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The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose

amplitude must be sufficiently small since curvature perturbations are observed to be predominantly

adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density

of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the

problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a nonperturbative

level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the

viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a

bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode

cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings

seems to exclude the possibility of a successful accelerated dynamics solely based on relativistic viscous

fluids. If the dominant adiabatic mode is not affected by the viscosity of the background a sufficiently small

fraction of entropic fluctuations of viscous origin cannot be a priori ruled out.
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I. INTRODUCTION

The first releases of the WMAP data [1] presented

convincing evidence that the initial conditions of the

Einstein-Boltzmann hierarchy are predominantly adiabatic.

This conclusion follows from the relative position of the

first anticorrelation peak of the cross-spectrum between the

temperature and the polarization of the cosmic microwave

background (CMB in what follows). The subsequent

WMAP releases and the Planck explorer results [2] con-

firmed (and refined) the early determinations of the first

WMAP data [1] so that today we can say, with a fair degree

of confidence, that single field inflationary models lead

naturally to adiabatic initial data of the CMB temperature

and polarization anisotropies. Nonetheless every deviation

from this simple paradigm leads necessarily to various

entropic solutions (see e.g.[3,4]). The entropic modes can

be explicitly constrained using CMB physics but their

presence is not mandatory for a consistent explanation of

the observational data. Conversely the presence of an

adiabatic mode is essential and cannot be overlooked at

least in the framework of the standard concordance

paradigm. According to the current data [1,2], a small

fraction of anticorrelated entropic modes in the presence of

a dominant adiabatic mode may even improve the fit of

the temperature autocorrelations accounting for potential

large-scale suppressions of the corresponding angular

power spectra.

The conventional distinction between the adiabatic and

the entropic solutions, going back to the pioneering

analyses of the temperature and polarization anisotropies

[5,6], assumes an ambient fluid that is thermodynamically

reversible but this hypothesis is not necessary and it can be

relaxed by making the plasma viscous. The gauge-invariant

perturbations of the viscous coefficients lead to new

fluctuations modes of the predecoupling plasma [7]. The

physical features of these viscous solutions differ from the

four conventional nonadiabatic modes.
1
Since the inhomo-

geneities of the viscous coefficients cause entropic fluctu-

ations of the spatial curvature, the role of viscosity at large

scales must either be constrained by the initial data of the

Einstein-Boltzmann hierarchy [7] or totally absent. If

correct this conclusion would threaten the possibility of

an accelerated phase only driven by the viscous coeffi-

cients. In this paper we shall therefore analyze the fluctua-

tions induced by the viscous coefficients both at the linear

and at the nonlinear level. It will be shown that the large-

scale fluctuations induced by inhomogeneous viscosities

are not necessarily entropic, as argued in the previous

paragraph, but they can be very close to adiabatic at large

scales (hence the terminology quasiadiabatic) provided the

viscous coefficients solely depend on the energy density of

the relativistic plasma. The evolution equations of the

gauge-invariant curvature perturbations in the case of a

relativistic, irrotational and irreversible fluid differ
*
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1
The four nonadiabatic modes are customarily classified into

baryon-radiation, CDM-radiation, neutrino velocity and neutrino
entropy modes [3,4].
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substantially from the ones valid in the perfect fluid case

and derived by Lukash [8] even prior to the formulation of

the Bardeen formalism [9]. The equations for the normal

modes of the curvature perturbations driven by the viscous

inhomogeneities reduce anyway to the corresponding

expression valid for a perfect and relativistic fluid [8]

when the viscous coefficients vanish exactly. The results

obtained in perturbation theory (within a gauge-invariant

approach) are confirmed by a fully nonlinear analysis

where the curvature inhomogeneities are treated within

the expansion in spatial gradients. In this approach the

curvature inhomogeneities are not required to be

perturbative.

If the inflationary phase is solely driven by the viscous

coefficients the quasiadiabatic scalar mode is more sup-

pressed than in the conventional case where inflation is

driven by a single scalar field. Consequently the tensor to

scalar ratio exceeds the observational limits and turns out to

be excessively large if compared with a bona fide adiabatic

solution. Viscous stresses have been widely studied already

in the mid 1970s since the presence of bulk viscosity in the

relativistic plasma can influence the character of the

cosmological singularity [10]. Barrow [11] presented

detailed studies on inflationary Universes driven by a bulk

viscosity coefficient (see also [12,13]). While the possibil-

ity of an inflationary phase only driven by bulk viscosity

received various critiques also in the past (see e.g. second

paper of Ref. [11]) one of the byproducts of the present

analysis is a systematic strategy for a more concrete

phenomenological scrutiny of the large scale inhomoge-

neities induced by the viscous coefficients.

The plan of this paper is therefore the following. In

Sec. II we shall describe the viscous fluctuations of a

relativistic plasma in an explicitly gauge-invariant lan-

guage. Section III is devoted to the normal modes of the

system; we shall also investigate if and when the perturba-

tive fluctuations of the bulk viscosity can become quasia-

diabatic. In Sec. IV the themes scrutinized in Sec. III will be

examined in a fully nonlinear perspective by expanding the

geometry and the hydrodynamical variables in spatial

gradients. In Sec. V the tensor to scalar ratio will be

computed when the quasi-de Sitter phase is solely driven by

bulk viscosity. Finally Sec. VI contains some concluding

remarks.

II. GAUGE-INVARIANT FLUCTUATIONS

VISCOUS COEFFICIENTS

A. General considerations

In what follows we shall present the full governing

equations for an irreversible fluid where the viscous

coefficients can fluctuate in space and time. If the total

energy-momentum tensor of the plasma includes the

viscous contributions, the adiabatic limit, in a strict

sense, is recovered when the viscosities are neglected

and the total entropy four-vector is conserved. The total

energy-momentum tensor of the fluid shall then be written,

for the present ends, as:

T ν
μ ¼ ðpþ ρÞuμuν − pδνμ þ ξPν

μ∇αu
α þ 2ησνμ;

σνμ ¼
1

2
Pα

μP
ν
β

�

∇αu
β þ∇βuα −

2

3
δαβð∇λu

λÞ
�

; ð2:1Þ

where, as usual, Pν
μ ¼ ðδνμ − uμu

νÞ, ξ denotes the bulk

viscosity coefficient, η the shear viscosity and four-velocity

obeys gμνuμuν ¼ 1. We shall consider the situation where

the bulk viscosity coefficient ξ is the sum of a homo-

geneous part [denoted by ξ̄ðτÞ] supplemented by the

inhomogeneous contribution [denoted by δξðτ; ~xÞ]:

ξðτ; ~xÞ ¼ ξ̄ðτÞ þ δξðτ; ~xÞ: ð2:2Þ

Note that the fluctuations of the bulk viscosity are defined

in a slightly different manner.
2
in comparison with Ref. [7].

The fluctuations of the bulk viscosity coefficient would

read ηðτ; ~xÞ ¼ η̄ðτÞ þ δηðτ; ~xÞ. In what follows we shall

only consider the fluctuations of the bulk viscosity coef-

ficient. A potential homogeneous component of the shear

viscosity coefficient would not contribute the background

equations (2.9); indeed σνμ of Eq. (2.1) does not have a

homogeneous component, as it can be explicitly verified.

The shear viscosity does not contribute to the background

so that, without loss of generality, we can take η̄ → 0. The

shear viscosity is therefore important only over small

scales. Indeed across the matter-radiation transition the

shear viscosity coefficient η determines the optical depth,

the Silk damping scale and, ultimately, the shape of the

visibility function [5,14]. Over large scales (possibly

exceeding the Hubble radius) the shear viscosity only

couples to the traceless part of the extrinsic curvature.
3

The viscous energy-momentum tensor at large-scales

can be evaluated in the Landau-Lifshitz frame [15]. The

covariant conservation of the total energy-momentum tensor

(i.e.∇μT
μν ¼ 0) can be projected alonguν and alongP

α
ν ; the

two obtained equations together with the covariant con-

servation of the particle current are given hereunder:

∇μ½ðpt þ ρtÞuμ� − uα∂
αpt þ uβ∇αT

αβ ¼ 0; ð2:3Þ

ðpt þ ρtÞuβ∇βu
α − ∂αpt þ uαuβ∂

βpt þ Pα
ν∇μT

μν ¼ 0;

ð2:4Þ

2
In the first paper of Ref. [7] the bulk viscosity coefficient

includes a supplementary scale factor. More precisely we have
that aξold ¼ ξcurrent where ξold and ξcurrent correspond, respec-
tively, to the previous and to the current definitions of the bulk
viscosity coefficients.

