to make a completely fair comparison with [19]. (This is

why we also compared our designs with those randomly

generated switch matrices.)
We also performed experiments to explore the effects of

net density on the area performance of switch matrices. We

randomly generated connections on a 15� 15 (number of

logic modules) FPGA. For this purpose, we assume that the

number of pins on each logic module is unlimited (so that

we could test denser circuits). As shown in Table 5 and

Fig. 13, the denser the circuit, the better the diagonal switch

matrices than the randomly generated switch matrices. This

phenomenon reveals the facts that the routability of a single

switch matrix plays a more important role when 1) the

connection density on a chip gets denser and 2) the switch

matrices become larger. Notice that denser applications and

larger chips are trends of the commercial applications and

products. Therefore, we expect that the switch-matrix

architectures will have even greater impact on FPD chip

routability than they do now.
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Fig. 18. Algorithm for routing the maximal underivable Equivalence Class 5 on the diagonal switch matrix Dw�2.



7 CONCLUDING REMARKS

We have presented a class of quasi-universal switch

matrices and shown theoretically and experimentally that

they result in better area performance in routing. Our

research also confirms the findings by [6], [8], [15] that

switch modules with larger routing capacities often result in

better routing solutions. Also, our study has shown that the

routability of a single switch matrix plays a more important

role when 1) the net density on a chip gets denser, and 2)

the switch matrices become larger. Since denser applica-

tions and larger chips are trends of the commercial

applications and products, the switch-matrix architectures

would have even greater impact on FPD chip-level

routability than they do now.
To explore the effects of FPD switch-matrix architectures

on routing, we adopted the bottom-up approach by

optimizing a single switch matrix first (and future work

shall extend to the cases for multiple switch matrices in

series). The methodology is mainly motivated by the golden

rule ªoptimize the common casesº [10], which is the key to

contemporary computer designs. For real applications, most

connections are short (the common cases); for example, about

60 percent (90 percent) of connections in the CGE [15] and

SEGA [14] benchmark circuits are routed through no more

than two (five) switch modules, independent of the sizes of

FPGAs. Therefore, the architecture of a single switch

module is of particular importance. In contrast, though

theoretically sound and interesting, the worst-case

scenarioÐemphasizing the worst-case routing instanceÐ-

for exploring the architectural effects is often pathologically

pessimistic and rarely corresponds to practical applications.

(See [12], the Turing Award lecture by R. M. Karp.) We

believe that the average/common-case scenario shall be a

superior alternative to architectural design.
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