3
To be precise we refer here to the extrinsic curvature of the

spatial slices calledKijð~x; τÞ; see, in this respect, the discussion of
Sec. IV.
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∇αðntuα þ ναÞ ¼ 0: ð2:5Þ

Using then Eqs. (2.3) and (2.5) together with the first

principle of thermodynamics, the evolution of the entropy
4

can be easily derived:

∇α½suα − μ̄να� þ να∂αμ̄ ¼ ξð∇αu
αÞ2=T þ 2ησμνσ

μν=T;

ð2:6Þ

where the right-hand side of Eq. (2.6) comes directly from

∇αuβT
αβ=T; in Eq. (2.6) μ̄ ¼ μ=T is the chemical potential

rescaled through the temperature, s is the entropy density

and να is given by:

να ¼ χ

�

ntT

ρt þ pt

�

2

½∂αμ̄ − uαu
β∂βμ̄�; ð2:7Þ

where χ denotes the heat transfer coefficient. The adiabatic

limit is recovered when the viscous contributions are

neglected and the total entropy four-vector is conserved.

B. Metric fluctuations induced by bulk viscosity

We shall now derive the gauge-invariant system of metric

fluctuations with the purpose of computing the curvature

perturbations induced by the fluctuations of the viscous

coefficients. In Sec. IV this problem will be addressed in

fully nonlinear terms, i.e. without relying on the separation

of the various quantities into a background value supple-

mented by the corresponding fluctuations. For the time

being the metric, the total energy density and the total

pressure will be split as

ρðτ; ~xÞ ¼ ρtðτÞ þ δðsÞρtðτ; ~xÞ;
pðτ; ~xÞ ¼ ptðτÞ þ δptðτ; ~xÞ;

gμνðτ; ~xÞ ¼ ḡμνðτÞ þ δgμνðτ; ~xÞ; ð2:8Þ

where ḡμν will be taken to be conformally flat, i.e. ḡμν ¼
a2ðτÞημν where aðτÞ is the scale factor, τ is the conformal

time coordinate and ημν is the Minkowski metric with

signature mostly minus. In general δgμν to linear order can

always be written as the sum the scalar, tensor and vector

fluctuations, i.e. δgμν ¼ δðsÞgμν þ δðtÞgμν þ δðvÞgμν, where

δðsÞ, δðtÞ and δðvÞ denote, respectively, the scalar tensor and
vector fluctuations of the perturbed metric.

Using Einstein equations and recalling the notations

of Eqs. (2.1)–(2.2) the evolution for the homogeneous

expansion rate are
5

2ðH2 −H0Þ ¼ l
2
Pa

2ðρt þ PtÞ;

3H2 ¼ l
2
Pa

2ρt; H ¼ a0

a
; ð2:9Þ

where Pt ¼ pt − 3ξ̄H=a is the shifted background pres-

sure. In Eq. (2.9) the prime denotes a derivation with

respect to τ while the overdot will denote a derivation with

respect to the cosmic time coordinate t. The relation

between H and H ¼ _a=a is given, as usual, by

H ¼ aH. It is appropriate to remark, at this point, that

the perfect fluid contribution is characterized, in the

simplest case, by the barotropic index w ¼ pt=ρt and by

the related sound speed c2s ¼ p0
t=ρ

0
t.

The scalar fluctuations of the conformally flat metric are

parametrized by four independent functions so that the

entries of the perturbed metric can be written as:

δðsÞg00 ¼ 2a2ϕ;

δðsÞgij ¼ 2a2ðψδij − ∂i∂jαÞ;
δðsÞg0i ¼ −a2∂iβ; ð2:10Þ

where, as already mentioned, δðsÞ denotes the scalar

fluctuation of the perturbed metric. The tensor modes

are immediately gauge-invariant and are parametrized in

terms of a divergenceless and traceless rank-two tensor in

three dimensions:

δðtÞgij ¼ −a2hij; ∂ih
i
j ¼ 0; hii ¼ 0; ð2:11Þ

where, as already mentioned, δt denotes the tensor fluc-

tuation of the perturbed metric. Finally the vector modes are

parametrized as

δðvÞg0i ¼ −a2Qi; δðvÞgij ¼ a2ð∂iWj þ ∂jWiÞ;
∂iQ

i ¼ ∂iW
i ¼ 0; ð2:12Þ

where, as already mentioned, δðvÞ denotes the vector

fluctuation of the various entries of the perturbed metric.

C. Evolution of the tensor and vector modes

The evolution of the tensor and vector modes is

completely standard. In particular the tensor modes obey,

as usual,

h00ij þ 2Hh0ij −∇2hij ¼ 0: ð2:13Þ

Equation (2.13), as expected, does not include a direct

contribution of the bulk viscosity coefficient. The contri-

bution is only indirect (i.e. through the scale factor). From

Eqs. (2.12) and recalling that ū0δ
ðvÞui ¼ Vi, the ð0iÞ and

ðijÞ components of the perturbed Einstein equations

together with the evolution of the velocity give

4
The explicit form of Eq. (2.6) has been obtained by

trading the term uν∇μT
μν for ð∇μuνÞT μν since, in the Landau

frame, ∇μðuνT μνÞ ¼ 0.
5
The Planck length and the Planck mass will be defined,

respectively, as lP ¼ =1
ffiffiffiffiffiffiffiffiffi

8πG
p

¼ 1=M̄P where M̄P ¼ MP=
ffiffiffiffiffi

8π
p

.
Recall also that MP ¼ 1.22 × 1019 GeV.
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∇2Qi ¼ −2l2Pðρt þ PtÞa2Vi; Q0
i þ 2HQi ¼ 0; ð2:14Þ

½Viðρt þ PtÞ�0 þ 4H½Viðρt þ PtÞ� ¼ 0; ð2:15Þ

where, for simplicity, we just selected the gauge Wi ¼ 0.

Equation (2.13) and its solution will play a role in the

determination of the tensor to scalar ratio to be specifically

discussed later on. Equations (2.14) and (2.15) determine

the rate of decrease of the vector modes which do not play a

major role in the present investigation, exactly as in the

other more conventional cases. Equations (2.13), (2.14) and

(2.15) share a common feature: the effect of the viscosity

enters only through the evolution of the background. This is

in sharp contrast with what happens in the case of the

scalar modes.

D. Evolution of the scalar modes

The scalar fluctuations of the effective energy-momen-

tum tensor
6
are given by:

δðsÞT 0

0
¼ δρ; δðsÞT i

0
¼

�

ρt þ pt − 3
ξ̄

a
H

�

vi; ð2:16Þ

δðsÞT j
i ¼ −δ

j
i

�

δpt − 3
H

a
δξ

−
ξ̄

a

�

θ − 3ðψ 0 þHϕÞ þ∇2α0
��

; ð2:17Þ

where u0δ
ðsÞui ¼ vi, and ∂iv

i ¼ θ. Concerning Eqs. (2.16)

and (2.17) two comments are in order: first, as expected, the

bulk viscosity and its fluctuations affect the spatial com-

ponents of the perturbed energy-momentum tensor; second

the bulk viscosity couples both to the peculiar velocity and

to the metric fluctuations. Consequently the inhomogene-

ities of the bulk viscosity cannot be rescaled away with

simple redefinitions of the metric perturbations as in the

case of Eqs. (2.13), (2.14) and (2.15).

Equations (2.16)–(2.17) are written in general terms since

no particular gauge choice has been imposed so far. The same

strategy will be also used in all the other relevant equations

with the aim of deriving a consistent gauge-invariant

evolution involving also the viscous coefficients and their

fluctuations. Since this procedure is a bit lengthy but only the

main steps will be swiftly outlined by focusing on the gauge-

invariant meaning of the bulk viscosity coefficients. Without

imposing a specific gauge choice, the Hamiltonian and the

momentum constraints stemming from the (00) and ð0iÞ
perturbed Einstein equations in the presence of the viscous

energy-momentum tensor are given by:

∇2ψ −H∇2ðβ−α0Þ−3Hðψ 0þHϕÞ¼l
2
P

2
a2δρt; ð2:18Þ

∇2ðψ 0 þHϕÞ þ ðH2 −H0Þð∇2β þ θÞ ¼ 0: ð2:19Þ

The trace of the perturbed spatial components of the Einstein

equations is

ψ 00 þ ðH2 þ 2H0ÞϕþHðϕ0 þ 2ψ 0Þ

þ 1

2
∇2½ðϕ − ψÞ þ ðβ − α0Þ0 þ 2Hðβ − α0Þ�

¼ l
2
P

2
a2
�

δpt − 3
H

a
δξ −

ξ̄

a
½θ − 3ðψ 0 þHϕÞ þ∇2α0�

�

:

ð2:20Þ

Similarly the traceless projection of the spatial components

becomes:

L
j
i ½ðϕ−ψÞ−ðα0−βÞ0þ2Hðα0−βÞ�¼l

2
Pa

2
Π

j
i ; ð2:21Þ

where Lij ¼ ð∂i∂j − δij∇
2=3Þ and Πij is the total aniso-

tropic stress. Note thatΠij is gauge-invariant and this implies

that also the left-hand side must be gauge-invariant.
7
This

observation essentially determines the form of the so-called

Bardeen potentials [9] Φ ¼ ϕþ ðβ − α0Þ0 þHðβ − α0Þ and
Ψ ¼ ψ −Hðβ − α0Þ; consequently the gauge-invariant

counterpart of Eq. (2.20) is
8

Ψ
00 þHðΦ0 þ 2Ψ0Þ þ ðH2 þ 2H0ÞΦ

¼ l
2
P

2
a2
�

δpg −
3H

a
Ξ −

ξ̄

a
½Θ − 3ðΨ0 þHΦÞ�

�

;

ð2:22Þ

where Ξ denotes the gauge-invariant fluctuation of the bulk

viscosity coefficient defined as:

Ξ ¼ δξþ ξ̄0ðβ − α0Þ: ð2:23Þ

The gauge-invariant expression of the viscosity fluctuation

will be particularly important in Sec. III when discussing the

quasiadiabatic mode. In Eq. (2.22) we also introduced the

gauge-invariant counterparts of δpt and θ namely
9

6
From now on we shall omit the subscript and write δρt

(instead of δðsÞρt), δpt (instead of δðsÞpt) and so on and so forth.

7
Note that in the subsequent applications we shall use the

following notation ∂i∂jΠ
ij ¼ ∇2

Π.
8
This shows, once more, that the perturbed equations cannot be

simply obtained by rescaling from the conventional situation.
9
Note that δpg and δρg reduce to the fluctuations of the

pressure and of the energy density in the longitudinal (or
conformally Newtonian) gauge. In different gauges the inter-
pretation of δpg and δρg may be totally different. We ought to
stress that δρg and δpg do not have a special status among the
different gauge-invariant combinations we can think of. Fur-
thermore, as we shall show in Sec. III, the whole system can be
reduced to the evolution of a unique gauge-invariant normal
mode related to the gauge-invariant curvature perturbations. In
terms of this normal mode the evolution can be studied without
making any reference to δpg and δρg.
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δρg ¼ δρt þ ρ0tðβ − α0Þ; δpg ¼ δpt þ p0
tðβ − α0Þ;

Θ ¼ θ þ∇2α0; ð2:24Þ

where the subscript g in Eq. (2.24) recalls that the corre-

sponding fluctuation is invariant under infinitesimal coor-

dinate transformations (for short gauge-invariant). The

gauge-invariant counterpart of Eqs. (2.18) and (2.19)

becomes respectively

∇2
Ψ − 3HðΨ0 þHΦÞ ¼ l

2
Pa

2δρg=2;

∇2ðΨ0 þHΦÞ þ ðH2 −H0ÞΘ ¼ 0: ð2:25Þ

Equation (2.21) implies instead

∇4ðΦ −ΨÞ ¼ 3l2Pa
2∇2

Π=2; ∂i∂jΠ
ij ¼ ∇2

Π:

ð2:26Þ

The evolution of the total energy-momentum tensor implies

the following pair of equations

δρ0g þ 3Hðδρg þ δpgÞ þ ðρt þ PtÞΘ
− 3ðρt þ PtÞΨ0 ¼ F ξ; ð2:27Þ

Θ
0þ

�

4Hþðρ0tþP0
tÞ

ρtþPt

�

Θþ∇2δpg

ρtþPt

þ∇2
Φ¼Gξ; ð2:28Þ

where the two source terms F ξ and Gξ are defined,

respectively, as:

F ξ ¼ 9
H

a
Ξþ 3

a
Hξ̄½Θ − 3ðΨ0 þHΦÞ�; ð2:29Þ

Gξ ¼
3H∇2

Ξ

aðρt þ PtÞ
þ ξ̄½∇2

Θ − 3∇2ðΨ0 þHΦÞ�
aðρt þ PtÞ

: ð2:30Þ

Both F ξ and Gξ contain the bulk viscosity and its fluctua-

tions. As we shall see in the following section the presence of

spatial fluctuations in the bulk viscosity coefficient induces

further source terms in the evolution of the spatial curvature.

As we shall see these terms play effectively the same role of

an intrinsic nonadiabatic pressure fluctuation.

III. QUASIADIABATIC MODES

From the governing equations of the previous section the

gauge-invariant evolution of the curvature perturbations

can be easily obtained. We shall show, as anticipated, that

the spatial perturbations of the viscous coefficients act as a

source term of the evolution equations of the curvature

perturbations. They are physically equivalent to nonadia-

batic pressure fluctuations. However, if the viscous coef-

ficients depend solely on the energy density of the fluid, the

source terms induced by the viscous coefficients can be

neglected for typical scales larger than the Hubble radius.

Over large-scales the evolution equations of the normal

modes of the system reproduce the ones of the adiabatic

modes. Conversely, inside the Hubble radius their evolution

equations are very different from their adiabatic counter-

part. This is the reason why these modes have been termed

here quasiadiabatic.

A. Adiabatic and nonadiabatic fluctuations

of the pressure

In terms of the Bardeen potentials the gauge-invariant

curvature fluctuations are

R ¼ −

�

Ψþ H

H2 −H0

�

HΦþΨ
0
��

¼ −ðΨ −HVgÞ;

ð3:1Þ

where the second equality follows from the momentum

constraint in its gauge-invariant form using the notation

Θ ¼ ∇2Vg. In the comoving orthogonal gauge (where both

β and the three-velocity vanish) R coincides up to a sign

(which is a matter of conventions) with the fluctuations of

the spatial curvature. While in the comoving orthogonal

gauge, R is related to fluctuations of the spatial curvature,

in a different coordinate system R will have the same

numerical value but will not necessarily be related to

curvature fluctuations. Equation (3.1) can be comple-

mented with the definition of the curvature fluctuation

on uniform density hypersurfaces:

ζ ¼ −

�

ΨþH
δρg

ρ0t

�

: ð3:2Þ

Using Eq. (2.25) the difference of Eqs. (3.1) and (3.2)

is proportional to the Laplacian of the Bardeen potential

and can therefore be neglected at large scales: R ¼ ζ −

2∇2
Ψ=½3l2Pa2ðρt þ PtÞ� This equation generalizes the

relation between R and ζ to the case when the bulk

viscosity coefficient is nonvanishing and it implies that,

up to Laplacians of Ψ, R≃ ζ.

Even if the conventional terminology might suggest

otherwise, the nonadiabatic modes arise in a globally

inviscid fluid, as the preceding considerations illustrate.

In the present paper we want to drop this hypothesis since

the total energy-momentum tensor of the plasma could

include the contributions of the shear viscosity, of the bulk

viscosity and of the heat transfer. The adiabatic limit, in a

strict sense, is recovered when the viscous contributions are

neglected and the total entropy four-vector is conserved.

Equation (3.2) accounts for the curvature fluctuations on

uniform density hypersurfaces. If the total fluid contains a

number of different constituent components (for instance

two, the a-fluid and the b-fluid) we can decompose the total

ζ as ζ ¼ ζaðρ0a=ρ0tÞ þ ζbðρ0b=ρ0tÞ where
10

10
Note that δρga and δρgb are the gauge-invariant density

fluctuations of the individual fluids and obviously ρt ¼ ρa þ ρb.
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ζa ¼ −

�

ΨþH
δρga

ρ0a

�

; ζb ¼ −

�

ΨþH
δρgb

ρ0b

�

:

ð3:3Þ

While the weighted sum of ζa and ζb is related to the total ζ,

the difference between them gives what we normally define

as the entropy perturbations [3,4]. More specifically, the

relative fluctuations in the specific entropy ς can be written

as
11
:

S ¼ δς

ς
¼ −3ðζa − ζbÞ →

δga

ð1þ waÞ
−

δgb

ð1þ wbÞ
: ð3:4Þ

The the second equality in Eq. (3.4) holds in the case of two

barotropic constituents. Equation (3.4) applies, for in-

stance, in the discussion of CDM-radiation isocurvature

mode. Let us now define the quantities relevant to the

evolution of curvature perturbations. The gauge-invariant

pressure fluctuation δpg can always be split into the

adiabatic contribution (containing the total sound speed

of the system) supplemented by the nonadiabatic contri-

bution (containing the entropy fluctuations)

δpg ¼
�

δpg

δρg

�

ς

δρg þ δpnad; δpnad ¼
�

δpg

δς

�

ρ

δς;

ð3:5Þ

where the two subscripts imply that the two relative

variations at the right-hand side should be taken, respec-

tively, at constant entropy and energy densities.
12

In the

simple case of two fluids the total speed of sound and the

nonadiabatic pressure density variation are

c2s ¼
�

δpg

δρg

�

ς

¼c2saρ
0
aþc2sbρ

0
b

ρ0aþρ0b
;

δpnad¼
�

δpg

δς

�

ρ

δς¼−
ðc2sa−c2sbÞρ0aρ0b
Hðρ0aþρ0bÞ

ðζa−ζbÞ; ð3:6Þ

where the speeds of sound in the two fluids of the mixture

have been explicitly introduced. Recalling the connection

between ζ and the weighted sum of ζa and ζb it is also

possible to write δpnad ¼ ðc2s b − c2s aÞρ0aðζa − ζÞ=H, where

the speeds of sound refer to the inviscid contribution to

the total energy-momentum tensor. Thus c2s b ¼ wb and

c2s a ¼ wa.

B. Decoupled evolution of the curvature perturbations

The decoupled evolution of the curvature perturbations is

obtained in two steps. The first step is to derive the first-

order equation obeyed by the gauge-invariant curvature

perturbations. The second step involves some lengthy but

straightforward algebra to pass from the first-order (but still

coupled) system to a second-order decoupled equation. The

first order equation obeyed byR0 can be obtained at least in
two different ways either starting from the evolution of the

metric perturbations or from the total velocity field. The

first derivation consists in taking the difference of

Eq. (2.22) and of the Hamiltonian constraint [first equation

of (2.25)]. This combination will lead directly to a term

containing a term proportional to δpnad. The same result

obtained with this procedure can be derived from

Eq. (2.28). In this case the observation is that, thanks to

the momentum constraint [second equation of Eq. (2.25)],

∇2ðRþΨÞ ¼ HΘ: using this relation to eliminate Θ from

Eq. (2.28), the wanted equation can be immediately

derived. In both cases the final result can be expressed

in the following manner:

R0 ¼ ΣR −
2Hc2s

l
2
Pa

2ðρt þ PtÞ
∇2

Ψ; ð3:7Þ

where the total source term ΣR is defined as

ΣR ¼ −
H

ρt þ Pt

δpnad þ
H

ðρt þ PtÞ
Πþ 3H2

aðρt þ PtÞ
Ξ

þ 3H

aðρt þ PtÞ
ξ̄0ðRþΨÞ þ ξ̄H

aðρt þ PtÞ
Θ: ð3:8Þ

In Eq. (3.7) and (3.8) we traded the difference of the

Bardeen potentials for the total anisotropic stress as it

follows directly from Eq. (2.26). Concerning Eqs. (3.7) and

(3.8) a few comments are in order. We first note, as already

mentioned, that the fluctuations of the viscous coefficients

play the same role of the nonadiabatic pressure fluctuations

δpnad. In the limit ξ̄ → 0 the viscous coefficients do not

contribute to the background but the fluctuations always

affect the curvature perturbations. This is the situation

leading to the viscous modes across matter-radiation equal-

ity discussed in the first paper of Ref. [7].

Equation (3.7) leads to second-order equation for R

which will be the basis for our subsequent considerations.

By taking the time derivative of both sides of Eq. (3.7)

various terms will arise: the terms containing the Laplacian

ofΨ can will be eliminated through Eq. (3.7) while the term

proportional to the time derivative of the Laplacian of Ψ

(i.e. ∇2
Ψ

0) can be expressed via the constraint [second

equation of Eq. (2.25)] and in terms of Eq. (3.1). After this

straightforward algebraic procedure the explicit form of the

second-order equation becomes:

11
Note that wa and wb are the barotropic indices for the two

fluids of the mixture.
12
To perform the variation at constant (total) energy density

means that δρga ¼ −δρgb. Similarly, to perform the variation at
constant ς means that δς ¼ 0, i.e. from Eq. (3.4) δρga=ρ

0
a ¼

δρg b=ρ
0
b.
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R00 þ 2
z0t
zt
R0 − c2s∇

2R ¼ 3a4

z2t
Πþ Σ

0
R þ 2

z0t
zt
ΣR;

zt ¼
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρt þ Pt

p

Hcs
: ð3:9Þ

It is clear from the previous expressions that the presence of

a gauge-invariant fluctuation of the bulk viscosity coef-

ficient produces a computable source for the evolution of

curvature perturbations which is fully equivalent to a

nonadiabatic fluctuation of the pressure.

As a cross-check it is useful to remark that, in the limit

ξ̄ → 0, Ξ → 0 and Π ¼ 0, Eqs. (3.8) and (3.9) reproduce

the well known results first obtained by Lukash [8] in the

absence of nonadiabatic pressure fluctuations (i.e.

δpnad ¼ 0). In this limit all the terms at the right-hand

side of Eq. (3.9) disappear and Eq. (3.9) becomes, as

expected
13

R00 þ 2
z0t
zt
R0 − c2s∇

2R ¼ 0; zt ¼
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρt þ pt

p

Hcs
:

ð3:10Þ

The case of a single scalar field is implicitly contained in

Eq. (3.10). Formally
14

the case of single scalar field is

obtained by requiring cs → 1, ΣR → 0 and ξ̄ ¼ 0. In this

case ðρt þ ptÞ → φ02=a2 (where φ denotes the scalar field)

and zt → zφ ¼ aφ0=H.

C. Quasiadiabatic normal modes

Whenever Ξ ¼ Ξðρt; HÞ the contribution of the bulk

viscosity coefficient and of its fluctuations rearrange and

cancel so that the source term is negligible at large scales. In

spite of this observation the evolution equation for the

curvature perturbations does not reproduce exactly the

canonical result for the standard adiabatic modes, hence

these solutions have been named quasiadiabatic. Since this

is a particularly relevant point of the discussion we shall

now present a more detailed analysis.

The term ΣR appearing in Eq. (3.7) contains two kinds

of contributions: the terms that do not vanish in the limit

ξ → 0 and those that do vanish in the same limit. By

separating the terms of different origins Eq. (3.7) can

therefore be rewritten as

R0 ¼ Σ̄R −
2Hc2s

l
2
Pa

2ðρtþPtÞ
∇2

Ψþ 3H2
Ξ

aðρtþPtÞ

þ 3H

aðρtþPtÞ
ξ̄0ðRþΨÞþ ξ̄H

aðρtþPtÞ
Θ; ð3:11Þ

Σ̄R ¼ −
H

ρt þ Pt

δpnad þ
H

ðρt þ PtÞ
Π: ð3:12Þ

Wewill now show that all the terms appearing in the second

line at the right-hand side of Eq. (3.11) are Oð∇2RÞ and
therefore negligible for typical length-scales larger than the

Hubble radius.

For this purpose let us notice immediately that the last

term at the right-hand side of Eq. (3.11) can also be written

as ξ̄∇2ðRþΨÞ=½aðρt þ PtÞ�. We shall therefore focus the

attention on the first two terms appearing in the second line

at the right-hand side of Eq. (3.11) and remark that in the

linearized treatment Ξðρt; HÞ is equivalent to the case ΞðρtÞ
since, according to the background equations,

H ¼ lP

ffiffiffiffiffiffiffiffiffi

ρt=3
p

. Since Ξ defines the gauge-invariant fluc-

tuation of the bulk viscosity given in Eq. (2.23) we can say,

by definition, that

Ξ ¼
�

∂ξ̄

∂ρt

�

δρt þ ξ̄0ðβ − α0Þ ¼
�

∂ξ̄

∂ρt

�

δρg; ð3:13Þ

where the second equality follows from the first one by

recalling that ξ̄0 ¼ ð∂ξ̄=∂ρtÞρ0t and from the gauge invariant

definition of δρg of Eq. (2.24). Thanks to Eq. (3.13) (and

using the Hamiltonian constraint to express δρg) we obtain:

3H2
Ξ

aðρt þ PtÞ
þ 3Hξ̄0

aðρt þ PtÞ
ðRþΨÞ

¼ 3H

aðρt þ PtÞ

�

∂ξ̄

∂ρt

��

2H

l2Pa
2
∇2

Ψ

−
6H2

l
2
Pa

2
ðΨ0 þHΦÞ − 3ðρt þ PtÞðRþΨÞ

�

: ð3:14Þ

Using now Eq. (3.1) we can immediately obtain, from

Eq. (3.14) the following result

3H2
Ξ

aðρt þ PtÞ
þ 3Hξ̄0

aðρt þ PtÞ
ðRþΨÞ

¼ −
2H

a3l2Pðρt þ PtÞ2
ξ̄0∇2

Ψ: ð3:15Þ

Inserting now Eq. (3.15) into Eq. (3.11) and recalling the

momentum constraint to eliminateΘwe finally arrive at the

equation

13
In Eq. (3.10) we have that Pt coincides with pt since, in this

case, the bulk viscosity coefficient vanishes.
14
From the purely algebraic viewpoint the situation is slightly

more complicated. Indeed the scalar field has an effective
sound speed c2φ ¼ 1þ 2a2V ;φ=ð3Hφ0Þ. In this case δp nad ¼
δpφ − c2φδρφ ¼ −4V ;φ∇

2
Ψ=ð3l2Pφ0HÞ (where V ;φ ¼ ∂V=∂φ

and V is the potential of the scalar field). These two modifications
combine in Eq. (3.9) and lead to the standard form of the
evolution equation for the normal modes.
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R0 ¼ Σ̄R þ ξ̄∇2R

aðρt þ PtÞ

−
H∇2

Ψ

4πGa2ðρt þ PtÞ

�

c2s þ
ξ̄0

aðρt þ PtÞ
−
ξ̄l2Pa

2H

�

;

ð3:16Þ

where all the terms containing the Laplacian of Ψ have

been collected: the quantity appearing in the round bracket

is actually P0
t=ρ

0
t so that Eq. (3.16) becomes:

R0 ¼ Σ̄R þ ξ̄∇2R

aðρt þ PtÞ
−

Hc2eff∇
2
Ψ

4πGa2ðρt þ PtÞ
; ð3:17Þ

where c2eff ¼ P0
t=ρ

0
t is just an auxiliary variable.

15
From

Eq. (3.17) the second-order form of the evolution equation

of R can be written as:

R00 þ 2
z̄t
z̄t
R0 − c2eff∇

2R¼
�

ξ̄∇2R0

aðρt þPtÞ

�

þ 2
z̄0t
z̄t

ξ̄∇2R

aðρt þPtÞ
;

z̄t ¼
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρt þPt

p

Hjceff j
: ð3:18Þ

In the case δpnad → 0 (absence of nonadiabatic pressure

fluctuations) and Π → 0 (absence of anisotropic stress) we

also have Σ̄R → 0. When the preceding conditions are all

met in the limit ξ̄ → 0, the result of Eq. (3.18) reproduces

the results of Lukash [8] since, in this case, c2eff coincides
with c2s . Whenever ξ̄ ≠ 0, however, the situation is totally

different and Eq. (3.18) describes, as anticipated, the

evolution of the quasiadiabatic modes.

D. Evolution of the quasiadiabatic normal mode

To analyze the evolution of the quasiadiabatic modes it is

natural to set to zero both the anisotropic stress and the

nonadiabatic pressure fluctuations. Going to Fourier space

Eq. (3.18) can also be written as:

R00 þ
�

2
z̄0t
z̄t
þ k2ξ̄

aðρt þ PtÞ

�

R0 þ k2
�

c2eff þ
�

ξ̄

aðρt þ PtÞ

�0

þ 2
z̄0t
z̄t

ξ̄

aðρt þ PtÞ

�

R ¼ 0: ð3:19Þ

Equation (3.19) is homogeneous but it is nonstandard

insofar as the pump fields get corrected both inside and

(partially) outside the Hubble radius. We shall now argue

that the coefficient of the third term of Eq. (3.19) is positive

semidefinite if the inflationary phase is driven by the bulk

viscosity coefficient. To demonstrate this point it is useful

to reverse the question and demand that the coefficient of

the third term in Eq. (3.19) is positive semidefinite; such a

request implies:

c2eff þ
1

z̄2t

∂

∂τ

�

a3ξ̄

Hc2eff

�

≥ 0: ð3:20Þ

Assuming now that the inflationary phase is triggered by a

dynamical bulk viscosity coefficient we will have

_H ¼ −
3

2
ð1þ wÞH2 þ 3

2
l
2
PHξ̄: ð3:21Þ

From Eq. (3.21) we can argue that ξ̄ is always

expressible as

ξ̄ ¼ HM̄2
Pð1þ wÞ

�

1 −
2ϵ

3ð1þ wÞ

�

ð3:22Þ

where ϵ ¼ − _H=H2 is the standard slow-roll parameter.

During inflation ϵ ≪ 1 and therefore we shall have, in

the first approximation, that ξ̄≃HM̄2
Pð1þ wÞ. The

inequality of Eq. (3.20) becomes immediately

c2eff þ
c2effH

2

aðρt þ PtÞ
∂

∂t

�

aξ̄

H2c2eff

�

≥ 0: ð3:23Þ

Using now Eq. (3.13) and the fact that c2eff is asymp-

totically constant during inflation it is possible to prove

that Eq. (3.20) implies that
16

ϵ ≤ ð1þ wÞ=ð1þ w − 2c2sÞ:
all the terms at the right hand side of the previous

inequality are Oð1Þ. Therefore the inequality simply

requires that ϵ < 1 which is always true since, by

definition, ϵ ≪ 1 during the slow-roll phase.

The term containing the first derivative of R can be

eliminated and therefore Eq. (3.19) can be written, in

Fourier space, as

q00 þ
�

k2C2ðk; τÞ − z̄00t
z̄t

�

q ¼ 0;

C2ðk; τÞ ¼ c2eff þ
1

2z̄2t

�

z̄2t ξ̄

aðρt þ PtÞ

�0
−

k2ξ̄2

4a2ðρt þ PtÞ2
;

ð3:24Þ

where the variable q is implicitly defined as

WR ¼ q;
W0

W
¼ z̄0t

z̄t
þ k2ξ̄

2aðρt þ PtÞ
: ð3:25Þ

If ξ is assigned with the constraint that asymptotically there

is a slow-roll phase of quasi de-Sitter type we must always

demand,

15
It must be stressed that c2eff does have the physical meaning

of a sound speed only in the limit ξ̄ → 0 since, in this limit, c2eff
coincides with c2s . Whenever ξ̄ ≠ 0 the effective sound speed is
not only given by c2eff, as we shall demonstrate in a moment.

16
As it can be explicitly verified from its definition and from

the asymptotic expression of ξ̄ we have that c2eff → c2s − γ − 1 up
to slow-roll corrections which are subleading.
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ϵ ¼ −
_H

H2
;

∂tξ̄

Hξ̄
≪ 1;

∂tða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρt þ PtÞ
p

Ha
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρt þ Pt

p ≪ 1:

ð3:26Þ

The solutions pinned down by the conditions (3.26) are

clearly not the most general ones compatible with the

condition that the bulk viscosity coefficient depends solely

on the energy density of the plasma. At the same time these

solutions will be useful for a specific comparison of the

quasiadiabatic mode with the genuine adiabatic solution to

be discussed in Sec. V. Note in particular that there are

solutions of Eqs. (2.9) where the slow-roll parameters of

Eq. (3.26) are time-independent.
17
Even if the equations for

the quasiadiabatic modes are completely general we shall

find it convenient, for the sake of simplicity, to assume that

the slow-roll parameters are constant at least approxi-

mately. Since to leading order in the slow-roll parameters

ξ̄ ∝ HM̄2
P the explicit form of CðkτÞ becomes

C2ðk; τÞ ¼ c2s −
3

4
ð1þ wÞ þ 1þ w

4ϵ
−
k2τ2ð1þ wÞ2

16ϵ2
:

ð3:27Þ

It is clear that during the inflationary expansion (or during

the fully developed inflationary phase) the numerical value

of C2ðkτÞ is dominated by the third and the fourth terms of

the previous expression. The equation to be solved

becomes, therefore,

q00 þ
�

−
ð1þwÞ2
16ϵ2

k4τ2 þ ð1þwÞk2
4ϵ

−
z̄00t
z̄t

�

q¼ 0: ð3:28Þ

This equation can be studied in two opposite regimes,

namely

q00 −
z̄00t
z̄t
q ¼ 0;

k2

ϵ
≪

z̄00t
z̄t
; ð3:29Þ

q00 þ
�

−
ð1þ wÞ2
16ϵ2

k4τ2 þ ð1þ wÞk2
4ϵ

�

q ¼ 0;
k2

ϵ
≫

z00t
zt
:

ð3:30Þ

The solution of Eq. (3.29) is standard and describes the

regime when the relevant wavelengths are larger than the

Hubble radius:

qðk; τÞ ¼ Akz̄tðτÞ þ Bkz̄tðτÞ
Z

τ dτ0

z̄2t ðτ0Þ
: ð3:31Þ

For a proper normalization of the whole solution (and for a

correct determination of the scalar power spectrum) we

need also to solve Eq. (3.30) and, in this case, the solution

can be solved in terms of parabolic cylinder functions. In

the case of Eq. (3.30), however, the equation gets even

simpler:

d2q

dx2
þ ½b − b2x2�q ¼ 0; x ¼ kτ; b ¼ 1þ w

4ϵ
;

ð3:32Þ

whose solution is given by

qðk; τÞ ¼ C1ðkÞe−
ð1þwÞ
8ϵ

k2τ2 þ C2ðkÞe
ð1þwÞ
8ϵ

k2τ2 : ð3:33Þ

The solution parametrized by the coefficient C2ðkÞ is

physically unacceptable. Taking into account that kτ > 1

and that ϵ < 1 this solution describes the situation where

starting from perturbatively small initial data the curva-

ture perturbations quickly become Oð1Þ and rapidly

jeopardize perturbation theory. We are therefore left

with the solution parametrized by C1ðkÞ describing a the

exponential suppression of the curvature perturbations in

the regime kτ > 1. Up to a phase we shall normalize

jC1ðkÞj ¼ 1=
ffiffiffiffiffi

2k
p

. This choice will be useful when

comparing the quasiadiabatic power spectra with their

adiabatic counterpart.

IV. NONLINEAR CURVATURE

PERTURBATIONS

A. ADM decomposition and normal coordinates

In Sec. III we have shown that the gauge-invariant

inhomogeneities of the viscous coefficients provide a

supplementary source term in the evolution equations of

curvature perturbations. If the bulk viscosity coefficient

only depends on the energy density and on the Hubble

rate the resulting curvature perturbations are approx-

imately conserved over large-scales even if the evolu-

tion of the corresponding normal modes differs

substantially from the perfect fluid case. It is desirable

to scrutinize the validity and the implications of this

result without relying on the perturbative expansion. To

achieve this goal we shall study the effects of the bulk

and shear viscosity within the expansion in spatial

gradients. This technique has been used for the first

time in the analysis of general relativistic singularities

[16] and subsequently exploited in a variety of contexts

ranging from inflationary models [17,18] to large-scale

structure [19].

In the Arnowitt-Deser-Misner formalism [20,21] (ADM

in what follows) the line element is expressed in terms of

the conventional (3þ 1)-dimensional decomposition:

ds2 ¼ gμνðτ; ~xÞdxμdxν

¼ N2dτ2 − γijðdxi þ NidτÞðdxj þ NjdτÞ; ð4:1Þ

17
These solutions are well known (see e.g. [11]). In the power-

law case a good example is the standard solution aðtÞ ∝ ðt=t1Þα
with α ≫ 1 and ξ̄ ∝ HM̄2

P. In this case, for instance, ϵ → 1=α.
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where N ¼ Nðτ; ~xÞ denotes the lapse function, Ni ¼
Niðτ; ~xÞ is the shift vector and γij ¼ γijðτ; ~xÞ is the

three-dimensional metric. In the ADM variables of

Eq. (4.1) the extrinsic curvature of the spatial slices will

be denoted by Kijðτ; ~xÞ and it is defined as Kijðτ; ~xÞ ¼
½−∂τγij þ∇iNj þ∇jNi�=ð2NÞ where ∇i are the covariant

derivatives defined with respect to γij. The other standard

notations for the traces are K ¼ γijKij and TrK2 ¼ Kj
iK

i
j.

The traceless part of the extrinsic curvature will be denoted

by K̄j
i ¼ Kj

i − δ
j
iK=3. For the sake of simplicity the shift

vectors will be assumed to vanish (i.e. Ni ¼ 0) and in this

case the coordinate observers coincide with the normal

observers.
18

B. Nonlinear evolution, curvature

modes and viscosity

In the viscous case the nonlinear generalization of the

curvature perturbations on comoving orthogonal hyper-

surfaces is

Riðτ; ~xÞ ¼
1

3
∇i½lnð

ffiffiffi

γ
p Þ� − 1

3N
∂τ½lnð

ffiffiffi

γ
p Þ�ui; ð4:2Þ

where γ ¼ det½γij� and ui is the spatial component of uμ.
The nonlinear generalization of the density contrast on

uniform curvature hypersurfaces becomes instead

ζiðτ; ~xÞ ¼
1

3
∇i½lnð

ffiffiffi

γ
p Þ� þ ∇iρ

3ðρþ PÞ ; ð4:3Þ

where ρ and P ¼ pþ 3ξK are now nonlinear quantities;

the expression of P and ρ holds to lowest order in the

gradient expansion but are not necessarily homogeneous

and this is why we distinguished them from their corre-

sponding background values denoted, respectively, by Pt

and ρt in Secs. III and IV.

Equations (4.2) and (4.3) define a set of nonlinear

variables which are also gauge-invariant. Both Ri and ζi
do not depend on the choice of time hypersurfaces and are

exactly invariant for infinitesimal coordinate transforma-

tions in the perturbative regime. Equations (4.2) and (4.3)

correspond, in linear theory, to the variables R and ζ.

Indeed in the conformally Newtonian frame where the

gauge freedom is removed and the coordinate system is

completely fixed and N2ðτ; ~xÞ ¼ a2ðτÞ½1þ 2ϕðτ; ~xÞ� and
wijðτ; ~xÞ ¼ a2ðτÞ½1 − 2ψðτ; ~xÞ�δij. In the limit set by the

two preceding expressions we have that Ri → ∂iR and

ζi → ∂iζ where R ¼ ½−ψ −Hðψ 0 þHϕÞ=ðH2 −H0Þ� and
ζ ¼ −ψ þ δρt=½3ðρt þ PtÞ� and coincide therefore with the

expressions of Eqs. (3.1) and (3.2). In the linearized

approximation the Eqs. (4.2) and (4.3) are invariant under

infinitesimal coordinate transformations. In the general

case they are also invariant under finite coordinate trans-

formations and that preserve the order of the gradient

expansion. These transformations are of the type τ → T ¼
Tðτ; ~xÞ and xk → Xkðτ; ~xÞ ¼ fkðτ; ~xÞ þ Fkðτ; ~xÞ where Fk

contains at least one spatial gradient.
19

Probably the first

nonlinear generalization of inflationary curvature perturba-

tions has been proposed in [22] after the pioneering

analyses on the gauge-invariant treatment of linearized

cosmological perturbations [9]. Similar variables have been

subsequently scrutinized and rediscovered by different

authors [23].

Although the nonlinear evolution of the curvature

perturbations caused by the inhomogeneities in the viscous

coefficients can be followed either in ζi or inRi, it appears

to be more useful in the latter than in the former since R is

directly related to the normal mode of the system. In the

presence of viscous stresses the nonlinear evolution ofRi is

given by:

∂τRi ¼
1

3
∂τ

�

∂iρ

ρþ P

�

−
1

3
∂i

�

∂τρ

ρþ P

�

þ � � � ð4:4Þ

where the ellipses stand for terms which contain, at least,

three spatial gradients and are therefore of higher order in

the gradient expansion. Equation (4.4) generalizes the

results of Refs. [22,23] (see also [7] second paper). For

the sake of conciseness the ellipses shall be neglected

altogether in the subsequent discussions but it is understood

that the forthcoming results hold to lowest order in the

gradient expansion. Recalling the expression of the effec-

tive pressure the right-hand side of Eq. (4.4) can be made

more explicit; the result is

∂τRi ¼
½∂τρ∂ip − ∂iρ∂τp� þ ½∂τρ∂iðKξÞ − ∂iρ∂τðKξÞ�

3ðρþ PÞ2 ;

ð4:5Þ

where the terms have been grouped in such a way that each

of the two square brackets reproduces, respectively, the

nonadiabatic and the viscous contributions in the pertur-

bative limit. To further simplify the right-hand side of

Eq. (4.5) we can use first the evolution of ρ [i.e.

∂τρ ¼ KNðρþ PÞ] and then rearrange the various terms.

The result of this step is given by:

18
This is a choice often made in numerical relativity [21] when

imposing Gaussian normal coordinates. In the present case,
however, we shall not use literally the normal coordinates since
we shall keep the lapse function generic with the purpose of
making specific contact with the linearized treatment of the
fluctuations.

19
We shall be working to lowest order in the gradient

expansion which means, in particular, that the trace of the
extrinsic curvature, the energy density, the pressure and the
viscous coefficients will all be fully inhomogeneous but will not
contain any spatial gradient while Ri and ζi will contain at most
one spatial gradient. This means, in the present case, that Fk will
contain only one spatial gradient.
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∂τRi ¼
KN

3ðρþ PÞ ð∂ip − c2s∂iρÞ

þ ξ

3ðρþ PÞ2 ½ð∂τρÞ∂iK − ð∂iρÞ∂τK�

þ K

3ðρþ PÞ2 ½ð∂τρÞ∂iξ − ∂iρð∂τξÞ�: ð4:6Þ

The first at the right-hand side of Eq. (4.6) is the non-

adiabatic pressure fluctuation; the second term at the right-

hand side of Eq. (4.6) vanishes since its contribution is of

higher order in the gradients. More specifically this term

can be rewritten as:

ξ

3ðρþ PÞ2 ½ð∂τρÞ∂iK − ð∂iρÞ∂τK�

¼ ξN

6ðρþ PÞ ∂iðK2 − 3l2PρÞ; ð4:7Þ

but the term at the right-hand side vanishes. Indeed the

inhomogeneous Einstein equations are

2l2Pρ ¼ K2 − TrK2;

3Nl2Pðρþ PÞ ¼ 2∂τK − 3NTrK2 þ NK2: ð4:8Þ

In the first equation TrK2 ¼ K2=9þ TrK̄2 and TrK̄2 is of

higher order.
20

In summary, thanks to the results of

Eq. (4.8) and in the absence of nonadiabatic pressure

fluctuations, Eq. (4.6) becomes:

∂τRi ¼
K

3ðρþ PÞ2 ½ð∂τρÞ∂iξ − ∂iρð∂τξÞ�: ð4:9Þ

If the source term in Eq. (4.9) vanishes the curvature

inhomogeneities will be conserved and the equations of

motion will enjoy a further symmetry
21
since Riðτ; ~xÞ can

be shifted by a a term constant in time (but not in space).

When ξ ¼ ξðρÞ Eq. (4.9) implies that ∂τRi ¼ 0: in this case

the two terms at the right-hand side simplify because ∂iξ ¼
ð∂ξ=∂ρÞ∂iρ and ∂τξ ¼ ð∂ξ=∂ρÞ∂τρ.

C. Bulk viscosity versus shear viscosity

To obtain Eqs. (4.7), (4.8) and (4.9) two results have

been used, namely that TrK̄2 is of higher order in the

gradient expansion and that the shear viscosity does not

contribute to the evolution to leading order in the gradient

expansion. These two results also imply that bulk viscosity

does contribute to the deceleration parameter while the

contribution of the shear viscosity is of higher order. Given

their relevance for the nonlinear discussion, these two

points will now be discussed in some detail. For the

purposes of this discussion we shall write explicitly the

Einstein equations in their contracted form
22

1

N
∂τK − TrK2 ¼ l

2
P

2
ðρþ 3PÞ; ð4:10Þ

∇iK −∇kK
k
i ¼ Nl2P½ðρþ PÞuiu0 þ 2ηK̄j

iuju
0�; ð4:11Þ

1

N
∂τK

j
i − KKj

i − rji ¼ l
2
P

�ðP − ρÞ
2

δ
j
i − 2ηK̄j

i þ Π
j
i

�

;

ð4:12Þ

where Π
j
i denotes the anisotropic stress (which is by

definition a traceless rank-two tensor in three dimensions)

and rij are the components of the Ricci tensor of the spatial

slices.
23
Both Π

j
i and rji are of higher order in the gradients

and we shall see that the traceless part of the extrinsic

curvature is also of higher order in the gradients and it is the

only component affected by the presence of shear viscosity.

Indeed, after taking the traceless part of Eq. (4.12) the

following equation is obtained:

∂τK̄
j
i − NKK̄j

i ¼ −2ηNl2PK̄
j
i þ Nl2PΠ

j
i þ Nr̄ji ; ð4:13Þ

where r̄ji ¼ ðrji − δ
j
ir=3Þ is traceless. Equation (4.13) shows

that the shear viscosity (unlike bulk viscosity) completely

decouples from the trace of the extrinsic curvature and only

affects the traceless part. When ηðτ; ~xÞ Eq. (4.13) can be

easily solved and the result is
24

K̄j
iðτ; ~xÞ ¼

l
2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffi

γðτ; ~xÞ
p

Z

τ

τ�

dτ00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γðτ00; ~xÞ
q

Nðτ00; ~xÞ

× e−2Aðτ00;τ;~xÞ
Π

j
iðτ00; ~xÞdτ00

þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

γðτ; ~xÞ
p

Z

τ

τ�

dτ00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γðτ00; ~xÞ
q

Nðτ00; ~xÞ

× e−2Aðτ00;τ;~xÞr̄jiðτ00; ~xÞdτ00

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γðτ�; ~xÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

γðτ; ~xÞ
p K̄j

iðτ�; ~xÞe−2Aðτ�;τ;~xÞ;

Aðτ1; τ2; ~xÞ ¼ l
2
P

Z

τ2

τ1

ηðτ0; ~xÞNðτ0; ~xÞdτ0; ð4:14Þ

where τ� ¼ τ�ð~xÞ denotes some arbitrary integration time

while, in the last line, τ1 and τ2 denote two generic times.

20
This statement will be specifically demonstrated in the last

part of this section.
21
According to the results obtained so far, Eq. (4.4) is invariant

for Riðτ; ~xÞ → Riðτ; ~xÞ þQð~xÞ provided ξ is either a space-time
constant or a function of the total energy density.

22
In other words we shall give, respectively, the (00), ð0iÞ and

ðijÞ components of the equations written in the form
Rν
μ ¼ l2P½T ν

μ − δνμT =2�.
23
By definition rijðτ; ~xÞ ¼ ∂m

ð3Þ
Γ
m
ij − ∂

ð3Þ
j Γ

m
im þ ð3Þ

Γ
m
ij
ð3Þ
Γ
n
mn −ð3Þ

Γ
m
jn

ð3Þ
Γ
n
im where the Christoffel connections are computed in

terms of γij.
24
Recall that NK ¼ −ð∂τ

ffiffiffi

γ
p Þ= ffiffiffi

γ
p

.
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Equation (4.14) demonstrates that the traceless part of the

extrinsic curvature is determined by the anisotropic stress

and by the traceless part of the intrinsic curvature. Both

quantities are of higher order in the gradient expansion. The

last term at the right-hand side of Eq. (4.14) shows that the

shear viscosity suppresses the traceless part of the extrinsic

curvature even further in comparison with the case η → 0.

Since the evolution of η decouples from the trace of the

extrinsic curvature, it does not contribute to the inhomo-

geneous generalization of the deceleration parameter: the

only accelerated solutions obtainable in the case of irre-

versible fluids are determined by the bulk viscosity

coefficient. For the sake of comparison with the fully

homogenous case we choose Gaussian normal coordinates

and set N ¼ 1; in this situation Eq. (4.10) can be written as:

qðt; ~xÞTrK2 ¼ l
2
P

�

ðρþPÞu0u0 þ
P − ρ

2

�

þ 2η

�

ukul
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

K̄kl −
2

3
u2∂t

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

þ uk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

∂k

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

−
u2

3
ffiffiffi

γ
p ∂kð

ffiffiffi

γ
p

ukÞ
�

:

ð4:15Þ

where qð~x; tÞ ¼ −1þ _K=TrK2 is the inhomogeneous gen-

eralization of the deceleration parameter.
25

To discuss the

sign of qðt; ~xÞ the following three remarks are in order:

(i) since γij is always positive semi-definite we have that

u0u
0 ¼ 1þ u2 ≥ 1 (where, we remind, u2 ¼ γijuiuj);

(ii) with the preceding observation it follows from the first

two terms at the right-hand side of Eq. (4.15) that qðt; ~xÞ is
always positive semidefinite as long as ðρþ 3PÞ ≥ 0 up to

correction Oðu2Þ; (iii) the terms multiplying the shear

viscosity η all contain at least to gradients since each

velocity field carries at least one gradient because of the

momentum constraint of Eq. (4.11).

Thanks to the three previous observations the sign of the

generalized deceleration parameter only depends on P ¼
p − ξ∇αu

α ≃ pþ Kξ (and hence on the bulk viscosity

coefficient) while the shear viscosity does not play any role.

According to Eq. (4.15) bulk viscosity only enters to

second order in the gradient expansion where, however,

the bulk viscosity also contributes through the term ðρþ
PÞu2 implicitly contained in ðρþ PÞu0u0. In conclusion

the proof presented in the first part of this section is now

complete and curvature perturbations are nonlinearly con-

served if and when the bulk viscosity coefficient only

depend on the energy density (or on the trace of the

extrinsic curvature).

V. TENSOR TO SCALAR RATIO

After the scrutiny of the nature of the quasiadiabatic

modes both at the linear and at the nonlinear level, it seems

useful to draw an explicit comparison between the qua-

siadiabatic solution and the genuine adiabatic paradigm. In

this respect the simplest and most revealing quantity to

estimate is the amplitude of the tensor to scalar ratio, i.e. the

ratio between the scalar and tensor power spectra. As in

Sec. III we shall assume a slow-roll phase is only supported

by the bulk viscosity [see, in particular, Eq. (3.26) and

discussions therein]. This case will then be compared with

the conventional situation of a single field inflationary

model. Even if the discussion could be conducted in fairly

general terms thanks to the results of the previous sections,

the attention will be focussed on the case where the slow-

roll parameters are approximately constant in time.

According to Eq. (2.13) the tensor modes only couple to

the curvature and their evolution equations are always the

same both in the adiabatic and in the quasiadiabatic case

even if the basic fields driving the slow-roll dynamics

change completely from one case to the other.

Equation (2.13) can be solved in the two relevant regimes

namely for kτ ≫ 1 (when the relevant wavelengths are

shorter than the Hubble radius) and for kτ ≪ 1 (when the

wavelengths are larger than the Hubble radius). After

counting properly the tensor polarizations, the power

spectrum becomes, in terms of the rescaled variable μkðτÞ

PTðk; τÞ ¼
4l2Pk

3

π2a2
jμkðτÞj2; μ00k þ ½k2 − a00=a�μk ¼ 0:

ð5:1Þ

The solution for μk in the two regimes kτ ≫ 1 and kτ ≪ 1

can be written as:

μkðτÞ ¼
1
ffiffiffiffiffi

2k
p e−ikτ; kτ ≫ 1;

μkðτÞ ¼ AkaðτÞ þ BkaðτÞ
Z

τ dτ0

a2ðτ0Þ ; kτ ≪ 1: ð5:2Þ

The values of Ak and Bk appearing in Eq. (5.2) are

determined by demanding the continuity in τ
ðTÞ
ex of the

solution and of its first derivative. We recall that, by

definition, kτ
ðTÞ
ex ≃ 1. The full result, valid for τ ≥ τex

can also be written as

μkðτÞ ¼
e−ikτ

ðTÞ
ex

ffiffiffiffiffi

2k
p

��

a

aex

�

− aaexðHex þ ikÞ
Z

τ

τex

dτ0

a2ðτ0Þ

�

;

ð5:3Þ

where aex ¼ aðτðTÞex Þ and analog notation is used forHex. In

the adiabatic case the large-scale curvature perturbations

are caused by a single scalar field. As already mentioned in

Sec. III the corresponding evolution equations can be

25
In the homogeneous and isotropic limit (i.e. γij ¼ a2ðtÞδij)

qðtÞ → −äa= _a2 where the overdot denotes the derivative with
respect to the cosmic time coordinate t which coincides with τ in
the case Gaussian normal coordinates (i.e. N ¼ 1 and Ni ¼ 0).
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recovered from our results by trivially setting ξ̄ → 0,

δξ → 0, δpnad → 0 and cs → 1 [see e.g. Eq. (3.9)].

Ultimately the well-known evolution equation of the

curvature perturbations will be given, in Fourier space, by

R00
φ þ 2

z0φ
zφ

R0
φ þ k2Rφ ¼ 0; zφ ¼ aφ0=H: ð5:4Þ

In this case the power spectrum is given by

PRðk; τÞ ¼
k3

2π2z2φ
jqðφÞk ðτÞj2; qðφÞ ¼ zφR; ð5:5Þ

where qðφÞ denotes the normal mode in the scalar field case

while q (without superscript) denotes the normal mode in

the quasiadiabatic case [see, in particular, Eq. (3.24)]. The

same procedure described in the case of the tensors and

leading to Eq. (5.3) can be applied in the case of qðφÞ. The
full solution analog to Eq. (5.3) but valid in the scalar case

is given by:

q
ðφÞ
k ðτÞ ¼ e−ikτ

ðSÞ
ex

ffiffiffiffiffi

2k
p

��

zφ
zex

�

− zφzexðz0ex=zex þ ikÞ
Z

τ

τex

dτ0

z2φðτ0Þ

�

: ð5:6Þ

Note that, in the case of Eq. (5.6) the solutions valid for

kτ ≪ 1 and kτ ≫ 1 have been matched for kτ
ðSÞ
ex ≃ 1 where

τ
ðSÞ
ex coincides, in the genuine adiabatic case, with τ

ðTÞ
ex .

From these expressions it is therefore possible to compute

the tensor to scalar ratio denoted by r
ðφÞ
T which is given in

the single scalar field case by:

r
ðφÞ
T ¼ 8l2P

	

	

	

	

zex
aex

	

	

	

	

2

¼ 8

M̄2
P

�

_φ2
ex

H2
ex

�

¼ 16ϵ ≪ 1; ð5:7Þ

where zex ¼ zφ½τðSÞex �. As expected the tensor spectral index is
nT ¼ −2ϵ to lowest order in the slow-roll approximation.

26

When the fluctuations are induced by bulk viscosity the

tensor contribution is exactly the same since what matters is

the evolution of the extrinsic curvature which is only

sensitive to the _H=H2, at least during the slow-roll phase.

The evolutionof the scalarmodes has been alreadydiscussed

in detail in the last part of Sec. III [see, more specifically,

Eq. (3.24) and discussion therein]. Therefore from

Eqs. (3.29)–(3.30) and from Eqs. (3.31)–(3.33) we can

obtain the tensor to scalar ratio in the quasiadiabatic case:

rT ¼ 8

M̄2
P

	

	

	

	

z̄tðτðSÞex Þ
aðτðTÞex Þ

	

	

	

	

2

e
k2τ

ðSÞ
ex ð1þwÞ
4ϵ : ð5:8Þ

Naively from Eq. (5.8) we could argue that rT gets much

larger than 1 in the limit ϵ → 0: this means that, in the

quasiadiabatic solution, that the scalarmodes are suppressed

in comparison with the tensor modes. Even this qualitative

argument is grossly correct the situation is a bit more subtle

since, as indicated, the conditions for the horizon crossing

are different for the scalar and tensor modes. In particular,

recalling Eqs. (3.29)–(3.30) and Eqs. (3.31)–(3.33), during

the slow-roll phase we have that

kτ
ðSÞ
ex ≃ 2

ffiffiffi

ϵ
p

; kτ
ðTÞ
ex ≃ 1; aðτðSÞex Þ≃

aðτðTÞex Þ
2

ffiffiffi

ϵ
p :

ð5:9Þ

According to Eq. (5.9) the evolution of the tensor modes

implies that the horizon crossing occurs for kτ
ðTÞ
ex ¼ 1 while

for scalars it occurs forkτ
ðSÞ
ex ¼ 2

ffiffiffi

ϵ
p

, i.e. jτðSÞex j ≪ jτðTÞex j since,
during slow-roll, ϵ ≪ 1. With these specifications we have

that Eq. (5.8) can also be written as

rT ¼ 16ϵ

jceff j2
ewþ1

�

aðτðSÞex Þ
aðτðTÞex Þ

�

2

≃
4

jceff j2
ewþ1;

rT

r
ðφÞ
T

≃
ewþ1

4ϵjceff j2
: ð5:10Þ

If we compare Eqs. (5.7) and (5.10)we can observe that rT is

at leastOð100Þ times larger than r
ðφÞ
T . This estimate follows

if we consider that, at most, jceff j2 < Oð1Þ. Similarly we can

take w ¼ Oð1Þ (but smaller than 1). Note that this estimate

does not rely on a particular inflationary solution driven by

bulk viscosity but just on the assumption that slow-roll

dynamics is compatible with a background viscosity.

In summary, if the quasi-de Sitter phase is caused by the

evolution of the bulk viscosity the quasiadiabatic scalar

mode is subleading in comparison with the tensor mode.

Conversely the bona fide adiabatic dominates against the

tensor mode in the single field case. This result means that

when the quasi-de Sitter phase is driven by bulk viscosity

we are getting closer to the situation of the exact de Sitter

space-time where the scalar fluctuations of the geometry

should strictly vanish in comparison with the tensor mode.

VI. CONCLUDING REMARKS

Depending on the specific dynamical situation the large-

scale inhomogeneities of the viscous coefficients can be

classified as entropic (i.e. nonadiabatic) or quasiadiabatic.

Whenever the bulk viscosity does not have a homogeneous

background the resulting fluctuations are automatically

gauge-invariant and their contribution to the evolution

26
This result is easily obtained by appreciating that in the

evolution of the tensor mode functions a00=a ¼ a2H2ð2 − ϵÞ.
Furthermore, since we are considering the case of constant slow-
roll parameters [see Eq. (3.26) and discussion therein], aH ¼
−1=ð1 − ϵÞ.
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equations of the curvature perturbations reminds us of the

familiar source terms arising in connection with the (four)

conventional entropic modes customarily constrained by

means of the temperature and the polarization anisotropies

of the CMB. Along this first perspective, the viscous modes

are only tolerable as a subleading component of a dominant

adiabatic solution whose presence is instead mandatory in

the light of current large-scale observations. A second

complementary possibility stipulates that the viscous coef-

ficients have a spatial variation but in the presence of a

homogeneous background. In such a situation the curvature

perturbations inherit a source term depending on the

fluctuations of the viscous coefficients, on the background

viscosities and on the inhomogeneity of the expansion rate.

The fluctuations of the bulk viscosity coefficient always act

as a supplementary nonadiabatic pressure fluctuation but,

this time, a quasi-de Sitter stage of expansion can be driven

solely by the viscous coefficients. The present analysis

demonstrates that the evolution of curvature perturbations

is in general nonadiabatic. Moreover, if and when the bulk

viscosity coefficient leads to quasi-de Sitter solutions and to

large-scale curvature perturbations, the shear viscosity

coefficient at large scales only couples to the evolution

of the traceless part of the extrinsic curvature of the spatial

slices and does not contribute to the accelerated expansion.

The potentially dangerous nonadiabatic source terms

summarized in the previous paragraph disappear whenever

the viscosity coefficients depend solely on the energy

density of the relativistic fluid. In this case the curvature

perturbations are effectively quasiadiabatic since they

coincide with the standard adiabatic solution but only in

the large-scale limit. In perturbation theory this conclusion

follows from the analysis of the gauge-invariant fluctua-

tions of the spatial curvature. The same result can also be

obtained from a fully nonlinear analysis where the evolu-

tion of the curvature perturbations is studied within the

gradient expansion appropriately extended to handle the

viscous situation. Unfortunately the curvature power spec-

trum of the quasiadiabatic solution is parametrically

smaller than the tensor power spectrum. Hence the corre-

sponding tensor to scalar ratio turns out to be larger than in

the standard adiabatic case where the scalar power spec-

trum dominates, over large scales, against its tensor

counterpart. Taken at face value the obtained results show

that the viscous coefficients alone cannot drive a phase of

accelerated expansion and, at the same time, reproduce the

standard adiabatic scalar mode. We can get very close to an

acceptable phenomenological situation if the bulk viscosity

coefficient only depends on the energy density of the

plasma. Even in this case, however, there are serious

drawbacks since the dominance of the tensors against

the scalars is at odds with a pretty robust observational

evidence. In this respect the obtained results suggest a

novel strategy for a concrete phenomenological scrutiny of

the large scale inhomogeneities induced by the viscous

coefficients.

In a more optimistic perspective the large-scale fluctua-

tions of the viscous coefficients remain a viable possibility

only when the dominant adiabatic solution comes from a

different physical origin. In this case the fluctuations of the

bulk viscosity play the same role of a supplementary

nonadiabatic solution in the space of the initial conditions

of the Einstein-Boltzmann hierarchy. Such a component

can be constrained prior to photon decoupling and across

the matter-radiation transition with the same techniques

customarily employed to bound the presence of the

standard four nonadiabatic solutions.
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